2013-06-26 15:22:04 -07:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Common collision utility methods
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
# if !defined(_STATIC_LINKED) || defined(_SHARED_LIB)
# include "collisionutils.h"
# include "cmodel.h"
# include "mathlib/mathlib.h"
# include "mathlib/vector.h"
# include "tier0/dbg.h"
# include <float.h>
# include "mathlib/vector4d.h"
# include "trace.h"
// memdbgon must be the last include file in a .cpp file!!!
# include "tier0/memdbgon.h"
# define UNINIT -99999.0
//-----------------------------------------------------------------------------
// Clears the trace
//-----------------------------------------------------------------------------
static void Collision_ClearTrace ( const Vector & vecRayStart , const Vector & vecRayDelta , CBaseTrace * pTrace )
{
pTrace - > startpos = vecRayStart ;
pTrace - > endpos = vecRayStart ;
pTrace - > endpos + = vecRayDelta ;
pTrace - > startsolid = false ;
pTrace - > allsolid = false ;
pTrace - > fraction = 1.0f ;
pTrace - > contents = 0 ;
}
//-----------------------------------------------------------------------------
// Compute the offset in t along the ray that we'll use for the collision
//-----------------------------------------------------------------------------
static float ComputeBoxOffset ( const Ray_t & ray )
{
if ( ray . m_IsRay )
return 1e-3 f ;
// Find the projection of the box diagonal along the ray...
float offset = FloatMakePositive ( ray . m_Extents [ 0 ] * ray . m_Delta [ 0 ] ) +
FloatMakePositive ( ray . m_Extents [ 1 ] * ray . m_Delta [ 1 ] ) +
FloatMakePositive ( ray . m_Extents [ 2 ] * ray . m_Delta [ 2 ] ) ;
// We need to divide twice: Once to normalize the computation above
// so we get something in units of extents, and the second to normalize
// that with respect to the entire raycast.
offset * = InvRSquared ( ray . m_Delta ) ;
// 1e-3 is an epsilon
return offset + 1e-3 ;
}
//-----------------------------------------------------------------------------
// Intersects a swept box against a triangle
//-----------------------------------------------------------------------------
float IntersectRayWithTriangle ( const Ray_t & ray ,
const Vector & v1 , const Vector & v2 , const Vector & v3 , bool oneSided )
{
// This is cute: Use barycentric coordinates to represent the triangle
// Vo(1-u-v) + V1u + V2v and intersect that with a line Po + Dt
// This gives us 3 equations + 3 unknowns, which we can solve with
// Cramer's rule...
// E1x u + E2x v - Dx t = Pox - Vox
// There's a couple of other optimizations, Cramer's rule involves
// computing the determinant of a matrix which has been constructed
// by three vectors. It turns out that
// det | A B C | = -( A x C ) dot B or -(C x B) dot A
// which we'll use below..
Vector edge1 , edge2 , org ;
VectorSubtract ( v2 , v1 , edge1 ) ;
VectorSubtract ( v3 , v1 , edge2 ) ;
// Cull out one-sided stuff
if ( oneSided )
{
Vector normal ;
CrossProduct ( edge1 , edge2 , normal ) ;
if ( DotProduct ( normal , ray . m_Delta ) > = 0.0f )
return - 1.0f ;
}
// FIXME: This is inaccurate, but fast for boxes
// We want to do a fast separating axis implementation here
// with a swept triangle along the reverse direction of the ray.
// Compute some intermediary terms
Vector dirCrossEdge2 , orgCrossEdge1 ;
CrossProduct ( ray . m_Delta , edge2 , dirCrossEdge2 ) ;
// Compute the denominator of Cramer's rule:
// | -Dx E1x E2x |
// det | -Dy E1y E2y | = (D x E2) dot E1
// | -Dz E1z E2z |
float denom = DotProduct ( dirCrossEdge2 , edge1 ) ;
if ( FloatMakePositive ( denom ) < 1e-6 )
return - 1.0f ;
denom = 1.0f / denom ;
// Compute u. It's gotta lie in the range of 0 to 1.
// | -Dx orgx E2x |
// u = denom * det | -Dy orgy E2y | = (D x E2) dot org
// | -Dz orgz E2z |
VectorSubtract ( ray . m_Start , v1 , org ) ;
float u = DotProduct ( dirCrossEdge2 , org ) * denom ;
if ( ( u < 0.0f ) | | ( u > 1.0f ) )
return - 1.0f ;
// Compute t and v the same way...
// In barycentric coords, u + v < 1
CrossProduct ( org , edge1 , orgCrossEdge1 ) ;
float v = DotProduct ( orgCrossEdge1 , ray . m_Delta ) * denom ;
if ( ( v < 0.0f ) | | ( v + u > 1.0f ) )
return - 1.0f ;
// Compute the distance along the ray direction that we need to fudge
// when using swept boxes
float boxt = ComputeBoxOffset ( ray ) ;
float t = DotProduct ( orgCrossEdge1 , edge2 ) * denom ;
if ( ( t < - boxt ) | | ( t > 1.0f + boxt ) )
return - 1.0f ;
return clamp ( t , 0.f , 1.f ) ;
}
//-----------------------------------------------------------------------------
// computes the barycentric coordinates of an intersection
//-----------------------------------------------------------------------------
bool ComputeIntersectionBarycentricCoordinates ( const Ray_t & ray ,
const Vector & v1 , const Vector & v2 , const Vector & v3 , float & u , float & v ,
float * t )
{
Vector edge1 , edge2 , org ;
VectorSubtract ( v2 , v1 , edge1 ) ;
VectorSubtract ( v3 , v1 , edge2 ) ;
// Compute some intermediary terms
Vector dirCrossEdge2 , orgCrossEdge1 ;
CrossProduct ( ray . m_Delta , edge2 , dirCrossEdge2 ) ;
// Compute the denominator of Cramer's rule:
// | -Dx E1x E2x |
// det | -Dy E1y E2y | = (D x E2) dot E1
// | -Dz E1z E2z |
float denom = DotProduct ( dirCrossEdge2 , edge1 ) ;
if ( FloatMakePositive ( denom ) < 1e-6 )
return false ;
denom = 1.0f / denom ;
// Compute u. It's gotta lie in the range of 0 to 1.
// | -Dx orgx E2x |
// u = denom * det | -Dy orgy E2y | = (D x E2) dot org
// | -Dz orgz E2z |
VectorSubtract ( ray . m_Start , v1 , org ) ;
u = DotProduct ( dirCrossEdge2 , org ) * denom ;
// Compute t and v the same way...
// In barycentric coords, u + v < 1
CrossProduct ( org , edge1 , orgCrossEdge1 ) ;
v = DotProduct ( orgCrossEdge1 , ray . m_Delta ) * denom ;
// Compute the distance along the ray direction that we need to fudge
// when using swept boxes
if ( t )
{
float boxt = ComputeBoxOffset ( ray ) ;
* t = DotProduct ( orgCrossEdge1 , edge2 ) * denom ;
if ( ( * t < - boxt ) | | ( * t > 1.0f + boxt ) )
return false ;
}
return true ;
}
//-----------------------------------------------------------------------------
// Intersects a plane with a triangle (requires barycentric definition)
//-----------------------------------------------------------------------------
int IntersectTriangleWithPlaneBarycentric ( const Vector & org , const Vector & edgeU ,
const Vector & edgeV , const Vector4D & plane , Vector2D * pIntersection )
{
// This uses a barycentric method, since we need that to determine
// interpolated points, alphas, and normals
// Given the plane equation P dot N + d = 0
// and the barycentric coodinate equation P = Org + EdgeU * u + EdgeV * v
// Plug em in. Intersection occurs at u = 0 or v = 0 or u + v = 1
float orgDotNormal = DotProduct ( org , plane . AsVector3D ( ) ) ;
float edgeUDotNormal = DotProduct ( edgeU , plane . AsVector3D ( ) ) ;
float edgeVDotNormal = DotProduct ( edgeV , plane . AsVector3D ( ) ) ;
int ptIdx = 0 ;
// u = 0
if ( edgeVDotNormal ! = 0.0f )
{
pIntersection [ ptIdx ] . x = 0.0f ;
pIntersection [ ptIdx ] . y = - ( orgDotNormal - plane . w ) / edgeVDotNormal ;
if ( ( pIntersection [ ptIdx ] . y > = 0.0f ) & & ( pIntersection [ ptIdx ] . y < = 1.0f ) )
+ + ptIdx ;
}
// v = 0
if ( edgeUDotNormal ! = 0.0f )
{
pIntersection [ ptIdx ] . x = - ( orgDotNormal - plane . w ) / edgeUDotNormal ;
pIntersection [ ptIdx ] . y = 0.0f ;
if ( ( pIntersection [ ptIdx ] . x > = 0.0f ) & & ( pIntersection [ ptIdx ] . x < = 1.0f ) )
+ + ptIdx ;
}
// u + v = 1
if ( ptIdx = = 2 )
return ptIdx ;
if ( edgeVDotNormal ! = edgeUDotNormal )
{
pIntersection [ ptIdx ] . x = - ( orgDotNormal - plane . w + edgeVDotNormal ) /
( edgeUDotNormal - edgeVDotNormal ) ;
2016-11-30 10:01:15 -05:00
pIntersection [ ptIdx ] . y = 1.0f - pIntersection [ ptIdx ] . x ;
2013-06-26 15:22:04 -07:00
if ( ( pIntersection [ ptIdx ] . x > = 0.0f ) & & ( pIntersection [ ptIdx ] . x < = 1.0f ) & &
( pIntersection [ ptIdx ] . y > = 0.0f ) & & ( pIntersection [ ptIdx ] . y < = 1.0f ) )
+ + ptIdx ;
}
Assert ( ptIdx < 3 ) ;
return ptIdx ;
}
//-----------------------------------------------------------------------------
// Returns true if a box intersects with a sphere
//-----------------------------------------------------------------------------
bool IsSphereIntersectingSphere ( const Vector & center1 , float radius1 ,
const Vector & center2 , float radius2 )
{
Vector delta ;
VectorSubtract ( center2 , center1 , delta ) ;
float distSq = delta . LengthSqr ( ) ;
float radiusSum = radius1 + radius2 ;
return ( distSq < = ( radiusSum * radiusSum ) ) ;
}
//-----------------------------------------------------------------------------
// Returns true if a box intersects with a sphere
//-----------------------------------------------------------------------------
bool IsBoxIntersectingSphere ( const Vector & boxMin , const Vector & boxMax ,
const Vector & center , float radius )
{
// See Graphics Gems, box-sphere intersection
float dmin = 0.0f ;
float flDelta ;
// Unrolled the loop.. this is a big cycle stealer...
if ( center [ 0 ] < boxMin [ 0 ] )
{
flDelta = center [ 0 ] - boxMin [ 0 ] ;
dmin + = flDelta * flDelta ;
}
else if ( center [ 0 ] > boxMax [ 0 ] )
{
flDelta = boxMax [ 0 ] - center [ 0 ] ;
dmin + = flDelta * flDelta ;
}
if ( center [ 1 ] < boxMin [ 1 ] )
{
flDelta = center [ 1 ] - boxMin [ 1 ] ;
dmin + = flDelta * flDelta ;
}
else if ( center [ 1 ] > boxMax [ 1 ] )
{
flDelta = boxMax [ 1 ] - center [ 1 ] ;
dmin + = flDelta * flDelta ;
}
if ( center [ 2 ] < boxMin [ 2 ] )
{
flDelta = center [ 2 ] - boxMin [ 2 ] ;
dmin + = flDelta * flDelta ;
}
else if ( center [ 2 ] > boxMax [ 2 ] )
{
flDelta = boxMax [ 2 ] - center [ 2 ] ;
dmin + = flDelta * flDelta ;
}
return dmin < radius * radius ;
}
bool IsBoxIntersectingSphereExtents ( const Vector & boxCenter , const Vector & boxHalfDiag ,
const Vector & center , float radius )
{
// See Graphics Gems, box-sphere intersection
float dmin = 0.0f ;
float flDelta , flDiff ;
// Unrolled the loop.. this is a big cycle stealer...
flDiff = FloatMakePositive ( center . x - boxCenter . x ) ;
if ( flDiff > boxHalfDiag . x )
{
flDelta = flDiff - boxHalfDiag . x ;
dmin + = flDelta * flDelta ;
}
flDiff = FloatMakePositive ( center . y - boxCenter . y ) ;
if ( flDiff > boxHalfDiag . y )
{
flDelta = flDiff - boxHalfDiag . y ;
dmin + = flDelta * flDelta ;
}
flDiff = FloatMakePositive ( center . z - boxCenter . z ) ;
if ( flDiff > boxHalfDiag . z )
{
flDelta = flDiff - boxHalfDiag . z ;
dmin + = flDelta * flDelta ;
}
return dmin < radius * radius ;
}
//-----------------------------------------------------------------------------
// Returns true if a rectangle intersects with a circle
//-----------------------------------------------------------------------------
bool IsCircleIntersectingRectangle ( const Vector2D & boxMin , const Vector2D & boxMax ,
const Vector2D & center , float radius )
{
// See Graphics Gems, box-sphere intersection
float dmin = 0.0f ;
float flDelta ;
if ( center [ 0 ] < boxMin [ 0 ] )
{
flDelta = center [ 0 ] - boxMin [ 0 ] ;
dmin + = flDelta * flDelta ;
}
else if ( center [ 0 ] > boxMax [ 0 ] )
{
flDelta = boxMax [ 0 ] - center [ 0 ] ;
dmin + = flDelta * flDelta ;
}
if ( center [ 1 ] < boxMin [ 1 ] )
{
flDelta = center [ 1 ] - boxMin [ 1 ] ;
dmin + = flDelta * flDelta ;
}
else if ( center [ 1 ] > boxMax [ 1 ] )
{
flDelta = boxMax [ 1 ] - center [ 1 ] ;
dmin + = flDelta * flDelta ;
}
return dmin < radius * radius ;
}
//-----------------------------------------------------------------------------
// returns true if there's an intersection between ray and sphere
//-----------------------------------------------------------------------------
bool IsRayIntersectingSphere ( const Vector & vecRayOrigin , const Vector & vecRayDelta ,
const Vector & vecCenter , float flRadius , float flTolerance )
{
// For this algorithm, find a point on the ray which is closest to the sphere origin
// Do this by making a plane passing through the sphere origin
// whose normal is parallel to the ray. Intersect that plane with the ray.
// Plane: N dot P = I, N = D (ray direction), I = C dot N = C dot D
// Ray: P = O + D * t
// D dot ( O + D * t ) = C dot D
// D dot O + D dot D * t = C dot D
// t = (C - O) dot D / D dot D
// Clamp t to (0,1)
// Find distance of the point on the ray to the sphere center.
Assert ( flTolerance > = 0.0f ) ;
flRadius + = flTolerance ;
Vector vecRayToSphere ;
VectorSubtract ( vecCenter , vecRayOrigin , vecRayToSphere ) ;
float flNumerator = DotProduct ( vecRayToSphere , vecRayDelta ) ;
float t ;
if ( flNumerator < = 0.0f )
{
t = 0.0f ;
}
else
{
float flDenominator = DotProduct ( vecRayDelta , vecRayDelta ) ;
if ( flNumerator > flDenominator )
t = 1.0f ;
else
t = flNumerator / flDenominator ;
}
Vector vecClosestPoint ;
VectorMA ( vecRayOrigin , t , vecRayDelta , vecClosestPoint ) ;
return ( vecClosestPoint . DistToSqr ( vecCenter ) < = flRadius * flRadius ) ;
// NOTE: This in an alternate algorithm which I didn't use because I'd have to use a sqrt
// So it's probably faster to do this other algorithm. I'll leave the comments here
// for how to go back if we want to
// Solve using the ray equation + the sphere equation
// P = o + dt
// (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
// (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2
// (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 +
// (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 +
// (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2
// (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t +
// (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0
// or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a
// a = DotProduct( vecRayDelta, vecRayDelta );
// b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta )
// c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius;
// Valid solutions are possible only if b^2 - 4ac >= 0
// Therefore, compute that value + see if we got it
}
//-----------------------------------------------------------------------------
//
// IntersectInfiniteRayWithSphere
//
// Returns whether or not there was an intersection.
// Returns the two intersection points
//
//-----------------------------------------------------------------------------
bool IntersectInfiniteRayWithSphere ( const Vector & vecRayOrigin , const Vector & vecRayDelta ,
const Vector & vecSphereCenter , float flRadius , float * pT1 , float * pT2 )
{
// Solve using the ray equation + the sphere equation
// P = o + dt
// (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
// (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2
// (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 +
// (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 +
// (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2
// (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t +
// (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0
// or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a
// a = DotProduct( vecRayDelta, vecRayDelta );
// b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta )
// c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius;
Vector vecSphereToRay ;
VectorSubtract ( vecRayOrigin , vecSphereCenter , vecSphereToRay ) ;
float a = DotProduct ( vecRayDelta , vecRayDelta ) ;
// This would occur in the case of a zero-length ray
if ( a = = 0.0f )
{
* pT1 = * pT2 = 0.0f ;
return vecSphereToRay . LengthSqr ( ) < = flRadius * flRadius ;
}
float b = 2 * DotProduct ( vecSphereToRay , vecRayDelta ) ;
float c = DotProduct ( vecSphereToRay , vecSphereToRay ) - flRadius * flRadius ;
float flDiscrim = b * b - 4 * a * c ;
if ( flDiscrim < 0.0f )
return false ;
flDiscrim = sqrt ( flDiscrim ) ;
float oo2a = 0.5f / a ;
* pT1 = ( - b - flDiscrim ) * oo2a ;
* pT2 = ( - b + flDiscrim ) * oo2a ;
return true ;
}
//-----------------------------------------------------------------------------
//
// IntersectRayWithSphere
//
// Returns whether or not there was an intersection.
// Returns the two intersection points, clamped to (0,1)
//
//-----------------------------------------------------------------------------
bool IntersectRayWithSphere ( const Vector & vecRayOrigin , const Vector & vecRayDelta ,
const Vector & vecSphereCenter , float flRadius , float * pT1 , float * pT2 )
{
if ( ! IntersectInfiniteRayWithSphere ( vecRayOrigin , vecRayDelta , vecSphereCenter , flRadius , pT1 , pT2 ) )
return false ;
if ( ( * pT1 > 1.0f ) | | ( * pT2 < 0.0f ) )
return false ;
// Clamp it!
if ( * pT1 < 0.0f )
* pT1 = 0.0f ;
if ( * pT2 > 1.0f )
* pT2 = 1.0f ;
return true ;
}
// returns true if the sphere and cone intersect
// NOTE: cone sine/cosine are the half angle of the cone
bool IsSphereIntersectingCone ( const Vector & sphereCenter , float sphereRadius , const Vector & coneOrigin , const Vector & coneNormal , float coneSine , float coneCosine )
{
Vector backCenter = coneOrigin - ( sphereRadius / coneSine ) * coneNormal ;
Vector delta = sphereCenter - backCenter ;
float deltaLen = delta . Length ( ) ;
if ( DotProduct ( coneNormal , delta ) > = deltaLen * coneCosine )
{
delta = sphereCenter - coneOrigin ;
deltaLen = delta . Length ( ) ;
if ( - DotProduct ( coneNormal , delta ) > = deltaLen * coneSine )
{
return ( deltaLen < = sphereRadius ) ? true : false ;
}
return true ;
}
return false ;
}
//-----------------------------------------------------------------------------
// returns true if the point is in the box
//-----------------------------------------------------------------------------
bool IsPointInBox ( const Vector & pt , const Vector & boxMin , const Vector & boxMax )
{
Assert ( boxMin [ 0 ] < = boxMax [ 0 ] ) ;
Assert ( boxMin [ 1 ] < = boxMax [ 1 ] ) ;
Assert ( boxMin [ 2 ] < = boxMax [ 2 ] ) ;
// on x360, force use of SIMD version.
if ( IsX360 ( ) )
{
return IsPointInBox ( LoadUnaligned3SIMD ( pt . Base ( ) ) , LoadUnaligned3SIMD ( boxMin . Base ( ) ) , LoadUnaligned3SIMD ( boxMax . Base ( ) ) ) ;
}
if ( ( pt [ 0 ] > boxMax [ 0 ] ) | | ( pt [ 0 ] < boxMin [ 0 ] ) )
return false ;
if ( ( pt [ 1 ] > boxMax [ 1 ] ) | | ( pt [ 1 ] < boxMin [ 1 ] ) )
return false ;
if ( ( pt [ 2 ] > boxMax [ 2 ] ) | | ( pt [ 2 ] < boxMin [ 2 ] ) )
return false ;
return true ;
}
bool IsPointInCone ( const Vector & pt , const Vector & origin , const Vector & axis , float cosAngle , float length )
{
Vector delta = pt - origin ;
float dist = VectorNormalize ( delta ) ;
float dot = DotProduct ( delta , axis ) ;
if ( dot < cosAngle )
return false ;
if ( dist * dot > length )
return false ;
return true ;
}
//-----------------------------------------------------------------------------
// returns true if there's an intersection between two boxes
//-----------------------------------------------------------------------------
bool IsBoxIntersectingBox ( const Vector & boxMin1 , const Vector & boxMax1 ,
const Vector & boxMin2 , const Vector & boxMax2 )
{
Assert ( boxMin1 [ 0 ] < = boxMax1 [ 0 ] ) ;
Assert ( boxMin1 [ 1 ] < = boxMax1 [ 1 ] ) ;
Assert ( boxMin1 [ 2 ] < = boxMax1 [ 2 ] ) ;
Assert ( boxMin2 [ 0 ] < = boxMax2 [ 0 ] ) ;
Assert ( boxMin2 [ 1 ] < = boxMax2 [ 1 ] ) ;
Assert ( boxMin2 [ 2 ] < = boxMax2 [ 2 ] ) ;
if ( ( boxMin1 [ 0 ] > boxMax2 [ 0 ] ) | | ( boxMax1 [ 0 ] < boxMin2 [ 0 ] ) )
return false ;
if ( ( boxMin1 [ 1 ] > boxMax2 [ 1 ] ) | | ( boxMax1 [ 1 ] < boxMin2 [ 1 ] ) )
return false ;
if ( ( boxMin1 [ 2 ] > boxMax2 [ 2 ] ) | | ( boxMax1 [ 2 ] < boxMin2 [ 2 ] ) )
return false ;
return true ;
}
bool IsBoxIntersectingBoxExtents ( const Vector & boxCenter1 , const Vector & boxHalfDiagonal1 ,
const Vector & boxCenter2 , const Vector & boxHalfDiagonal2 )
{
Vector vecDelta , vecSize ;
VectorSubtract ( boxCenter1 , boxCenter2 , vecDelta ) ;
VectorAdd ( boxHalfDiagonal1 , boxHalfDiagonal2 , vecSize ) ;
return ( FloatMakePositive ( vecDelta . x ) < = vecSize . x ) & &
( FloatMakePositive ( vecDelta . y ) < = vecSize . y ) & &
( FloatMakePositive ( vecDelta . z ) < = vecSize . z ) ;
}
//-----------------------------------------------------------------------------
//
// IsOBBIntersectingOBB
//
// returns true if there's an intersection between two OBBs
//
//-----------------------------------------------------------------------------
bool IsOBBIntersectingOBB ( const Vector & vecOrigin1 , const QAngle & vecAngles1 , const Vector & boxMin1 , const Vector & boxMax1 ,
const Vector & vecOrigin2 , const QAngle & vecAngles2 , const Vector & boxMin2 , const Vector & boxMax2 , float flTolerance )
{
// FIXME: Simple case AABB check doesn't work because the min and max extents are not oriented based on the angle
// this fast check would only be good for cubes.
/*if ( vecAngles1 == vecAngles2 )
{
const Vector & vecDelta = vecOrigin2 - vecOrigin1 ;
Vector vecOtherMins , vecOtherMaxs ;
VectorAdd ( boxMin2 , vecDelta , vecOtherMins ) ;
VectorAdd ( boxMax2 , vecDelta , vecOtherMaxs ) ;
return IsBoxIntersectingBox ( boxMin1 , boxMax1 , vecOtherMins , vecOtherMaxs ) ;
} */
// OBB test...
cplane_t plane ;
bool bFoundPlane = ComputeSeparatingPlane ( vecOrigin1 , vecAngles1 , boxMin1 , boxMax1 ,
vecOrigin2 , vecAngles2 , boxMin2 , boxMax2 , flTolerance , & plane ) ;
return ( bFoundPlane = = false ) ;
}
// NOTE: This is only very slightly faster on high end PCs and x360
# define USE_SIMD_RAY_CHECKS 1
//-----------------------------------------------------------------------------
// returns true if there's an intersection between box and ray
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay ( const Vector & boxMin , const Vector & boxMax ,
const Vector & origin , const Vector & vecDelta , float flTolerance )
{
# if USE_SIMD_RAY_CHECKS
// Load the unaligned ray/box parameters into SIMD registers
fltx4 start = LoadUnaligned3SIMD ( origin . Base ( ) ) ;
fltx4 delta = LoadUnaligned3SIMD ( vecDelta . Base ( ) ) ;
fltx4 boxMins = LoadUnaligned3SIMD ( boxMin . Base ( ) ) ;
fltx4 boxMaxs = LoadUnaligned3SIMD ( boxMax . Base ( ) ) ;
fltx4 epsilon = ReplicateX4 ( flTolerance ) ;
// compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
fltx4 offsetMins = SubSIMD ( boxMins , start ) ;
fltx4 offsetMaxs = SubSIMD ( boxMaxs , start ) ;
fltx4 offsetMinsExpanded = SubSIMD ( offsetMins , epsilon ) ;
fltx4 offsetMaxsExpanded = AddSIMD ( offsetMaxs , epsilon ) ;
// Check to see if both the origin (start point) and the end point (delta) are on the front side
// of any of the box sides - if so there can be no intersection
fltx4 startOutMins = CmpLtSIMD ( Four_Zeros , offsetMinsExpanded ) ;
fltx4 endOutMins = CmpLtSIMD ( delta , offsetMinsExpanded ) ;
fltx4 minsMask = AndSIMD ( startOutMins , endOutMins ) ;
fltx4 startOutMaxs = CmpGtSIMD ( Four_Zeros , offsetMaxsExpanded ) ;
fltx4 endOutMaxs = CmpGtSIMD ( delta , offsetMaxsExpanded ) ;
fltx4 maxsMask = AndSIMD ( startOutMaxs , endOutMaxs ) ;
if ( IsAnyNegative ( SetWToZeroSIMD ( OrSIMD ( minsMask , maxsMask ) ) ) )
return false ;
// now build the per-axis interval of t for intersections
fltx4 invDelta = ReciprocalSaturateSIMD ( delta ) ;
fltx4 tmins = MulSIMD ( offsetMinsExpanded , invDelta ) ;
fltx4 tmaxs = MulSIMD ( offsetMaxsExpanded , invDelta ) ;
fltx4 crossPlane = OrSIMD ( XorSIMD ( startOutMins , endOutMins ) , XorSIMD ( startOutMaxs , endOutMaxs ) ) ;
// only consider axes where we crossed a plane
tmins = MaskedAssign ( crossPlane , tmins , Four_Negative_FLT_MAX ) ;
tmaxs = MaskedAssign ( crossPlane , tmaxs , Four_FLT_MAX ) ;
// now sort the interval per axis
fltx4 mint = MinSIMD ( tmins , tmaxs ) ;
fltx4 maxt = MaxSIMD ( tmins , tmaxs ) ;
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3 ( maxt ) ;
fltx4 lastIn = FindHighestSIMD3 ( mint ) ;
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD ( firstOut , Four_Ones ) ;
lastIn = MaxSIMD ( lastIn , Four_Zeros ) ;
// If the final interval is valid lastIn<firstOut, check for separation
fltx4 separation = CmpGtSIMD ( lastIn , firstOut ) ;
return IsAllZeros ( separation ) ;
# else
// On the x360, we force use of the SIMD functions.
# if defined(_X360)
if ( IsX360 ( ) )
{
fltx4 delta = LoadUnaligned3SIMD ( vecDelta . Base ( ) ) ;
return IsBoxIntersectingRay (
LoadUnaligned3SIMD ( boxMin . Base ( ) ) , LoadUnaligned3SIMD ( boxMax . Base ( ) ) ,
LoadUnaligned3SIMD ( origin . Base ( ) ) , delta , ReciprocalSIMD ( delta ) , // ray parameters
ReplicateX4 ( flTolerance ) ///< eg from ReplicateX4(flTolerance)
) ;
}
# endif
Assert ( boxMin [ 0 ] < = boxMax [ 0 ] ) ;
Assert ( boxMin [ 1 ] < = boxMax [ 1 ] ) ;
Assert ( boxMin [ 2 ] < = boxMax [ 2 ] ) ;
// FIXME: Surely there's a faster way
float tmin = - FLT_MAX ;
float tmax = FLT_MAX ;
for ( int i = 0 ; i < 3 ; + + i )
{
// Parallel case...
if ( FloatMakePositive ( vecDelta [ i ] ) < 1e-8 )
{
// Check that origin is in the box
// if not, then it doesn't intersect..
if ( ( origin [ i ] < boxMin [ i ] - flTolerance ) | | ( origin [ i ] > boxMax [ i ] + flTolerance ) )
return false ;
continue ;
}
// non-parallel case
// Find the t's corresponding to the entry and exit of
// the ray along x, y, and z. The find the furthest entry
// point, and the closest exit point. Once that is done,
// we know we don't collide if the closest exit point
// is behind the starting location. We also don't collide if
// the closest exit point is in front of the furthest entry point
float invDelta = 1.0f / vecDelta [ i ] ;
float t1 = ( boxMin [ i ] - flTolerance - origin [ i ] ) * invDelta ;
float t2 = ( boxMax [ i ] + flTolerance - origin [ i ] ) * invDelta ;
if ( t1 > t2 )
{
float temp = t1 ;
t1 = t2 ;
t2 = temp ;
}
if ( t1 > tmin )
tmin = t1 ;
if ( t2 < tmax )
tmax = t2 ;
if ( tmin > tmax )
return false ;
if ( tmax < 0 )
return false ;
if ( tmin > 1 )
return false ;
}
return true ;
# endif
}
//-----------------------------------------------------------------------------
// returns true if there's an intersection between box and ray
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay ( const Vector & boxMin , const Vector & boxMax ,
const Vector & origin , const Vector & vecDelta ,
const Vector & vecInvDelta , float flTolerance )
{
# if USE_SIMD_RAY_CHECKS
// Load the unaligned ray/box parameters into SIMD registers
fltx4 start = LoadUnaligned3SIMD ( origin . Base ( ) ) ;
fltx4 delta = LoadUnaligned3SIMD ( vecDelta . Base ( ) ) ;
fltx4 boxMins = LoadUnaligned3SIMD ( boxMin . Base ( ) ) ;
fltx4 boxMaxs = LoadUnaligned3SIMD ( boxMax . Base ( ) ) ;
// compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
boxMins = SubSIMD ( boxMins , start ) ;
boxMaxs = SubSIMD ( boxMaxs , start ) ;
// Check to see if both the origin (start point) and the end point (delta) are on the front side
// of any of the box sides - if so there can be no intersection
fltx4 startOutMins = CmpLtSIMD ( Four_Zeros , boxMins ) ;
fltx4 endOutMins = CmpLtSIMD ( delta , boxMins ) ;
fltx4 minsMask = AndSIMD ( startOutMins , endOutMins ) ;
fltx4 startOutMaxs = CmpGtSIMD ( Four_Zeros , boxMaxs ) ;
fltx4 endOutMaxs = CmpGtSIMD ( delta , boxMaxs ) ;
fltx4 maxsMask = AndSIMD ( startOutMaxs , endOutMaxs ) ;
if ( IsAnyNegative ( SetWToZeroSIMD ( OrSIMD ( minsMask , maxsMask ) ) ) )
return false ;
// now build the per-axis interval of t for intersections
fltx4 epsilon = ReplicateX4 ( flTolerance ) ;
fltx4 invDelta = LoadUnaligned3SIMD ( vecInvDelta . Base ( ) ) ;
boxMins = SubSIMD ( boxMins , epsilon ) ;
boxMaxs = AddSIMD ( boxMaxs , epsilon ) ;
boxMins = MulSIMD ( boxMins , invDelta ) ;
boxMaxs = MulSIMD ( boxMaxs , invDelta ) ;
fltx4 crossPlane = OrSIMD ( XorSIMD ( startOutMins , endOutMins ) , XorSIMD ( startOutMaxs , endOutMaxs ) ) ;
// only consider axes where we crossed a plane
boxMins = MaskedAssign ( crossPlane , boxMins , Four_Negative_FLT_MAX ) ;
boxMaxs = MaskedAssign ( crossPlane , boxMaxs , Four_FLT_MAX ) ;
// now sort the interval per axis
fltx4 mint = MinSIMD ( boxMins , boxMaxs ) ;
fltx4 maxt = MaxSIMD ( boxMins , boxMaxs ) ;
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3 ( maxt ) ;
fltx4 lastIn = FindHighestSIMD3 ( mint ) ;
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD ( firstOut , Four_Ones ) ;
lastIn = MaxSIMD ( lastIn , Four_Zeros ) ;
// If the final interval is valid lastIn<firstOut, check for separation
fltx4 separation = CmpGtSIMD ( lastIn , firstOut ) ;
return IsAllZeros ( separation ) ;
# else
// On the x360, we force use of the SIMD functions.
# if defined(_X360) && !defined(PARANOID_SIMD_ASSERTING)
if ( IsX360 ( ) )
{
return IsBoxIntersectingRay (
LoadUnaligned3SIMD ( boxMin . Base ( ) ) , LoadUnaligned3SIMD ( boxMax . Base ( ) ) ,
LoadUnaligned3SIMD ( origin . Base ( ) ) , LoadUnaligned3SIMD ( vecDelta . Base ( ) ) , LoadUnaligned3SIMD ( vecInvDelta . Base ( ) ) , // ray parameters
ReplicateX4 ( flTolerance ) ///< eg from ReplicateX4(flTolerance)
) ;
}
# endif
Assert ( boxMin [ 0 ] < = boxMax [ 0 ] ) ;
Assert ( boxMin [ 1 ] < = boxMax [ 1 ] ) ;
Assert ( boxMin [ 2 ] < = boxMax [ 2 ] ) ;
// FIXME: Surely there's a faster way
float tmin = - FLT_MAX ;
float tmax = FLT_MAX ;
for ( int i = 0 ; i < 3 ; + + i )
{
// Parallel case...
if ( FloatMakePositive ( vecDelta [ i ] ) < 1e-8 )
{
// Check that origin is in the box, if not, then it doesn't intersect..
if ( ( origin [ i ] < boxMin [ i ] - flTolerance ) | | ( origin [ i ] > boxMax [ i ] + flTolerance ) )
return false ;
continue ;
}
// Non-parallel case
// Find the t's corresponding to the entry and exit of
// the ray along x, y, and z. The find the furthest entry
// point, and the closest exit point. Once that is done,
// we know we don't collide if the closest exit point
// is behind the starting location. We also don't collide if
// the closest exit point is in front of the furthest entry point
float t1 = ( boxMin [ i ] - flTolerance - origin [ i ] ) * vecInvDelta [ i ] ;
float t2 = ( boxMax [ i ] + flTolerance - origin [ i ] ) * vecInvDelta [ i ] ;
if ( t1 > t2 )
{
float temp = t1 ;
t1 = t2 ;
t2 = temp ;
}
if ( t1 > tmin )
tmin = t1 ;
if ( t2 < tmax )
tmax = t2 ;
if ( tmin > tmax )
return false ;
if ( tmax < 0 )
return false ;
if ( tmin > 1 )
return false ;
}
return true ;
# endif
}
//-----------------------------------------------------------------------------
// Intersects a ray with a aabb, return true if they intersect
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay ( const Vector & vecBoxMin , const Vector & vecBoxMax , const Ray_t & ray , float flTolerance )
{
// On the x360, we force use of the SIMD functions.
# if defined(_X360)
if ( IsX360 ( ) )
{
return IsBoxIntersectingRay (
LoadUnaligned3SIMD ( vecBoxMin . Base ( ) ) , LoadUnaligned3SIMD ( vecBoxMax . Base ( ) ) ,
ray , flTolerance ) ;
}
# endif
if ( ! ray . m_IsSwept )
{
Vector rayMins , rayMaxs ;
VectorSubtract ( ray . m_Start , ray . m_Extents , rayMins ) ;
VectorAdd ( ray . m_Start , ray . m_Extents , rayMaxs ) ;
if ( flTolerance ! = 0.0f )
{
rayMins . x - = flTolerance ; rayMins . y - = flTolerance ; rayMins . z - = flTolerance ;
rayMaxs . x + = flTolerance ; rayMaxs . y + = flTolerance ; rayMaxs . z + = flTolerance ;
}
return IsBoxIntersectingBox ( vecBoxMin , vecBoxMax , rayMins , rayMaxs ) ;
}
Vector vecExpandedBoxMin , vecExpandedBoxMax ;
VectorSubtract ( vecBoxMin , ray . m_Extents , vecExpandedBoxMin ) ;
VectorAdd ( vecBoxMax , ray . m_Extents , vecExpandedBoxMax ) ;
return IsBoxIntersectingRay ( vecExpandedBoxMin , vecExpandedBoxMax , ray . m_Start , ray . m_Delta , flTolerance ) ;
}
//-----------------------------------------------------------------------------
// returns true if there's an intersection between box and ray (SIMD version)
//-----------------------------------------------------------------------------
# ifdef _X360
bool FASTCALL IsBoxIntersectingRay ( fltx4 boxMin , fltx4 boxMax ,
fltx4 origin , fltx4 delta , fltx4 invDelta , // ray parameters
fltx4 vTolerance ///< eg from ReplicateX4(flTolerance)
)
# else
bool FASTCALL IsBoxIntersectingRay ( const fltx4 & inBoxMin , const fltx4 & inBoxMax ,
const fltx4 & origin , const fltx4 & delta , const fltx4 & invDelta , // ray parameters
const fltx4 & vTolerance ///< eg from ReplicateX4(flTolerance)
)
# endif
{
// Load the unaligned ray/box parameters into SIMD registers
// compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
# ifdef _X360
boxMin = SubSIMD ( boxMin , origin ) ;
boxMax = SubSIMD ( boxMax , origin ) ;
# else
fltx4 boxMin = SubSIMD ( inBoxMin , origin ) ;
fltx4 boxMax = SubSIMD ( inBoxMax , origin ) ;
# endif
// Check to see if the origin (start point) and the end point (delta) are on the same side
// of any of the box sides - if so there can be no intersection
fltx4 startOutMins = AndSIMD ( CmpLtSIMD ( Four_Zeros , boxMin ) , CmpLtSIMD ( delta , boxMin ) ) ;
fltx4 startOutMaxs = AndSIMD ( CmpGtSIMD ( Four_Zeros , boxMax ) , CmpGtSIMD ( delta , boxMax ) ) ;
if ( IsAnyNegative ( SetWToZeroSIMD ( OrSIMD ( startOutMaxs , startOutMins ) ) ) )
return false ;
// now build the per-axis interval of t for intersections
boxMin = SubSIMD ( boxMin , vTolerance ) ;
boxMax = AddSIMD ( boxMax , vTolerance ) ;
boxMin = MulSIMD ( boxMin , invDelta ) ;
boxMax = MulSIMD ( boxMax , invDelta ) ;
// now sort the interval per axis
fltx4 mint = MinSIMD ( boxMin , boxMax ) ;
fltx4 maxt = MaxSIMD ( boxMin , boxMax ) ;
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3 ( maxt ) ;
fltx4 lastIn = FindHighestSIMD3 ( mint ) ;
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD ( firstOut , Four_Ones ) ;
lastIn = MaxSIMD ( lastIn , Four_Zeros ) ;
// If the final interval is valid lastIn<firstOut, check for separation
fltx4 separation = CmpGtSIMD ( lastIn , firstOut ) ;
return IsAllZeros ( separation ) ;
}
bool FASTCALL IsBoxIntersectingRay ( const fltx4 & boxMin , const fltx4 & boxMax ,
const Ray_t & ray , float flTolerance )
{
fltx4 vTolerance = ReplicateX4 ( flTolerance ) ;
fltx4 rayStart = LoadAlignedSIMD ( ray . m_Start ) ;
fltx4 rayExtents = LoadAlignedSIMD ( ray . m_Extents ) ;
if ( ! ray . m_IsSwept )
{
fltx4 rayMins , rayMaxs ;
rayMins = SubSIMD ( rayStart , rayExtents ) ;
rayMaxs = AddSIMD ( rayStart , rayExtents ) ;
rayMins = AddSIMD ( rayMins , vTolerance ) ;
rayMaxs = AddSIMD ( rayMaxs , vTolerance ) ;
VectorAligned vecBoxMin , vecBoxMax , vecRayMins , vecRayMaxs ;
StoreAlignedSIMD ( vecBoxMin . Base ( ) , boxMin ) ;
StoreAlignedSIMD ( vecBoxMax . Base ( ) , boxMax ) ;
StoreAlignedSIMD ( vecRayMins . Base ( ) , rayMins ) ;
StoreAlignedSIMD ( vecRayMaxs . Base ( ) , rayMaxs ) ;
return IsBoxIntersectingBox ( vecBoxMin , vecBoxMax , vecRayMins , vecRayMaxs ) ;
}
fltx4 rayDelta = LoadAlignedSIMD ( ray . m_Delta ) ;
fltx4 vecExpandedBoxMin , vecExpandedBoxMax ;
vecExpandedBoxMin = SubSIMD ( boxMin , rayExtents ) ;
vecExpandedBoxMax = AddSIMD ( boxMax , rayExtents ) ;
return IsBoxIntersectingRay ( vecExpandedBoxMin , vecExpandedBoxMax , rayStart , rayDelta , ReciprocalSIMD ( rayDelta ) , ReplicateX4 ( flTolerance ) ) ;
}
//-----------------------------------------------------------------------------
// Intersects a ray with a ray, return true if they intersect
// t, s = parameters of closest approach (if not intersecting!)
//-----------------------------------------------------------------------------
bool IntersectRayWithRay ( const Ray_t & ray0 , const Ray_t & ray1 , float & t , float & s )
{
Assert ( ray0 . m_IsRay & & ray1 . m_IsRay ) ;
//
// r0 = p0 + v0t
// r1 = p1 + v1s
//
// intersection : r0 = r1 :: p0 + v0t = p1 + v1s
// NOTE: v(0,1) are unit direction vectors
//
// subtract p0 from both sides and cross with v1 (NOTE: v1 x v1 = 0)
// (v0 x v1)t = ((p1 - p0 ) x v1)
//
// dotting with (v0 x v1) and dividing by |v0 x v1|^2
// t = Det | (p1 - p0) , v1 , (v0 x v1) | / |v0 x v1|^2
// s = Det | (p1 - p0) , v0 , (v0 x v1) | / |v0 x v1|^2
//
// Det | A B C | = -( A x C ) dot B or -( C x B ) dot A
//
// NOTE: if |v0 x v1|^2 = 0, then the lines are parallel
//
Vector v0 ( ray0 . m_Delta ) ;
Vector v1 ( ray1 . m_Delta ) ;
VectorNormalize ( v0 ) ;
VectorNormalize ( v1 ) ;
Vector v0xv1 = v0 . Cross ( v1 ) ;
float lengthSq = v0xv1 . LengthSqr ( ) ;
if ( lengthSq = = 0.0f )
{
t = 0 ; s = 0 ;
return false ; // parallel
}
Vector p1p0 = ray1 . m_Start - ray0 . m_Start ;
Vector AxC = p1p0 . Cross ( v0xv1 ) ;
AxC . Negate ( ) ;
float detT = AxC . Dot ( v1 ) ;
AxC = p1p0 . Cross ( v0xv1 ) ;
AxC . Negate ( ) ;
float detS = AxC . Dot ( v0 ) ;
t = detT / lengthSq ;
s = detS / lengthSq ;
// intersection????
Vector i0 , i1 ;
i0 = v0 * t ;
i1 = v1 * s ;
i0 + = ray0 . m_Start ;
i1 + = ray1 . m_Start ;
if ( i0 . x = = i1 . x & & i0 . y = = i1 . y & & i0 . z = = i1 . z )
return true ;
return false ;
}
//-----------------------------------------------------------------------------
// Intersects a ray with a plane, returns distance t along ray.
//-----------------------------------------------------------------------------
float IntersectRayWithPlane ( const Ray_t & ray , const cplane_t & plane )
{
float denom = DotProduct ( ray . m_Delta , plane . normal ) ;
if ( denom = = 0.0f )
return 0.0f ;
denom = 1.0f / denom ;
return ( plane . dist - DotProduct ( ray . m_Start , plane . normal ) ) * denom ;
}
float IntersectRayWithPlane ( const Vector & org , const Vector & dir , const cplane_t & plane )
{
float denom = DotProduct ( dir , plane . normal ) ;
if ( denom = = 0.0f )
return 0.0f ;
denom = 1.0f / denom ;
return ( plane . dist - DotProduct ( org , plane . normal ) ) * denom ;
}
float IntersectRayWithPlane ( const Vector & org , const Vector & dir , const Vector & normal , float dist )
{
float denom = DotProduct ( dir , normal ) ;
if ( denom = = 0.0f )
return 0.0f ;
denom = 1.0f / denom ;
return ( dist - DotProduct ( org , normal ) ) * denom ;
}
float IntersectRayWithAAPlane ( const Vector & vecStart , const Vector & vecEnd , int nAxis , float flSign , float flDist )
{
float denom = flSign * ( vecEnd [ nAxis ] - vecStart [ nAxis ] ) ;
if ( denom = = 0.0f )
return 0.0f ;
denom = 1.0f / denom ;
return ( flDist - flSign * vecStart [ nAxis ] ) * denom ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against a box
//-----------------------------------------------------------------------------
bool IntersectRayWithBox ( const Vector & vecRayStart , const Vector & vecRayDelta ,
const Vector & boxMins , const Vector & boxMaxs , float flTolerance , BoxTraceInfo_t * pTrace )
{
int i ;
float d1 , d2 ;
float f ;
pTrace - > t1 = - 1.0f ;
pTrace - > t2 = 1.0f ;
pTrace - > hitside = - 1 ;
// UNDONE: This makes this code a little messy
pTrace - > startsolid = true ;
for ( i = 0 ; i < 6 ; + + i )
{
if ( i > = 3 )
{
d1 = vecRayStart [ i - 3 ] - boxMaxs [ i - 3 ] ;
d2 = d1 + vecRayDelta [ i - 3 ] ;
}
else
{
d1 = - vecRayStart [ i ] + boxMins [ i ] ;
d2 = d1 - vecRayDelta [ i ] ;
}
// if completely in front of face, no intersection
if ( d1 > 0 & & d2 > 0 )
{
// UNDONE: Have to revert this in case it's still set
// UNDONE: Refactor to have only 2 return points (true/false) from this function
pTrace - > startsolid = false ;
return false ;
}
// completely inside, check next face
if ( d1 < = 0 & & d2 < = 0 )
continue ;
if ( d1 > 0 )
{
pTrace - > startsolid = false ;
}
// crosses face
if ( d1 > d2 )
{
f = d1 - flTolerance ;
if ( f < 0 )
{
f = 0 ;
}
f = f / ( d1 - d2 ) ;
if ( f > pTrace - > t1 )
{
pTrace - > t1 = f ;
pTrace - > hitside = i ;
}
}
else
{
// leave
f = ( d1 + flTolerance ) / ( d1 - d2 ) ;
if ( f < pTrace - > t2 )
{
pTrace - > t2 = f ;
}
}
}
return pTrace - > startsolid | | ( pTrace - > t1 < pTrace - > t2 & & pTrace - > t1 > = 0.0f ) ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against a box
//-----------------------------------------------------------------------------
bool IntersectRayWithBox ( const Vector & vecRayStart , const Vector & vecRayDelta ,
const Vector & boxMins , const Vector & boxMaxs , float flTolerance , CBaseTrace * pTrace , float * pFractionLeftSolid )
{
Collision_ClearTrace ( vecRayStart , vecRayDelta , pTrace ) ;
BoxTraceInfo_t trace ;
if ( IntersectRayWithBox ( vecRayStart , vecRayDelta , boxMins , boxMaxs , flTolerance , & trace ) )
{
pTrace - > startsolid = trace . startsolid ;
if ( trace . t1 < trace . t2 & & trace . t1 > = 0.0f )
{
pTrace - > fraction = trace . t1 ;
VectorMA ( pTrace - > startpos , trace . t1 , vecRayDelta , pTrace - > endpos ) ;
pTrace - > contents = CONTENTS_SOLID ;
pTrace - > plane . normal = vec3_origin ;
if ( trace . hitside > = 3 )
{
trace . hitside - = 3 ;
pTrace - > plane . dist = boxMaxs [ trace . hitside ] ;
pTrace - > plane . normal [ trace . hitside ] = 1.0f ;
pTrace - > plane . type = trace . hitside ;
}
else
{
pTrace - > plane . dist = - boxMins [ trace . hitside ] ;
pTrace - > plane . normal [ trace . hitside ] = - 1.0f ;
pTrace - > plane . type = trace . hitside ;
}
return true ;
}
if ( pTrace - > startsolid )
{
pTrace - > allsolid = ( trace . t2 < = 0.0f ) | | ( trace . t2 > = 1.0f ) ;
pTrace - > fraction = 0 ;
if ( pFractionLeftSolid )
{
* pFractionLeftSolid = trace . t2 ;
}
pTrace - > endpos = pTrace - > startpos ;
pTrace - > contents = CONTENTS_SOLID ;
pTrace - > plane . dist = pTrace - > startpos [ 0 ] ;
pTrace - > plane . normal . Init ( 1.0f , 0.0f , 0.0f ) ;
pTrace - > plane . type = 0 ;
pTrace - > startpos = vecRayStart + ( trace . t2 * vecRayDelta ) ;
return true ;
}
}
return false ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against a box
//-----------------------------------------------------------------------------
bool IntersectRayWithBox ( const Ray_t & ray , const Vector & boxMins , const Vector & boxMaxs ,
float flTolerance , CBaseTrace * pTrace , float * pFractionLeftSolid )
{
if ( ! ray . m_IsRay )
{
Vector vecExpandedMins = boxMins - ray . m_Extents ;
Vector vecExpandedMaxs = boxMaxs + ray . m_Extents ;
bool bIntersects = IntersectRayWithBox ( ray . m_Start , ray . m_Delta , vecExpandedMins , vecExpandedMaxs , flTolerance , pTrace , pFractionLeftSolid ) ;
pTrace - > startpos + = ray . m_StartOffset ;
pTrace - > endpos + = ray . m_StartOffset ;
return bIntersects ;
}
return IntersectRayWithBox ( ray . m_Start , ray . m_Delta , boxMins , boxMaxs , flTolerance , pTrace , pFractionLeftSolid ) ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB, returns t1 and t2
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB ( const Vector & vecRayStart , const Vector & vecRayDelta ,
const matrix3x4_t & matOBBToWorld , const Vector & vecOBBMins , const Vector & vecOBBMaxs ,
float flTolerance , BoxTraceInfo_t * pTrace )
{
// FIXME: Two transforms is pretty expensive. Should we optimize this?
Vector start , delta ;
VectorITransform ( vecRayStart , matOBBToWorld , start ) ;
VectorIRotate ( vecRayDelta , matOBBToWorld , delta ) ;
return IntersectRayWithBox ( start , delta , vecOBBMins , vecOBBMaxs , flTolerance , pTrace ) ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB ( const Vector & vecRayStart , const Vector & vecRayDelta ,
const matrix3x4_t & matOBBToWorld , const Vector & vecOBBMins , const Vector & vecOBBMaxs ,
float flTolerance , CBaseTrace * pTrace )
{
Collision_ClearTrace ( vecRayStart , vecRayDelta , pTrace ) ;
// FIXME: Make it work with tolerance
Assert ( flTolerance = = 0.0f ) ;
// OPTIMIZE: Store this in the box instead of computing it here
// compute center in local space
Vector vecBoxExtents = ( vecOBBMins + vecOBBMaxs ) * 0.5 ;
Vector vecBoxCenter ;
// transform to world space
VectorTransform ( vecBoxExtents , matOBBToWorld , vecBoxCenter ) ;
// calc extents from local center
vecBoxExtents = vecOBBMaxs - vecBoxExtents ;
// OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more
// sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS.
// save the extents of the ray along
Vector extent , uextent ;
Vector segmentCenter = vecRayStart + vecRayDelta - vecBoxCenter ;
extent . Init ( ) ;
// check box axes for separation
for ( int j = 0 ; j < 3 ; j + + )
{
extent [ j ] = vecRayDelta . x * matOBBToWorld [ 0 ] [ j ] + vecRayDelta . y * matOBBToWorld [ 1 ] [ j ] + vecRayDelta . z * matOBBToWorld [ 2 ] [ j ] ;
uextent [ j ] = fabsf ( extent [ j ] ) ;
float coord = segmentCenter . x * matOBBToWorld [ 0 ] [ j ] + segmentCenter . y * matOBBToWorld [ 1 ] [ j ] + segmentCenter . z * matOBBToWorld [ 2 ] [ j ] ;
coord = fabsf ( coord ) ;
if ( coord > ( vecBoxExtents [ j ] + uextent [ j ] ) )
return false ;
}
// now check cross axes for separation
float tmp , cextent ;
Vector cross = vecRayDelta . Cross ( segmentCenter ) ;
cextent = cross . x * matOBBToWorld [ 0 ] [ 0 ] + cross . y * matOBBToWorld [ 1 ] [ 0 ] + cross . z * matOBBToWorld [ 2 ] [ 0 ] ;
cextent = fabsf ( cextent ) ;
tmp = vecBoxExtents [ 1 ] * uextent [ 2 ] + vecBoxExtents [ 2 ] * uextent [ 1 ] ;
if ( cextent > tmp )
return false ;
cextent = cross . x * matOBBToWorld [ 0 ] [ 1 ] + cross . y * matOBBToWorld [ 1 ] [ 1 ] + cross . z * matOBBToWorld [ 2 ] [ 1 ] ;
cextent = fabsf ( cextent ) ;
tmp = vecBoxExtents [ 0 ] * uextent [ 2 ] + vecBoxExtents [ 2 ] * uextent [ 0 ] ;
if ( cextent > tmp )
return false ;
cextent = cross . x * matOBBToWorld [ 0 ] [ 2 ] + cross . y * matOBBToWorld [ 1 ] [ 2 ] + cross . z * matOBBToWorld [ 2 ] [ 2 ] ;
cextent = fabsf ( cextent ) ;
tmp = vecBoxExtents [ 0 ] * uextent [ 1 ] + vecBoxExtents [ 1 ] * uextent [ 0 ] ;
if ( cextent > tmp )
return false ;
// !!! We hit this box !!! compute intersection point and return
// Compute ray start in bone space
Vector start ;
VectorITransform ( vecRayStart , matOBBToWorld , start ) ;
// extent is ray.m_Delta in bone space, recompute delta in bone space
extent * = 2.0f ;
// delta was prescaled by the current t, so no need to see if this intersection
// is closer
trace_t boxTrace ;
if ( ! IntersectRayWithBox ( start , extent , vecOBBMins , vecOBBMaxs , flTolerance , pTrace ) )
return false ;
// Fix up the start/end pos and fraction
Vector vecTemp ;
VectorTransform ( pTrace - > endpos , matOBBToWorld , vecTemp ) ;
pTrace - > endpos = vecTemp ;
pTrace - > startpos = vecRayStart ;
pTrace - > fraction * = 2.0f ;
// Fix up the plane information
float flSign = pTrace - > plane . normal [ pTrace - > plane . type ] ;
pTrace - > plane . normal [ 0 ] = flSign * matOBBToWorld [ 0 ] [ pTrace - > plane . type ] ;
pTrace - > plane . normal [ 1 ] = flSign * matOBBToWorld [ 1 ] [ pTrace - > plane . type ] ;
pTrace - > plane . normal [ 2 ] = flSign * matOBBToWorld [ 2 ] [ pTrace - > plane . type ] ;
pTrace - > plane . dist = DotProduct ( pTrace - > endpos , pTrace - > plane . normal ) ;
pTrace - > plane . type = 3 ;
return true ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB ( const Vector & vecRayOrigin , const Vector & vecRayDelta ,
const Vector & vecBoxOrigin , const QAngle & angBoxRotation ,
const Vector & vecOBBMins , const Vector & vecOBBMaxs , float flTolerance , CBaseTrace * pTrace )
{
if ( angBoxRotation = = vec3_angle )
{
Vector vecAbsMins , vecAbsMaxs ;
VectorAdd ( vecBoxOrigin , vecOBBMins , vecAbsMins ) ;
VectorAdd ( vecBoxOrigin , vecOBBMaxs , vecAbsMaxs ) ;
return IntersectRayWithBox ( vecRayOrigin , vecRayDelta , vecAbsMins , vecAbsMaxs , flTolerance , pTrace ) ;
}
matrix3x4_t obbToWorld ;
AngleMatrix ( angBoxRotation , vecBoxOrigin , obbToWorld ) ;
return IntersectRayWithOBB ( vecRayOrigin , vecRayDelta , obbToWorld , vecOBBMins , vecOBBMaxs , flTolerance , pTrace ) ;
}
//-----------------------------------------------------------------------------
// Box support map
//-----------------------------------------------------------------------------
inline void ComputeSupportMap ( const Vector & vecDirection , const Vector & vecBoxMins ,
const Vector & vecBoxMaxs , float pDist [ 2 ] )
{
int nIndex = ( vecDirection . x > 0.0f ) ;
pDist [ nIndex ] = vecBoxMaxs . x * vecDirection . x ;
pDist [ 1 - nIndex ] = vecBoxMins . x * vecDirection . x ;
nIndex = ( vecDirection . y > 0.0f ) ;
pDist [ nIndex ] + = vecBoxMaxs . y * vecDirection . y ;
pDist [ 1 - nIndex ] + = vecBoxMins . y * vecDirection . y ;
nIndex = ( vecDirection . z > 0.0f ) ;
pDist [ nIndex ] + = vecBoxMaxs . z * vecDirection . z ;
pDist [ 1 - nIndex ] + = vecBoxMins . z * vecDirection . z ;
}
inline void ComputeSupportMap ( const Vector & vecDirection , int i1 , int i2 ,
const Vector & vecBoxMins , const Vector & vecBoxMaxs , float pDist [ 2 ] )
{
int nIndex = ( vecDirection [ i1 ] > 0.0f ) ;
pDist [ nIndex ] = vecBoxMaxs [ i1 ] * vecDirection [ i1 ] ;
pDist [ 1 - nIndex ] = vecBoxMins [ i1 ] * vecDirection [ i1 ] ;
nIndex = ( vecDirection [ i2 ] > 0.0f ) ;
pDist [ nIndex ] + = vecBoxMaxs [ i2 ] * vecDirection [ i2 ] ;
pDist [ 1 - nIndex ] + = vecBoxMins [ i2 ] * vecDirection [ i2 ] ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
static int s_ExtIndices [ 3 ] [ 2 ] =
{
{ 2 , 1 } ,
{ 0 , 2 } ,
{ 0 , 1 } ,
} ;
static int s_MatIndices [ 3 ] [ 2 ] =
{
{ 1 , 2 } ,
{ 2 , 0 } ,
{ 1 , 0 } ,
} ;
bool IntersectRayWithOBB ( const Ray_t & ray , const matrix3x4_t & matOBBToWorld ,
const Vector & vecOBBMins , const Vector & vecOBBMaxs , float flTolerance , CBaseTrace * pTrace )
{
if ( ray . m_IsRay )
{
return IntersectRayWithOBB ( ray . m_Start , ray . m_Delta , matOBBToWorld ,
vecOBBMins , vecOBBMaxs , flTolerance , pTrace ) ;
}
Collision_ClearTrace ( ray . m_Start + ray . m_StartOffset , ray . m_Delta , pTrace ) ;
// Compute a bounding sphere around the bloated OBB
Vector vecOBBCenter ;
VectorAdd ( vecOBBMins , vecOBBMaxs , vecOBBCenter ) ;
vecOBBCenter * = 0.5f ;
vecOBBCenter . x + = matOBBToWorld [ 0 ] [ 3 ] ;
vecOBBCenter . y + = matOBBToWorld [ 1 ] [ 3 ] ;
vecOBBCenter . z + = matOBBToWorld [ 2 ] [ 3 ] ;
Vector vecOBBHalfDiagonal ;
VectorSubtract ( vecOBBMaxs , vecOBBMins , vecOBBHalfDiagonal ) ;
vecOBBHalfDiagonal * = 0.5f ;
float flRadius = vecOBBHalfDiagonal . Length ( ) + ray . m_Extents . Length ( ) ;
if ( ! IsRayIntersectingSphere ( ray . m_Start , ray . m_Delta , vecOBBCenter , flRadius , flTolerance ) )
return false ;
// Ok, we passed the trivial reject, so lets do the dirty deed.
// Basically we're going to do the GJK thing explicitly. We'll shrink the ray down
// to a point, and bloat the OBB by the ray's extents. This will generate facet
// planes which are perpendicular to all of the separating axes typically seen in
// a standard seperating axis implementation.
// We're going to create a number of planes through various vertices in the OBB
// which represent all of the separating planes. Then we're going to bloat the planes
// by the ray extents.
// We're going to do all work in OBB-space because it's easier to do the
// support-map in this case
// First, transform the ray into the space of the OBB
Vector vecLocalRayOrigin , vecLocalRayDirection ;
VectorITransform ( ray . m_Start , matOBBToWorld , vecLocalRayOrigin ) ;
VectorIRotate ( ray . m_Delta , matOBBToWorld , vecLocalRayDirection ) ;
// Next compute all separating planes
Vector pPlaneNormal [ 15 ] ;
float ppPlaneDist [ 15 ] [ 2 ] ;
int i ;
for ( i = 0 ; i < 3 ; + + i )
{
// Each plane needs to be bloated an amount = to the abs dot product of
// the ray extents with the plane normal
// For the OBB planes, do it in world space;
// and use the direction of the OBB (the ith column of matOBBToWorld) in world space vs extents
pPlaneNormal [ i ] . Init ( ) ;
pPlaneNormal [ i ] [ i ] = 1.0f ;
float flExtentDotNormal =
FloatMakePositive ( matOBBToWorld [ 0 ] [ i ] * ray . m_Extents . x ) +
FloatMakePositive ( matOBBToWorld [ 1 ] [ i ] * ray . m_Extents . y ) +
FloatMakePositive ( matOBBToWorld [ 2 ] [ i ] * ray . m_Extents . z ) ;
ppPlaneDist [ i ] [ 0 ] = vecOBBMins [ i ] - flExtentDotNormal ;
ppPlaneDist [ i ] [ 1 ] = vecOBBMaxs [ i ] + flExtentDotNormal ;
// For the ray-extents planes, they are bloated by the extents
// Use the support map to determine which
VectorCopy ( matOBBToWorld [ i ] , pPlaneNormal [ i + 3 ] . Base ( ) ) ;
ComputeSupportMap ( pPlaneNormal [ i + 3 ] , vecOBBMins , vecOBBMaxs , ppPlaneDist [ i + 3 ] ) ;
ppPlaneDist [ i + 3 ] [ 0 ] - = ray . m_Extents [ i ] ;
ppPlaneDist [ i + 3 ] [ 1 ] + = ray . m_Extents [ i ] ;
// Now the edge cases... (take the cross product of x,y,z axis w/ ray extent axes
// given by the rows of the obb to world matrix.
// Compute the ray extent bloat in world space because it's easier...
// These are necessary to compute the world-space versions of
// the edges so we can compute the extent dot products
float flRayExtent0 = ray . m_Extents [ s_ExtIndices [ i ] [ 0 ] ] ;
float flRayExtent1 = ray . m_Extents [ s_ExtIndices [ i ] [ 1 ] ] ;
const float * pMatRow0 = matOBBToWorld [ s_MatIndices [ i ] [ 0 ] ] ;
const float * pMatRow1 = matOBBToWorld [ s_MatIndices [ i ] [ 1 ] ] ;
// x axis of the OBB + world ith axis
pPlaneNormal [ i + 6 ] . Init ( 0.0f , - matOBBToWorld [ i ] [ 2 ] , matOBBToWorld [ i ] [ 1 ] ) ;
ComputeSupportMap ( pPlaneNormal [ i + 6 ] , 1 , 2 , vecOBBMins , vecOBBMaxs , ppPlaneDist [ i + 6 ] ) ;
flExtentDotNormal =
FloatMakePositive ( pMatRow0 [ 0 ] ) * flRayExtent0 +
FloatMakePositive ( pMatRow1 [ 0 ] ) * flRayExtent1 ;
ppPlaneDist [ i + 6 ] [ 0 ] - = flExtentDotNormal ;
ppPlaneDist [ i + 6 ] [ 1 ] + = flExtentDotNormal ;
// y axis of the OBB + world ith axis
pPlaneNormal [ i + 9 ] . Init ( matOBBToWorld [ i ] [ 2 ] , 0.0f , - matOBBToWorld [ i ] [ 0 ] ) ;
ComputeSupportMap ( pPlaneNormal [ i + 9 ] , 0 , 2 , vecOBBMins , vecOBBMaxs , ppPlaneDist [ i + 9 ] ) ;
flExtentDotNormal =
FloatMakePositive ( pMatRow0 [ 1 ] ) * flRayExtent0 +
FloatMakePositive ( pMatRow1 [ 1 ] ) * flRayExtent1 ;
ppPlaneDist [ i + 9 ] [ 0 ] - = flExtentDotNormal ;
ppPlaneDist [ i + 9 ] [ 1 ] + = flExtentDotNormal ;
// z axis of the OBB + world ith axis
pPlaneNormal [ i + 12 ] . Init ( - matOBBToWorld [ i ] [ 1 ] , matOBBToWorld [ i ] [ 0 ] , 0.0f ) ;
ComputeSupportMap ( pPlaneNormal [ i + 12 ] , 0 , 1 , vecOBBMins , vecOBBMaxs , ppPlaneDist [ i + 12 ] ) ;
flExtentDotNormal =
FloatMakePositive ( pMatRow0 [ 2 ] ) * flRayExtent0 +
FloatMakePositive ( pMatRow1 [ 2 ] ) * flRayExtent1 ;
ppPlaneDist [ i + 12 ] [ 0 ] - = flExtentDotNormal ;
ppPlaneDist [ i + 12 ] [ 1 ] + = flExtentDotNormal ;
}
float enterfrac , leavefrac ;
float d1 [ 2 ] , d2 [ 2 ] ;
float f ;
int hitplane = - 1 ;
int hitside = - 1 ;
enterfrac = - 1.0f ;
leavefrac = 1.0f ;
pTrace - > startsolid = true ;
Vector vecLocalRayEnd ;
VectorAdd ( vecLocalRayOrigin , vecLocalRayDirection , vecLocalRayEnd ) ;
for ( i = 0 ; i < 15 ; + + i )
{
// FIXME: Not particularly optimal since there's a lot of 0's in the plane normals
float flStartDot = DotProduct ( pPlaneNormal [ i ] , vecLocalRayOrigin ) ;
float flEndDot = DotProduct ( pPlaneNormal [ i ] , vecLocalRayEnd ) ;
// NOTE: Negative here is because the plane normal + dist
// are defined in negative terms for the far plane (plane dist index 0)
d1 [ 0 ] = - ( flStartDot - ppPlaneDist [ i ] [ 0 ] ) ;
d2 [ 0 ] = - ( flEndDot - ppPlaneDist [ i ] [ 0 ] ) ;
d1 [ 1 ] = flStartDot - ppPlaneDist [ i ] [ 1 ] ;
d2 [ 1 ] = flEndDot - ppPlaneDist [ i ] [ 1 ] ;
int j ;
for ( j = 0 ; j < 2 ; + + j )
{
// if completely in front near plane or behind far plane no intersection
if ( d1 [ j ] > 0 & & d2 [ j ] > 0 )
return false ;
// completely inside, check next plane set
if ( d1 [ j ] < = 0 & & d2 [ j ] < = 0 )
continue ;
if ( d1 [ j ] > 0 )
{
pTrace - > startsolid = false ;
}
// crosses face
float flDenom = 1.0f / ( d1 [ j ] - d2 [ j ] ) ;
if ( d1 [ j ] > d2 [ j ] )
{
f = d1 [ j ] - flTolerance ;
if ( f < 0 )
{
f = 0 ;
}
f * = flDenom ;
if ( f > enterfrac )
{
enterfrac = f ;
hitplane = i ;
hitside = j ;
}
}
else
{
// leave
f = ( d1 [ j ] + flTolerance ) * flDenom ;
if ( f < leavefrac )
{
leavefrac = f ;
}
}
}
}
if ( enterfrac < leavefrac & & enterfrac > = 0.0f )
{
pTrace - > fraction = enterfrac ;
VectorMA ( pTrace - > startpos , enterfrac , ray . m_Delta , pTrace - > endpos ) ;
pTrace - > contents = CONTENTS_SOLID ;
// Need to transform the plane into world space...
cplane_t temp ;
temp . normal = pPlaneNormal [ hitplane ] ;
temp . dist = ppPlaneDist [ hitplane ] [ hitside ] ;
if ( hitside = = 0 )
{
temp . normal * = - 1.0f ;
temp . dist * = - 1.0f ;
}
temp . type = 3 ;
MatrixITransformPlane ( matOBBToWorld , temp , pTrace - > plane ) ;
return true ;
}
if ( pTrace - > startsolid )
{
pTrace - > allsolid = ( leavefrac < = 0.0f ) | | ( leavefrac > = 1.0f ) ;
pTrace - > fraction = 0 ;
pTrace - > endpos = pTrace - > startpos ;
pTrace - > contents = CONTENTS_SOLID ;
pTrace - > plane . dist = pTrace - > startpos [ 0 ] ;
pTrace - > plane . normal . Init ( 1.0f , 0.0f , 0.0f ) ;
pTrace - > plane . type = 0 ;
return true ;
}
return false ;
}
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB ( const Ray_t & ray , const Vector & vecBoxOrigin , const QAngle & angBoxRotation ,
const Vector & vecOBBMins , const Vector & vecOBBMaxs , float flTolerance , CBaseTrace * pTrace )
{
if ( angBoxRotation = = vec3_angle )
{
Vector vecWorldMins , vecWorldMaxs ;
VectorAdd ( vecBoxOrigin , vecOBBMins , vecWorldMins ) ;
VectorAdd ( vecBoxOrigin , vecOBBMaxs , vecWorldMaxs ) ;
return IntersectRayWithBox ( ray , vecWorldMins , vecWorldMaxs , flTolerance , pTrace ) ;
}
if ( ray . m_IsRay )
{
return IntersectRayWithOBB ( ray . m_Start , ray . m_Delta , vecBoxOrigin , angBoxRotation , vecOBBMins , vecOBBMaxs , flTolerance , pTrace ) ;
}
matrix3x4_t matOBBToWorld ;
AngleMatrix ( angBoxRotation , vecBoxOrigin , matOBBToWorld ) ;
return IntersectRayWithOBB ( ray , matOBBToWorld , vecOBBMins , vecOBBMaxs , flTolerance , pTrace ) ;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void GetNonMajorAxes ( const Vector & vNormal , Vector2D & axes )
{
axes [ 0 ] = 0 ;
axes [ 1 ] = 1 ;
if ( FloatMakePositive ( vNormal . x ) > FloatMakePositive ( vNormal . y ) )
{
if ( FloatMakePositive ( vNormal . x ) > FloatMakePositive ( vNormal . z ) )
{
axes [ 0 ] = 1 ;
axes [ 1 ] = 2 ;
}
}
else
{
if ( FloatMakePositive ( vNormal . y ) > FloatMakePositive ( vNormal . z ) )
{
axes [ 0 ] = 0 ;
axes [ 1 ] = 2 ;
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
QuadBarycentricRetval_t QuadWithParallelEdges ( const Vector & vecOrigin ,
const Vector & vecU , float lengthU , const Vector & vecV , float lengthV ,
const Vector & pt , Vector2D & vecUV )
{
Ray_t rayAxis ;
Ray_t rayPt ;
//
// handle the u axis
//
rayAxis . m_Start = vecOrigin ;
rayAxis . m_Delta = vecU ;
rayAxis . m_IsRay = true ;
rayPt . m_Start = pt ;
rayPt . m_Delta = vecV * - ( lengthV * 10.0f ) ;
rayPt . m_IsRay = true ;
float s , t ;
IntersectRayWithRay ( rayAxis , rayPt , t , s ) ;
vecUV [ 0 ] = t / lengthU ;
//
// handle the v axis
//
rayAxis . m_Delta = vecV ;
rayPt . m_Delta = vecU * - ( lengthU * 10.0f ) ;
IntersectRayWithRay ( rayAxis , rayPt , t , s ) ;
vecUV [ 1 ] = t / lengthV ;
// inside of the quad??
if ( ( vecUV [ 0 ] < 0.0f ) | | ( vecUV [ 0 ] > 1.0f ) | |
( vecUV [ 1 ] < 0.0f ) | | ( vecUV [ 1 ] > 1.0f ) )
return BARY_QUADRATIC_FALSE ;
return BARY_QUADRATIC_TRUE ;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void ResolveQuadratic ( double tPlus , double tMinus ,
const Vector axisU0 , const Vector axisU1 ,
const Vector axisV0 , const Vector axisV1 ,
const Vector axisOrigin , const Vector pt ,
int projU , double & s , double & t )
{
// calculate the sPlus, sMinus pair(s)
double sDenomPlus = ( axisU0 [ projU ] * ( 1 - tPlus ) ) + ( axisU1 [ projU ] * tPlus ) ;
double sDenomMinus = ( axisU0 [ projU ] * ( 1 - tMinus ) ) + ( axisU1 [ projU ] * tMinus ) ;
double sPlus = UNINIT , sMinus = UNINIT ;
if ( FloatMakePositive ( sDenomPlus ) > = 1e-5 )
{
sPlus = ( pt [ projU ] - axisOrigin [ projU ] - ( axisV0 [ projU ] * tPlus ) ) / sDenomPlus ;
}
if ( FloatMakePositive ( sDenomMinus ) > = 1e-5 )
{
sMinus = ( pt [ projU ] - axisOrigin [ projU ] - ( axisV0 [ projU ] * tMinus ) ) / sDenomMinus ;
}
if ( ( tPlus > = 0.0 ) & & ( tPlus < = 1.0 ) & & ( sPlus > = 0.0 ) & & ( sPlus < = 1.0 ) )
{
s = sPlus ;
t = tPlus ;
return ;
}
if ( ( tMinus > = 0.0 ) & & ( tMinus < = 1.0 ) & & ( sMinus > = 0.0 ) & & ( sMinus < = 1.0 ) )
{
s = sMinus ;
t = tMinus ;
return ;
}
double s0 , t0 , s1 , t1 ;
s0 = sPlus ;
t0 = tPlus ;
if ( s0 > = 1.0 ) { s0 - = 1.0 ; }
if ( t0 > = 1.0 ) { t0 - = 1.0 ; }
s1 = sMinus ;
t1 = tMinus ;
if ( s1 > = 1.0 ) { s1 - = 1.0 ; }
if ( t1 > = 1.0 ) { t1 - = 1.0 ; }
s0 = FloatMakePositive ( s0 ) ;
t0 = FloatMakePositive ( t0 ) ;
s1 = FloatMakePositive ( s1 ) ;
t1 = FloatMakePositive ( t1 ) ;
double max0 , max1 ;
max0 = s0 ;
if ( t0 > max0 ) { max0 = t0 ; }
max1 = s1 ;
if ( t1 > max1 ) { max1 = t1 ; }
if ( max0 > max1 )
{
s = sMinus ;
t = tMinus ;
}
else
{
s = sPlus ;
t = tPlus ;
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
QuadBarycentricRetval_t PointInQuadToBarycentric ( const Vector & v1 , const Vector & v2 ,
const Vector & v3 , const Vector & v4 , const Vector & point , Vector2D & uv )
{
# define PIQ_TEXTURE_EPSILON 0.001
# define PIQ_PLANE_EPSILON 0.1
# define PIQ_DOT_EPSILON 0.99f
//
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
// u0 = v2 - v1
// u1 = v3 - v4
// v0 = v4 - v1
// v1 = v3 - v2
//
Vector axisU [ 2 ] , axisV [ 2 ] ;
Vector axisUNorm [ 2 ] , axisVNorm [ 2 ] ;
axisU [ 0 ] = axisUNorm [ 0 ] = v2 - v1 ;
axisU [ 1 ] = axisUNorm [ 1 ] = v3 - v4 ;
axisV [ 0 ] = axisVNorm [ 0 ] = v4 - v1 ;
axisV [ 1 ] = axisVNorm [ 1 ] = v3 - v2 ;
float lengthU [ 2 ] , lengthV [ 2 ] ;
lengthU [ 0 ] = VectorNormalize ( axisUNorm [ 0 ] ) ;
lengthU [ 1 ] = VectorNormalize ( axisUNorm [ 1 ] ) ;
lengthV [ 0 ] = VectorNormalize ( axisVNorm [ 0 ] ) ;
lengthV [ 1 ] = VectorNormalize ( axisVNorm [ 1 ] ) ;
//
// check for an early out - parallel opposite edges!
// NOTE: quad property if 1 set of opposite edges is parallel and equal
// in length, then the other set of edges is as well
//
if ( axisUNorm [ 0 ] . Dot ( axisUNorm [ 1 ] ) > PIQ_DOT_EPSILON )
{
if ( FloatMakePositive ( lengthU [ 0 ] - lengthU [ 1 ] ) < PIQ_PLANE_EPSILON )
{
return QuadWithParallelEdges ( v1 , axisUNorm [ 0 ] , lengthU [ 0 ] , axisVNorm [ 0 ] , lengthV [ 0 ] , point , uv ) ;
}
}
//
// since we are solving for s in our equations below we need to ensure that
// the v axes are non-parallel
//
bool bFlipped = false ;
if ( axisVNorm [ 0 ] . Dot ( axisVNorm [ 1 ] ) > PIQ_DOT_EPSILON )
{
Vector tmp [ 2 ] ;
tmp [ 0 ] = axisV [ 0 ] ;
tmp [ 1 ] = axisV [ 1 ] ;
axisV [ 0 ] = axisU [ 0 ] ;
axisV [ 1 ] = axisU [ 1 ] ;
axisU [ 0 ] = tmp [ 0 ] ;
axisU [ 1 ] = tmp [ 1 ] ;
bFlipped = true ;
}
//
// get the "projection" axes
//
Vector2D projAxes ;
Vector vNormal = axisU [ 0 ] . Cross ( axisV [ 0 ] ) ;
GetNonMajorAxes ( vNormal , projAxes ) ;
//
// NOTE: axisU[0][projAxes[0]] < axisU[0][projAxes[1]],
// this is done to decrease error when dividing later
//
if ( FloatMakePositive ( axisU [ 0 ] [ projAxes [ 0 ] ] ) < FloatMakePositive ( axisU [ 0 ] [ projAxes [ 1 ] ] ) )
{
int tmp = projAxes [ 0 ] ;
projAxes [ 0 ] = projAxes [ 1 ] ;
projAxes [ 1 ] = tmp ;
}
// Here's how we got these equations:
//
// Given the points and u,v line segments above...
//
// Then:
//
// (1.0) PT = P0 + U0 * s + V * t
//
// where
//
// (1.1) V = V0 + s * (V1 - V0)
// (1.2) U = U0 + t * (U1 - U0)
//
// Therefore (from 1.1 + 1.0):
// PT - P0 = U0 * s + (V0 + s * (V1-V0)) * t
// Group s's:
// PT - P0 - t * V0 = s * (U0 + t * (V1-V0))
// Two equations and two unknowns in x and y get you the following quadratic:
//
// solve the quadratic
//
double s = 0.0 , t = 0.0 ;
double A , negB , C ;
A = ( axisU [ 0 ] [ projAxes [ 1 ] ] * axisV [ 0 ] [ projAxes [ 0 ] ] ) -
( axisU [ 0 ] [ projAxes [ 0 ] ] * axisV [ 0 ] [ projAxes [ 1 ] ] ) -
( axisU [ 1 ] [ projAxes [ 1 ] ] * axisV [ 0 ] [ projAxes [ 0 ] ] ) +
( axisU [ 1 ] [ projAxes [ 0 ] ] * axisV [ 0 ] [ projAxes [ 1 ] ] ) ;
C = ( v1 [ projAxes [ 1 ] ] * axisU [ 0 ] [ projAxes [ 0 ] ] ) -
( point [ projAxes [ 1 ] ] * axisU [ 0 ] [ projAxes [ 0 ] ] ) -
( v1 [ projAxes [ 0 ] ] * axisU [ 0 ] [ projAxes [ 1 ] ] ) +
( point [ projAxes [ 0 ] ] * axisU [ 0 ] [ projAxes [ 1 ] ] ) ;
negB = C -
( v1 [ projAxes [ 1 ] ] * axisU [ 1 ] [ projAxes [ 0 ] ] ) +
( point [ projAxes [ 1 ] ] * axisU [ 1 ] [ projAxes [ 0 ] ] ) +
( v1 [ projAxes [ 0 ] ] * axisU [ 1 ] [ projAxes [ 1 ] ] ) -
( point [ projAxes [ 0 ] ] * axisU [ 1 ] [ projAxes [ 1 ] ] ) +
( axisU [ 0 ] [ projAxes [ 1 ] ] * axisV [ 0 ] [ projAxes [ 0 ] ] ) -
( axisU [ 0 ] [ projAxes [ 0 ] ] * axisV [ 0 ] [ projAxes [ 1 ] ] ) ;
if ( ( A > - PIQ_PLANE_EPSILON ) & & ( A < PIQ_PLANE_EPSILON ) )
{
// shouldn't be here -- this should have been take care of in the "early out"
// Assert( 0 );
Vector vecUAvg , vecVAvg ;
vecUAvg = ( axisUNorm [ 0 ] + axisUNorm [ 1 ] ) * 0.5f ;
vecVAvg = ( axisVNorm [ 0 ] + axisVNorm [ 1 ] ) * 0.5f ;
float fLengthUAvg = ( lengthU [ 0 ] + lengthU [ 1 ] ) * 0.5f ;
float fLengthVAvg = ( lengthV [ 0 ] + lengthV [ 1 ] ) * 0.5f ;
return QuadWithParallelEdges ( v1 , vecUAvg , fLengthUAvg , vecVAvg , fLengthVAvg , point , uv ) ;
#if 0
// legacy code -- kept here for completeness!
// not a quadratic -- solve linearly
t = C / negB ;
// See (1.2) above
float ui = axisU [ 0 ] [ projAxes [ 0 ] ] + t * ( axisU [ 1 ] [ projAxes [ 0 ] ] - axisU [ 0 ] [ projAxes [ 0 ] ] ) ;
if ( FloatMakePositive ( ui ) > = 1e-5 )
{
// See (1.0) above
s = ( point [ projAxes [ 0 ] ] - v1 [ projAxes [ 0 ] ] - axisV [ 0 ] [ projAxes [ 0 ] ] * t ) / ui ;
}
# endif
}
else
{
// (-b +/- sqrt( b^2 - 4ac )) / 2a
double discriminant = ( negB * negB ) - ( 4.0f * A * C ) ;
if ( discriminant < 0.0f )
{
uv [ 0 ] = - 99999.0f ;
uv [ 1 ] = - 99999.0f ;
return BARY_QUADRATIC_NEGATIVE_DISCRIMINANT ;
}
double quad = sqrt ( discriminant ) ;
double QPlus = ( negB + quad ) / ( 2.0f * A ) ;
double QMinus = ( negB - quad ) / ( 2.0f * A ) ;
ResolveQuadratic ( QPlus , QMinus , axisU [ 0 ] , axisU [ 1 ] , axisV [ 0 ] , axisV [ 1 ] , v1 , point , projAxes [ 0 ] , s , t ) ;
}
if ( ! bFlipped )
{
uv [ 0 ] = ( float ) s ;
uv [ 1 ] = ( float ) t ;
}
else
{
uv [ 0 ] = ( float ) t ;
uv [ 1 ] = ( float ) s ;
}
// inside of the quad??
if ( ( uv [ 0 ] < 0.0f ) | | ( uv [ 0 ] > 1.0f ) | | ( uv [ 1 ] < 0.0f ) | | ( uv [ 1 ] > 1.0f ) )
return BARY_QUADRATIC_FALSE ;
return BARY_QUADRATIC_TRUE ;
# undef PIQ_TEXTURE_EPSILON
# undef PIQ_PLANE_EPSILON
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void PointInQuadFromBarycentric ( const Vector & v1 , const Vector & v2 , const Vector & v3 , const Vector & v4 ,
const Vector2D & uv , Vector & point )
{
//
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
// find the ray from v0 edge to v1 edge at v
//
Vector vPts [ 2 ] ;
VectorLerp ( v1 , v4 , uv [ 1 ] , vPts [ 0 ] ) ;
VectorLerp ( v2 , v3 , uv [ 1 ] , vPts [ 1 ] ) ;
VectorLerp ( vPts [ 0 ] , vPts [ 1 ] , uv [ 0 ] , point ) ;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void TexCoordInQuadFromBarycentric ( const Vector2D & v1 , const Vector2D & v2 , const Vector2D & v3 , const Vector2D & v4 ,
const Vector2D & uv , Vector2D & texCoord )
{
//
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
// find the ray from v0 edge to v1 edge at v
//
Vector2D vCoords [ 2 ] ;
Vector2DLerp ( v1 , v4 , uv [ 1 ] , vCoords [ 0 ] ) ;
Vector2DLerp ( v2 , v3 , uv [ 1 ] , vCoords [ 1 ] ) ;
Vector2DLerp ( vCoords [ 0 ] , vCoords [ 1 ] , uv [ 0 ] , texCoord ) ;
}
//-----------------------------------------------------------------------------
// Compute point from barycentric specification
// Edge u goes from v0 to v1, edge v goes from v0 to v2
//-----------------------------------------------------------------------------
void ComputePointFromBarycentric ( const Vector & v0 , const Vector & v1 , const Vector & v2 ,
float u , float v , Vector & pt )
{
Vector edgeU , edgeV ;
VectorSubtract ( v1 , v0 , edgeU ) ;
VectorSubtract ( v2 , v0 , edgeV ) ;
VectorMA ( v0 , u , edgeU , pt ) ;
VectorMA ( pt , v , edgeV , pt ) ;
}
void ComputePointFromBarycentric ( const Vector2D & v0 , const Vector2D & v1 , const Vector2D & v2 ,
float u , float v , Vector2D & pt )
{
Vector2D edgeU , edgeV ;
Vector2DSubtract ( v1 , v0 , edgeU ) ;
Vector2DSubtract ( v2 , v0 , edgeV ) ;
Vector2DMA ( v0 , u , edgeU , pt ) ;
Vector2DMA ( pt , v , edgeV , pt ) ;
}
//-----------------------------------------------------------------------------
// Compute a matrix that has the correct orientation but which has an origin at
// the center of the bounds
//-----------------------------------------------------------------------------
static void ComputeCenterMatrix ( const Vector & origin , const QAngle & angles ,
const Vector & mins , const Vector & maxs , matrix3x4_t & matrix )
{
Vector centroid ;
VectorAdd ( mins , maxs , centroid ) ;
centroid * = 0.5f ;
AngleMatrix ( angles , matrix ) ;
Vector worldCentroid ;
VectorRotate ( centroid , matrix , worldCentroid ) ;
worldCentroid + = origin ;
MatrixSetColumn ( worldCentroid , 3 , matrix ) ;
}
static void ComputeCenterIMatrix ( const Vector & origin , const QAngle & angles ,
const Vector & mins , const Vector & maxs , matrix3x4_t & matrix )
{
Vector centroid ;
VectorAdd ( mins , maxs , centroid ) ;
centroid * = - 0.5f ;
AngleIMatrix ( angles , matrix ) ;
// For the translational component here, note that the origin in world space
// is T = R * C + O, (R = rotation matrix, C = centroid in local space, O = origin in world space)
// The IMatrix translation = - transpose(R) * T = -C - transpose(R) * 0
Vector localOrigin ;
VectorRotate ( origin , matrix , localOrigin ) ;
centroid - = localOrigin ;
MatrixSetColumn ( centroid , 3 , matrix ) ;
}
//-----------------------------------------------------------------------------
// Compute a matrix which is the absolute value of another
//-----------------------------------------------------------------------------
static inline void ComputeAbsMatrix ( const matrix3x4_t & in , matrix3x4_t & out )
{
FloatBits ( out [ 0 ] [ 0 ] ) = FloatAbsBits ( in [ 0 ] [ 0 ] ) ;
FloatBits ( out [ 0 ] [ 1 ] ) = FloatAbsBits ( in [ 0 ] [ 1 ] ) ;
FloatBits ( out [ 0 ] [ 2 ] ) = FloatAbsBits ( in [ 0 ] [ 2 ] ) ;
FloatBits ( out [ 1 ] [ 0 ] ) = FloatAbsBits ( in [ 1 ] [ 0 ] ) ;
FloatBits ( out [ 1 ] [ 1 ] ) = FloatAbsBits ( in [ 1 ] [ 1 ] ) ;
FloatBits ( out [ 1 ] [ 2 ] ) = FloatAbsBits ( in [ 1 ] [ 2 ] ) ;
FloatBits ( out [ 2 ] [ 0 ] ) = FloatAbsBits ( in [ 2 ] [ 0 ] ) ;
FloatBits ( out [ 2 ] [ 1 ] ) = FloatAbsBits ( in [ 2 ] [ 1 ] ) ;
FloatBits ( out [ 2 ] [ 2 ] ) = FloatAbsBits ( in [ 2 ] [ 2 ] ) ;
}
//-----------------------------------------------------------------------------
// Compute a separating plane between two boxes (expensive!)
// Returns false if no separating plane exists
//-----------------------------------------------------------------------------
static bool ComputeSeparatingPlane ( const matrix3x4_t & worldToBox1 , const matrix3x4_t & box2ToWorld ,
const Vector & box1Size , const Vector & box2Size , float tolerance , cplane_t * pPlane )
{
// The various separating planes can be either
// 1) A plane parallel to one of the box face planes
// 2) A plane parallel to the cross-product of an edge from each box
// First, compute the basis of second box in the space of the first box
// NOTE: These basis place the origin at the centroid of each box!
matrix3x4_t box2ToBox1 ;
ConcatTransforms ( worldToBox1 , box2ToWorld , box2ToBox1 ) ;
// We're going to be using the origin of box2 in the space of box1 alot,
// lets extract it from the matrix....
Vector box2Origin ;
MatrixGetColumn ( box2ToBox1 , 3 , box2Origin ) ;
// Next get the absolute values of these entries and store in absbox2ToBox1.
matrix3x4_t absBox2ToBox1 ;
ComputeAbsMatrix ( box2ToBox1 , absBox2ToBox1 ) ;
// There are 15 tests to make. The first 3 involve trying planes parallel
// to the faces of the first box.
// NOTE: The algorithm here involves finding the projections of the two boxes
// onto a particular line. If the projections on the line do not overlap,
// that means that there's a plane perpendicular to the line which separates
// the two boxes; and we've therefore found a separating plane.
// The way we check for overlay is we find the projections of the two boxes
// onto the line, and add them up. We compare the sum with the projection
// of the relative center of box2 onto the same line.
Vector tmp ;
float boxProjectionSum ;
float originProjection ;
// NOTE: For these guys, we're taking advantage of the fact that the ith
// row of the box2ToBox1 is the direction of the box1 (x,y,z)-axis
// transformed into the space of box2.
// First side of box 1
boxProjectionSum = box1Size . x + MatrixRowDotProduct ( absBox2ToBox1 , 0 , box2Size ) ;
originProjection = FloatMakePositive ( box2Origin . x ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
VectorCopy ( worldToBox1 [ 0 ] , pPlane - > normal . Base ( ) ) ;
return true ;
}
// Second side of box 1
boxProjectionSum = box1Size . y + MatrixRowDotProduct ( absBox2ToBox1 , 1 , box2Size ) ;
originProjection = FloatMakePositive ( box2Origin . y ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
VectorCopy ( worldToBox1 [ 1 ] , pPlane - > normal . Base ( ) ) ;
return true ;
}
// Third side of box 1
boxProjectionSum = box1Size . z + MatrixRowDotProduct ( absBox2ToBox1 , 2 , box2Size ) ;
originProjection = FloatMakePositive ( box2Origin . z ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
VectorCopy ( worldToBox1 [ 2 ] , pPlane - > normal . Base ( ) ) ;
return true ;
}
// The next three involve checking splitting planes parallel to the
// faces of the second box.
// NOTE: For these guys, we're taking advantage of the fact that the 0th
// column of the box2ToBox1 is the direction of the box2 x-axis
// transformed into the space of box1.
// Here, we're determining the distance of box2's center from box1's center
// by projecting it onto a line parallel to box2's axis
// First side of box 2
boxProjectionSum = box2Size . x + MatrixColumnDotProduct ( absBox2ToBox1 , 0 , box1Size ) ;
originProjection = FloatMakePositive ( MatrixColumnDotProduct ( box2ToBox1 , 0 , box2Origin ) ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 0 , pPlane - > normal ) ;
return true ;
}
// Second side of box 2
boxProjectionSum = box2Size . y + MatrixColumnDotProduct ( absBox2ToBox1 , 1 , box1Size ) ;
originProjection = FloatMakePositive ( MatrixColumnDotProduct ( box2ToBox1 , 1 , box2Origin ) ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 1 , pPlane - > normal ) ;
return true ;
}
// Third side of box 2
boxProjectionSum = box2Size . z + MatrixColumnDotProduct ( absBox2ToBox1 , 2 , box1Size ) ;
originProjection = FloatMakePositive ( MatrixColumnDotProduct ( box2ToBox1 , 2 , box2Origin ) ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 2 , pPlane - > normal ) ;
return true ;
}
// Next check the splitting planes which are orthogonal to the pairs
// of edges, one from box1 and one from box2. As only direction matters,
// there are 9 pairs since each box has 3 distinct edge directions.
// Here, we take advantage of the fact that the edges from box 1 are all
// axis aligned; therefore the crossproducts are simplified. Let's walk through
// the example of b1e1 x b2e1:
// In this example, the line to check is perpendicular to b1e1 + b2e2
// we can compute this line by taking the cross-product:
//
// [ i j k ]
// [ 1 0 0 ] = - ez j + ey k = l1
// [ ex ey ez ]
// Where ex, ey, ez is the components of box2's x axis in the space of box 1,
// which is == to the 0th column of of box2toBox1
// The projection of box1 onto this line = the absolute dot product of the box size
// against the line, which =
// AbsDot( box1Size, l1 ) = abs( -ez * box1.y ) + abs( ey * box1.z )
// To compute the projection of box2 onto this line, we'll do it in the space of box 2
//
// [ i j k ]
// [ fx fy fz ] = fz j - fy k = l2
// [ 1 0 0 ]
// Where fx, fy, fz is the components of box1's x axis in the space of box 2,
// which is == to the 0th row of of box2toBox1
// The projection of box2 onto this line = the absolute dot product of the box size
// against the line, which =
// AbsDot( box2Size, l2 ) = abs( fz * box2.y ) + abs ( fy * box2.z )
// The projection of the relative origin position on this line is done in the
// space of box 1:
//
// originProjection = DotProduct( <-ez j + ey k>, box2Origin ) =
// -ez * box2Origin.y + ey * box2Origin.z
// NOTE: These checks can be bogus if both edges are parallel. The if
// checks at the beginning of each block are designed to catch that case
// b1e1 x b2e1
if ( absBox2ToBox1 [ 0 ] [ 0 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . y * absBox2ToBox1 [ 2 ] [ 0 ] + box1Size . z * absBox2ToBox1 [ 1 ] [ 0 ] +
box2Size . y * absBox2ToBox1 [ 0 ] [ 2 ] + box2Size . z * absBox2ToBox1 [ 0 ] [ 1 ] ;
originProjection = FloatMakePositive ( - box2Origin . y * box2ToBox1 [ 2 ] [ 0 ] + box2Origin . z * box2ToBox1 [ 1 ] [ 0 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 0 , tmp ) ;
CrossProduct ( worldToBox1 [ 0 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e1 x b2e2
if ( absBox2ToBox1 [ 0 ] [ 1 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . y * absBox2ToBox1 [ 2 ] [ 1 ] + box1Size . z * absBox2ToBox1 [ 1 ] [ 1 ] +
box2Size . x * absBox2ToBox1 [ 0 ] [ 2 ] + box2Size . z * absBox2ToBox1 [ 0 ] [ 0 ] ;
originProjection = FloatMakePositive ( - box2Origin . y * box2ToBox1 [ 2 ] [ 1 ] + box2Origin . z * box2ToBox1 [ 1 ] [ 1 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 1 , tmp ) ;
CrossProduct ( worldToBox1 [ 0 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e1 x b2e3
if ( absBox2ToBox1 [ 0 ] [ 2 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . y * absBox2ToBox1 [ 2 ] [ 2 ] + box1Size . z * absBox2ToBox1 [ 1 ] [ 2 ] +
box2Size . x * absBox2ToBox1 [ 0 ] [ 1 ] + box2Size . y * absBox2ToBox1 [ 0 ] [ 0 ] ;
originProjection = FloatMakePositive ( - box2Origin . y * box2ToBox1 [ 2 ] [ 2 ] + box2Origin . z * box2ToBox1 [ 1 ] [ 2 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 2 , tmp ) ;
CrossProduct ( worldToBox1 [ 0 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e2 x b2e1
if ( absBox2ToBox1 [ 1 ] [ 0 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . x * absBox2ToBox1 [ 2 ] [ 0 ] + box1Size . z * absBox2ToBox1 [ 0 ] [ 0 ] +
box2Size . y * absBox2ToBox1 [ 1 ] [ 2 ] + box2Size . z * absBox2ToBox1 [ 1 ] [ 1 ] ;
originProjection = FloatMakePositive ( box2Origin . x * box2ToBox1 [ 2 ] [ 0 ] - box2Origin . z * box2ToBox1 [ 0 ] [ 0 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 0 , tmp ) ;
CrossProduct ( worldToBox1 [ 1 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e2 x b2e2
if ( absBox2ToBox1 [ 1 ] [ 1 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . x * absBox2ToBox1 [ 2 ] [ 1 ] + box1Size . z * absBox2ToBox1 [ 0 ] [ 1 ] +
box2Size . x * absBox2ToBox1 [ 1 ] [ 2 ] + box2Size . z * absBox2ToBox1 [ 1 ] [ 0 ] ;
originProjection = FloatMakePositive ( box2Origin . x * box2ToBox1 [ 2 ] [ 1 ] - box2Origin . z * box2ToBox1 [ 0 ] [ 1 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 1 , tmp ) ;
CrossProduct ( worldToBox1 [ 1 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e2 x b2e3
if ( absBox2ToBox1 [ 1 ] [ 2 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . x * absBox2ToBox1 [ 2 ] [ 2 ] + box1Size . z * absBox2ToBox1 [ 0 ] [ 2 ] +
box2Size . x * absBox2ToBox1 [ 1 ] [ 1 ] + box2Size . y * absBox2ToBox1 [ 1 ] [ 0 ] ;
originProjection = FloatMakePositive ( box2Origin . x * box2ToBox1 [ 2 ] [ 2 ] - box2Origin . z * box2ToBox1 [ 0 ] [ 2 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 2 , tmp ) ;
CrossProduct ( worldToBox1 [ 1 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e3 x b2e1
if ( absBox2ToBox1 [ 2 ] [ 0 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . x * absBox2ToBox1 [ 1 ] [ 0 ] + box1Size . y * absBox2ToBox1 [ 0 ] [ 0 ] +
box2Size . y * absBox2ToBox1 [ 2 ] [ 2 ] + box2Size . z * absBox2ToBox1 [ 2 ] [ 1 ] ;
originProjection = FloatMakePositive ( - box2Origin . x * box2ToBox1 [ 1 ] [ 0 ] + box2Origin . y * box2ToBox1 [ 0 ] [ 0 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 0 , tmp ) ;
CrossProduct ( worldToBox1 [ 2 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e3 x b2e2
if ( absBox2ToBox1 [ 2 ] [ 1 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . x * absBox2ToBox1 [ 1 ] [ 1 ] + box1Size . y * absBox2ToBox1 [ 0 ] [ 1 ] +
box2Size . x * absBox2ToBox1 [ 2 ] [ 2 ] + box2Size . z * absBox2ToBox1 [ 2 ] [ 0 ] ;
originProjection = FloatMakePositive ( - box2Origin . x * box2ToBox1 [ 1 ] [ 1 ] + box2Origin . y * box2ToBox1 [ 0 ] [ 1 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 1 , tmp ) ;
CrossProduct ( worldToBox1 [ 2 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
// b1e3 x b2e3
if ( absBox2ToBox1 [ 2 ] [ 2 ] < 1.0f - 1e-3 f )
{
boxProjectionSum =
box1Size . x * absBox2ToBox1 [ 1 ] [ 2 ] + box1Size . y * absBox2ToBox1 [ 0 ] [ 2 ] +
box2Size . x * absBox2ToBox1 [ 2 ] [ 1 ] + box2Size . y * absBox2ToBox1 [ 2 ] [ 0 ] ;
originProjection = FloatMakePositive ( - box2Origin . x * box2ToBox1 [ 1 ] [ 2 ] + box2Origin . y * box2ToBox1 [ 0 ] [ 2 ] ) + tolerance ;
if ( FloatBits ( originProjection ) > FloatBits ( boxProjectionSum ) )
{
MatrixGetColumn ( box2ToWorld , 2 , tmp ) ;
CrossProduct ( worldToBox1 [ 2 ] , tmp . Base ( ) , pPlane - > normal . Base ( ) ) ;
return true ;
}
}
return false ;
}
//-----------------------------------------------------------------------------
// Compute a separating plane between two boxes (expensive!)
// Returns false if no separating plane exists
//-----------------------------------------------------------------------------
bool ComputeSeparatingPlane ( const Vector & org1 , const QAngle & angles1 , const Vector & min1 , const Vector & max1 ,
const Vector & org2 , const QAngle & angles2 , const Vector & min2 , const Vector & max2 ,
float tolerance , cplane_t * pPlane )
{
matrix3x4_t worldToBox1 , box2ToWorld ;
ComputeCenterIMatrix ( org1 , angles1 , min1 , max1 , worldToBox1 ) ;
ComputeCenterMatrix ( org2 , angles2 , min2 , max2 , box2ToWorld ) ;
// Then compute the size of the two boxes
Vector box1Size , box2Size ;
VectorSubtract ( max1 , min1 , box1Size ) ;
VectorSubtract ( max2 , min2 , box2Size ) ;
box1Size * = 0.5f ;
box2Size * = 0.5f ;
return ComputeSeparatingPlane ( worldToBox1 , box2ToWorld , box1Size , box2Size , tolerance , pPlane ) ;
}
//-----------------------------------------------------------------------------
// Swept OBB test
//-----------------------------------------------------------------------------
bool IsRayIntersectingOBB ( const Ray_t & ray , const Vector & org , const QAngle & angles ,
const Vector & mins , const Vector & maxs )
{
if ( angles = = vec3_angle )
{
Vector vecWorldMins , vecWorldMaxs ;
VectorAdd ( org , mins , vecWorldMins ) ;
VectorAdd ( org , maxs , vecWorldMaxs ) ;
return IsBoxIntersectingRay ( vecWorldMins , vecWorldMaxs , ray ) ;
}
if ( ray . m_IsRay )
{
matrix3x4_t worldToBox ;
AngleIMatrix ( angles , org , worldToBox ) ;
Ray_t rotatedRay ;
VectorTransform ( ray . m_Start , worldToBox , rotatedRay . m_Start ) ;
VectorRotate ( ray . m_Delta , worldToBox , rotatedRay . m_Delta ) ;
rotatedRay . m_StartOffset = vec3_origin ;
rotatedRay . m_Extents = vec3_origin ;
rotatedRay . m_IsRay = ray . m_IsRay ;
rotatedRay . m_IsSwept = ray . m_IsSwept ;
return IsBoxIntersectingRay ( mins , maxs , rotatedRay ) ;
}
if ( ! ray . m_IsSwept )
{
cplane_t plane ;
return ComputeSeparatingPlane ( ray . m_Start , vec3_angle , - ray . m_Extents , ray . m_Extents ,
org , angles , mins , maxs , 0.0f , & plane ) = = false ;
}
// NOTE: See the comments in ComputeSeparatingPlane to understand this math
// First, compute the basis of box in the space of the ray
// NOTE: These basis place the origin at the centroid of each box!
matrix3x4_t worldToBox1 , box2ToWorld ;
ComputeCenterMatrix ( org , angles , mins , maxs , box2ToWorld ) ;
// Find the center + extents of an AABB surrounding the ray
Vector vecRayCenter ;
VectorMA ( ray . m_Start , 0.5 , ray . m_Delta , vecRayCenter ) ;
vecRayCenter * = - 1.0f ;
SetIdentityMatrix ( worldToBox1 ) ;
MatrixSetColumn ( vecRayCenter , 3 , worldToBox1 ) ;
Vector box1Size ;
box1Size . x = ray . m_Extents . x + FloatMakePositive ( ray . m_Delta . x ) * 0.5f ;
box1Size . y = ray . m_Extents . y + FloatMakePositive ( ray . m_Delta . y ) * 0.5f ;
box1Size . z = ray . m_Extents . z + FloatMakePositive ( ray . m_Delta . z ) * 0.5f ;
// Then compute the size of the box
Vector box2Size ;
VectorSubtract ( maxs , mins , box2Size ) ;
box2Size * = 0.5f ;
// Do an OBB test of the box with the AABB surrounding the ray
cplane_t plane ;
if ( ComputeSeparatingPlane ( worldToBox1 , box2ToWorld , box1Size , box2Size , 0.0f , & plane ) )
return false ;
// Now deal with the planes which are the cross products of the ray sweep direction vs box edges
Vector vecRayDirection = ray . m_Delta ;
VectorNormalize ( vecRayDirection ) ;
// Need a vector between ray center vs box center measured in the space of the ray (world)
Vector vecCenterDelta ;
vecCenterDelta . x = box2ToWorld [ 0 ] [ 3 ] - ray . m_Start . x ;
vecCenterDelta . y = box2ToWorld [ 1 ] [ 3 ] - ray . m_Start . y ;
vecCenterDelta . z = box2ToWorld [ 2 ] [ 3 ] - ray . m_Start . z ;
// Rotate the ray direction into the space of the OBB
Vector vecAbsRayDirBox2 ;
VectorIRotate ( vecRayDirection , box2ToWorld , vecAbsRayDirBox2 ) ;
// Make abs versions of the ray in world space + ray in box2 space
VectorAbs ( vecAbsRayDirBox2 , vecAbsRayDirBox2 ) ;
// Now do the work for the planes which are perpendicular to the edges of the AABB
// and the sweep direction edges...
// In this example, the line to check is perpendicular to box edge x + ray delta
// we can compute this line by taking the cross-product:
//
// [ i j k ]
// [ 1 0 0 ] = - dz j + dy k = l1
// [ dx dy dz ]
// Where dx, dy, dz is the ray delta (normalized)
// The projection of the box onto this line = the absolute dot product of the box size
// against the line, which =
// AbsDot( vecBoxHalfDiagonal, l1 ) = abs( -dz * vecBoxHalfDiagonal.y ) + abs( dy * vecBoxHalfDiagonal.z )
// Because the plane contains the sweep direction, the sweep will produce
// no extra projection onto the line normal to the plane.
// Therefore all we need to do is project the ray extents onto this line also:
// AbsDot( ray.m_Extents, l1 ) = abs( -dz * ray.m_Extents.y ) + abs( dy * ray.m_Extents.z )
Vector vecPlaneNormal ;
// box x x ray delta
CrossProduct ( vecRayDirection , Vector ( box2ToWorld [ 0 ] [ 0 ] , box2ToWorld [ 1 ] [ 0 ] , box2ToWorld [ 2 ] [ 0 ] ) , vecPlaneNormal ) ;
float flCenterDeltaProjection = FloatMakePositive ( DotProduct ( vecPlaneNormal , vecCenterDelta ) ) ;
float flBoxProjectionSum =
vecAbsRayDirBox2 . z * box2Size . y + vecAbsRayDirBox2 . y * box2Size . z +
DotProductAbs ( vecPlaneNormal , ray . m_Extents ) ;
if ( FloatBits ( flCenterDeltaProjection ) > FloatBits ( flBoxProjectionSum ) )
return false ;
// box y x ray delta
CrossProduct ( vecRayDirection , Vector ( box2ToWorld [ 0 ] [ 1 ] , box2ToWorld [ 1 ] [ 1 ] , box2ToWorld [ 2 ] [ 1 ] ) , vecPlaneNormal ) ;
flCenterDeltaProjection = FloatMakePositive ( DotProduct ( vecPlaneNormal , vecCenterDelta ) ) ;
flBoxProjectionSum =
vecAbsRayDirBox2 . z * box2Size . x + vecAbsRayDirBox2 . x * box2Size . z +
DotProductAbs ( vecPlaneNormal , ray . m_Extents ) ;
if ( FloatBits ( flCenterDeltaProjection ) > FloatBits ( flBoxProjectionSum ) )
return false ;
// box z x ray delta
CrossProduct ( vecRayDirection , Vector ( box2ToWorld [ 0 ] [ 2 ] , box2ToWorld [ 1 ] [ 2 ] , box2ToWorld [ 2 ] [ 2 ] ) , vecPlaneNormal ) ;
flCenterDeltaProjection = FloatMakePositive ( DotProduct ( vecPlaneNormal , vecCenterDelta ) ) ;
flBoxProjectionSum =
vecAbsRayDirBox2 . y * box2Size . x + vecAbsRayDirBox2 . x * box2Size . y +
DotProductAbs ( vecPlaneNormal , ray . m_Extents ) ;
if ( FloatBits ( flCenterDeltaProjection ) > FloatBits ( flBoxProjectionSum ) )
return false ;
return true ;
}
//--------------------------------------------------------------------------
// Purpose:
//
// NOTE:
// triangle points are given in clockwise order (aabb-triangle test)
//
// 1 edge0 = 1 - 0
// | \ edge1 = 2 - 1
// | \ edge2 = 0 - 2
// | \ .
// | \ .
// 0-----2 .
//
//--------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: find the minima and maxima of the 3 given values
//-----------------------------------------------------------------------------
inline void FindMinMax ( float v1 , float v2 , float v3 , float & min , float & max )
{
min = max = v1 ;
if ( v2 < min ) { min = v2 ; }
if ( v2 > max ) { max = v2 ; }
if ( v3 < min ) { min = v3 ; }
if ( v3 > max ) { max = v3 ; }
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool AxisTestEdgeCrossX2 ( float flEdgeZ , float flEdgeY , float flAbsEdgeZ , float flAbsEdgeY ,
const Vector & p1 , const Vector & p3 , const Vector & vecExtents ,
float flTolerance )
{
// Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y
// Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z
float flDist1 = flEdgeZ * p1 . y - flEdgeY * p1 . z ;
float flDist3 = flEdgeZ * p3 . y - flEdgeY * p3 . z ;
// Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents . y + flAbsEdgeY * vecExtents . z ;
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist3 )
{
if ( ( flDist1 > ( flDistBox + flTolerance ) ) | | ( flDist3 < - ( flDistBox + flTolerance ) ) )
return false ;
}
else
{
if ( ( flDist3 > ( flDistBox + flTolerance ) ) | | ( flDist1 < - ( flDistBox + flTolerance ) ) )
return false ;
}
return true ;
}
//--------------------------------------------------------------------------
// Purpose:
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossX3 ( float flEdgeZ , float flEdgeY , float flAbsEdgeZ , float flAbsEdgeY ,
const Vector & p1 , const Vector & p2 , const Vector & vecExtents ,
float flTolerance )
{
// Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y
// Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z
float flDist1 = flEdgeZ * p1 . y - flEdgeY * p1 . z ;
float flDist2 = flEdgeZ * p2 . y - flEdgeY * p2 . z ;
// Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents . y + flAbsEdgeY * vecExtents . z ;
// Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist2 )
{
if ( ( flDist1 > ( flDistBox + flTolerance ) ) | | ( flDist2 < - ( flDistBox + flTolerance ) ) )
return false ;
}
else
{
if ( ( flDist2 > ( flDistBox + flTolerance ) ) | | ( flDist1 < - ( flDistBox + flTolerance ) ) )
return false ;
}
return true ;
}
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossY2 ( float flEdgeZ , float flEdgeX , float flAbsEdgeZ , float flAbsEdgeX ,
const Vector & p1 , const Vector & p3 , const Vector & vecExtents ,
float flTolerance )
{
// Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z
float flDist1 = - flEdgeZ * p1 . x + flEdgeX * p1 . z ;
float flDist3 = - flEdgeZ * p3 . x + flEdgeX * p3 . z ;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents . x + flAbsEdgeX * vecExtents . z ;
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist3 )
{
if ( ( flDist1 > ( flDistBox + flTolerance ) ) | | ( flDist3 < - ( flDistBox + flTolerance ) ) )
return false ;
}
else
{
if ( ( flDist3 > ( flDistBox + flTolerance ) ) | | ( flDist1 < - ( flDistBox + flTolerance ) ) )
return false ;
}
return true ;
}
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossY3 ( float flEdgeZ , float flEdgeX , float flAbsEdgeZ , float flAbsEdgeX ,
const Vector & p1 , const Vector & p2 , const Vector & vecExtents ,
float flTolerance )
{
// Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z
float flDist1 = - flEdgeZ * p1 . x + flEdgeX * p1 . z ;
float flDist2 = - flEdgeZ * p2 . x + flEdgeX * p2 . z ;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents . x + flAbsEdgeX * vecExtents . z ;
// Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist2 )
{
if ( ( flDist1 > ( flDistBox + flTolerance ) ) | | ( flDist2 < - ( flDistBox + flTolerance ) ) )
return false ;
}
else
{
if ( ( flDist2 > ( flDistBox + flTolerance ) ) | | ( flDist1 < - ( flDistBox + flTolerance ) ) )
return false ;
}
return true ;
}
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossZ1 ( float flEdgeY , float flEdgeX , float flAbsEdgeY , float flAbsEdgeX ,
const Vector & p2 , const Vector & p3 , const Vector & vecExtents ,
float flTolerance )
{
// Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y
float flDist2 = flEdgeY * p2 . x - flEdgeX * p2 . y ;
float flDist3 = flEdgeY * p3 . x - flEdgeX * p3 . y ;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y
float flDistBox = flAbsEdgeY * vecExtents . x + flAbsEdgeX * vecExtents . y ;
// Either dist2, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist3 < flDist2 )
{
if ( ( flDist3 > ( flDistBox + flTolerance ) ) | | ( flDist2 < - ( flDistBox + flTolerance ) ) )
return false ;
}
else
{
if ( ( flDist2 > ( flDistBox + flTolerance ) ) | | ( flDist3 < - ( flDistBox + flTolerance ) ) )
return false ;
}
return true ;
}
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossZ2 ( float flEdgeY , float flEdgeX , float flAbsEdgeY , float flAbsEdgeX ,
const Vector & p1 , const Vector & p3 , const Vector & vecExtents ,
float flTolerance )
{
// Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y
float flDist1 = flEdgeY * p1 . x - flEdgeX * p1 . y ;
float flDist3 = flEdgeY * p3 . x - flEdgeX * p3 . y ;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y
float flDistBox = flAbsEdgeY * vecExtents . x + flAbsEdgeX * vecExtents . y ;
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist3 )
{
if ( ( flDist1 > ( flDistBox + flTolerance ) ) | | ( flDist3 < - ( flDistBox + flTolerance ) ) )
return false ;
}
else
{
if ( ( flDist3 > ( flDistBox + flTolerance ) ) | | ( flDist1 < - ( flDistBox + flTolerance ) ) )
return false ;
}
return true ;
}
//-----------------------------------------------------------------------------
// Purpose: Test for an intersection (overlap) between an axial-aligned bounding
// box (AABB) and a triangle.
//
// Using the "Separating-Axis Theorem" to test for intersections between
// a triangle and an axial-aligned bounding box (AABB).
// 1. 3 Axis Planes - x, y, z
// 2. 9 Edge Planes Tests - the 3 edges of the triangle crossed with all 3 axial
// planes (x, y, z)
// 3. 1 Face Plane - the triangle plane (cplane_t plane below)
// Output: false = separating axis (no intersection)
// true = intersection
//-----------------------------------------------------------------------------
bool IsBoxIntersectingTriangle ( const Vector & vecBoxCenter , const Vector & vecBoxExtents ,
const Vector & v1 , const Vector & v2 , const Vector & v3 ,
const cplane_t & plane , float flTolerance )
{
// Test the axial planes (x,y,z) against the min, max of the triangle.
float flMin , flMax ;
Vector p1 , p2 , p3 ;
// x plane
p1 . x = v1 . x - vecBoxCenter . x ;
p2 . x = v2 . x - vecBoxCenter . x ;
p3 . x = v3 . x - vecBoxCenter . x ;
FindMinMax ( p1 . x , p2 . x , p3 . x , flMin , flMax ) ;
if ( ( flMin > ( vecBoxExtents . x + flTolerance ) ) | | ( flMax < - ( vecBoxExtents . x + flTolerance ) ) )
return false ;
// y plane
p1 . y = v1 . y - vecBoxCenter . y ;
p2 . y = v2 . y - vecBoxCenter . y ;
p3 . y = v3 . y - vecBoxCenter . y ;
FindMinMax ( p1 . y , p2 . y , p3 . y , flMin , flMax ) ;
if ( ( flMin > ( vecBoxExtents . y + flTolerance ) ) | | ( flMax < - ( vecBoxExtents . y + flTolerance ) ) )
return false ;
// z plane
p1 . z = v1 . z - vecBoxCenter . z ;
p2 . z = v2 . z - vecBoxCenter . z ;
p3 . z = v3 . z - vecBoxCenter . z ;
FindMinMax ( p1 . z , p2 . z , p3 . z , flMin , flMax ) ;
if ( ( flMin > ( vecBoxExtents . z + flTolerance ) ) | | ( flMax < - ( vecBoxExtents . z + flTolerance ) ) )
return false ;
// Test the 9 edge cases.
Vector vecEdge , vecAbsEdge ;
// edge 0 (cross x,y,z)
vecEdge = p2 - p1 ;
vecAbsEdge . y = FloatMakePositive ( vecEdge . y ) ;
vecAbsEdge . z = FloatMakePositive ( vecEdge . z ) ;
if ( ! AxisTestEdgeCrossX2 ( vecEdge . z , vecEdge . y , vecAbsEdge . z , vecAbsEdge . y , p1 , p3 , vecBoxExtents , flTolerance ) )
return false ;
vecAbsEdge . x = FloatMakePositive ( vecEdge . x ) ;
if ( ! AxisTestEdgeCrossY2 ( vecEdge . z , vecEdge . x , vecAbsEdge . z , vecAbsEdge . x , p1 , p3 , vecBoxExtents , flTolerance ) )
return false ;
if ( ! AxisTestEdgeCrossZ1 ( vecEdge . y , vecEdge . x , vecAbsEdge . y , vecAbsEdge . x , p2 , p3 , vecBoxExtents , flTolerance ) )
return false ;
// edge 1 (cross x,y,z)
vecEdge = p3 - p2 ;
vecAbsEdge . y = FloatMakePositive ( vecEdge . y ) ;
vecAbsEdge . z = FloatMakePositive ( vecEdge . z ) ;
if ( ! AxisTestEdgeCrossX2 ( vecEdge . z , vecEdge . y , vecAbsEdge . z , vecAbsEdge . y , p1 , p2 , vecBoxExtents , flTolerance ) )
return false ;
vecAbsEdge . x = FloatMakePositive ( vecEdge . x ) ;
if ( ! AxisTestEdgeCrossY2 ( vecEdge . z , vecEdge . x , vecAbsEdge . z , vecAbsEdge . x , p1 , p2 , vecBoxExtents , flTolerance ) )
return false ;
if ( ! AxisTestEdgeCrossZ2 ( vecEdge . y , vecEdge . x , vecAbsEdge . y , vecAbsEdge . x , p1 , p3 , vecBoxExtents , flTolerance ) )
return false ;
// edge 2 (cross x,y,z)
vecEdge = p1 - p3 ;
vecAbsEdge . y = FloatMakePositive ( vecEdge . y ) ;
vecAbsEdge . z = FloatMakePositive ( vecEdge . z ) ;
if ( ! AxisTestEdgeCrossX3 ( vecEdge . z , vecEdge . y , vecAbsEdge . z , vecAbsEdge . y , p1 , p2 , vecBoxExtents , flTolerance ) )
return false ;
vecAbsEdge . x = FloatMakePositive ( vecEdge . x ) ;
if ( ! AxisTestEdgeCrossY3 ( vecEdge . z , vecEdge . x , vecAbsEdge . z , vecAbsEdge . x , p1 , p2 , vecBoxExtents , flTolerance ) )
return false ;
if ( ! AxisTestEdgeCrossZ1 ( vecEdge . y , vecEdge . x , vecAbsEdge . y , vecAbsEdge . x , p2 , p3 , vecBoxExtents , flTolerance ) )
return false ;
// Test against the triangle face plane.
Vector vecMin , vecMax ;
VectorSubtract ( vecBoxCenter , vecBoxExtents , vecMin ) ;
VectorAdd ( vecBoxCenter , vecBoxExtents , vecMax ) ;
if ( BoxOnPlaneSide ( vecMin , vecMax , & plane ) ! = 3 )
return false ;
return true ;
}
// NOTE: JAY: This is untested code based on Real-time Collision Detection by Ericson
#if 0
Vector CalcClosestPointOnTriangle ( const Vector & P , const Vector & v0 , const Vector & v1 , const Vector & v2 )
{
Vector e0 = v1 - v0 ;
Vector e1 = v2 - v0 ;
Vector p0 = P - v0 ;
// voronoi region of v0
float d1 = DotProduct ( e0 , p0 ) ;
float d2 = DotProduct ( e1 , p0 ) ;
if ( d1 < = 0.0f & & d2 < = 0.0f )
return v0 ;
// voronoi region of v1
Vector p1 = P - v1 ;
float d3 = DotProduct ( e0 , p1 ) ;
float d4 = DotProduct ( e1 , p1 ) ;
if ( d3 > = 0.0f & & d4 < = d3 )
return v1 ;
// voronoi region of e0 (v0-v1)
float ve2 = d1 * d4 - d3 * d2 ;
if ( ve2 < = 0.0f & & d1 > = 0.0f & & d3 < = 0.0f )
{
float v = d1 / ( d1 - d3 ) ;
return v0 + v * e0 ;
}
// voronoi region of v2
Vector p2 = P - v2 ;
float d5 = DotProduct ( e0 , p2 ) ;
float d6 = DotProduct ( e1 , p2 ) ;
if ( d6 > = 0.0f & & d5 < = d6 )
return v2 ;
// voronoi region of e1
float ve1 = d5 * d2 - d1 * d6 ;
if ( ve1 < = 0.0f & & d2 > = 0.0f & & d6 > = 0.0f )
{
float w = d2 / ( d2 - d6 ) ;
return v0 + w * e1 ;
}
// voronoi region on e2
float ve0 = d3 * d6 - d5 * d4 ;
if ( ve0 < = 0.0f & & ( d4 - d3 ) > = 0.0f & & ( d5 - d6 ) > = 0.0f )
{
float w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ) ;
return v1 + w * ( v2 - v1 ) ;
}
// voronoi region of v0v1v2 triangle
float denom = 1.0f / ( ve0 + ve1 + ve2 ) ;
float v = ve1 * denom ;
float w = ve2 * denom ;
return v0 + e0 * v + e1 * w ;
}
# endif
bool OBBHasFullyContainedIntersectionWithQuad ( const Vector & vOBBExtent1_Scaled , const Vector & vOBBExtent2_Scaled , const Vector & vOBBExtent3_Scaled , const Vector & ptOBBCenter ,
const Vector & vQuadNormal , float fQuadPlaneDist , const Vector & ptQuadCenter ,
const Vector & vQuadExtent1_Normalized , float fQuadExtent1Length ,
const Vector & vQuadExtent2_Normalized , float fQuadExtent2Length )
{
Vector ptOBB [ 8 ] ; //this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's)
ptOBB [ 0 ] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled ;
ptOBB [ 1 ] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled ;
ptOBB [ 2 ] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled ;
ptOBB [ 3 ] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled ;
ptOBB [ 4 ] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled ;
ptOBB [ 5 ] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled ;
ptOBB [ 6 ] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled ;
ptOBB [ 7 ] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled ;
float fDists [ 8 ] ;
for ( int i = 0 ; i ! = 8 ; + + i )
fDists [ i ] = vQuadNormal . Dot ( ptOBB [ i ] ) - fQuadPlaneDist ;
int iSides [ 8 ] ;
int iSideMask = 0 ;
for ( int i = 0 ; i ! = 8 ; + + i )
{
if ( fDists [ i ] > 0.0f )
{
iSides [ i ] = 1 ;
iSideMask | = 1 ;
}
else
{
iSides [ i ] = 2 ;
iSideMask | = 2 ;
}
}
if ( iSideMask ! = 3 ) //points reside entirely on one side of the quad's plane
return false ;
Vector ptPlaneIntersections [ 12 ] ; //only have 12 lines, can only possibly generate 12 split points
int iPlaneIntersectionsCount = 0 ;
for ( int i = 0 ; i ! = 8 ; + + i )
{
if ( iSides [ i ] = = 2 ) //point behind the plane
{
int iAxisCrossings [ 3 ] ;
iAxisCrossings [ 0 ] = i ^ 4 ; //upper 4 vs lower 4 crosses vOBBExtent1 axis
iAxisCrossings [ 1 ] = ( ( i + 1 ) & 3 ) + ( i & 4 ) ; //cycle to the next element while staying within the upper 4 or lower 4, this will cross either vOBBExtent2 or vOBBExtent3 axis, we don't care which
iAxisCrossings [ 2 ] = ( ( i - 1 ) & 3 ) + ( i & 4 ) ; //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross
for ( int j = 0 ; j ! = 3 ; + + j )
{
if ( iSides [ iAxisCrossings [ j ] ] = = 1 ) //point in front of the plane
{
//line between ptOBB[i] and ptOBB[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing
float fTotalDist = fDists [ iAxisCrossings [ j ] ] - fDists [ i ] ; //remember that fDists[i] is a negative value
ptPlaneIntersections [ iPlaneIntersectionsCount ] = ( ptOBB [ iAxisCrossings [ j ] ] * ( - fDists [ i ] / fTotalDist ) ) + ( ptOBB [ i ] * ( fDists [ iAxisCrossings [ j ] ] / fTotalDist ) ) ;
Assert ( fabs ( ptPlaneIntersections [ iPlaneIntersectionsCount ] . Dot ( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ) ; //intersection point is on plane
+ + iPlaneIntersectionsCount ;
}
}
}
}
Assert ( iPlaneIntersectionsCount ! = 0 ) ;
for ( int i = 0 ; i ! = iPlaneIntersectionsCount ; + + i )
{
//these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents
Vector vToPointFromQuadCenter = ptPlaneIntersections [ i ] - ptQuadCenter ;
float fExt1Dist = vQuadExtent1_Normalized . Dot ( vToPointFromQuadCenter ) ;
if ( fabs ( fExt1Dist ) > fQuadExtent1Length )
return false ; //point is outside boundaries
//vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads
float fExt2Dist = vQuadExtent2_Normalized . Dot ( vToPointFromQuadCenter ) ;
if ( fabs ( fExt2Dist ) > fQuadExtent2Length )
return false ; //point is outside boundaries
}
return true ; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries
}
//-----------------------------------------------------------------------------
// Compute if the Ray intersects the quad plane, and whether the entire
// Ray/Quad intersection is contained within the quad itself
//
// False if no intersection exists, or if part of the intersection is
// outside the quad's extents
//-----------------------------------------------------------------------------
bool RayHasFullyContainedIntersectionWithQuad ( const Ray_t & ray ,
const Vector & vQuadNormal , float fQuadPlaneDist , const Vector & ptQuadCenter ,
const Vector & vQuadExtent1_Normalized , float fQuadExtent1Length ,
const Vector & vQuadExtent2_Normalized , float fQuadExtent2Length )
{
Vector ptPlaneIntersections [ ( 12 + 12 + 8 ) ] ; //absolute max possible: 12 lines to connect the start box, 12 more to connect the end box, 8 to connect the boxes to eachother
//8 points to make an AABB, 8 lines to connect each point from it's start to end point along the ray, 8 possible intersections
int iPlaneIntersectionsCount = 0 ;
if ( ray . m_IsRay )
{
//just 1 line
if ( ray . m_IsSwept )
{
Vector ptEndPoints [ 2 ] ;
ptEndPoints [ 0 ] = ray . m_Start ;
ptEndPoints [ 1 ] = ptEndPoints [ 0 ] + ray . m_Delta ;
int i ;
float fDists [ 2 ] ;
for ( i = 0 ; i ! = 2 ; + + i )
fDists [ i ] = vQuadNormal . Dot ( ptEndPoints [ i ] ) - fQuadPlaneDist ;
for ( i = 0 ; i ! = 2 ; + + i )
{
if ( fDists [ i ] < = 0.0f )
{
int j = 1 - i ;
if ( fDists [ j ] > = 0.0f )
{
float fInvTotalDist = 1.0f / ( fDists [ j ] - fDists [ i ] ) ; //fDists[i] <= 0, ray is swept so no chance that the denom was 0
ptPlaneIntersections [ 0 ] = ( ptEndPoints [ i ] * ( fDists [ j ] * fInvTotalDist ) ) - ( ptEndPoints [ j ] * ( fDists [ i ] * fInvTotalDist ) ) ; //fDists[i] <= 0
Assert ( fabs ( ptPlaneIntersections [ iPlaneIntersectionsCount ] . Dot ( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ) ; //intersection point is on plane
iPlaneIntersectionsCount = 1 ;
}
else
{
return false ;
}
break ;
}
}
if ( i = = 2 )
return false ;
}
else //not swept, so this is actually a point on quad question
{
if ( fabs ( vQuadNormal . Dot ( ray . m_Start ) - fQuadPlaneDist ) < 1e-6 )
{
ptPlaneIntersections [ 0 ] = ray . m_Start ;
iPlaneIntersectionsCount = 1 ;
}
else
{
return false ;
}
}
}
else
{
Vector ptEndPoints [ 2 ] [ 8 ] ;
//this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's)
ptEndPoints [ 0 ] [ 0 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 0 ] . x - = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 0 ] . y - = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 0 ] . z - = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 1 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 1 ] . x - = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 1 ] . y - = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 1 ] . z + = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 2 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 2 ] . x - = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 2 ] . y + = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 2 ] . z + = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 3 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 3 ] . x - = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 3 ] . y + = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 3 ] . z - = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 4 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 4 ] . x + = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 4 ] . y - = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 4 ] . z - = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 5 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 5 ] . x + = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 5 ] . y - = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 5 ] . z + = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 6 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 6 ] . x + = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 6 ] . y + = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 6 ] . z + = ray . m_Extents . z ;
ptEndPoints [ 0 ] [ 7 ] = ray . m_Start ; ptEndPoints [ 0 ] [ 7 ] . x + = ray . m_Extents . x ; ptEndPoints [ 0 ] [ 7 ] . y + = ray . m_Extents . y ; ptEndPoints [ 0 ] [ 7 ] . z - = ray . m_Extents . z ;
float fDists [ 2 ] [ 8 ] ;
int iSides [ 2 ] [ 8 ] ;
int iSideMask [ 2 ] = { 0 , 0 } ;
for ( int i = 0 ; i ! = 8 ; + + i )
{
fDists [ 0 ] [ i ] = vQuadNormal . Dot ( ptEndPoints [ 0 ] [ i ] ) - fQuadPlaneDist ;
if ( fDists [ 0 ] [ i ] > 0.0f )
{
iSides [ 0 ] [ i ] = 1 ;
iSideMask [ 0 ] | = 1 ;
}
else
{
iSides [ 0 ] [ i ] = 2 ;
iSideMask [ 0 ] | = 2 ;
}
}
if ( ray . m_IsSwept )
{
for ( int i = 0 ; i ! = 8 ; + + i )
ptEndPoints [ 1 ] [ i ] = ptEndPoints [ 0 ] [ i ] + ray . m_Delta ;
for ( int i = 0 ; i ! = 8 ; + + i )
{
fDists [ 1 ] [ i ] = vQuadNormal . Dot ( ptEndPoints [ 1 ] [ i ] ) - fQuadPlaneDist ;
if ( fDists [ 1 ] [ i ] > 0.0f )
{
iSides [ 1 ] [ i ] = 1 ;
iSideMask [ 1 ] | = 1 ;
}
else
{
iSides [ 1 ] [ i ] = 2 ;
iSideMask [ 1 ] | = 2 ;
}
}
}
if ( ( iSideMask [ 0 ] | iSideMask [ 1 ] ) ! = 3 )
{
//Assert( (iSideMask[0] | iSideMask[1]) != 2 );
return false ; //all points resides entirely on one side of the quad
}
//generate intersections for boxes split by the plane at either end of the ray
for ( int k = 0 ; k ! = 2 ; + + k )
{
if ( iSideMask [ k ] = = 3 ) //box is split by the plane
{
for ( int i = 0 ; i ! = 8 ; + + i )
{
if ( iSides [ k ] [ i ] = = 2 ) //point behind the plane
{
int iAxisCrossings [ 3 ] ;
iAxisCrossings [ 0 ] = i ^ 4 ; //upper 4 vs lower 4 crosses X axis
iAxisCrossings [ 1 ] = ( ( i + 1 ) & 3 ) + ( i & 4 ) ; //cycle to the next element while staying within the upper 4 or lower 4, this will cross either Y or Z axis, we don't care which
iAxisCrossings [ 2 ] = ( ( i - 1 ) & 3 ) + ( i & 4 ) ; //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross
for ( int j = 0 ; j ! = 3 ; + + j )
{
if ( iSides [ k ] [ iAxisCrossings [ j ] ] = = 1 ) //point in front of the plane
{
//line between ptEndPoints[i] and ptEndPoints[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing
float fInvTotalDist = 1.0f / ( fDists [ k ] [ iAxisCrossings [ j ] ] - fDists [ k ] [ i ] ) ; //remember that fDists[k][i] is a negative value
ptPlaneIntersections [ iPlaneIntersectionsCount ] = ( ptEndPoints [ k ] [ iAxisCrossings [ j ] ] * ( - fDists [ k ] [ i ] * fInvTotalDist ) ) + ( ptEndPoints [ k ] [ i ] * ( fDists [ k ] [ iAxisCrossings [ j ] ] * fInvTotalDist ) ) ;
Assert ( fabs ( ptPlaneIntersections [ iPlaneIntersectionsCount ] . Dot ( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ) ; //intersection point is on plane
+ + iPlaneIntersectionsCount ;
}
}
}
}
}
}
if ( ray . m_IsSwept )
{
for ( int i = 0 ; i ! = 8 ; + + i )
{
if ( iSides [ 0 ] [ i ] ! = iSides [ 1 ] [ i ] )
{
int iPosSide , iNegSide ;
if ( iSides [ 0 ] [ i ] = = 1 )
{
iPosSide = 0 ;
iNegSide = 1 ;
}
else
{
iPosSide = 1 ;
iNegSide = 0 ;
}
Assert ( ( fDists [ iPosSide ] [ i ] > = 0.0f ) & & ( fDists [ iNegSide ] [ i ] < = 0.0f ) ) ;
float fInvTotalDist = 1.0f / ( fDists [ iPosSide ] [ i ] - fDists [ iNegSide ] [ i ] ) ; //remember that fDists[iNegSide][i] is a negative value
ptPlaneIntersections [ iPlaneIntersectionsCount ] = ( ptEndPoints [ iPosSide ] [ i ] * ( - fDists [ iNegSide ] [ i ] * fInvTotalDist ) ) + ( ptEndPoints [ iNegSide ] [ i ] * ( fDists [ iPosSide ] [ i ] * fInvTotalDist ) ) ;
Assert ( fabs ( ptPlaneIntersections [ iPlaneIntersectionsCount ] . Dot ( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ) ; //intersection point is on plane
+ + iPlaneIntersectionsCount ;
}
}
}
}
//down here, we should simply have a collection of plane intersections, now we see if they reside within the quad
Assert ( iPlaneIntersectionsCount ! = 0 ) ;
for ( int i = 0 ; i ! = iPlaneIntersectionsCount ; + + i )
{
//these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents
Vector vToPointFromQuadCenter = ptPlaneIntersections [ i ] - ptQuadCenter ;
float fExt1Dist = vQuadExtent1_Normalized . Dot ( vToPointFromQuadCenter ) ;
if ( fabs ( fExt1Dist ) > fQuadExtent1Length )
return false ; //point is outside boundaries
//vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads
float fExt2Dist = vQuadExtent2_Normalized . Dot ( vToPointFromQuadCenter ) ;
if ( fabs ( fExt2Dist ) > fQuadExtent2Length )
return false ; //point is outside boundaries
}
return true ; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries
}
# endif // !_STATIC_LINKED || _SHARED_LIB