1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-04 00:23:25 +08:00
hl2sdk/game/server/physconstraint.cpp

1896 lines
57 KiB
C++
Raw Normal View History

2013-06-26 15:22:04 -07:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: Physics constraint entities
//
// $NoKeywords: $
//===========================================================================//
#include "cbase.h"
#include "physics.h"
#include "entityoutput.h"
#include "engine/IEngineSound.h"
#include "igamesystem.h"
#include "physics_saverestore.h"
#include "vcollide_parse.h"
#include "positionwatcher.h"
#include "fmtstr.h"
#include "physics_prop_ragdoll.h"
#define HINGE_NOTIFY HL2_EPISODIC
#if HINGE_NOTIFY
#include "physconstraint_sounds.h"
#endif
#include "physconstraint.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define SF_CONSTRAINT_DISABLE_COLLISION 0x0001
#define SF_SLIDE_LIMIT_ENDS 0x0002
#define SF_PULLEY_RIGID 0x0002
#define SF_LENGTH_RIGID 0x0002
#define SF_RAGDOLL_FREEMOVEMENT 0x0002
#define SF_CONSTRAINT_START_INACTIVE 0x0004
#define SF_CONSTRAINT_ASSUME_WORLD_GEOMETRY 0x0008
#define SF_CONSTRAINT_NO_CONNECT_UNTIL_ACTIVATED 0x0010 // Will only check the two attached entities at activation
ConVar g_debug_constraint_sounds ( "g_debug_constraint_sounds", "0", FCVAR_CHEAT, "Enable debug printing about constraint sounds.");
struct constraint_anchor_t
{
Vector localOrigin;
EHANDLE hEntity;
int parentAttachment;
string_t name;
float massScale;
};
class CAnchorList : public CAutoGameSystem
{
public:
CAnchorList( char const *name ) : CAutoGameSystem( name )
{
}
void LevelShutdownPostEntity()
{
m_list.Purge();
}
void AddToList( CBaseEntity *pEntity, float massScale )
{
int index = m_list.AddToTail();
constraint_anchor_t *pAnchor = &m_list[index];
pAnchor->hEntity = pEntity->GetParent();
pAnchor->parentAttachment = pEntity->GetParentAttachment();
pAnchor->name = pEntity->GetEntityName();
pAnchor->localOrigin = pEntity->GetLocalOrigin();
pAnchor->massScale = massScale;
}
constraint_anchor_t *Find( string_t name )
{
for ( int i = m_list.Count()-1; i >=0; i-- )
{
if ( FStrEq( STRING(m_list[i].name), STRING(name) ) )
{
return &m_list[i];
}
}
return NULL;
}
private:
CUtlVector<constraint_anchor_t> m_list;
};
static CAnchorList g_AnchorList( "CAnchorList" );
class CConstraintAnchor : public CPointEntity
{
DECLARE_CLASS( CConstraintAnchor, CPointEntity );
public:
CConstraintAnchor()
{
m_massScale = 1.0f;
}
void Spawn( void )
{
if ( GetParent() )
{
g_AnchorList.AddToList( this, m_massScale );
UTIL_Remove( this );
}
}
DECLARE_DATADESC();
float m_massScale;
};
BEGIN_DATADESC( CConstraintAnchor )
DEFINE_KEYFIELD( m_massScale, FIELD_FLOAT, "massScale" ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( info_constraint_anchor, CConstraintAnchor );
class CPhysConstraintSystem : public CLogicalEntity
{
DECLARE_CLASS( CPhysConstraintSystem, CLogicalEntity );
public:
void Spawn();
IPhysicsConstraintGroup *GetVPhysicsGroup() { return m_pMachine; }
DECLARE_DATADESC();
private:
IPhysicsConstraintGroup *m_pMachine;
int m_additionalIterations;
};
BEGIN_DATADESC( CPhysConstraintSystem )
DEFINE_PHYSPTR( m_pMachine ),
DEFINE_KEYFIELD( m_additionalIterations, FIELD_INTEGER, "additionaliterations" ),
END_DATADESC()
void CPhysConstraintSystem::Spawn()
{
constraint_groupparams_t group;
group.Defaults();
group.additionalIterations = m_additionalIterations;
m_pMachine = physenv->CreateConstraintGroup( group );
}
LINK_ENTITY_TO_CLASS( phys_constraintsystem, CPhysConstraintSystem );
void PhysTeleportConstrainedEntity( CBaseEntity *pTeleportSource, IPhysicsObject *pObject0, IPhysicsObject *pObject1, const Vector &prevPosition, const QAngle &prevAngles, bool physicsRotate )
{
// teleport the other object
CBaseEntity *pEntity0 = static_cast<CBaseEntity *> (pObject0->GetGameData());
CBaseEntity *pEntity1 = static_cast<CBaseEntity *> (pObject1->GetGameData());
if ( !pEntity0 || !pEntity1 )
return;
// figure out which entity needs to be fixed up (the one that isn't pTeleportSource)
CBaseEntity *pFixup = pEntity1;
// teleport the other object
if ( pTeleportSource != pEntity0 )
{
if ( pTeleportSource != pEntity1 )
{
Msg("Bogus teleport notification!!\n");
return;
}
pFixup = pEntity0;
}
// constraint doesn't move this entity
if ( pFixup->GetMoveType() != MOVETYPE_VPHYSICS )
return;
if ( !pFixup->VPhysicsGetObject() || !pFixup->VPhysicsGetObject()->IsMoveable() )
return;
QAngle oldAngles = prevAngles;
if ( !physicsRotate )
{
oldAngles = pTeleportSource->GetAbsAngles();
}
matrix3x4_t startCoord, startInv, endCoord, xform;
AngleMatrix( oldAngles, prevPosition, startCoord );
MatrixInvert( startCoord, startInv );
ConcatTransforms( pTeleportSource->EntityToWorldTransform(), startInv, xform );
QAngle fixupAngles;
Vector fixupPos;
ConcatTransforms( xform, pFixup->EntityToWorldTransform(), endCoord );
MatrixAngles( endCoord, fixupAngles, fixupPos );
pFixup->Teleport( &fixupPos, &fixupAngles, NULL );
}
static void DrawPhysicsBounds( IPhysicsObject *pObject, int r, int g, int b, int a )
{
const CPhysCollide *pCollide = pObject->GetCollide();
Vector pos;
QAngle angles;
pObject->GetPosition( &pos, &angles );
Vector mins, maxs;
physcollision->CollideGetAABB( &mins, &maxs, pCollide, vec3_origin, vec3_angle );
// don't fight the z-buffer
mins -= Vector(1,1,1);
maxs += Vector(1,1,1);
NDebugOverlay::BoxAngles( pos, mins, maxs, angles, r, g, b, a, 0 );
}
static void DrawConstraintObjectsAxes(CBaseEntity *pConstraintEntity, IPhysicsConstraint *pConstraint)
{
if ( !pConstraint || !pConstraintEntity )
return;
matrix3x4_t xformRef, xformAtt;
bool bXform = pConstraint->GetConstraintTransform( &xformRef, &xformAtt );
IPhysicsObject *pRef = pConstraint->GetReferenceObject();
if ( pRef && !pRef->IsStatic() )
{
if ( bXform )
{
Vector pos, posWorld;
QAngle angles;
MatrixAngles( xformRef, angles, pos );
pRef->LocalToWorld( &posWorld, pos );
NDebugOverlay::Axis( posWorld, vec3_angle, 12, false, 0 );
}
DrawPhysicsBounds( pRef, 0, 255, 0, 12 );
}
IPhysicsObject *pAttach = pConstraint->GetAttachedObject();
if ( pAttach && !pAttach->IsStatic() )
{
if ( bXform )
{
Vector pos, posWorld;
QAngle angles;
MatrixAngles( xformAtt, angles, pos );
pAttach->LocalToWorld( &posWorld, pos );
NDebugOverlay::Axis( posWorld, vec3_angle, 12, false, 0 );
}
DrawPhysicsBounds( pAttach, 255, 0, 0, 12 );
}
}
void CPhysConstraint::ClearStaticFlag( IPhysicsObject *pObj )
{
if ( !pObj )
return;
PhysClearGameFlags( pObj, FVPHYSICS_CONSTRAINT_STATIC );
}
void CPhysConstraint::Deactivate()
{
if ( !m_pConstraint )
return;
m_pConstraint->Deactivate();
ClearStaticFlag( m_pConstraint->GetReferenceObject() );
ClearStaticFlag( m_pConstraint->GetAttachedObject() );
if ( m_spawnflags & SF_CONSTRAINT_DISABLE_COLLISION )
{
// constraint may be getting deactivated because an object got deleted, so check them here.
IPhysicsObject *pRef = m_pConstraint->GetReferenceObject();
IPhysicsObject *pAtt = m_pConstraint->GetAttachedObject();
if ( pRef && pAtt )
{
PhysEnableEntityCollisions( pRef, pAtt );
}
}
}
void CPhysConstraint::OnBreak( void )
{
Deactivate();
if ( m_breakSound != NULL_STRING )
{
CPASAttenuationFilter filter( this, ATTN_STATIC );
Vector origin = GetAbsOrigin();
Vector refPos = origin, attachPos = origin;
IPhysicsObject *pRef = m_pConstraint->GetReferenceObject();
if ( pRef && (pRef != g_PhysWorldObject) )
{
pRef->GetPosition( &refPos, NULL );
attachPos = refPos;
}
IPhysicsObject *pAttach = m_pConstraint->GetAttachedObject();
if ( pAttach && (pAttach != g_PhysWorldObject) )
{
pAttach->GetPosition( &attachPos, NULL );
if ( !pRef || (pRef == g_PhysWorldObject) )
{
refPos = attachPos;
}
}
VectorAdd( refPos, attachPos, origin );
origin *= 0.5f;
EmitSound_t ep;
ep.m_nChannel = CHAN_STATIC;
ep.m_pSoundName = STRING(m_breakSound);
ep.m_flVolume = VOL_NORM;
ep.m_SoundLevel = ATTN_TO_SNDLVL( ATTN_STATIC );
ep.m_pOrigin = &origin;
EmitSound( filter, entindex(), ep );
}
m_OnBreak.FireOutput( this, this );
// queue this up to be deleted at the end of physics
// The Deactivate() call should make sure we don't get more of these callbacks.
PhysCallbackRemove( this->NetworkProp() );
}
void CPhysConstraint::InputBreak( inputdata_t &inputdata )
{
if ( m_pConstraint )
m_pConstraint->Deactivate();
OnBreak();
}
void CPhysConstraint::InputOnBreak( inputdata_t &inputdata )
{
OnBreak();
}
void CPhysConstraint::InputTurnOn( inputdata_t &inputdata )
{
if ( HasSpawnFlags( SF_CONSTRAINT_NO_CONNECT_UNTIL_ACTIVATED ) )
{
ActivateConstraint();
}
if ( !m_pConstraint || !m_pConstraint->GetReferenceObject() || !m_pConstraint->GetAttachedObject() )
return;
m_pConstraint->Activate();
m_pConstraint->GetReferenceObject()->Wake();
m_pConstraint->GetAttachedObject()->Wake();
}
void CPhysConstraint::InputTurnOff( inputdata_t &inputdata )
{
Deactivate();
}
int CPhysConstraint::DrawDebugTextOverlays()
{
int pos = BaseClass::DrawDebugTextOverlays();
if ( m_pConstraint && (m_debugOverlays & OVERLAY_TEXT_BIT) )
{
constraint_breakableparams_t params;
Q_memset(&params,0,sizeof(params));
m_pConstraint->GetConstraintParams( &params );
if ( (params.bodyMassScale[0] != 1.0f && params.bodyMassScale[0] != 0.0f) || (params.bodyMassScale[1] != 1.0f && params.bodyMassScale[1] != 0.0f) )
{
CFmtStr str("mass ratio %.4f:%.4f\n", params.bodyMassScale[0], params.bodyMassScale[1] );
NDebugOverlay::EntityTextAtPosition( GetAbsOrigin(), pos, str.Access(), 0, 255, 255, 0, 255 );
}
pos++;
}
return pos;
}
void CPhysConstraint::DrawDebugGeometryOverlays()
{
if ( m_debugOverlays & (OVERLAY_BBOX_BIT|OVERLAY_PIVOT_BIT|OVERLAY_ABSBOX_BIT) )
{
DrawConstraintObjectsAxes(this, m_pConstraint);
}
BaseClass::DrawDebugGeometryOverlays();
}
void CPhysConstraint::GetBreakParams( constraint_breakableparams_t &params, const hl_constraint_info_t &info )
{
params.Defaults();
params.forceLimit = lbs2kg(m_forceLimit);
params.torqueLimit = lbs2kg(m_torqueLimit);
params.isActive = HasSpawnFlags( SF_CONSTRAINT_START_INACTIVE ) ? false : true;
params.bodyMassScale[0] = info.massScale[0];
params.bodyMassScale[1] = info.massScale[1];
}
BEGIN_DATADESC( CPhysConstraint )
DEFINE_PHYSPTR( m_pConstraint ),
DEFINE_KEYFIELD( m_nameSystem, FIELD_STRING, "constraintsystem" ),
DEFINE_KEYFIELD( m_nameAttach1, FIELD_STRING, "attach1" ),
DEFINE_KEYFIELD( m_nameAttach2, FIELD_STRING, "attach2" ),
DEFINE_KEYFIELD( m_breakSound, FIELD_SOUNDNAME, "breaksound" ),
DEFINE_KEYFIELD( m_forceLimit, FIELD_FLOAT, "forcelimit" ),
DEFINE_KEYFIELD( m_torqueLimit, FIELD_FLOAT, "torquelimit" ),
DEFINE_KEYFIELD( m_minTeleportDistance, FIELD_FLOAT, "teleportfollowdistance" ),
// DEFINE_FIELD( m_teleportTick, FIELD_INTEGER ),
DEFINE_OUTPUT( m_OnBreak, "OnBreak" ),
DEFINE_INPUTFUNC( FIELD_VOID, "Break", InputBreak ),
DEFINE_INPUTFUNC( FIELD_VOID, "ConstraintBroken", InputOnBreak ),
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOn", InputTurnOn ),
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOff", InputTurnOff ),
END_DATADESC()
CPhysConstraint::CPhysConstraint( void )
{
m_pConstraint = NULL;
m_nameAttach1 = NULL_STRING;
m_nameAttach2 = NULL_STRING;
m_forceLimit = 0;
m_torqueLimit = 0;
m_teleportTick = 0xFFFFFFFF;
m_minTeleportDistance = 0.0f;
}
CPhysConstraint::~CPhysConstraint()
{
Deactivate();
physenv->DestroyConstraint( m_pConstraint );
}
void CPhysConstraint::Precache( void )
{
if ( m_breakSound != NULL_STRING )
{
PrecacheScriptSound( STRING(m_breakSound) );
}
}
void CPhysConstraint::Spawn( void )
{
BaseClass::Spawn();
Precache();
}
// debug function - slow, uses dynamic_cast<> - use this to query the attached objects
// physics_debug_entity toggles the constraint system for an object using this
bool GetConstraintAttachments( CBaseEntity *pEntity, CBaseEntity *pAttachOut[2], IPhysicsObject *pAttachVPhysics[2] )
{
CPhysConstraint *pConstraintEntity = dynamic_cast<CPhysConstraint *>(pEntity);
if ( pConstraintEntity )
{
IPhysicsConstraint *pConstraint = pConstraintEntity->GetPhysConstraint();
if ( pConstraint )
{
IPhysicsObject *pRef = pConstraint->GetReferenceObject();
pAttachVPhysics[0] = pRef;
pAttachOut[0] = pRef ? static_cast<CBaseEntity *>(pRef->GetGameData()) : NULL;
IPhysicsObject *pAttach = pConstraint->GetAttachedObject();
pAttachVPhysics[1] = pAttach;
pAttachOut[1] = pAttach ? static_cast<CBaseEntity *>(pAttach->GetGameData()) : NULL;
return true;
}
}
return false;
}
void DebugConstraint(CBaseEntity *pEntity)
{
CPhysConstraint *pConstraintEntity = dynamic_cast<CPhysConstraint *>(pEntity);
if ( pConstraintEntity )
{
IPhysicsConstraint *pConstraint = pConstraintEntity->GetPhysConstraint();
if ( pConstraint )
{
pConstraint->OutputDebugInfo();
}
}
}
void FindPhysicsAnchor( string_t name, hl_constraint_info_t &info, int index, CBaseEntity *pErrorEntity )
{
constraint_anchor_t *pAnchor = g_AnchorList.Find( name );
if ( pAnchor )
{
CBaseEntity *pEntity = pAnchor->hEntity;
if ( pEntity )
{
info.massScale[index] = pAnchor->massScale;
bool bWroteAttachment = false;
if ( pAnchor->parentAttachment > 0 )
{
CBaseAnimating *pAnim = pAnchor->hEntity->GetBaseAnimating();
if ( pAnim )
{
IPhysicsObject *list[VPHYSICS_MAX_OBJECT_LIST_COUNT];
int listCount = pAnchor->hEntity->VPhysicsGetObjectList( list, ARRAYSIZE(list) );
int iPhysicsBone = pAnim->GetPhysicsBone( pAnim->GetAttachmentBone( pAnchor->parentAttachment ) );
if ( iPhysicsBone < listCount )
{
Vector pos;
info.pObjects[index] = list[iPhysicsBone];
pAnim->GetAttachment( pAnchor->parentAttachment, pos );
list[iPhysicsBone]->WorldToLocal( &info.anchorPosition[index], pos );
bWroteAttachment = true;
}
}
}
if ( !bWroteAttachment )
{
info.anchorPosition[index] = pAnchor->localOrigin;
info.pObjects[index] = pAnchor->hEntity->VPhysicsGetObject();
}
}
else
{
pAnchor = NULL;
}
}
if ( !pAnchor )
{
info.anchorPosition[index] = vec3_origin;
info.pObjects[index] = FindPhysicsObjectByName( STRING(name), pErrorEntity );
info.massScale[index] = 1.0f;
}
}
void CPhysConstraint::OnConstraintSetup( hl_constraint_info_t &info )
{
if ( info.pObjects[0] && info.pObjects[1] )
{
SetupTeleportationHandling( info );
}
if ( m_spawnflags & SF_CONSTRAINT_DISABLE_COLLISION )
{
PhysDisableEntityCollisions( info.pObjects[0], info.pObjects[1] );
}
}
void CPhysConstraint::SetupTeleportationHandling( hl_constraint_info_t &info )
{
CBaseEntity *pEntity0 = (CBaseEntity *)info.pObjects[0]->GetGameData();
if ( pEntity0 )
{
g_pNotify->AddEntity( this, pEntity0 );
}
CBaseEntity *pEntity1 = (CBaseEntity *)info.pObjects[1]->GetGameData();
if ( pEntity1 )
{
g_pNotify->AddEntity( this, pEntity1 );
}
}
static IPhysicsConstraintGroup *GetRagdollConstraintGroup( IPhysicsObject *pObj )
{
if ( pObj )
{
CBaseEntity *pEntity = static_cast<CBaseEntity *>(pObj->GetGameData());
ragdoll_t *pRagdoll = Ragdoll_GetRagdoll(pEntity);
if ( pRagdoll )
return pRagdoll->pGroup;
}
return NULL;
}
void CPhysConstraint::GetConstraintObjects( hl_constraint_info_t &info )
{
FindPhysicsAnchor( m_nameAttach1, info, 0, this );
FindPhysicsAnchor( m_nameAttach2, info, 1, this );
// Missing one object, assume the world instead
if ( info.pObjects[0] == NULL && info.pObjects[1] )
{
if ( Q_strlen(STRING(m_nameAttach1)) )
{
Warning("Bogus constraint %s (attaches ENTITY NOT FOUND:%s to %s)\n", GetDebugName(), STRING(m_nameAttach1), STRING(m_nameAttach2));
#ifdef HL2_EPISODIC
info.pObjects[0] = info.pObjects[1] = NULL;
return;
#endif // HL2_EPISODIC
}
info.pObjects[0] = g_PhysWorldObject;
info.massScale[0] = info.massScale[1] = 1.0f; // no mass scale on world constraint
}
else if ( info.pObjects[0] && !info.pObjects[1] )
{
if ( Q_strlen(STRING(m_nameAttach2)) )
{
Warning("Bogus constraint %s (attaches %s to ENTITY NOT FOUND:%s)\n", GetDebugName(), STRING(m_nameAttach1), STRING(m_nameAttach2));
#ifdef HL2_EPISODIC
info.pObjects[0] = info.pObjects[1] = NULL;
return;
#endif // HL2_EPISODIC
}
info.pObjects[1] = info.pObjects[0];
info.pObjects[0] = g_PhysWorldObject; // Try to make the world object consistently object0 for ease of implementation
info.massScale[0] = info.massScale[1] = 1.0f; // no mass scale on world constraint
info.swapped = true;
}
info.pGroup = GetRagdollConstraintGroup(info.pObjects[0]);
if ( !info.pGroup )
{
info.pGroup = GetRagdollConstraintGroup(info.pObjects[1]);
}
}
void CPhysConstraint::Activate( void )
{
BaseClass::Activate();
if ( HasSpawnFlags( SF_CONSTRAINT_NO_CONNECT_UNTIL_ACTIVATED ) == false )
{
if ( !ActivateConstraint() )
{
UTIL_Remove(this);
}
}
}
IPhysicsConstraintGroup *GetConstraintGroup( string_t systemName )
{
CBaseEntity *pMachine = gEntList.FindEntityByName( NULL, systemName );
if ( pMachine )
{
CPhysConstraintSystem *pGroup = dynamic_cast<CPhysConstraintSystem *>(pMachine);
if ( pGroup )
{
return pGroup->GetVPhysicsGroup();
}
}
return NULL;
}
bool CPhysConstraint::ActivateConstraint( void )
{
// A constraint attaches two objects to each other.
// The constraint is specified in the coordinate frame of the "reference" object
// and constrains the "attached" object
hl_constraint_info_t info;
if ( m_pConstraint )
{
// already have a constraint, don't make a new one
info.pObjects[0] = m_pConstraint->GetReferenceObject();
info.pObjects[1] = m_pConstraint->GetAttachedObject();
OnConstraintSetup(info);
return true;
}
GetConstraintObjects( info );
if ( !info.pObjects[0] && !info.pObjects[1] )
return false;
if ( info.pObjects[0]->IsStatic() && info.pObjects[1]->IsStatic() )
{
Warning("Constraint (%s) attached to two static objects (%s and %s)!!!\n", STRING(GetEntityName()), STRING(m_nameAttach1), m_nameAttach2 == NULL_STRING ? "world" : STRING(m_nameAttach2) );
return false;
}
if ( info.pObjects[0]->GetShadowController() && info.pObjects[1]->GetShadowController() )
{
Warning("Constraint (%s) attached to two shadow objects (%s and %s)!!!\n", STRING(GetEntityName()), STRING(m_nameAttach1), m_nameAttach2 == NULL_STRING ? "world" : STRING(m_nameAttach2) );
return false;
}
IPhysicsConstraintGroup *pGroup = GetConstraintGroup( m_nameSystem );
if ( !pGroup )
{
pGroup = info.pGroup;
}
m_pConstraint = CreateConstraint( pGroup, info );
if ( !m_pConstraint )
return false;
m_pConstraint->SetGameData( (void *)this );
if ( pGroup )
{
pGroup->Activate();
}
OnConstraintSetup(info);
return true;
}
void CPhysConstraint::NotifySystemEvent( CBaseEntity *pNotify, notify_system_event_t eventType, const notify_system_event_params_t &params )
{
// don't recurse
if ( eventType != NOTIFY_EVENT_TELEPORT || (unsigned int)gpGlobals->tickcount == m_teleportTick )
return;
float distance = (params.pTeleport->prevOrigin - pNotify->GetAbsOrigin()).Length();
// no need to follow a small teleport
if ( distance <= m_minTeleportDistance )
return;
m_teleportTick = gpGlobals->tickcount;
PhysTeleportConstrainedEntity( pNotify, m_pConstraint->GetReferenceObject(), m_pConstraint->GetAttachedObject(), params.pTeleport->prevOrigin, params.pTeleport->prevAngles, params.pTeleport->physicsRotate );
}
class CPhysHinge : public CPhysConstraint, public IVPhysicsWatcher
{
DECLARE_CLASS( CPhysHinge, CPhysConstraint );
public:
void Spawn( void );
IPhysicsConstraint *CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
if ( m_hinge.worldAxisDirection == vec3_origin )
{
DevMsg("ERROR: Hinge with bad data!!!\n" );
return NULL;
}
GetBreakParams( m_hinge.constraint, info );
m_hinge.constraint.strength = 1.0;
// BUGBUG: These numbers are very hard to edit
// Scale by 1000 to make things easier
// CONSIDER: Unify the units of torque around something other
// than HL units (kg * in^2 / s ^2)
m_hinge.hingeAxis.SetAxisFriction( 0, 0, m_hingeFriction * 1000 );
int hingeAxis;
if ( IsWorldHinge( info, &hingeAxis ) )
{
info.pObjects[1]->BecomeHinged( hingeAxis );
}
else
{
RemoveSpawnFlags( SF_CONSTRAINT_ASSUME_WORLD_GEOMETRY );
}
return physenv->CreateHingeConstraint( info.pObjects[0], info.pObjects[1], pGroup, m_hinge );
}
void DrawDebugGeometryOverlays()
{
if ( m_debugOverlays & (OVERLAY_BBOX_BIT|OVERLAY_PIVOT_BIT|OVERLAY_ABSBOX_BIT) )
{
NDebugOverlay::Line(m_hinge.worldPosition, m_hinge.worldPosition + 48 * m_hinge.worldAxisDirection, 0, 255, 0, false, 0 );
}
BaseClass::DrawDebugGeometryOverlays();
}
void InputSetVelocity( inputdata_t &inputdata )
{
if ( !m_pConstraint || !m_pConstraint->GetReferenceObject() || !m_pConstraint->GetAttachedObject() )
return;
float speed = inputdata.value.Float();
float massLoad = 1;
int numMasses = 0;
if ( m_pConstraint->GetReferenceObject()->IsMoveable() )
{
massLoad = m_pConstraint->GetReferenceObject()->GetInertia().Length();
numMasses++;
m_pConstraint->GetReferenceObject()->Wake();
}
if ( m_pConstraint->GetAttachedObject()->IsMoveable() )
{
massLoad += m_pConstraint->GetAttachedObject()->GetInertia().Length();
numMasses++;
m_pConstraint->GetAttachedObject()->Wake();
}
if ( numMasses > 0 )
{
massLoad /= (float)numMasses;
}
float loadscale = m_systemLoadScale != 0 ? m_systemLoadScale : 1;
m_pConstraint->SetAngularMotor( speed, speed * loadscale * massLoad * loadscale * (1.0/TICK_INTERVAL) );
}
void InputSetHingeFriction( inputdata_t &inputdata )
{
m_hingeFriction = inputdata.value.Float();
Msg("Setting hinge friction to %f\n", m_hingeFriction );
m_hinge.hingeAxis.SetAxisFriction( 0, 0, m_hingeFriction * 1000 );
}
virtual void Deactivate()
{
if ( HasSpawnFlags( SF_CONSTRAINT_ASSUME_WORLD_GEOMETRY ) )
{
if ( m_pConstraint && m_pConstraint->GetAttachedObject() )
{
// NOTE: RemoveHinged() is always safe
m_pConstraint->GetAttachedObject()->RemoveHinged();
}
}
BaseClass::Deactivate();
}
void NotifyVPhysicsStateChanged( IPhysicsObject *pPhysics, CBaseEntity *pEntity, bool bAwake )
{
#if HINGE_NOTIFY
Assert(m_pConstraint);
if (!m_pConstraint)
return;
// if something woke up, start thinking. If everything is asleep, stop thinking.
if ( bAwake )
{
// Did something wake up when I was not thinking?
if ( GetNextThink() == TICK_NEVER_THINK )
{
m_soundInfo.StartThinking(this,
VelocitySampler::GetRelativeAngularVelocity(m_pConstraint->GetAttachedObject(), m_pConstraint->GetReferenceObject()) ,
m_hinge.worldAxisDirection
);
SetThink(&CPhysHinge::SoundThink);
SetNextThink(gpGlobals->curtime + m_soundInfo.getThinkRate());
}
}
else
{
// Is everything asleep? If so, stop thinking.
if ( GetNextThink() != TICK_NEVER_THINK &&
m_pConstraint->GetAttachedObject()->IsAsleep() &&
m_pConstraint->GetReferenceObject()->IsAsleep() )
{
m_soundInfo.StopThinking(this);
SetNextThink(TICK_NEVER_THINK);
}
}
#endif
}
#if HINGE_NOTIFY
virtual void OnConstraintSetup( hl_constraint_info_t &info )
{
CBaseEntity *pEntity0 = info.pObjects[0] ? static_cast<CBaseEntity *>(info.pObjects[0]->GetGameData()) : NULL;
if ( pEntity0 && !info.pObjects[0]->IsStatic() )
{
WatchVPhysicsStateChanges( this, pEntity0 );
}
CBaseEntity *pEntity1 = info.pObjects[1] ? static_cast<CBaseEntity *>(info.pObjects[1]->GetGameData()) : NULL;
if ( pEntity1 && !info.pObjects[1]->IsStatic() )
{
WatchVPhysicsStateChanges( this, pEntity1 );
}
BaseClass::OnConstraintSetup(info);
}
void SoundThink( void );
// void Spawn( void );
void Activate( void );
void Precache( void );
#endif
DECLARE_DATADESC();
#if HINGE_NOTIFY
protected:
ConstraintSoundInfo m_soundInfo;
#endif
private:
constraint_hingeparams_t m_hinge;
float m_hingeFriction;
float m_systemLoadScale;
bool IsWorldHinge( const hl_constraint_info_t &info, int *pAxisOut );
};
BEGIN_DATADESC( CPhysHinge )
// Quiet down classcheck
// DEFINE_FIELD( m_hinge, FIELD_??? ),
DEFINE_KEYFIELD( m_hingeFriction, FIELD_FLOAT, "hingefriction" ),
DEFINE_FIELD( m_hinge.worldPosition, FIELD_POSITION_VECTOR ),
DEFINE_KEYFIELD( m_hinge.worldAxisDirection, FIELD_VECTOR, "hingeaxis" ),
DEFINE_KEYFIELD( m_systemLoadScale, FIELD_FLOAT, "systemloadscale" ),
DEFINE_INPUTFUNC( FIELD_FLOAT, "SetAngularVelocity", InputSetVelocity ),
DEFINE_INPUTFUNC( FIELD_FLOAT, "SetHingeFriction", InputSetHingeFriction ),
#if HINGE_NOTIFY
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_keyPoints[SimpleConstraintSoundProfile::kMIN_THRESHOLD] , FIELD_FLOAT, "minSoundThreshold" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_keyPoints[SimpleConstraintSoundProfile::kMIN_FULL] , FIELD_FLOAT, "maxSoundThreshold" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszTravelSoundFwd, FIELD_SOUNDNAME, "slidesoundfwd" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszTravelSoundBack, FIELD_SOUNDNAME, "slidesoundback" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszReversalSounds[0], FIELD_SOUNDNAME, "reversalsoundSmall" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszReversalSounds[1], FIELD_SOUNDNAME, "reversalsoundMedium" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszReversalSounds[2], FIELD_SOUNDNAME, "reversalsoundLarge" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_reversalSoundThresholds[0] , FIELD_FLOAT, "reversalsoundthresholdSmall" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_reversalSoundThresholds[1], FIELD_FLOAT, "reversalsoundthresholdMedium" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_reversalSoundThresholds[2] , FIELD_FLOAT, "reversalsoundthresholdLarge" ),
DEFINE_THINKFUNC( SoundThink ),
#endif
END_DATADESC()
LINK_ENTITY_TO_CLASS( phys_hinge, CPhysHinge );
void CPhysHinge::Spawn( void )
{
m_hinge.worldPosition = GetLocalOrigin();
m_hinge.worldAxisDirection -= GetLocalOrigin();
VectorNormalize(m_hinge.worldAxisDirection);
UTIL_SnapDirectionToAxis( m_hinge.worldAxisDirection );
m_hinge.hingeAxis.SetAxisFriction( 0, 0, 0 );
if ( HasSpawnFlags( SF_CONSTRAINT_ASSUME_WORLD_GEOMETRY ) )
{
masscenteroverride_t params;
if ( m_nameAttach1 == NULL_STRING )
{
params.SnapToAxis( m_nameAttach2, m_hinge.worldPosition, m_hinge.worldAxisDirection );
PhysSetMassCenterOverride( params );
}
else if ( m_nameAttach2 == NULL_STRING )
{
params.SnapToAxis( m_nameAttach1, m_hinge.worldPosition, m_hinge.worldAxisDirection );
PhysSetMassCenterOverride( params );
}
else
{
RemoveSpawnFlags( SF_CONSTRAINT_ASSUME_WORLD_GEOMETRY );
}
}
Precache();
}
#if HINGE_NOTIFY
void CPhysHinge::Activate( void )
{
BaseClass::Activate();
m_soundInfo.OnActivate(this);
if (m_pConstraint)
{
m_soundInfo.StartThinking(this,
VelocitySampler::GetRelativeAngularVelocity(m_pConstraint->GetAttachedObject(), m_pConstraint->GetReferenceObject()) ,
m_hinge.worldAxisDirection
);
SetThink(&CPhysHinge::SoundThink);
SetNextThink( gpGlobals->curtime + m_soundInfo.getThinkRate() );
}
}
void CPhysHinge::Precache( void )
{
BaseClass::Precache();
return m_soundInfo.OnPrecache(this);
}
#endif
static int GetUnitAxisIndex( const Vector &axis )
{
bool valid = false;
int index = -1;
for ( int i = 0; i < 3; i++ )
{
if ( axis[i] != 0 )
{
if ( fabs(axis[i]) == 1 )
{
if ( index < 0 )
{
index = i;
valid = true;
continue;
}
}
valid = false;
}
}
return valid ? index : -1;
}
bool CPhysHinge::IsWorldHinge( const hl_constraint_info_t &info, int *pAxisOut )
{
if ( HasSpawnFlags( SF_CONSTRAINT_ASSUME_WORLD_GEOMETRY ) && info.pObjects[0] == g_PhysWorldObject )
{
Vector localHinge;
info.pObjects[1]->WorldToLocalVector( &localHinge, m_hinge.worldAxisDirection );
UTIL_SnapDirectionToAxis( localHinge );
int hingeAxis = GetUnitAxisIndex( localHinge );
if ( hingeAxis >= 0 )
{
*pAxisOut = hingeAxis;
return true;
}
}
return false;
}
#if HINGE_NOTIFY
void CPhysHinge::SoundThink( void )
{
Assert(m_pConstraint);
if (!m_pConstraint)
return;
IPhysicsObject * pAttached = m_pConstraint->GetAttachedObject(), *pReference = m_pConstraint->GetReferenceObject();
Assert( pAttached && pReference );
if (pAttached && pReference)
{
Vector relativeVel = VelocitySampler::GetRelativeAngularVelocity(pAttached,pReference);
if (g_debug_constraint_sounds.GetBool())
{
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + (relativeVel), 255, 255, 0, true, 0.1f );
}
m_soundInfo.OnThink( this, relativeVel );
SetNextThink(gpGlobals->curtime + m_soundInfo.getThinkRate());
}
}
#endif
class CPhysBallSocket : public CPhysConstraint
{
public:
DECLARE_CLASS( CPhysBallSocket, CPhysConstraint );
IPhysicsConstraint *CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
constraint_ballsocketparams_t ballsocket;
ballsocket.Defaults();
for ( int i = 0; i < 2; i++ )
{
info.pObjects[i]->WorldToLocal( &ballsocket.constraintPosition[i], GetAbsOrigin() );
}
GetBreakParams( ballsocket.constraint, info );
ballsocket.constraint.torqueLimit = 0;
return physenv->CreateBallsocketConstraint( info.pObjects[0], info.pObjects[1], pGroup, ballsocket );
}
};
LINK_ENTITY_TO_CLASS( phys_ballsocket, CPhysBallSocket );
class CPhysSlideConstraint : public CPhysConstraint, public IVPhysicsWatcher
{
public:
DECLARE_CLASS( CPhysSlideConstraint, CPhysConstraint );
DECLARE_DATADESC();
IPhysicsConstraint *CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info );
void InputSetVelocity( inputdata_t &inputdata )
{
if ( !m_pConstraint || !m_pConstraint->GetReferenceObject() || !m_pConstraint->GetAttachedObject() )
return;
float speed = inputdata.value.Float();
float massLoad = 1;
int numMasses = 0;
if ( m_pConstraint->GetReferenceObject()->IsMoveable() )
{
massLoad = m_pConstraint->GetReferenceObject()->GetMass();
numMasses++;
m_pConstraint->GetReferenceObject()->Wake();
}
if ( m_pConstraint->GetAttachedObject()->IsMoveable() )
{
massLoad += m_pConstraint->GetAttachedObject()->GetMass();
numMasses++;
m_pConstraint->GetAttachedObject()->Wake();
}
if ( numMasses > 0 )
{
massLoad /= (float)numMasses;
}
float loadscale = m_systemLoadScale != 0 ? m_systemLoadScale : 1;
m_pConstraint->SetLinearMotor( speed, speed * loadscale * massLoad * (1.0/TICK_INTERVAL) );
}
void DrawDebugGeometryOverlays()
{
if ( m_debugOverlays & (OVERLAY_BBOX_BIT|OVERLAY_PIVOT_BIT|OVERLAY_ABSBOX_BIT) )
{
NDebugOverlay::Box( GetAbsOrigin(), -Vector(8,8,8), Vector(8,8,8), 0, 255, 0, 0, 0 );
NDebugOverlay::Box( m_axisEnd, -Vector(4,4,4), Vector(4,4,4), 0, 0, 255, 0, 0 );
NDebugOverlay::Line( GetAbsOrigin(), m_axisEnd, 255, 255, 0, false, 0 );
}
BaseClass::DrawDebugGeometryOverlays();
}
void NotifyVPhysicsStateChanged( IPhysicsObject *pPhysics, CBaseEntity *pEntity, bool bAwake )
{
#if HINGE_NOTIFY
Assert(m_pConstraint);
if (!m_pConstraint)
return;
// if something woke up, start thinking. If everything is asleep, stop thinking.
if ( bAwake )
{
// Did something wake up when I was not thinking?
if ( GetNextThink() == TICK_NEVER_THINK )
{
Vector axisDirection = m_axisEnd - GetAbsOrigin();
VectorNormalize( axisDirection );
UTIL_SnapDirectionToAxis( axisDirection );
m_soundInfo.StartThinking(this,
VelocitySampler::GetRelativeVelocity(m_pConstraint->GetAttachedObject(), m_pConstraint->GetReferenceObject()),
axisDirection
);
SetThink(&CPhysSlideConstraint::SoundThink);
SetNextThink(gpGlobals->curtime + m_soundInfo.getThinkRate());
}
}
else
{
// Is everything asleep? If so, stop thinking.
if ( GetNextThink() != TICK_NEVER_THINK &&
m_pConstraint->GetAttachedObject()->IsAsleep() &&
m_pConstraint->GetReferenceObject()->IsAsleep() )
{
m_soundInfo.StopThinking(this);
SetNextThink(TICK_NEVER_THINK);
}
}
#endif
}
#if HINGE_NOTIFY
virtual void OnConstraintSetup( hl_constraint_info_t &info )
{
CBaseEntity *pEntity0 = info.pObjects[0] ? static_cast<CBaseEntity *>(info.pObjects[0]->GetGameData()) : NULL;
if ( pEntity0 && !info.pObjects[0]->IsStatic() )
{
WatchVPhysicsStateChanges( this, pEntity0 );
}
CBaseEntity *pEntity1 = info.pObjects[1] ? static_cast<CBaseEntity *>(info.pObjects[1]->GetGameData()) : NULL;
if ( pEntity1 && !info.pObjects[1]->IsStatic() )
{
WatchVPhysicsStateChanges( this, pEntity1 );
}
BaseClass::OnConstraintSetup(info);
}
void SoundThink( void );
// void Spawn( void );
void Activate( void );
void Precache( void );
#endif
Vector m_axisEnd;
float m_slideFriction;
float m_systemLoadScale;
#if HINGE_NOTIFY
protected:
ConstraintSoundInfo m_soundInfo;
#endif
};
LINK_ENTITY_TO_CLASS( phys_slideconstraint, CPhysSlideConstraint );
BEGIN_DATADESC( CPhysSlideConstraint )
DEFINE_KEYFIELD( m_axisEnd, FIELD_POSITION_VECTOR, "slideaxis" ),
DEFINE_KEYFIELD( m_slideFriction, FIELD_FLOAT, "slidefriction" ),
DEFINE_KEYFIELD( m_systemLoadScale, FIELD_FLOAT, "systemloadscale" ),
DEFINE_INPUTFUNC( FIELD_FLOAT, "SetVelocity", InputSetVelocity ),
#if HINGE_NOTIFY
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_keyPoints[SimpleConstraintSoundProfile::kMIN_THRESHOLD] , FIELD_FLOAT, "minSoundThreshold" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_keyPoints[SimpleConstraintSoundProfile::kMIN_FULL] , FIELD_FLOAT, "maxSoundThreshold" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszTravelSoundFwd, FIELD_SOUNDNAME, "slidesoundfwd" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszTravelSoundBack, FIELD_SOUNDNAME, "slidesoundback" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszReversalSounds[0], FIELD_SOUNDNAME, "reversalsoundSmall" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszReversalSounds[1], FIELD_SOUNDNAME, "reversalsoundMedium" ),
DEFINE_KEYFIELD( m_soundInfo.m_iszReversalSounds[2], FIELD_SOUNDNAME, "reversalsoundLarge" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_reversalSoundThresholds[0] , FIELD_FLOAT, "reversalsoundthresholdSmall" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_reversalSoundThresholds[1], FIELD_FLOAT, "reversalsoundthresholdMedium" ),
DEFINE_KEYFIELD( m_soundInfo.m_soundProfile.m_reversalSoundThresholds[2] , FIELD_FLOAT, "reversalsoundthresholdLarge" ),
DEFINE_THINKFUNC( SoundThink ),
#endif
END_DATADESC()
IPhysicsConstraint *CPhysSlideConstraint::CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
constraint_slidingparams_t sliding;
sliding.Defaults();
GetBreakParams( sliding.constraint, info );
sliding.constraint.strength = 1.0;
Vector axisDirection = m_axisEnd - GetAbsOrigin();
VectorNormalize( axisDirection );
UTIL_SnapDirectionToAxis( axisDirection );
sliding.InitWithCurrentObjectState( info.pObjects[0], info.pObjects[1], axisDirection );
sliding.friction = m_slideFriction;
if ( m_spawnflags & SF_SLIDE_LIMIT_ENDS )
{
Vector position;
info.pObjects[1]->GetPosition( &position, NULL );
sliding.limitMin = DotProduct( axisDirection, GetAbsOrigin() );
sliding.limitMax = DotProduct( axisDirection, m_axisEnd );
if ( sliding.limitMax < sliding.limitMin )
{
::V_swap( sliding.limitMin, sliding.limitMax );
}
// expand limits to make initial position of the attached object valid
float limit = DotProduct( position, axisDirection );
if ( limit < sliding.limitMin )
{
sliding.limitMin = limit;
}
else if ( limit > sliding.limitMax )
{
sliding.limitMax = limit;
}
// offset so that the current position is 0
sliding.limitMin -= limit;
sliding.limitMax -= limit;
}
return physenv->CreateSlidingConstraint( info.pObjects[0], info.pObjects[1], pGroup, sliding );
}
#if HINGE_NOTIFY
void CPhysSlideConstraint::SoundThink( void )
{
Assert(m_pConstraint);
if (!m_pConstraint)
return;
IPhysicsObject * pAttached = m_pConstraint->GetAttachedObject(), *pReference = m_pConstraint->GetReferenceObject();
Assert( pAttached && pReference );
if (pAttached && pReference)
{
Vector relativeVel = VelocitySampler::GetRelativeVelocity(pAttached,pReference);
// project velocity onto my primary axis.:
Vector axisDirection = m_axisEnd - GetAbsOrigin();
relativeVel = m_axisEnd * relativeVel.Dot(m_axisEnd)/m_axisEnd.Dot(m_axisEnd);
m_soundInfo.OnThink( this, relativeVel );
SetNextThink(gpGlobals->curtime + m_soundInfo.getThinkRate());
}
}
void CPhysSlideConstraint::Activate( void )
{
BaseClass::Activate();
m_soundInfo.OnActivate(this);
Vector axisDirection = m_axisEnd - GetAbsOrigin();
VectorNormalize( axisDirection );
UTIL_SnapDirectionToAxis( axisDirection );
m_soundInfo.StartThinking(this,
VelocitySampler::GetRelativeVelocity(m_pConstraint->GetAttachedObject(), m_pConstraint->GetReferenceObject()),
axisDirection
);
SetThink(&CPhysSlideConstraint::SoundThink);
SetNextThink(gpGlobals->curtime + m_soundInfo.getThinkRate());
}
void CPhysSlideConstraint::Precache()
{
m_soundInfo.OnPrecache(this);
}
#endif
LINK_ENTITY_TO_CLASS( phys_constraint, CPhysFixed );
//-----------------------------------------------------------------------------
// Purpose: Activate/create the constraint
//-----------------------------------------------------------------------------
IPhysicsConstraint *CPhysFixed::CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
constraint_fixedparams_t fixed;
fixed.Defaults();
fixed.InitWithCurrentObjectState( info.pObjects[0], info.pObjects[1] );
GetBreakParams( fixed.constraint, info );
// constraining to the world means object 1 is fixed
if ( info.pObjects[0] == g_PhysWorldObject )
{
PhysSetGameFlags( info.pObjects[1], FVPHYSICS_CONSTRAINT_STATIC );
}
return physenv->CreateFixedConstraint( info.pObjects[0], info.pObjects[1], pGroup, fixed );
}
//-----------------------------------------------------------------------------
// Purpose: Breakable pulley w/ropes constraint
//-----------------------------------------------------------------------------
class CPhysPulley : public CPhysConstraint
{
DECLARE_CLASS( CPhysPulley, CPhysConstraint );
public:
DECLARE_DATADESC();
void DrawDebugGeometryOverlays()
{
if ( m_debugOverlays & (OVERLAY_BBOX_BIT|OVERLAY_PIVOT_BIT|OVERLAY_ABSBOX_BIT) )
{
Vector origin = GetAbsOrigin();
Vector refPos = origin, attachPos = origin;
IPhysicsObject *pRef = m_pConstraint->GetReferenceObject();
if ( pRef )
{
matrix3x4_t matrix;
pRef->GetPositionMatrix( &matrix );
VectorTransform( m_offset[0], matrix, refPos );
}
IPhysicsObject *pAttach = m_pConstraint->GetAttachedObject();
if ( pAttach )
{
matrix3x4_t matrix;
pAttach->GetPositionMatrix( &matrix );
VectorTransform( m_offset[1], matrix, attachPos );
}
NDebugOverlay::Line( refPos, origin, 0, 255, 0, false, 0 );
NDebugOverlay::Line( origin, m_position2, 128, 128, 128, false, 0 );
NDebugOverlay::Line( m_position2, attachPos, 0, 255, 0, false, 0 );
NDebugOverlay::Box( origin, -Vector(8,8,8), Vector(8,8,8), 128, 255, 128, 32, 0 );
NDebugOverlay::Box( m_position2, -Vector(8,8,8), Vector(8,8,8), 255, 128, 128, 32, 0 );
}
BaseClass::DrawDebugGeometryOverlays();
}
IPhysicsConstraint *CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info );
private:
Vector m_position2;
Vector m_offset[2];
float m_addLength;
float m_gearRatio;
};
BEGIN_DATADESC( CPhysPulley )
DEFINE_KEYFIELD( m_position2, FIELD_POSITION_VECTOR, "position2" ),
DEFINE_AUTO_ARRAY( m_offset, FIELD_VECTOR ),
DEFINE_KEYFIELD( m_addLength, FIELD_FLOAT, "addlength" ),
DEFINE_KEYFIELD( m_gearRatio, FIELD_FLOAT, "gearratio" ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( phys_pulleyconstraint, CPhysPulley );
//-----------------------------------------------------------------------------
// Purpose: Activate/create the constraint
//-----------------------------------------------------------------------------
IPhysicsConstraint *CPhysPulley::CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
constraint_pulleyparams_t pulley;
pulley.Defaults();
pulley.pulleyPosition[0] = GetAbsOrigin();
pulley.pulleyPosition[1] = m_position2;
matrix3x4_t matrix;
Vector world[2];
info.pObjects[0]->GetPositionMatrix( &matrix );
VectorTransform( info.anchorPosition[0], matrix, world[0] );
info.pObjects[1]->GetPositionMatrix( &matrix );
VectorTransform( info.anchorPosition[1], matrix, world[1] );
for ( int i = 0; i < 2; i++ )
{
pulley.objectPosition[i] = info.anchorPosition[i];
m_offset[i] = info.anchorPosition[i];
}
pulley.totalLength = m_addLength +
(world[0] - pulley.pulleyPosition[0]).Length() +
((world[1] - pulley.pulleyPosition[1]).Length() * m_gearRatio);
if ( m_gearRatio != 0 )
{
pulley.gearRatio = m_gearRatio;
}
GetBreakParams( pulley.constraint, info );
if ( m_spawnflags & SF_PULLEY_RIGID )
{
pulley.isRigid = true;
}
return physenv->CreatePulleyConstraint( info.pObjects[0], info.pObjects[1], pGroup, pulley );
}
//-----------------------------------------------------------------------------
// Purpose: Breakable rope/length constraint
//-----------------------------------------------------------------------------
class CPhysLength : public CPhysConstraint
{
DECLARE_CLASS( CPhysLength, CPhysConstraint );
public:
DECLARE_DATADESC();
void DrawDebugGeometryOverlays()
{
if ( m_debugOverlays & (OVERLAY_BBOX_BIT|OVERLAY_PIVOT_BIT|OVERLAY_ABSBOX_BIT) )
{
Vector origin = GetAbsOrigin();
Vector refPos = origin, attachPos = origin;
IPhysicsObject *pRef = m_pConstraint->GetReferenceObject();
if ( pRef )
{
matrix3x4_t matrix;
pRef->GetPositionMatrix( &matrix );
VectorTransform( m_offset[0], matrix, refPos );
}
IPhysicsObject *pAttach = m_pConstraint->GetAttachedObject();
if ( pAttach )
{
matrix3x4_t matrix;
pAttach->GetPositionMatrix( &matrix );
VectorTransform( m_offset[1], matrix, attachPos );
}
Vector dir = attachPos - refPos;
float len = VectorNormalize(dir);
if ( len > m_totalLength )
{
Vector mid = refPos + dir * m_totalLength;
NDebugOverlay::Line( refPos, mid, 0, 255, 0, false, 0 );
NDebugOverlay::Line( mid, attachPos, 255, 0, 0, false, 0 );
}
else
{
NDebugOverlay::Line( refPos, attachPos, 0, 255, 0, false, 0 );
}
}
BaseClass::DrawDebugGeometryOverlays();
}
IPhysicsConstraint *CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info );
private:
Vector m_offset[2];
Vector m_vecAttach;
float m_addLength;
float m_minLength;
float m_totalLength;
};
BEGIN_DATADESC( CPhysLength )
DEFINE_AUTO_ARRAY( m_offset, FIELD_VECTOR ),
DEFINE_KEYFIELD( m_addLength, FIELD_FLOAT, "addlength" ),
DEFINE_KEYFIELD( m_minLength, FIELD_FLOAT, "minlength" ),
DEFINE_KEYFIELD( m_vecAttach, FIELD_POSITION_VECTOR, "attachpoint" ),
DEFINE_FIELD( m_totalLength, FIELD_FLOAT ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( phys_lengthconstraint, CPhysLength );
//-----------------------------------------------------------------------------
// Purpose: Activate/create the constraint
//-----------------------------------------------------------------------------
IPhysicsConstraint *CPhysLength::CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
constraint_lengthparams_t length;
length.Defaults();
Vector position[2];
position[0] = GetAbsOrigin();
position[1] = m_vecAttach;
int index = info.swapped ? 1 : 0;
length.InitWorldspace( info.pObjects[0], info.pObjects[1], position[index], position[!index] );
length.totalLength += m_addLength;
length.minLength = m_minLength;
m_totalLength = length.totalLength;
if ( HasSpawnFlags(SF_LENGTH_RIGID) )
{
length.minLength = length.totalLength;
}
for ( int i = 0; i < 2; i++ )
{
m_offset[i] = length.objectPosition[i];
}
GetBreakParams( length.constraint, info );
return physenv->CreateLengthConstraint( info.pObjects[0], info.pObjects[1], pGroup, length );
}
//-----------------------------------------------------------------------------
// Purpose: Limited ballsocket constraint with toggle-able translation constraints
//-----------------------------------------------------------------------------
class CRagdollConstraint : public CPhysConstraint
{
DECLARE_CLASS( CRagdollConstraint, CPhysConstraint );
public:
DECLARE_DATADESC();
#if 0
void DrawDebugGeometryOverlays()
{
if ( m_debugOverlays & (OVERLAY_BBOX_BIT|OVERLAY_PIVOT_BIT|OVERLAY_ABSBOX_BIT) )
{
NDebugOverlay::Line( refPos, attachPos, 0, 255, 0, false, 0 );
}
BaseClass::DrawDebugGeometryOverlays();
}
#endif
IPhysicsConstraint *CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info );
private:
float m_xmin; // constraint limits in degrees
float m_xmax;
float m_ymin;
float m_ymax;
float m_zmin;
float m_zmax;
float m_xfriction;
float m_yfriction;
float m_zfriction;
};
BEGIN_DATADESC( CRagdollConstraint )
DEFINE_KEYFIELD( m_xmin, FIELD_FLOAT, "xmin" ),
DEFINE_KEYFIELD( m_xmax, FIELD_FLOAT, "xmax" ),
DEFINE_KEYFIELD( m_ymin, FIELD_FLOAT, "ymin" ),
DEFINE_KEYFIELD( m_ymax, FIELD_FLOAT, "ymax" ),
DEFINE_KEYFIELD( m_zmin, FIELD_FLOAT, "zmin" ),
DEFINE_KEYFIELD( m_zmax, FIELD_FLOAT, "zmax" ),
DEFINE_KEYFIELD( m_xfriction, FIELD_FLOAT, "xfriction" ),
DEFINE_KEYFIELD( m_yfriction, FIELD_FLOAT, "yfriction" ),
DEFINE_KEYFIELD( m_zfriction, FIELD_FLOAT, "zfriction" ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( phys_ragdollconstraint, CRagdollConstraint );
//-----------------------------------------------------------------------------
// Purpose: Activate/create the constraint
//-----------------------------------------------------------------------------
IPhysicsConstraint *CRagdollConstraint::CreateConstraint( IPhysicsConstraintGroup *pGroup, const hl_constraint_info_t &info )
{
constraint_ragdollparams_t ragdoll;
ragdoll.Defaults();
matrix3x4_t entityToWorld, worldToEntity;
info.pObjects[0]->GetPositionMatrix( &entityToWorld );
MatrixInvert( entityToWorld, worldToEntity );
ConcatTransforms( worldToEntity, EntityToWorldTransform(), ragdoll.constraintToReference );
info.pObjects[1]->GetPositionMatrix( &entityToWorld );
MatrixInvert( entityToWorld, worldToEntity );
ConcatTransforms( worldToEntity, EntityToWorldTransform(), ragdoll.constraintToAttached );
ragdoll.onlyAngularLimits = HasSpawnFlags( SF_RAGDOLL_FREEMOVEMENT ) ? true : false;
// FIXME: Why are these friction numbers in different units from what the hinge uses?
ragdoll.axes[0].SetAxisFriction( m_xmin, m_xmax, m_xfriction );
ragdoll.axes[1].SetAxisFriction( m_ymin, m_ymax, m_yfriction );
ragdoll.axes[2].SetAxisFriction( m_zmin, m_zmax, m_zfriction );
if ( HasSpawnFlags( SF_CONSTRAINT_START_INACTIVE ) )
{
ragdoll.isActive = false;
}
return physenv->CreateRagdollConstraint( info.pObjects[0], info.pObjects[1], pGroup, ragdoll );
}
class CPhysConstraintEvents : public IPhysicsConstraintEvent
{
void ConstraintBroken( IPhysicsConstraint *pConstraint )
{
CBaseEntity *pEntity = (CBaseEntity *)pConstraint->GetGameData();
if ( pEntity )
{
IPhysicsConstraintEvent *pConstraintEvent = dynamic_cast<IPhysicsConstraintEvent*>( pEntity );
//Msg("Constraint broken %s\n", pEntity->GetDebugName() );
if ( pConstraintEvent )
{
pConstraintEvent->ConstraintBroken( pConstraint );
}
else
{
variant_t emptyVariant;
pEntity->AcceptInput( "ConstraintBroken", NULL, NULL, emptyVariant, 0 );
}
}
}
};
static CPhysConstraintEvents constraintevents;
// registered in physics.cpp
IPhysicsConstraintEvent *g_pConstraintEvents = &constraintevents;
#if HINGE_NOTIFY
//-----------------------------------------------------------------------------
// Code for sampler
//-----------------------------------------------------------------------------
/// Call this in spawn(). (Not a constructor because those are difficult to use in entities.)
void VelocitySampler::Initialize(float samplerate)
{
m_fIdealSampleRate = samplerate;
}
// This is an old style approach to reversal sounds, from when there was only one.
#if 0
bool VelocitySampler::HasReversed(const Vector &relativeVelocity, float thresholdAcceleration)
{
// first, make sure the velocity has reversed (is more than 90deg off) from last time, or is zero now.
// float rVsq = relativeVelocity.LengthSqr();
float vDot = relativeVelocity.Dot(m_prevSample);
if (vDot <= 0) // there is a reversal in direction. compute the magnitude of acceleration.
{
// find the scalar projection of the relative acceleration this fame onto the previous frame's
// velocity, and compare that to the threshold.
Vector accel = relativeVelocity - m_prevSample;
float prevSampleLength = m_prevSample.Length();
float projection = 0;
// divide through by dt to get the accel per sec
if (prevSampleLength)
{
projection = -(accel.Dot(m_prevSample) / prevSampleLength) / (gpGlobals->curtime - m_fPrevSampleTime);
}
else
{
projection = accel.Length() / (gpGlobals->curtime - m_fPrevSampleTime);
}
if (g_debug_constraint_sounds.GetBool())
{
Msg("Reversal accel is %f/%f\n",projection,thresholdAcceleration);
}
return ((projection) > thresholdAcceleration); // the scalar projection is negative because the acceleration is against vel
}
else
{
return false;
}
}
#endif
/// Looks at the force of reversal and compares it to a ladder of thresholds.
/// Returns the index of the highest threshold exceeded by the reversal velocity.
int VelocitySampler::HasReversed(const Vector &relativeVelocity, const float thresholdAcceleration[], const unsigned short numThresholds)
{
// first, make sure the velocity has reversed (is more than 90deg off) from last time, or is zero now.
// float rVsq = relativeVelocity.LengthSqr();
float vDot = relativeVelocity.Dot(m_prevSample);
if (vDot <= 0) // there is a reversal in direction. compute the magnitude of acceleration.
{
// find the scalar projection of the relative acceleration this fame onto the previous frame's
// velocity, and compare that to the threshold.
Vector accel = relativeVelocity - m_prevSample;
float prevSampleLength = m_prevSample.Length();
float projection = 0;
// divide through by dt to get the accel per sec
if (prevSampleLength)
{
// the scalar projection is negative because the acceleration is against vel
projection = -(accel.Dot(m_prevSample) / prevSampleLength) / (gpGlobals->curtime - m_fPrevSampleTime);
}
else
{
projection = accel.Length() / (gpGlobals->curtime - m_fPrevSampleTime);
}
if (g_debug_constraint_sounds.GetBool())
{
Msg("Reversal accel is %f/%f\n", projection, thresholdAcceleration[0]);
}
// now find the threshold crossed.
int retval;
for (retval = numThresholds - 1; retval >= 0 ; --retval)
{
if (projection > thresholdAcceleration[retval])
break;
}
return retval;
}
else
{
return -1;
}
}
/// small helper function used just below (technique copy-pasted from sound.cpp)
inline static bool IsEmpty (const string_t &str)
{
return (!str || strlen(str.ToCStr()) < 1 );
}
void ConstraintSoundInfo::OnActivate( CPhysConstraint *pOuter )
{
m_pTravelSound = NULL;
m_vSampler.Initialize( getThinkRate() );
ValidateInternals( pOuter );
// make sure sound filenames are not empty
m_bPlayTravelSound = !IsEmpty(m_iszTravelSoundFwd) || !IsEmpty(m_iszTravelSoundBack);
m_bPlayReversalSound = false;
for (int i = 0; i < SimpleConstraintSoundProfile::kREVERSAL_SOUND_ARRAY_SIZE ; ++i)
{
if ( !IsEmpty(m_iszReversalSounds[i]) )
{
// if there is at least one filled sound field, we should try
// to play reversals
m_bPlayReversalSound = true;
break;
}
}
/*
SetThink(&CPhysSlideConstraint::SoundThink);
SetNextThink(gpGlobals->curtime + m_vSampler.getSampleRate());
*/
}
/// Maintain consistency of internal datastructures on start
void ConstraintSoundInfo::ValidateInternals( CPhysConstraint *pOuter )
{
// Make sure the reversal sound thresholds are strictly increasing.
for (int i = 1 ; i < SimpleConstraintSoundProfile::kREVERSAL_SOUND_ARRAY_SIZE ; ++i)
{
// if decreases from small to medium, promote small to medium and warn.
if (m_soundProfile.m_reversalSoundThresholds[i] < m_soundProfile.m_reversalSoundThresholds[i-1])
{
Warning("Constraint reversal sounds for %s are out of order!", pOuter->GetDebugName() );
m_soundProfile.m_reversalSoundThresholds[i] = m_soundProfile.m_reversalSoundThresholds[i-1];
m_iszReversalSounds[i] = m_iszReversalSounds[i-1];
}
}
}
void ConstraintSoundInfo::OnPrecache( CPhysConstraint *pOuter )
{
pOuter->PrecacheScriptSound( m_iszTravelSoundFwd.ToCStr() );
pOuter->PrecacheScriptSound( m_iszTravelSoundBack.ToCStr() );
for (int i = 0 ; i < SimpleConstraintSoundProfile::kREVERSAL_SOUND_ARRAY_SIZE; ++i )
{
pOuter->PrecacheScriptSound( m_iszReversalSounds[i].ToCStr() );
}
}
void ConstraintSoundInfo::OnThink( CPhysConstraint *pOuter, const Vector &relativeVelocity )
{
// have we had a hard reversal?
int playReversal = m_vSampler.HasReversed( relativeVelocity, m_soundProfile.m_reversalSoundThresholds, SimpleConstraintSoundProfile::kREVERSAL_SOUND_ARRAY_SIZE );
float relativeVelMag = relativeVelocity.Length(); //< magnitude of relative velocity
CBaseEntity *pChildEntity = static_cast<CBaseEntity *>(pOuter->GetPhysConstraint()->GetAttachedObject()->GetGameData());
// compute sound level
float soundVol = this->m_soundProfile.GetVolume(relativeVelMag);
if (g_debug_constraint_sounds.GetBool())
{
char tempstr[512];
Q_snprintf(tempstr,sizeof(tempstr),"Velocity: %.3f", relativeVelMag );
pChildEntity->EntityText( 0, tempstr, m_vSampler.getSampleRate() );
Q_snprintf(tempstr,sizeof(tempstr),"Sound volume: %.3f", soundVol );
pChildEntity->EntityText( 1, tempstr, m_vSampler.getSampleRate() );
if (playReversal >= 0)
{
Q_snprintf(tempstr,sizeof(tempstr),"Reversal [%d]", playReversal );
pChildEntity->EntityText(2,tempstr,m_vSampler.getSampleRate());
}
}
// if we loaded a travel sound
if (m_bPlayTravelSound)
{
if (soundVol > 0)
{
// if we want to play a sound...
if ( m_pTravelSound )
{ // if a sound exists, modify it
CSoundEnvelopeController::GetController().SoundChangeVolume( m_pTravelSound, soundVol, 0.1f );
}
else
{ // if a sound does not exist, create it
bool travellingForward = relativeVelocity.Dot(m_forwardAxis) > 0;
CSoundEnvelopeController &controller = CSoundEnvelopeController::GetController();
CPASAttenuationFilter filter( pChildEntity );
m_pTravelSound = controller.SoundCreate( filter, pChildEntity->entindex(),
(travellingForward ? m_iszTravelSoundFwd : m_iszTravelSoundBack).ToCStr() );
controller.Play( m_pTravelSound, soundVol, 100 );
}
}
else
{
// if we want to not play sound
if ( m_pTravelSound )
{ // and it exists, kill it
CSoundEnvelopeController::GetController().SoundDestroy( m_pTravelSound );
m_pTravelSound = NULL;
}
}
}
if (m_bPlayReversalSound && (playReversal >= 0))
{
pChildEntity->EmitSound(m_iszReversalSounds[playReversal].ToCStr());
}
m_vSampler.AddSample( relativeVelocity );
}
void ConstraintSoundInfo::StartThinking( CPhysConstraint *pOuter, const Vector &relativeVelocity, const Vector &forwardVector )
{
m_forwardAxis = forwardVector;
m_vSampler.BeginSampling( relativeVelocity );
/*
IPhysicsConstraint *pConstraint = pOuter->GetPhysConstraint();
Assert(pConstraint);
if (pConstraint)
{
IPhysicsObject * pAttached = pConstraint->GetAttachedObject(), *pReference = pConstraint->GetReferenceObject();
m_vSampler.BeginSampling( VelocitySampler::GetRelativeVelocity(pAttached,pReference) );
}
*/
}
void ConstraintSoundInfo::StopThinking( CPhysConstraint *pOuter )
{
DeleteAllSounds();
}
ConstraintSoundInfo::~ConstraintSoundInfo()
{
DeleteAllSounds();
}
// Any sounds envelopes that are active, kill.
void ConstraintSoundInfo::DeleteAllSounds()
{
if ( m_pTravelSound )
{
CSoundEnvelopeController::GetController().SoundDestroy( m_pTravelSound );
m_pTravelSound = NULL;
}
}
#endif