2010-07-22 01:46:14 -05:00
//===== Copyright 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: - defines SIMD "structure of arrays" classes and functions.
//
//===========================================================================//
# ifndef SSEMATH_H
# define SSEMATH_H
# if defined( _X360 )
# include <xboxmath.h>
# else
# include <xmmintrin.h>
# ifndef _LINUX
# include <emmintrin.h>
# endif
# endif
# include <mathlib/vector.h>
# include <mathlib/mathlib.h>
# include <mathlib/compressed_vector.h>
# if defined(GNUC)
# define USE_STDC_FOR_SIMD 0
# else
# define USE_STDC_FOR_SIMD 0
# endif
# if (!defined(_X360) && (USE_STDC_FOR_SIMD == 0))
# define _SSE1 1
# endif
// I thought about defining a class/union for the SIMD packed floats instead of using fltx4,
// but decided against it because (a) the nature of SIMD code which includes comparisons is to blur
// the relationship between packed floats and packed integer types and (b) not sure that the
// compiler would handle generating good code for the intrinsics.
# if USE_STDC_FOR_SIMD
# error "hello"
typedef union
{
float m128_f32 [ 4 ] ;
uint32 m128_u32 [ 4 ] ;
} fltx4 ;
typedef fltx4 i32x4 ;
typedef fltx4 u32x4 ;
# elif ( defined( _X360 ) )
typedef union
{
// This union allows float/int access (which generally shouldn't be done in inner loops)
__vector4 vmx ;
float m128_f32 [ 4 ] ;
uint32 m128_u32 [ 4 ] ;
} fltx4_union ;
typedef __vector4 fltx4 ;
typedef __vector4 i32x4 ; // a VMX register; just a way of making it explicit that we're doing integer ops.
typedef __vector4 u32x4 ; // a VMX register; just a way of making it explicit that we're doing unsigned integer ops.
# else
typedef __m128 fltx4 ;
typedef __m128 i32x4 ;
typedef __m128 u32x4 ;
# endif
// The FLTX4 type is a fltx4 used as a parameter to a function.
// On the 360, the best way to do this is pass-by-copy on the registers.
// On the PC, the best way is to pass by const reference.
// The compiler will sometimes, but not always, replace a pass-by-const-ref
// with a pass-in-reg on the 360; to avoid this confusion, you can
// explicitly use a FLTX4 as the parameter type.
# ifdef _X360
typedef __vector4 FLTX4 ;
# else
typedef const fltx4 & FLTX4 ;
# endif
// A 16-byte aligned int32 datastructure
// (for use when writing out fltx4's as SIGNED
// ints).
struct ALIGN16 intx4
{
int32 m_i32 [ 4 ] ;
inline int & operator [ ] ( int which )
{
return m_i32 [ which ] ;
}
inline const int & operator [ ] ( int which ) const
{
return m_i32 [ which ] ;
}
inline int32 * Base ( ) {
return m_i32 ;
}
inline const int32 * Base ( ) const
{
return m_i32 ;
}
inline const bool operator = = ( const intx4 & other ) const
{
return m_i32 [ 0 ] = = other . m_i32 [ 0 ] & &
m_i32 [ 1 ] = = other . m_i32 [ 1 ] & &
m_i32 [ 2 ] = = other . m_i32 [ 2 ] & &
m_i32 [ 3 ] = = other . m_i32 [ 3 ] ;
}
} ALIGN16_POST ;
# if defined( _DEBUG ) && defined( _X360 )
FORCEINLINE void TestVPUFlags ( )
{
// Check that the VPU is in the appropriate (Java-compliant) mode (see 3.2.1 in altivec_pem.pdf on xds.xbox.com)
__vector4 a ;
__asm
{
mfvscr a ;
}
unsigned int * flags = ( unsigned int * ) & a ;
unsigned int controlWord = flags [ 3 ] ;
Assert ( controlWord = = 0 ) ;
}
# else // _DEBUG
FORCEINLINE void TestVPUFlags ( ) { }
# endif // _DEBUG
// useful constants in SIMD packed float format:
// (note: some of these aren't stored on the 360,
// but are manufactured directly in one or two
// instructions, saving a load and possible L2
// miss.)
# ifndef _X360
extern const fltx4 Four_Zeros ; // 0 0 0 0
extern const fltx4 Four_Ones ; // 1 1 1 1
extern const fltx4 Four_Twos ; // 2 2 2 2
extern const fltx4 Four_Threes ; // 3 3 3 3
extern const fltx4 Four_Fours ; // guess.
extern const fltx4 Four_Point225s ; // .225 .225 .225 .225
extern const fltx4 Four_PointFives ; // .5 .5 .5 .5
extern const fltx4 Four_Thirds ; // 1/3
extern const fltx4 Four_TwoThirds ; // 2/3
extern const fltx4 Four_Epsilons ; // FLT_EPSILON FLT_EPSILON FLT_EPSILON FLT_EPSILON
extern const fltx4 Four_2ToThe21s ; // (1<<21)..
extern const fltx4 Four_2ToThe22s ; // (1<<22)..
extern const fltx4 Four_2ToThe23s ; // (1<<23)..
extern const fltx4 Four_2ToThe24s ; // (1<<24)..
extern const fltx4 Four_Origin ; // 0 0 0 1 (origin point, like vr0 on the PS2)
extern const fltx4 Four_NegativeOnes ; // -1 -1 -1 -1
# else
# define Four_Zeros XMVectorZero() // 0 0 0 0
# define Four_Ones XMVectorSplatOne() // 1 1 1 1
extern const fltx4 Four_Twos ; // 2 2 2 2
extern const fltx4 Four_Threes ; // 3 3 3 3
extern const fltx4 Four_Fours ; // guess.
extern const fltx4 Four_Point225s ; // .225 .225 .225 .225
extern const fltx4 Four_PointFives ; // .5 .5 .5 .5
extern const fltx4 Four_Thirds ; // 1/3
extern const fltx4 Four_TwoThirds ; // 2/3
extern const fltx4 Four_Epsilons ; // FLT_EPSILON FLT_EPSILON FLT_EPSILON FLT_EPSILON
extern const fltx4 Four_2ToThe21s ; // (1<<21)..
extern const fltx4 Four_2ToThe22s ; // (1<<22)..
extern const fltx4 Four_2ToThe23s ; // (1<<23)..
extern const fltx4 Four_2ToThe24s ; // (1<<24)..
extern const fltx4 Four_Origin ; // 0 0 0 1 (origin point, like vr0 on the PS2)
extern const fltx4 Four_NegativeOnes ; // -1 -1 -1 -1
# endif
extern const fltx4 Four_FLT_MAX ; // FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX
extern const fltx4 Four_Negative_FLT_MAX ; // -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX
extern const fltx4 g_SIMD_0123 ; // 0 1 2 3 as float
// external aligned integer constants
# ifndef ALIGN16_POST
# define ALIGN16_POST
# endif
extern const ALIGN16 int32 g_SIMD_clear_signmask [ ] ALIGN16_POST ; // 0x7fffffff x 4
extern const ALIGN16 int32 g_SIMD_signmask [ ] ALIGN16_POST ; // 0x80000000 x 4
extern const ALIGN16 int32 g_SIMD_lsbmask [ ] ALIGN16_POST ; // 0xfffffffe x 4
extern const ALIGN16 int32 g_SIMD_clear_wmask [ ] ALIGN16_POST ; // -1 -1 -1 0
extern const ALIGN16 int32 g_SIMD_ComponentMask [ 4 ] [ 4 ] ALIGN16_POST ; // [0xFFFFFFFF 0 0 0], [0 0xFFFFFFFF 0 0], [0 0 0xFFFFFFFF 0], [0 0 0 0xFFFFFFFF]
extern const ALIGN16 int32 g_SIMD_AllOnesMask [ ] ALIGN16_POST ; // ~0,~0,~0,~0
extern const ALIGN16 int32 g_SIMD_Low16BitsMask [ ] ALIGN16_POST ; // 0xffff x 4
// this mask is used for skipping the tail of things. If you have N elements in an array, and wish
// to mask out the tail, g_SIMD_SkipTailMask[N & 3] what you want to use for the last iteration.
extern const int32 ALIGN16 g_SIMD_SkipTailMask [ 4 ] [ 4 ] ALIGN16_POST ;
extern const int32 ALIGN16 g_SIMD_EveryOtherMask [ ] ; // 0, ~0, 0, ~0
// Define prefetch macros.
// The characteristics of cache and prefetch are completely
// different between the different platforms, so you DO NOT
// want to just define one macro that maps to every platform
// intrinsic under the hood -- you need to prefetch at different
// intervals between x86 and PPC, for example, and that is
// a higher level code change.
// On the other hand, I'm tired of typing #ifdef _X360
// all over the place, so this is just a nop on Intel, PS3.
# ifdef _X360
# define PREFETCH360(address, offset) __dcbt(offset,address)
# else
# define PREFETCH360(x,y) // nothing
# endif
// Here's a handy function to align a pointer to the next
// sixteen byte boundary -- it'll round it up to the nearest
// multiple of 16. This is useful if you're subdividing
// big swaths of allocated memory, but in that case, remember
// to leave yourself the necessary slack in the allocation.
template < class T >
inline T * AlignPointer ( void * ptr )
{
unsigned temp = ptr ;
temp = ALIGN_VALUE ( temp , sizeof ( T ) ) ;
return ( T * ) temp ;
}
// Define prefetch macros.
// The characteristics of cache and prefetch are completely
// different between the different platforms, so you DO NOT
// want to just define one macro that maps to every platform
// intrinsic under the hood -- you need to prefetch at different
// intervals between x86 and PPC, for example, and that is
// a higher level code change.
// On the other hand, I'm tired of typing #ifdef _X360
// all over the place, so this is just a nop on Intel, PS3.
# ifdef _X360
# define PREFETCH360(address, offset) __dcbt(offset,address)
# else
# define PREFETCH360(x,y) // nothing
# endif
# if USE_STDC_FOR_SIMD
//---------------------------------------------------------------------
// Standard C (fallback/Linux) implementation (only there for compat - slow)
//---------------------------------------------------------------------
FORCEINLINE float SubFloat ( const fltx4 & a , int idx )
{
return a . m128_f32 [ idx ] ;
}
FORCEINLINE float & SubFloat ( fltx4 & a , int idx )
{
return a . m128_f32 [ idx ] ;
}
FORCEINLINE uint32 SubInt ( const fltx4 & a , int idx )
{
return a . m128_u32 [ idx ] ;
}
FORCEINLINE uint32 & SubInt ( fltx4 & a , int idx )
{
return a . m128_u32 [ idx ] ;
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadZeroSIMD ( void )
{
return Four_Zeros ;
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadOneSIMD ( void )
{
return Four_Ones ;
}
FORCEINLINE fltx4 SplatXSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = SubFloat ( a , 0 ) ;
SubFloat ( retVal , 1 ) = SubFloat ( a , 0 ) ;
SubFloat ( retVal , 2 ) = SubFloat ( a , 0 ) ;
SubFloat ( retVal , 3 ) = SubFloat ( a , 0 ) ;
return retVal ;
}
FORCEINLINE fltx4 SplatYSIMD ( fltx4 a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = SubFloat ( a , 1 ) ;
SubFloat ( retVal , 1 ) = SubFloat ( a , 1 ) ;
SubFloat ( retVal , 2 ) = SubFloat ( a , 1 ) ;
SubFloat ( retVal , 3 ) = SubFloat ( a , 1 ) ;
return retVal ;
}
FORCEINLINE fltx4 SplatZSIMD ( fltx4 a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = SubFloat ( a , 2 ) ;
SubFloat ( retVal , 1 ) = SubFloat ( a , 2 ) ;
SubFloat ( retVal , 2 ) = SubFloat ( a , 2 ) ;
SubFloat ( retVal , 3 ) = SubFloat ( a , 2 ) ;
return retVal ;
}
FORCEINLINE fltx4 SplatWSIMD ( fltx4 a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = SubFloat ( a , 3 ) ;
SubFloat ( retVal , 1 ) = SubFloat ( a , 3 ) ;
SubFloat ( retVal , 2 ) = SubFloat ( a , 3 ) ;
SubFloat ( retVal , 3 ) = SubFloat ( a , 3 ) ;
return retVal ;
}
FORCEINLINE fltx4 SetXSIMD ( const fltx4 & a , const fltx4 & x )
{
fltx4 result = a ;
SubFloat ( result , 0 ) = SubFloat ( x , 0 ) ;
return result ;
}
FORCEINLINE fltx4 SetYSIMD ( const fltx4 & a , const fltx4 & y )
{
fltx4 result = a ;
SubFloat ( result , 1 ) = SubFloat ( y , 1 ) ;
return result ;
}
FORCEINLINE fltx4 SetZSIMD ( const fltx4 & a , const fltx4 & z )
{
fltx4 result = a ;
SubFloat ( result , 2 ) = SubFloat ( z , 2 ) ;
return result ;
}
FORCEINLINE fltx4 SetWSIMD ( const fltx4 & a , const fltx4 & w )
{
fltx4 result = a ;
SubFloat ( result , 3 ) = SubFloat ( w , 3 ) ;
return result ;
}
FORCEINLINE fltx4 SetComponentSIMD ( const fltx4 & a , int nComponent , float flValue )
{
fltx4 result = a ;
SubFloat ( result , nComponent ) = flValue ;
return result ;
}
// a b c d -> b c d a
FORCEINLINE fltx4 RotateLeft ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = SubFloat ( a , 1 ) ;
SubFloat ( retVal , 1 ) = SubFloat ( a , 2 ) ;
SubFloat ( retVal , 2 ) = SubFloat ( a , 3 ) ;
SubFloat ( retVal , 3 ) = SubFloat ( a , 0 ) ;
return retVal ;
}
// a b c d -> c d a b
FORCEINLINE fltx4 RotateLeft2 ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = SubFloat ( a , 2 ) ;
SubFloat ( retVal , 1 ) = SubFloat ( a , 3 ) ;
SubFloat ( retVal , 2 ) = SubFloat ( a , 0 ) ;
SubFloat ( retVal , 3 ) = SubFloat ( a , 1 ) ;
return retVal ;
}
# define BINOP(op) \
fltx4 retVal ; \
SubFloat ( retVal , 0 ) = ( SubFloat ( a , 0 ) op SubFloat ( b , 0 ) ) ; \
SubFloat ( retVal , 1 ) = ( SubFloat ( a , 1 ) op SubFloat ( b , 1 ) ) ; \
SubFloat ( retVal , 2 ) = ( SubFloat ( a , 2 ) op SubFloat ( b , 2 ) ) ; \
SubFloat ( retVal , 3 ) = ( SubFloat ( a , 3 ) op SubFloat ( b , 3 ) ) ; \
return retVal ;
# define IBINOP(op) \
fltx4 retVal ; \
SubInt ( retVal , 0 ) = ( SubInt ( a , 0 ) op SubInt ( b , 0 ) ) ; \
SubInt ( retVal , 1 ) = ( SubInt ( a , 1 ) op SubInt ( b , 1 ) ) ; \
SubInt ( retVal , 2 ) = ( SubInt ( a , 2 ) op SubInt ( b , 2 ) ) ; \
SubInt ( retVal , 3 ) = ( SubInt ( a , 3 ) op SubInt ( b , 3 ) ) ; \
return retVal ;
FORCEINLINE fltx4 AddSIMD ( const fltx4 & a , const fltx4 & b )
{
BINOP ( + ) ;
}
FORCEINLINE fltx4 SubSIMD ( const fltx4 & a , const fltx4 & b ) // a-b
{
BINOP ( - ) ;
} ;
FORCEINLINE fltx4 MulSIMD ( const fltx4 & a , const fltx4 & b ) // a*b
{
BINOP ( * ) ;
}
FORCEINLINE fltx4 DivSIMD ( const fltx4 & a , const fltx4 & b ) // a/b
{
BINOP ( / ) ;
}
FORCEINLINE fltx4 MaddSIMD ( const fltx4 & a , const fltx4 & b , const fltx4 & c ) // a*b + c
{
return AddSIMD ( MulSIMD ( a , b ) , c ) ;
}
FORCEINLINE fltx4 MsubSIMD ( const fltx4 & a , const fltx4 & b , const fltx4 & c ) // c - a*b
{
return SubSIMD ( c , MulSIMD ( a , b ) ) ;
} ;
FORCEINLINE fltx4 SinSIMD ( const fltx4 & radians )
{
fltx4 result ;
SubFloat ( result , 0 ) = sin ( SubFloat ( radians , 0 ) ) ;
SubFloat ( result , 1 ) = sin ( SubFloat ( radians , 1 ) ) ;
SubFloat ( result , 2 ) = sin ( SubFloat ( radians , 2 ) ) ;
SubFloat ( result , 3 ) = sin ( SubFloat ( radians , 3 ) ) ;
return result ;
}
FORCEINLINE void SinCos3SIMD ( fltx4 & sine , fltx4 & cosine , const fltx4 & radians )
{
SinCos ( SubFloat ( radians , 0 ) , & SubFloat ( sine , 0 ) , & SubFloat ( cosine , 0 ) ) ;
SinCos ( SubFloat ( radians , 1 ) , & SubFloat ( sine , 1 ) , & SubFloat ( cosine , 1 ) ) ;
SinCos ( SubFloat ( radians , 2 ) , & SubFloat ( sine , 2 ) , & SubFloat ( cosine , 2 ) ) ;
}
FORCEINLINE void SinCosSIMD ( fltx4 & sine , fltx4 & cosine , const fltx4 & radians )
{
SinCos ( SubFloat ( radians , 0 ) , & SubFloat ( sine , 0 ) , & SubFloat ( cosine , 0 ) ) ;
SinCos ( SubFloat ( radians , 1 ) , & SubFloat ( sine , 1 ) , & SubFloat ( cosine , 1 ) ) ;
SinCos ( SubFloat ( radians , 2 ) , & SubFloat ( sine , 2 ) , & SubFloat ( cosine , 2 ) ) ;
SinCos ( SubFloat ( radians , 3 ) , & SubFloat ( sine , 3 ) , & SubFloat ( cosine , 3 ) ) ;
}
FORCEINLINE fltx4 ArcSinSIMD ( const fltx4 & sine )
{
fltx4 result ;
SubFloat ( result , 0 ) = asin ( SubFloat ( sine , 0 ) ) ;
SubFloat ( result , 1 ) = asin ( SubFloat ( sine , 1 ) ) ;
SubFloat ( result , 2 ) = asin ( SubFloat ( sine , 2 ) ) ;
SubFloat ( result , 3 ) = asin ( SubFloat ( sine , 3 ) ) ;
return result ;
}
FORCEINLINE fltx4 ArcCosSIMD ( const fltx4 & cs )
{
fltx4 result ;
SubFloat ( result , 0 ) = acos ( SubFloat ( cs , 0 ) ) ;
SubFloat ( result , 1 ) = acos ( SubFloat ( cs , 1 ) ) ;
SubFloat ( result , 2 ) = acos ( SubFloat ( cs , 2 ) ) ;
SubFloat ( result , 3 ) = acos ( SubFloat ( cs , 3 ) ) ;
return result ;
}
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
FORCEINLINE fltx4 ArcTan2SIMD ( const fltx4 & a , const fltx4 & b )
{
fltx4 result ;
SubFloat ( result , 0 ) = atan2 ( SubFloat ( a , 0 ) , SubFloat ( b , 0 ) ) ;
SubFloat ( result , 1 ) = atan2 ( SubFloat ( a , 1 ) , SubFloat ( b , 1 ) ) ;
SubFloat ( result , 2 ) = atan2 ( SubFloat ( a , 2 ) , SubFloat ( b , 2 ) ) ;
SubFloat ( result , 3 ) = atan2 ( SubFloat ( a , 3 ) , SubFloat ( b , 3 ) ) ;
return result ;
}
FORCEINLINE fltx4 MaxSIMD ( const fltx4 & a , const fltx4 & b ) // max(a,b)
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = max ( SubFloat ( a , 0 ) , SubFloat ( b , 0 ) ) ;
SubFloat ( retVal , 1 ) = max ( SubFloat ( a , 1 ) , SubFloat ( b , 1 ) ) ;
SubFloat ( retVal , 2 ) = max ( SubFloat ( a , 2 ) , SubFloat ( b , 2 ) ) ;
SubFloat ( retVal , 3 ) = max ( SubFloat ( a , 3 ) , SubFloat ( b , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 MinSIMD ( const fltx4 & a , const fltx4 & b ) // min(a,b)
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = min ( SubFloat ( a , 0 ) , SubFloat ( b , 0 ) ) ;
SubFloat ( retVal , 1 ) = min ( SubFloat ( a , 1 ) , SubFloat ( b , 1 ) ) ;
SubFloat ( retVal , 2 ) = min ( SubFloat ( a , 2 ) , SubFloat ( b , 2 ) ) ;
SubFloat ( retVal , 3 ) = min ( SubFloat ( a , 3 ) , SubFloat ( b , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 AndSIMD ( const fltx4 & a , const fltx4 & b ) // a & b
{
IBINOP ( & ) ;
}
FORCEINLINE fltx4 AndNotSIMD ( const fltx4 & a , const fltx4 & b ) // ~a & b
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ~ SubInt ( a , 0 ) & SubInt ( b , 0 ) ;
SubInt ( retVal , 1 ) = ~ SubInt ( a , 1 ) & SubInt ( b , 1 ) ;
SubInt ( retVal , 2 ) = ~ SubInt ( a , 2 ) & SubInt ( b , 2 ) ;
SubInt ( retVal , 3 ) = ~ SubInt ( a , 3 ) & SubInt ( b , 3 ) ;
return retVal ;
}
FORCEINLINE fltx4 XorSIMD ( const fltx4 & a , const fltx4 & b ) // a ^ b
{
IBINOP ( ^ ) ;
}
FORCEINLINE fltx4 OrSIMD ( const fltx4 & a , const fltx4 & b ) // a | b
{
IBINOP ( | ) ;
}
FORCEINLINE fltx4 NegSIMD ( const fltx4 & a ) // negate: -a
{
fltx4 retval ;
SubFloat ( retval , 0 ) = - SubFloat ( a , 0 ) ;
SubFloat ( retval , 1 ) = - SubFloat ( a , 1 ) ;
SubFloat ( retval , 2 ) = - SubFloat ( a , 2 ) ;
SubFloat ( retval , 3 ) = - SubFloat ( a , 3 ) ;
return retval ;
}
FORCEINLINE bool IsAllZeros ( const fltx4 & a ) // all floats of a zero?
{
return ( SubFloat ( a , 0 ) = = 0.0 ) & &
( SubFloat ( a , 1 ) = = 0.0 ) & &
( SubFloat ( a , 2 ) = = 0.0 ) & &
( SubFloat ( a , 3 ) = = 0.0 ) ;
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAllGreaterThan ( const fltx4 & a , const fltx4 & b )
{
return SubFloat ( a , 0 ) > SubFloat ( b , 0 ) & &
SubFloat ( a , 1 ) > SubFloat ( b , 1 ) & &
SubFloat ( a , 2 ) > SubFloat ( b , 2 ) & &
SubFloat ( a , 3 ) > SubFloat ( b , 3 ) ;
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAllGreaterThanOrEq ( const fltx4 & a , const fltx4 & b )
{
return SubFloat ( a , 0 ) > = SubFloat ( b , 0 ) & &
SubFloat ( a , 1 ) > = SubFloat ( b , 1 ) & &
SubFloat ( a , 2 ) > = SubFloat ( b , 2 ) & &
SubFloat ( a , 3 ) > = SubFloat ( b , 3 ) ;
}
// For branching if all a.xyzw == b.xyzw
FORCEINLINE bool IsAllEqual ( const fltx4 & a , const fltx4 & b )
{
return SubFloat ( a , 0 ) = = SubFloat ( b , 0 ) & &
SubFloat ( a , 1 ) = = SubFloat ( b , 1 ) & &
SubFloat ( a , 2 ) = = SubFloat ( b , 2 ) & &
SubFloat ( a , 3 ) = = SubFloat ( b , 3 ) ;
}
// For branching if a.x == b.x || a.y == b.y || a.z == b.z || a.w == b.w
FORCEINLINE bool IsAnyEqual ( const fltx4 & a , const fltx4 & b )
{
return SubFloat ( a , 0 ) = = SubFloat ( b , 0 ) | |
SubFloat ( a , 1 ) = = SubFloat ( b , 1 ) | |
SubFloat ( a , 2 ) = = SubFloat ( b , 2 ) | |
SubFloat ( a , 3 ) = = SubFloat ( b , 3 ) ;
}
FORCEINLINE int TestSignSIMD ( const fltx4 & a ) // mask of which floats have the high bit set
{
int nRet = 0 ;
nRet | = ( SubInt ( a , 0 ) & 0x80000000 ) > > 31 ; // sign(x) -> bit 0
nRet | = ( SubInt ( a , 1 ) & 0x80000000 ) > > 30 ; // sign(y) -> bit 1
nRet | = ( SubInt ( a , 2 ) & 0x80000000 ) > > 29 ; // sign(z) -> bit 2
nRet | = ( SubInt ( a , 3 ) & 0x80000000 ) > > 28 ; // sign(w) -> bit 3
return nRet ;
}
FORCEINLINE bool IsAnyNegative ( const fltx4 & a ) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
{
return ( 0 ! = TestSignSIMD ( a ) ) ;
}
FORCEINLINE fltx4 CmpEqSIMD ( const fltx4 & a , const fltx4 & b ) // (a==b) ? ~0:0
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ( SubFloat ( a , 0 ) = = SubFloat ( b , 0 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 1 ) = ( SubFloat ( a , 1 ) = = SubFloat ( b , 1 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 2 ) = ( SubFloat ( a , 2 ) = = SubFloat ( b , 2 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 3 ) = ( SubFloat ( a , 3 ) = = SubFloat ( b , 3 ) ) ? ~ 0 : 0 ;
return retVal ;
}
FORCEINLINE fltx4 CmpGtSIMD ( const fltx4 & a , const fltx4 & b ) // (a>b) ? ~0:0
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ( SubFloat ( a , 0 ) > SubFloat ( b , 0 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 1 ) = ( SubFloat ( a , 1 ) > SubFloat ( b , 1 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 2 ) = ( SubFloat ( a , 2 ) > SubFloat ( b , 2 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 3 ) = ( SubFloat ( a , 3 ) > SubFloat ( b , 3 ) ) ? ~ 0 : 0 ;
return retVal ;
}
FORCEINLINE fltx4 CmpGeSIMD ( const fltx4 & a , const fltx4 & b ) // (a>=b) ? ~0:0
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ( SubFloat ( a , 0 ) > = SubFloat ( b , 0 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 1 ) = ( SubFloat ( a , 1 ) > = SubFloat ( b , 1 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 2 ) = ( SubFloat ( a , 2 ) > = SubFloat ( b , 2 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 3 ) = ( SubFloat ( a , 3 ) > = SubFloat ( b , 3 ) ) ? ~ 0 : 0 ;
return retVal ;
}
FORCEINLINE fltx4 CmpLtSIMD ( const fltx4 & a , const fltx4 & b ) // (a<b) ? ~0:0
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ( SubFloat ( a , 0 ) < SubFloat ( b , 0 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 1 ) = ( SubFloat ( a , 1 ) < SubFloat ( b , 1 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 2 ) = ( SubFloat ( a , 2 ) < SubFloat ( b , 2 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 3 ) = ( SubFloat ( a , 3 ) < SubFloat ( b , 3 ) ) ? ~ 0 : 0 ;
return retVal ;
}
FORCEINLINE fltx4 CmpLeSIMD ( const fltx4 & a , const fltx4 & b ) // (a<=b) ? ~0:0
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ( SubFloat ( a , 0 ) < = SubFloat ( b , 0 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 1 ) = ( SubFloat ( a , 1 ) < = SubFloat ( b , 1 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 2 ) = ( SubFloat ( a , 2 ) < = SubFloat ( b , 2 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 3 ) = ( SubFloat ( a , 3 ) < = SubFloat ( b , 3 ) ) ? ~ 0 : 0 ;
return retVal ;
}
FORCEINLINE fltx4 CmpInBoundsSIMD ( const fltx4 & a , const fltx4 & b ) // (a <= b && a >= -b) ? ~0 : 0
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = ( SubFloat ( a , 0 ) < = SubFloat ( b , 0 ) & & SubFloat ( a , 0 ) > = - SubFloat ( b , 0 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 1 ) = ( SubFloat ( a , 1 ) < = SubFloat ( b , 1 ) & & SubFloat ( a , 1 ) > = - SubFloat ( b , 1 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 2 ) = ( SubFloat ( a , 2 ) < = SubFloat ( b , 2 ) & & SubFloat ( a , 2 ) > = - SubFloat ( b , 2 ) ) ? ~ 0 : 0 ;
SubInt ( retVal , 3 ) = ( SubFloat ( a , 3 ) < = SubFloat ( b , 3 ) & & SubFloat ( a , 3 ) > = - SubFloat ( b , 3 ) ) ? ~ 0 : 0 ;
return retVal ;
}
FORCEINLINE fltx4 MaskedAssign ( const fltx4 & ReplacementMask , const fltx4 & NewValue , const fltx4 & OldValue )
{
return OrSIMD (
AndSIMD ( ReplacementMask , NewValue ) ,
AndNotSIMD ( ReplacementMask , OldValue ) ) ;
}
FORCEINLINE fltx4 ReplicateX4 ( float flValue ) // a,a,a,a
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = flValue ;
SubFloat ( retVal , 1 ) = flValue ;
SubFloat ( retVal , 2 ) = flValue ;
SubFloat ( retVal , 3 ) = flValue ;
return retVal ;
}
/// replicate a single 32 bit integer value to all 4 components of an m128
FORCEINLINE fltx4 ReplicateIX4 ( int nValue )
{
fltx4 retVal ;
SubInt ( retVal , 0 ) = nValue ;
SubInt ( retVal , 1 ) = nValue ;
SubInt ( retVal , 2 ) = nValue ;
SubInt ( retVal , 3 ) = nValue ;
return retVal ;
}
// Round towards positive infinity
FORCEINLINE fltx4 CeilSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = ceil ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = ceil ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = ceil ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = ceil ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
// Round towards negative infinity
FORCEINLINE fltx4 FloorSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = floor ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = floor ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = floor ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = floor ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 SqrtEstSIMD ( const fltx4 & a ) // sqrt(a), more or less
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = sqrt ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = sqrt ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = sqrt ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = sqrt ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 SqrtSIMD ( const fltx4 & a ) // sqrt(a)
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = sqrt ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = sqrt ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = sqrt ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = sqrt ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD ( const fltx4 & a ) // 1/sqrt(a), more or less
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / sqrt ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = 1.0 / sqrt ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = 1.0 / sqrt ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = 1.0 / sqrt ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / sqrt ( SubFloat ( a , 0 ) ! = 0.0f ? SubFloat ( a , 0 ) : FLT_EPSILON ) ;
SubFloat ( retVal , 1 ) = 1.0 / sqrt ( SubFloat ( a , 1 ) ! = 0.0f ? SubFloat ( a , 1 ) : FLT_EPSILON ) ;
SubFloat ( retVal , 2 ) = 1.0 / sqrt ( SubFloat ( a , 2 ) ! = 0.0f ? SubFloat ( a , 2 ) : FLT_EPSILON ) ;
SubFloat ( retVal , 3 ) = 1.0 / sqrt ( SubFloat ( a , 3 ) ! = 0.0f ? SubFloat ( a , 3 ) : FLT_EPSILON ) ;
return retVal ;
}
FORCEINLINE fltx4 ReciprocalSqrtSIMD ( const fltx4 & a ) // 1/sqrt(a)
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / sqrt ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = 1.0 / sqrt ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = 1.0 / sqrt ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = 1.0 / sqrt ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 ReciprocalEstSIMD ( const fltx4 & a ) // 1/a, more or less
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / SubFloat ( a , 0 ) ;
SubFloat ( retVal , 1 ) = 1.0 / SubFloat ( a , 1 ) ;
SubFloat ( retVal , 2 ) = 1.0 / SubFloat ( a , 2 ) ;
SubFloat ( retVal , 3 ) = 1.0 / SubFloat ( a , 3 ) ;
return retVal ;
}
FORCEINLINE fltx4 ReciprocalSIMD ( const fltx4 & a ) // 1/a
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / SubFloat ( a , 0 ) ;
SubFloat ( retVal , 1 ) = 1.0 / SubFloat ( a , 1 ) ;
SubFloat ( retVal , 2 ) = 1.0 / SubFloat ( a , 2 ) ;
SubFloat ( retVal , 3 ) = 1.0 / SubFloat ( a , 3 ) ;
return retVal ;
}
/// 1/x for all 4 values.
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / ( SubFloat ( a , 0 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = 1.0 / ( SubFloat ( a , 1 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = 1.0 / ( SubFloat ( a , 2 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = 1.0 / ( SubFloat ( a , 3 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 ReciprocalSaturateSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = 1.0 / ( SubFloat ( a , 0 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = 1.0 / ( SubFloat ( a , 1 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = 1.0 / ( SubFloat ( a , 2 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = 1.0 / ( SubFloat ( a , 3 ) = = 0.0f ? FLT_EPSILON : SubFloat ( a , 3 ) ) ;
return retVal ;
}
// 2^x for all values (the antilog)
FORCEINLINE fltx4 ExpSIMD ( const fltx4 & toPower )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = powf ( 2 , SubFloat ( toPower , 0 ) ) ;
SubFloat ( retVal , 1 ) = powf ( 2 , SubFloat ( toPower , 1 ) ) ;
SubFloat ( retVal , 2 ) = powf ( 2 , SubFloat ( toPower , 2 ) ) ;
SubFloat ( retVal , 3 ) = powf ( 2 , SubFloat ( toPower , 3 ) ) ;
return retVal ;
}
FORCEINLINE fltx4 Dot3SIMD ( const fltx4 & a , const fltx4 & b )
{
float flDot = SubFloat ( a , 0 ) * SubFloat ( b , 0 ) +
SubFloat ( a , 1 ) * SubFloat ( b , 1 ) +
SubFloat ( a , 2 ) * SubFloat ( b , 2 ) ;
return ReplicateX4 ( flDot ) ;
}
FORCEINLINE fltx4 Dot4SIMD ( const fltx4 & a , const fltx4 & b )
{
float flDot = SubFloat ( a , 0 ) * SubFloat ( b , 0 ) +
SubFloat ( a , 1 ) * SubFloat ( b , 1 ) +
SubFloat ( a , 2 ) * SubFloat ( b , 2 ) +
SubFloat ( a , 3 ) * SubFloat ( b , 3 ) ;
return ReplicateX4 ( flDot ) ;
}
// Clamps the components of a vector to a specified minimum and maximum range.
FORCEINLINE fltx4 ClampVectorSIMD ( FLTX4 in , FLTX4 min , FLTX4 max )
{
return MaxSIMD ( min , MinSIMD ( max , in ) ) ;
}
// Squelch the w component of a vector to +0.0.
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
FORCEINLINE fltx4 SetWToZeroSIMD ( const fltx4 & a )
{
fltx4 retval ;
retval = a ;
SubFloat ( retval , 0 ) = 0 ;
return retval ;
}
FORCEINLINE fltx4 LoadUnalignedSIMD ( const void * pSIMD )
{
return * ( reinterpret_cast < const fltx4 * > ( pSIMD ) ) ;
}
FORCEINLINE fltx4 LoadUnaligned3SIMD ( const void * pSIMD )
{
return * ( reinterpret_cast < const fltx4 * > ( pSIMD ) ) ;
}
// load a single unaligned float into the x component of a SIMD word
FORCEINLINE fltx4 LoadUnalignedFloatSIMD ( const float * pFlt )
{
fltx4 retval ;
SubFloat ( retval , 0 ) = * pFlt ;
return retval ;
}
FORCEINLINE fltx4 LoadAlignedSIMD ( const void * pSIMD )
{
return * ( reinterpret_cast < const fltx4 * > ( pSIMD ) ) ;
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD ( const VectorAligned & pSIMD )
{
fltx4 retval = LoadAlignedSIMD ( pSIMD . Base ( ) ) ;
// squelch w
SubInt ( retval , 3 ) = 0 ;
return retval ;
}
FORCEINLINE void StoreAlignedSIMD ( float * pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < fltx4 * > ( pSIMD ) ) = a ;
}
FORCEINLINE void StoreUnalignedSIMD ( float * pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < fltx4 * > ( pSIMD ) ) = a ;
}
FORCEINLINE void StoreUnaligned3SIMD ( float * pSIMD , const fltx4 & a )
{
* pSIMD = SubFloat ( a , 0 ) ;
* ( pSIMD + 1 ) = SubFloat ( a , 1 ) ;
* ( pSIMD + 2 ) = SubFloat ( a , 2 ) ;
}
// strongly typed -- syntactic castor oil used for typechecking as we transition to SIMD
FORCEINLINE void StoreAligned3SIMD ( VectorAligned * RESTRICT pSIMD , const fltx4 & a )
{
StoreAlignedSIMD ( pSIMD - > Base ( ) , a ) ;
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination[0], pDestination[1], pDestination[2], pDestination[3]
// The Vectors are assumed to be unaligned.
FORCEINLINE void StoreFourUnalignedVector3SIMD ( fltx4 a , fltx4 b , fltx4 c , FLTX4 d , // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD ( pDestination - > Base ( ) , a ) ;
StoreUnaligned3SIMD ( ( pDestination + 1 ) - > Base ( ) , b ) ;
StoreUnaligned3SIMD ( ( pDestination + 2 ) - > Base ( ) , c ) ;
StoreUnaligned3SIMD ( ( pDestination + 3 ) - > Base ( ) , d ) ;
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination , pDestination + 1, pDestination + 2, pDestination + 3
// The Vectors are assumed to start on an ALIGNED address, that is,
// pDestination is 16-byte aligned (thhough obviously pDestination+1 is not).
FORCEINLINE void StoreFourAlignedVector3SIMD ( fltx4 a , fltx4 b , fltx4 c , FLTX4 d , // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD ( pDestination - > Base ( ) , a ) ;
StoreUnaligned3SIMD ( ( pDestination + 1 ) - > Base ( ) , b ) ;
StoreUnaligned3SIMD ( ( pDestination + 2 ) - > Base ( ) , c ) ;
StoreUnaligned3SIMD ( ( pDestination + 3 ) - > Base ( ) , d ) ;
}
FORCEINLINE void TransposeSIMD ( fltx4 & x , fltx4 & y , fltx4 & z , fltx4 & w )
{
# define SWAP_FLOATS( _a_, _ia_, _b_, _ib_ ) { float tmp = SubFloat( _a_, _ia_ ); SubFloat( _a_, _ia_ ) = SubFloat( _b_, _ib_ ); SubFloat( _b_, _ib_ ) = tmp; }
SWAP_FLOATS ( x , 1 , y , 0 ) ;
SWAP_FLOATS ( x , 2 , z , 0 ) ;
SWAP_FLOATS ( x , 3 , w , 0 ) ;
SWAP_FLOATS ( y , 2 , z , 1 ) ;
SWAP_FLOATS ( y , 3 , w , 1 ) ;
SWAP_FLOATS ( z , 3 , w , 2 ) ;
}
// find the lowest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
FORCEINLINE fltx4 FindLowestSIMD3 ( const fltx4 & a )
{
float lowest = min ( min ( SubFloat ( a , 0 ) , SubFloat ( a , 1 ) ) , SubFloat ( a , 2 ) ) ;
return ReplicateX4 ( lowest ) ;
}
// find the highest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
FORCEINLINE fltx4 FindHighestSIMD3 ( const fltx4 & a )
{
float highest = max ( max ( SubFloat ( a , 0 ) , SubFloat ( a , 1 ) ) , SubFloat ( a , 2 ) ) ;
return ReplicateX4 ( highest ) ;
}
// Fixed-point conversion and save as SIGNED INTS.
// pDest->x = Int (vSrc.x)
// note: some architectures have means of doing
// fixed point conversion when the fix depth is
// specified as an immediate.. but there is no way
// to guarantee an immediate as a parameter to function
// like this.
FORCEINLINE void ConvertStoreAsIntsSIMD ( intx4 * RESTRICT pDest , const fltx4 & vSrc )
{
( * pDest ) [ 0 ] = SubFloat ( vSrc , 0 ) ;
( * pDest ) [ 1 ] = SubFloat ( vSrc , 1 ) ;
( * pDest ) [ 2 ] = SubFloat ( vSrc , 2 ) ;
( * pDest ) [ 3 ] = SubFloat ( vSrc , 3 ) ;
}
// ------------------------------------
// INTEGER SIMD OPERATIONS.
// ------------------------------------
// splat all components of a vector to a signed immediate int number.
FORCEINLINE fltx4 IntSetImmediateSIMD ( int nValue )
{
fltx4 retval ;
SubInt ( retval , 0 ) = SubInt ( retval , 1 ) = SubInt ( retval , 2 ) = SubInt ( retval , 3 ) = nValue ;
return retval ;
}
// Load 4 aligned words into a SIMD register
FORCEINLINE i32x4 LoadAlignedIntSIMD ( const void * RESTRICT pSIMD )
{
return * ( reinterpret_cast < const i32x4 * > ( pSIMD ) ) ;
}
// Load 4 unaligned words into a SIMD register
FORCEINLINE i32x4 LoadUnalignedIntSIMD ( const void * RESTRICT pSIMD )
{
return * ( reinterpret_cast < const i32x4 * > ( pSIMD ) ) ;
}
// save into four words, 16-byte aligned
FORCEINLINE void StoreAlignedIntSIMD ( int32 * pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < i32x4 * > ( pSIMD ) ) = a ;
}
FORCEINLINE void StoreAlignedIntSIMD ( intx4 & pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < i32x4 * > ( pSIMD . Base ( ) ) ) = a ;
}
FORCEINLINE void StoreUnalignedIntSIMD ( int32 * pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < i32x4 * > ( pSIMD ) ) = a ;
}
// Load four consecutive uint16's, and turn them into floating point numbers.
// This function isn't especially fast and could be made faster if anyone is
// using it heavily.
FORCEINLINE fltx4 LoadAndConvertUint16SIMD ( const uint16 * pInts )
{
fltx4 retval ;
SubFloat ( retval , 0 ) = pInts [ 0 ] ;
SubFloat ( retval , 1 ) = pInts [ 1 ] ;
SubFloat ( retval , 2 ) = pInts [ 2 ] ;
SubFloat ( retval , 3 ) = pInts [ 3 ] ;
}
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD ( const u32x4 & vSrcA )
{
Assert ( 0 ) ; /* pc has no such operation */
fltx4 retval ;
SubFloat ( retval , 0 ) = ( ( float ) SubInt ( vSrcA , 0 ) ) ;
SubFloat ( retval , 1 ) = ( ( float ) SubInt ( vSrcA , 1 ) ) ;
SubFloat ( retval , 2 ) = ( ( float ) SubInt ( vSrcA , 2 ) ) ;
SubFloat ( retval , 3 ) = ( ( float ) SubInt ( vSrcA , 3 ) ) ;
return retval ;
}
#if 0 /* pc has no such op */
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 SignedIntConvertToFltSIMD ( const i32x4 & vSrcA )
{
fltx4 retval ;
SubFloat ( retval , 0 ) = ( ( float ) ( reinterpret_cast < int32 * > ( & vSrcA . m128_s32 [ 0 ] ) ) ) ;
SubFloat ( retval , 1 ) = ( ( float ) ( reinterpret_cast < int32 * > ( & vSrcA . m128_s32 [ 1 ] ) ) ) ;
SubFloat ( retval , 2 ) = ( ( float ) ( reinterpret_cast < int32 * > ( & vSrcA . m128_s32 [ 2 ] ) ) ) ;
SubFloat ( retval , 3 ) = ( ( float ) ( reinterpret_cast < int32 * > ( & vSrcA . m128_s32 [ 3 ] ) ) ) ;
return retval ;
}
/*
works on fltx4 ' s as if they are four uints .
the first parameter contains the words to be shifted ,
the second contains the amount to shift by AS INTS
for i = 0 to 3
shift = vSrcB_i * 32 : ( i * 32 ) + 4
vReturned_i * 32 : ( i * 32 ) + 31 = vSrcA_i * 32 : ( i * 32 ) + 31 < < shift
*/
FORCEINLINE i32x4 IntShiftLeftWordSIMD ( const i32x4 & vSrcA , const i32x4 & vSrcB )
{
i32x4 retval ;
SubInt ( retval , 0 ) = SubInt ( vSrcA , 0 ) < < SubInt ( vSrcB , 0 ) ;
SubInt ( retval , 1 ) = SubInt ( vSrcA , 1 ) < < SubInt ( vSrcB , 1 ) ;
SubInt ( retval , 2 ) = SubInt ( vSrcA , 2 ) < < SubInt ( vSrcB , 2 ) ;
SubInt ( retval , 3 ) = SubInt ( vSrcA , 3 ) < < SubInt ( vSrcB , 3 ) ;
return retval ;
}
# endif
# elif ( defined( _X360 ) )
//---------------------------------------------------------------------
// X360 implementation
//---------------------------------------------------------------------
FORCEINLINE float & FloatSIMD ( fltx4 & a , int idx )
{
fltx4_union & a_union = ( fltx4_union & ) a ;
return a_union . m128_f32 [ idx ] ;
}
FORCEINLINE unsigned int & UIntSIMD ( fltx4 & a , int idx )
{
fltx4_union & a_union = ( fltx4_union & ) a ;
return a_union . m128_u32 [ idx ] ;
}
FORCEINLINE fltx4 AddSIMD ( const fltx4 & a , const fltx4 & b )
{
return __vaddfp ( a , b ) ;
}
FORCEINLINE fltx4 SubSIMD ( const fltx4 & a , const fltx4 & b ) // a-b
{
return __vsubfp ( a , b ) ;
}
FORCEINLINE fltx4 MulSIMD ( const fltx4 & a , const fltx4 & b ) // a*b
{
return __vmulfp ( a , b ) ;
}
FORCEINLINE fltx4 MaddSIMD ( const fltx4 & a , const fltx4 & b , const fltx4 & c ) // a*b + c
{
return __vmaddfp ( a , b , c ) ;
}
FORCEINLINE fltx4 MsubSIMD ( const fltx4 & a , const fltx4 & b , const fltx4 & c ) // c - a*b
{
return __vnmsubfp ( a , b , c ) ;
} ;
FORCEINLINE fltx4 Dot3SIMD ( const fltx4 & a , const fltx4 & b )
{
return __vmsum3fp ( a , b ) ;
}
FORCEINLINE fltx4 Dot4SIMD ( const fltx4 & a , const fltx4 & b )
{
return __vmsum4fp ( a , b ) ;
}
FORCEINLINE fltx4 SinSIMD ( const fltx4 & radians )
{
return XMVectorSin ( radians ) ;
}
FORCEINLINE void SinCos3SIMD ( fltx4 & sine , fltx4 & cosine , const fltx4 & radians )
{
XMVectorSinCos ( & sine , & cosine , radians ) ;
}
FORCEINLINE void SinCosSIMD ( fltx4 & sine , fltx4 & cosine , const fltx4 & radians )
{
XMVectorSinCos ( & sine , & cosine , radians ) ;
}
FORCEINLINE void CosSIMD ( fltx4 & cosine , const fltx4 & radians )
{
cosine = XMVectorCos ( radians ) ;
}
FORCEINLINE fltx4 ArcSinSIMD ( const fltx4 & sine )
{
return XMVectorASin ( sine ) ;
}
FORCEINLINE fltx4 ArcCosSIMD ( const fltx4 & cs )
{
return XMVectorACos ( cs ) ;
}
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
FORCEINLINE fltx4 ArcTan2SIMD ( const fltx4 & a , const fltx4 & b )
{
return XMVectorATan2 ( a , b ) ;
}
// DivSIMD defined further down, since it uses ReciprocalSIMD
FORCEINLINE fltx4 MaxSIMD ( const fltx4 & a , const fltx4 & b ) // max(a,b)
{
return __vmaxfp ( a , b ) ;
}
FORCEINLINE fltx4 MinSIMD ( const fltx4 & a , const fltx4 & b ) // min(a,b)
{
return __vminfp ( a , b ) ;
}
FORCEINLINE fltx4 AndSIMD ( const fltx4 & a , const fltx4 & b ) // a & b
{
return __vand ( a , b ) ;
}
FORCEINLINE fltx4 AndNotSIMD ( const fltx4 & a , const fltx4 & b ) // ~a & b
{
// NOTE: a and b are swapped in the call: SSE complements the first argument, VMX the second
return __vandc ( b , a ) ;
}
FORCEINLINE fltx4 XorSIMD ( const fltx4 & a , const fltx4 & b ) // a ^ b
{
return __vxor ( a , b ) ;
}
FORCEINLINE fltx4 OrSIMD ( const fltx4 & a , const fltx4 & b ) // a | b
{
return __vor ( a , b ) ;
}
FORCEINLINE fltx4 NegSIMD ( const fltx4 & a ) // negate: -a
{
return XMVectorNegate ( a ) ;
}
FORCEINLINE bool IsAllZeros ( const fltx4 & a ) // all floats of a zero?
{
unsigned int equalFlags = 0 ;
__vcmpeqfpR ( a , Four_Zeros , & equalFlags ) ;
return XMComparisonAllTrue ( equalFlags ) ;
}
FORCEINLINE bool IsAnyZeros ( const fltx4 & a ) // any floats are zero?
{
unsigned int conditionregister ;
XMVectorEqualR ( & conditionregister , a , XMVectorZero ( ) ) ;
return XMComparisonAnyTrue ( conditionregister ) ;
}
FORCEINLINE bool IsAnyXYZZero ( const fltx4 & a ) // are any of x,y,z zero?
{
// copy a's x component into w, in case w was zero.
fltx4 temp = __vrlimi ( a , a , 1 , 1 ) ;
unsigned int conditionregister ;
XMVectorEqualR ( & conditionregister , temp , XMVectorZero ( ) ) ;
return XMComparisonAnyTrue ( conditionregister ) ;
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAllGreaterThan ( const fltx4 & a , const fltx4 & b )
{
unsigned int cr ;
XMVectorGreaterR ( & cr , a , b ) ;
return XMComparisonAllTrue ( cr ) ;
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAllGreaterThanOrEq ( const fltx4 & a , const fltx4 & b )
{
unsigned int cr ;
XMVectorGreaterOrEqualR ( & cr , a , b ) ;
return XMComparisonAllTrue ( cr ) ;
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAnyGreaterThan ( const fltx4 & a , const fltx4 & b )
{
unsigned int cr ;
XMVectorGreaterR ( & cr , a , b ) ;
return XMComparisonAnyTrue ( cr ) ;
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAnyGreaterThanOrEq ( const fltx4 & a , const fltx4 & b )
{
unsigned int cr ;
XMVectorGreaterOrEqualR ( & cr , a , b ) ;
return XMComparisonAnyTrue ( cr ) ;
}
// For branching if all a.xyzw == b.xyzw
FORCEINLINE bool IsAllEqual ( const fltx4 & a , const fltx4 & b )
{
unsigned int cr ;
XMVectorEqualR ( & cr , a , b ) ;
return XMComparisonAllTrue ( cr ) ;
}
FORCEINLINE int TestSignSIMD ( const fltx4 & a ) // mask of which floats have the high bit set
{
// NOTE: this maps to SSE way better than it does to VMX (most code uses IsAnyNegative(), though)
int nRet = 0 ;
const fltx4_union & a_union = ( const fltx4_union & ) a ;
nRet | = ( a_union . m128_u32 [ 0 ] & 0x80000000 ) > > 31 ; // sign(x) -> bit 0
nRet | = ( a_union . m128_u32 [ 1 ] & 0x80000000 ) > > 30 ; // sign(y) -> bit 1
nRet | = ( a_union . m128_u32 [ 2 ] & 0x80000000 ) > > 29 ; // sign(z) -> bit 2
nRet | = ( a_union . m128_u32 [ 3 ] & 0x80000000 ) > > 28 ; // sign(w) -> bit 3
return nRet ;
}
// Squelch the w component of a vector to +0.0.
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
FORCEINLINE fltx4 SetWToZeroSIMD ( const fltx4 & a )
{
return __vrlimi ( a , __vzero ( ) , 1 , 0 ) ;
}
FORCEINLINE bool IsAnyNegative ( const fltx4 & a ) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
{
// NOTE: this tests the top bits of each vector element using integer math
// (so it ignores NaNs - it will return true for "-NaN")
unsigned int equalFlags = 0 ;
fltx4 signMask = __vspltisw ( - 1 ) ; // 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF (low order 5 bits of each element = 31)
signMask = __vslw ( signMask , signMask ) ; // 0x80000000 0x80000000 0x80000000 0x80000000
__vcmpequwR ( Four_Zeros , __vand ( signMask , a ) , & equalFlags ) ;
return ! XMComparisonAllTrue ( equalFlags ) ;
}
FORCEINLINE fltx4 CmpEqSIMD ( const fltx4 & a , const fltx4 & b ) // (a==b) ? ~0:0
{
return __vcmpeqfp ( a , b ) ;
}
FORCEINLINE fltx4 CmpGtSIMD ( const fltx4 & a , const fltx4 & b ) // (a>b) ? ~0:0
{
return __vcmpgtfp ( a , b ) ;
}
FORCEINLINE fltx4 CmpGeSIMD ( const fltx4 & a , const fltx4 & b ) // (a>=b) ? ~0:0
{
return __vcmpgefp ( a , b ) ;
}
FORCEINLINE fltx4 CmpLtSIMD ( const fltx4 & a , const fltx4 & b ) // (a<b) ? ~0:0
{
return __vcmpgtfp ( b , a ) ;
}
FORCEINLINE fltx4 CmpLeSIMD ( const fltx4 & a , const fltx4 & b ) // (a<=b) ? ~0:0
{
return __vcmpgefp ( b , a ) ;
}
FORCEINLINE fltx4 CmpInBoundsSIMD ( const fltx4 & a , const fltx4 & b ) // (a <= b && a >= -b) ? ~0 : 0
{
return XMVectorInBounds ( a , b ) ;
}
// returned[i] = ReplacementMask[i] == 0 ? OldValue : NewValue
FORCEINLINE fltx4 MaskedAssign ( const fltx4 & ReplacementMask , const fltx4 & NewValue , const fltx4 & OldValue )
{
return __vsel ( OldValue , NewValue , ReplacementMask ) ;
}
// AKA "Broadcast", "Splat"
FORCEINLINE fltx4 ReplicateX4 ( float flValue ) // a,a,a,a
{
// NOTE: if flValue comes from a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
float * pValue = & flValue ;
Assert ( pValue ) ;
Assert ( ( ( unsigned int ) pValue & 3 ) = = 0 ) ;
return __vspltw ( __lvlx ( pValue , 0 ) , 0 ) ;
}
FORCEINLINE fltx4 ReplicateX4 ( const float * pValue ) // a,a,a,a
{
Assert ( pValue ) ;
return __vspltw ( __lvlx ( pValue , 0 ) , 0 ) ;
}
/// replicate a single 32 bit integer value to all 4 components of an m128
FORCEINLINE fltx4 ReplicateIX4 ( int nValue )
{
// NOTE: if nValue comes from a register, this causes a Load-Hit-Store stall (should not mix ints with fltx4s!)
int * pValue = & nValue ;
Assert ( pValue ) ;
Assert ( ( ( unsigned int ) pValue & 3 ) = = 0 ) ;
return __vspltw ( __lvlx ( pValue , 0 ) , 0 ) ;
}
// Round towards positive infinity
FORCEINLINE fltx4 CeilSIMD ( const fltx4 & a )
{
return __vrfip ( a ) ;
}
// Round towards nearest integer
FORCEINLINE fltx4 RoundSIMD ( const fltx4 & a )
{
return __vrfin ( a ) ;
}
// Round towards negative infinity
FORCEINLINE fltx4 FloorSIMD ( const fltx4 & a )
{
return __vrfim ( a ) ;
}
FORCEINLINE fltx4 SqrtEstSIMD ( const fltx4 & a ) // sqrt(a), more or less
{
// This is emulated from rsqrt
return XMVectorSqrtEst ( a ) ;
}
FORCEINLINE fltx4 SqrtSIMD ( const fltx4 & a ) // sqrt(a)
{
// This is emulated from rsqrt
return XMVectorSqrt ( a ) ;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD ( const fltx4 & a ) // 1/sqrt(a), more or less
{
return __vrsqrtefp ( a ) ;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD ( const fltx4 & a )
{
// Convert zeros to epsilons
fltx4 zero_mask = CmpEqSIMD ( a , Four_Zeros ) ;
fltx4 a_safe = OrSIMD ( a , AndSIMD ( Four_Epsilons , zero_mask ) ) ;
return ReciprocalSqrtEstSIMD ( a_safe ) ;
}
FORCEINLINE fltx4 ReciprocalSqrtSIMD ( const fltx4 & a ) // 1/sqrt(a)
{
// This uses Newton-Raphson to improve the HW result
return XMVectorReciprocalSqrt ( a ) ;
}
FORCEINLINE fltx4 ReciprocalEstSIMD ( const fltx4 & a ) // 1/a, more or less
{
return __vrefp ( a ) ;
}
/// 1/x for all 4 values. uses reciprocal approximation instruction plus newton iteration.
/// No error checking!
FORCEINLINE fltx4 ReciprocalSIMD ( const fltx4 & a ) // 1/a
{
// This uses Newton-Raphson to improve the HW result
return XMVectorReciprocal ( a ) ;
}
// FIXME: on 360, this is very slow, since it uses ReciprocalSIMD (do we need DivEstSIMD?)
FORCEINLINE fltx4 DivSIMD ( const fltx4 & a , const fltx4 & b ) // a/b
{
return MulSIMD ( ReciprocalSIMD ( b ) , a ) ;
}
/// 1/x for all 4 values.
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD ( const fltx4 & a )
{
// Convert zeros to epsilons
fltx4 zero_mask = CmpEqSIMD ( a , Four_Zeros ) ;
fltx4 a_safe = OrSIMD ( a , AndSIMD ( Four_Epsilons , zero_mask ) ) ;
return ReciprocalEstSIMD ( a_safe ) ;
}
FORCEINLINE fltx4 ReciprocalSaturateSIMD ( const fltx4 & a )
{
// Convert zeros to epsilons
fltx4 zero_mask = CmpEqSIMD ( a , Four_Zeros ) ;
fltx4 a_safe = OrSIMD ( a , AndSIMD ( Four_Epsilons , zero_mask ) ) ;
return ReciprocalSIMD ( a_safe ) ;
// FIXME: This could be faster (BUT: it doesn't preserve the sign of -0.0, whereas the above does)
// fltx4 zeroMask = CmpEqSIMD( Four_Zeros, a );
// fltx4 a_safe = XMVectorSelect( a, Four_Epsilons, zeroMask );
// return ReciprocalSIMD( a_safe );
}
// CHRISG: is it worth doing integer bitfiddling for this?
// 2^x for all values (the antilog)
FORCEINLINE fltx4 ExpSIMD ( const fltx4 & toPower )
{
return XMVectorExp ( toPower ) ;
}
// Clamps the components of a vector to a specified minimum and maximum range.
FORCEINLINE fltx4 ClampVectorSIMD ( FLTX4 in , FLTX4 min , FLTX4 max )
{
return XMVectorClamp ( in , min , max ) ;
}
FORCEINLINE fltx4 LoadUnalignedSIMD ( const void * pSIMD )
{
return XMLoadVector4 ( pSIMD ) ;
}
// load a 3-vector (as opposed to LoadUnalignedSIMD, which loads a 4-vec).
FORCEINLINE fltx4 LoadUnaligned3SIMD ( const void * pSIMD )
{
return XMLoadVector3 ( pSIMD ) ;
}
// load a single unaligned float into the x component of a SIMD word
FORCEINLINE fltx4 LoadUnalignedFloatSIMD ( const float * pFlt )
{
return __lvlx ( pFlt , 0 ) ;
}
FORCEINLINE fltx4 LoadAlignedSIMD ( const void * pSIMD )
{
return * ( reinterpret_cast < const fltx4 * > ( pSIMD ) ) ;
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD ( const VectorAligned & pSIMD )
{
fltx4 out = XMLoadVector3A ( pSIMD . Base ( ) ) ;
// squelch w
return __vrlimi ( out , __vzero ( ) , 1 , 0 ) ;
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD ( const VectorAligned * RESTRICT pSIMD )
{
fltx4 out = XMLoadVector3A ( pSIMD ) ;
// squelch w
return __vrlimi ( out , __vzero ( ) , 1 , 0 ) ;
}
FORCEINLINE void StoreAlignedSIMD ( float * pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < fltx4 * > ( pSIMD ) ) = a ;
}
FORCEINLINE void StoreUnalignedSIMD ( float * pSIMD , const fltx4 & a )
{
XMStoreVector4 ( pSIMD , a ) ;
}
FORCEINLINE void StoreUnaligned3SIMD ( float * pSIMD , const fltx4 & a )
{
XMStoreVector3 ( pSIMD , a ) ;
}
// strongly typed -- for typechecking as we transition to SIMD
FORCEINLINE void StoreAligned3SIMD ( VectorAligned * RESTRICT pSIMD , const fltx4 & a )
{
XMStoreVector3A ( pSIMD - > Base ( ) , a ) ;
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination[0], pDestination[1], pDestination[2], pDestination[3]
// The Vectors are assumed to be unaligned.
FORCEINLINE void StoreFourUnalignedVector3SIMD ( fltx4 a , fltx4 b , fltx4 c , FLTX4 d , // first three passed by copy (deliberate)
Vector * const pDestination )
{
// since four Vec3s == 48 bytes, we can use full-vector stores here, so long as
// we arrange the data properly first.
// The vrlimi ops trash the destination param which is why we require
// pass-by-copy. I'm counting on the compiler to schedule these properly.
b = __vrlimi ( b , b , 15 , 1 ) ; // b = y1z1__x1
c = __vrlimi ( c , c , 15 , 2 ) ; // c = z2__x2y2
a = __vrlimi ( a , b , 1 , 0 ) ; // a = x0y0z0x1
b = __vrlimi ( b , c , 2 | 1 , 0 ) ; // b = y1z1x2y2
c = __vrlimi ( c , d , 4 | 2 | 1 , 3 ) ; // c = z2x3y3z3
float * RESTRICT pOut = pDestination - > Base ( ) ;
StoreUnalignedSIMD ( pOut + 0 , a ) ;
StoreUnalignedSIMD ( pOut + 4 , b ) ;
StoreUnalignedSIMD ( pOut + 8 , c ) ;
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination , pDestination + 1, pDestination + 2, pDestination + 3
// The Vectors are assumed to start on an ALIGNED address, that is,
// pDestination is 16-byte aligned (thhough obviously pDestination+1 is not).
FORCEINLINE void StoreFourAlignedVector3SIMD ( fltx4 a , fltx4 b , fltx4 c , FLTX4 d , // first three passed by copy (deliberate)
Vector * const pDestination )
{
// since four Vec3s == 48 bytes, we can use full-vector stores here, so long as
// we arrange the data properly first.
// The vrlimi ops trash the destination param which is why we require
// pass-by-copy. I'm counting on the compiler to schedule these properly.
b = __vrlimi ( b , b , 15 , 1 ) ; // b = y1z1__x1
c = __vrlimi ( c , c , 15 , 2 ) ; // c = z2__x2y2
a = __vrlimi ( a , b , 1 , 0 ) ; // a = x0y0z0x1
b = __vrlimi ( b , c , 2 | 1 , 0 ) ; // b = y1z1x2y2
c = __vrlimi ( c , d , 4 | 2 | 1 , 3 ) ; // c = z2x3y3z3
float * RESTRICT pOut = pDestination - > Base ( ) ;
StoreAlignedSIMD ( pOut + 0 , a ) ;
StoreAlignedSIMD ( pOut + 4 , b ) ;
StoreAlignedSIMD ( pOut + 8 , c ) ;
}
// Fixed-point conversion and save as SIGNED INTS.
// pDest->x = Int (vSrc.x)
// note: some architectures have means of doing
// fixed point conversion when the fix depth is
// specified as an immediate.. but there is no way
// to guarantee an immediate as a parameter to function
// like this.
FORCEINLINE void ConvertStoreAsIntsSIMD ( intx4 * RESTRICT pDest , const fltx4 & vSrc )
{
fltx4 asInt = __vctsxs ( vSrc , 0 ) ;
XMStoreVector4A ( pDest - > Base ( ) , asInt ) ;
}
FORCEINLINE void TransposeSIMD ( fltx4 & x , fltx4 & y , fltx4 & z , fltx4 & w )
{
XMMATRIX xyzwMatrix = _XMMATRIX ( x , y , z , w ) ;
xyzwMatrix = XMMatrixTranspose ( xyzwMatrix ) ;
x = xyzwMatrix . r [ 0 ] ;
y = xyzwMatrix . r [ 1 ] ;
z = xyzwMatrix . r [ 2 ] ;
w = xyzwMatrix . r [ 3 ] ;
}
// Return one in the fastest way -- faster even than loading.
FORCEINLINE fltx4 LoadZeroSIMD ( void )
{
return XMVectorZero ( ) ;
}
// Return one in the fastest way -- faster even than loading.
FORCEINLINE fltx4 LoadOneSIMD ( void )
{
return XMVectorSplatOne ( ) ;
}
FORCEINLINE fltx4 SplatXSIMD ( fltx4 a )
{
return XMVectorSplatX ( a ) ;
}
FORCEINLINE fltx4 SplatYSIMD ( fltx4 a )
{
return XMVectorSplatY ( a ) ;
}
FORCEINLINE fltx4 SplatZSIMD ( fltx4 a )
{
return XMVectorSplatZ ( a ) ;
}
FORCEINLINE fltx4 SplatWSIMD ( fltx4 a )
{
return XMVectorSplatW ( a ) ;
}
FORCEINLINE fltx4 SetXSIMD ( const fltx4 & a , const fltx4 & x )
{
fltx4 result = __vrlimi ( a , x , 8 , 0 ) ;
return result ;
}
FORCEINLINE fltx4 SetYSIMD ( const fltx4 & a , const fltx4 & y )
{
fltx4 result = __vrlimi ( a , y , 4 , 0 ) ;
return result ;
}
FORCEINLINE fltx4 SetZSIMD ( const fltx4 & a , const fltx4 & z )
{
fltx4 result = __vrlimi ( a , z , 2 , 0 ) ;
return result ;
}
FORCEINLINE fltx4 SetWSIMD ( const fltx4 & a , const fltx4 & w )
{
fltx4 result = __vrlimi ( a , w , 1 , 0 ) ;
return result ;
}
FORCEINLINE fltx4 SetComponentSIMD ( const fltx4 & a , int nComponent , float flValue )
{
static int s_nVrlimiMask [ 4 ] = { 8 , 4 , 2 , 1 } ;
fltx4 val = ReplicateX4 ( flValue ) ;
fltx4 result = __vrlimi ( a , val , s_nVrlimiMask [ nComponent ] , 0 ) ;
return result ;
}
FORCEINLINE fltx4 RotateLeft ( const fltx4 & a )
{
fltx4 compareOne = a ;
return __vrlimi ( compareOne , a , 8 | 4 | 2 | 1 , 1 ) ;
}
FORCEINLINE fltx4 RotateLeft2 ( const fltx4 & a )
{
fltx4 compareOne = a ;
return __vrlimi ( compareOne , a , 8 | 4 | 2 | 1 , 2 ) ;
}
FORCEINLINE fltx4 RotateRight ( const fltx4 & a )
{
fltx4 compareOne = a ;
return __vrlimi ( compareOne , a , 8 | 4 | 2 | 1 , 3 ) ;
}
FORCEINLINE fltx4 RotateRight2 ( const fltx4 & a )
{
fltx4 compareOne = a ;
return __vrlimi ( compareOne , a , 8 | 4 | 2 | 1 , 2 ) ;
}
//// Compressed vector formats: unpack Vector48 and Quaternion48 onto SIMD registers.
// Only available on 360 for now because SSE1 lacks the necessary operations. SSE2 could
// do it but we can't count on that yet.
// If you have many v48's or q48's to stream, please note the functions designed to
// work on them many at a time.
extern const uint16 ALIGN16 g_SIMD_Quat48_Unpack_Shift [ ] ; //< Shuffles the z component of the quat48 left by one bit.
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute0 [ 16 ] ;
extern const fltx4 g_SIMD_Quat48_Unpack_Magic_Constants ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute1 [ 16 ] ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute2 [ 16 ] ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute3 [ 16 ] ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute4 [ 16 ] ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute5 [ 16 ] ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute6 [ 16 ] ;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute7 [ 16 ] ;
// unpack a single vector48 at the pointer into the x,y,z components of a fltx4.
// the w is total garbage.
FORCEINLINE fltx4 UnpackVector48SIMD ( const Vector48 * pVec )
{
// load the three 16-bit floats into the first 48 bits of ret:
fltx4 ret = XMLoadVector4 ( ( const void * ) & pVec - > x ) ;
// shuffle the top 64 bits of ret down to the least significant (the z,w) -- 16 of those bits are garbage.
ret = __vrlimi ( ret , ret , 2 | 1 , 2 ) ; // rotate left by 2 words and insert into z,w components
// now unpack the 16-bit floats into 32-bit floats. This is a hardware op, woohoo!
ret = __vupkd3d ( ret , VPACK_FLOAT16_4 ) ;
return ret ;
}
// unpack a single Quaternion48 at the pointer into the x,y,z,w components of a fltx4
FORCEINLINE fltx4 UnpackQuaternion48SIMD ( const Quaternion48 * RESTRICT pVec )
{
// A quaternion 48 stores the x and y components as 0..65535 , which is almost mapped onto -1.0..1.0 via (x - 32768) / 32768.5 .
// z is stored as 0..32767, which is almost mapped onto -1..1 via (z - 16384) / 16384.5 .
// w is inferred from 1 - the dot product of the other tree components. the top bit of what would otherwise be the 16-bit z is
// w's sign bit.
fltx4 q16s = XMLoadVector3 ( ( const void * ) pVec ) ;
fltx4 shift = __lvx ( & g_SIMD_Quat48_Unpack_Shift , 0 ) ; // load the aligned shift mask that we use to shuffle z.
fltx4 permute = __lvx ( & g_SIMD_Quat48_Unpack_Permute0 , 0 ) ; // load the permute word that shuffles x,y,z into their own words
bool wneg = pVec - > wneg ; // loading pVec into two different kinds of registers -- but not shuffling between (I hope!) so no LHS.
q16s = __vperm ( q16s , Four_Threes , permute ) ; // permute so that x, y, and z are now each in their own words. The top half is the floating point rep of 3.0f
q16s = __vslh ( q16s , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
// each word of q16s contains 3.0 + n * 2^-22 -- convert this so that we get numbers on the range -1..1
const fltx4 vUpkMul = SplatXSIMD ( g_SIMD_Quat48_Unpack_Magic_Constants ) ; // { UnpackMul16s, UnpackMul16s, UnpackMul16s, UnpackMul16s };
const fltx4 vUpkAdd = SplatYSIMD ( g_SIMD_Quat48_Unpack_Magic_Constants ) ;
/*
fltx4 ret = __vcfux ( q16s , 0 ) ; // convert from uint16 to floats.
// scale from 0..65535 to -1..1 : tmp.x = ((int)x - 32768) * (1 / 32768.0);
ret = __vmaddfp ( ret , g_SIMD_Quat48_DivByU15 , Four_NegativeOnes ) ;
*/
fltx4 ret = __vmaddfp ( q16s , vUpkMul , vUpkAdd ) ;
// now, work out what w must be.
fltx4 dotxyz = Dot3SIMD ( ret , ret ) ; // all components are dot product of ret w/ self.
dotxyz = ClampVectorSIMD ( dotxyz , Four_Zeros , Four_Ones ) ;
fltx4 ww = SubSIMD ( Four_Ones , dotxyz ) ; // all components are 1 - dotxyz
ww = SqrtSIMD ( ww ) ; // all components are sqrt(1-dotxyz)
if ( wneg )
{
ret = __vrlimi ( ret , NegSIMD ( ww ) , 1 , 0 ) ; // insert one element from the ww vector into the w component of ret
}
else
{
ret = __vrlimi ( ret , ww , 1 , 0 ) ; // insert one element from the ww vector into the w component of ret
}
return ret ;
}
// Many-at-a-time unpackers.
/// Unpack eight consecutive Vector48's in memory onto eight SIMD registers.
/// The Vector48 pointer must be 16-byte aligned. Eight Vector48s add up
/// to 48 bytes long. You should maybe think about prefetching.
FORCEINLINE void UnpackEightVector48SIMD ( fltx4 & out1 , fltx4 & out2 , fltx4 & out3 , fltx4 & out4 ,
fltx4 & out5 , fltx4 & out6 , fltx4 & out7 , fltx4 & out8 ,
Vector48 * RESTRICT pVecs )
{
AssertMsg ( ( reinterpret_cast < unsigned int > ( pVecs ) & 0x0F ) = = 0 , " Input to UnpackEightVector48SIMD is not 16-byte aligned. " ) ;
// first load the data onto three packed SIMD vectors, which contain eight Vector48s between them.
// I've named them very explicitly so you can follow the movement of the input data.
fltx4 x0y0z0x1y1z1x2y2 , z2x3y3z3x4y4z4x5 , y5z5x6y6z6x7y7z7 ;
x0y0z0x1y1z1x2y2 = __lvx ( pVecs , 0 ) ; // load reintrepret_cast<fltx 4 *>(pVecs) + 0
z2x3y3z3x4y4z4x5 = __lvx ( pVecs , 16 ) ; // load reintrepret_cast<fltx 4 *>(pVecs) + 1
y5z5x6y6z6x7y7z7 = __lvx ( pVecs , 32 ) ; // load reintrepret_cast<fltx 4 *>(pVecs) + 2
// Now, start unpacking. The __vupkd3d operation can turn 16-bit floats into 32-bit floats in a single op!
// It converts the contents of the z and w words of the input fltx4 , so we need to process a word to do
// one half, then rotate it to do the other half.
fltx4 y1z1x2y2 = __vupkd3d ( x0y0z0x1y1z1x2y2 , VPACK_FLOAT16_4 ) ;
x0y0z0x1y1z1x2y2 = __vrlimi ( x0y0z0x1y1z1x2y2 , x0y0z0x1y1z1x2y2 , 0xf , 2 ) ; // actually y1z1x2y2x0y0z0x1 now. For perf it's important that the first param to vrlimi also be the assignee.
fltx4 x4y4z4x5 = __vupkd3d ( z2x3y3z3x4y4z4x5 , VPACK_FLOAT16_4 ) ;
z2x3y3z3x4y4z4x5 = __vrlimi ( z2x3y3z3x4y4z4x5 , z2x3y3z3x4y4z4x5 , 0xf , 2 ) ;
fltx4 z6x7y7z7 = __vupkd3d ( y5z5x6y6z6x7y7z7 , VPACK_FLOAT16_4 ) ;
y5z5x6y6z6x7y7z7 = __vrlimi ( y5z5x6y6z6x7y7z7 , y5z5x6y6z6x7y7z7 , 0xf , 2 ) ;
fltx4 x0y0z0x1 = __vupkd3d ( x0y0z0x1y1z1x2y2 , VPACK_FLOAT16_4 ) ;
fltx4 z2x3y3z3 = __vupkd3d ( z2x3y3z3x4y4z4x5 , VPACK_FLOAT16_4 ) ;
fltx4 y5z5x6y6 = __vupkd3d ( y5z5x6y6z6x7y7z7 , VPACK_FLOAT16_4 ) ;
// permute to populate the out-registers with part of their vectors:
out1 = x0y0z0x1 ; // DONE
out2 = __vpermwi ( y1z1x2y2 , VPERMWI_CONST ( 0 , 0 , 1 , 0 ) ) ; // __y1z1__
out3 = __vpermwi ( y1z1x2y2 , VPERMWI_CONST ( 2 , 3 , 0 , 0 ) ) ; // x2y2____
out4 = __vpermwi ( z2x3y3z3 , VPERMWI_CONST ( 1 , 2 , 3 , 0 ) ) ; // x3y3z3__ // DONE
out5 = x4y4z4x5 ; // DONE
out6 = __vpermwi ( y5z5x6y6 , VPERMWI_CONST ( 0 , 0 , 1 , 0 ) ) ; // __y5z5__
out7 = __vpermwi ( y5z5x6y6 , VPERMWI_CONST ( 2 , 3 , 0 , 0 ) ) ; // x6y6____
out8 = __vpermwi ( z6x7y7z7 , VPERMWI_CONST ( 1 , 2 , 3 , 0 ) ) ; // x7y7z7__ // DONE
// there are four more to finish, which we do with a masked insert
out2 = __vrlimi ( out2 , x0y0z0x1 , 8 , 3 ) ; // x1y1z1__
out3 = __vrlimi ( out3 , z2x3y3z3 , 2 , 2 ) ; // x2y2x2__
out6 = __vrlimi ( out6 , x4y4z4x5 , 8 , 3 ) ; // x5y5z5__
out7 = __vrlimi ( out7 , z6x7y7z7 , 2 , 2 ) ; // x6y6z6__
// and we're done!
}
/// Unpack eight consecutive Quaternion48's in memory onto eight SIMD registers.
/// The Quaternion48 pointer must be 16-byte aligned. Eight Quaternion48s add up
/// to 48 bytes long. You should maybe think about prefetching.
//
// This could be improved with verticalization, so that the W sqrts happen
// on two rather than eight vectors, and then transposing. This would make
// the initial permuatation even more complicated.
FORCEINLINE void UnpackEightQuaternion48SIMD ( fltx4 & out0 , fltx4 & out1 , fltx4 & out2 , fltx4 & out3 ,
fltx4 & out4 , fltx4 & out5 , fltx4 & out6 , fltx4 & out7 ,
Quaternion48 * RESTRICT pVecs )
{
AssertMsg ( ( reinterpret_cast < unsigned int > ( pVecs ) & 0x0F ) = = 0 , " Input to UnpackEightQuaternion48SIMD is not 16-byte aligned. " ) ;
// each word of q16s contains 3.0 + n * 2^-22 -- convert this so that we get numbers on the range -1..1
const fltx4 vUpkMul = SplatXSIMD ( g_SIMD_Quat48_Unpack_Magic_Constants ) ; // { UnpackMul16s, UnpackMul16s, UnpackMul16s, UnpackMul16s };
const fltx4 vUpkAdd = SplatYSIMD ( g_SIMD_Quat48_Unpack_Magic_Constants ) ;
const fltx4 shift = __lvx ( & g_SIMD_Quat48_Unpack_Shift , 0 ) ; // load the aligned shift mask that we use to shuffle z left by one bit.
// first load the data onto three packed SIMD vectors, which contain eight Quaternion48s between them.
// I've named them very explicitly so you can follow the movement of the input data.
fltx4 x0y0z0x1y1z1x2y2 , z2x3y3z3x4y4z4x5 , y5z5x6y6z6x7y7z7 ;
x0y0z0x1y1z1x2y2 = __lvx ( pVecs , 0 ) ; // load reintrepret_cast<fltx 4 *>(pVecs) + 0
z2x3y3z3x4y4z4x5 = __lvx ( pVecs , 16 ) ; // load reintrepret_cast<fltx 4 *>(pVecs) + 1
y5z5x6y6z6x7y7z7 = __lvx ( pVecs , 32 ) ; // load reintrepret_cast<fltx 4 *>(pVecs) + 2
// shove each quat onto its own fltx4, by using the permute operation
// each halfword argument goes into the bottom 16 bits of the floating
// point rep of 3.0f, then we use a magic constant to scale them.
out0 = __vperm ( x0y0z0x1y1z1x2y2 , Four_Threes , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute0 ) ) ; // __x0__y0__z0____
out1 = __vperm ( x0y0z0x1y1z1x2y2 , Four_Threes , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute1 ) ) ; // __x1__y1__z1____
// postpone 2 since it straddles two words, we'll get back to it
out3 = __vperm ( z2x3y3z3x4y4z4x5 , Four_Threes , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute3 ) ) ; // __x3__y3__z3__z2 // z2 is important, goes into out2
out4 = __vperm ( z2x3y3z3x4y4z4x5 , Four_Threes , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute4 ) ) ; // __x4__y4__z4__x5 // x5 is important, goes into out5
// 5 straddles two words
out6 = __vperm ( y5z5x6y6z6x7y7z7 , Four_Threes , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute6 ) ) ; // __x6__y6__z6____
out7 = __vperm ( y5z5x6y6z6x7y7z7 , Four_Threes , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute7 ) ) ; // __x7__y7__z7____
// now get back to the straddlers, which we make by blending together a prior output and the other source word
out2 = __vperm ( x0y0z0x1y1z1x2y2 , out3 , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute2 ) ) ; // __x2__y2__z2____
out5 = __vperm ( y5z5x6y6z6x7y7z7 , out4 , * reinterpret_cast < const fltx4 * > ( & g_SIMD_Quat48_Unpack_Permute5 ) ) ; // __x5__y5__z5____
// the top bit of the z component in each word isn't part of the number; it's
// a flag indicating whether the eventual w component should be negative.
// so, we need to move the 0x00008000 bit of the z word onto the top bit
// of the w word, which is a rotation two bytes right, or 14 bytes left.
fltx4 wneg [ 8 ] ;
// juggle all the z halfwords left one bit (toss the wneg sign bit, multiply by two)
wneg [ 0 ] = __vsldoi ( out0 , out0 , 14 ) ;
out0 = __vslh ( out0 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 1 ] = __vsldoi ( out1 , out1 , 14 ) ;
out1 = __vslh ( out1 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 2 ] = __vsldoi ( out2 , out2 , 14 ) ;
out2 = __vslh ( out2 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 3 ] = __vsldoi ( out3 , out3 , 14 ) ;
out3 = __vslh ( out3 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 4 ] = __vsldoi ( out4 , out4 , 14 ) ;
out4 = __vslh ( out4 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 5 ] = __vsldoi ( out5 , out5 , 14 ) ;
out5 = __vslh ( out5 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 6 ] = __vsldoi ( out6 , out6 , 14 ) ;
out6 = __vslh ( out6 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg [ 7 ] = __vsldoi ( out7 , out7 , 14 ) ;
out7 = __vslh ( out7 , shift ) ; // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
// create a mask that is just the sign bit of the w word.
fltx4 vAllOneBits = __vspltisw ( - 1 ) ; // Shift 31
fltx4 signMask = __vslw ( vAllOneBits , vAllOneBits ) ; // all the sign bits
signMask = __vrlimi ( signMask , Four_Zeros , 14 , 0 ) ; // zero out x,y,z words
// this macro defines the operations that will be performed on each of the eight words:
// * scale from 0..65535 to -1..1 : tmp.x = ((int)x - 32768) * (1 / 32768.0);
// * take the xyz dot product to get 1 - w^2
// * subtract from one to get w^2
// * square root to get zero
// * OR in the wneg sign mask to get sign for zero.
// though the macro makes it look like these are being done in serial,
// in fact the compiler will reorder them to minimize stalls.
fltx4 ONE = Four_Ones ;
fltx4 dotxyz [ 8 ] ;
fltx4 ww [ 8 ] ;
// out0 = __vmaddfp( out0, vUpkMul, vUpkAdd );
// dotxyz[0] = Dot3SIMD( out0, out0 );
// clamnp dotxyz if it's more than 1.0
// all components are 1 - dotxyz
// clear all but w's sign bit in wneg
// all components are sqrt(1-dotxyz)
// toggle w's sign where necessary
// insert one element from the ww vector into the w component of ret
# define COMPUTE( target, number ) \
target # # number = __vmaddfp ( target # # number , vUpkMul , vUpkAdd ) ; \
dotxyz [ number ] = Dot3SIMD ( target # # number , target # # number ) ; \
dotxyz [ number ] = __vminfp ( dotxyz [ number ] , ONE ) ; \
ww [ number ] = SubSIMD ( ONE , dotxyz [ number ] ) ; \
wneg [ number ] = AndSIMD ( wneg [ number ] , signMask ) ; \
ww [ number ] = SqrtSIMD ( ww [ number ] ) ; \
ww [ number ] = OrSIMD ( ww [ number ] , wneg [ number ] ) ; \
target # # number = __vrlimi ( target # # number , ww [ number ] , 1 , 0 ) ;
COMPUTE ( out , 0 ) ;
COMPUTE ( out , 1 ) ;
COMPUTE ( out , 2 ) ;
COMPUTE ( out , 3 ) ;
COMPUTE ( out , 4 ) ;
COMPUTE ( out , 5 ) ;
COMPUTE ( out , 6 ) ;
COMPUTE ( out , 7 ) ;
# undef COMPUTE
}
// find the lowest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
// ignores a.w.
// Though this is only five instructions long,
// they are all dependent, making this stall city.
// Forcing this inline should hopefully help with scheduling.
FORCEINLINE fltx4 FindLowestSIMD3 ( const fltx4 & a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = a ;
compareOne = __vrlimi ( compareOne , a , 8 | 4 , 1 ) ;
// compareOne is [y,z,G,G]
fltx4 retval = MinSIMD ( a , compareOne ) ;
// retVal is [min(x,y), min(y,z), G, G]
compareOne = __vrlimi ( compareOne , a , 8 , 2 ) ;
// compareOne is [z, G, G, G]
retval = MinSIMD ( retval , compareOne ) ;
// retVal = [ min(min(x,y),z), G, G, G ]
// splat the x component out to the whole vector and return
return SplatXSIMD ( retval ) ;
}
// find the highest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
// ignores a.w.
// Though this is only five instructions long,
// they are all dependent, making this stall city.
// Forcing this inline should hopefully help with scheduling.
FORCEINLINE fltx4 FindHighestSIMD3 ( const fltx4 & a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = a ;
compareOne = __vrlimi ( compareOne , a , 8 | 4 , 1 ) ;
// compareOne is [y,z,G,G]
fltx4 retval = MaxSIMD ( a , compareOne ) ;
// retVal is [max(x,y), max(y,z), G, G]
compareOne = __vrlimi ( compareOne , a , 8 , 2 ) ;
// compareOne is [z, G, G, G]
retval = MaxSIMD ( retval , compareOne ) ;
// retVal = [ max(max(x,y),z), G, G, G ]
// splat the x component out to the whole vector and return
return SplatXSIMD ( retval ) ;
}
// Transform many (horizontal) points in-place by a 3x4 matrix,
// here already loaded onto three fltx4 registers.
// The points must be stored as 16-byte aligned. They are points
// and not vectors because we assume the w-component to be 1.
// To spare yourself the annoyance of loading the matrix yourself,
// use one of the overloads below.
void TransformManyPointsBy ( VectorAligned * RESTRICT pVectors , unsigned int numVectors , FLTX4 mRow1 , FLTX4 mRow2 , FLTX4 mRow3 ) ;
// Transform many (horizontal) points in-place by a 3x4 matrix.
// The points must be stored as 16-byte aligned. They are points
// and not vectors because we assume the w-component to be 1.
// In this function, the matrix need not be aligned.
FORCEINLINE void TransformManyPointsBy ( VectorAligned * RESTRICT pVectors , unsigned int numVectors , const matrix3x4_t & pMatrix )
{
return TransformManyPointsBy ( pVectors , numVectors ,
LoadUnalignedSIMD ( pMatrix [ 0 ] ) , LoadUnalignedSIMD ( pMatrix [ 1 ] ) , LoadUnalignedSIMD ( pMatrix [ 2 ] ) ) ;
}
// Transform many (horizontal) points in-place by a 3x4 matrix.
// The points must be stored as 16-byte aligned. They are points
// and not vectors because we assume the w-component to be 1.
// In this function, the matrix must itself be aligned on a 16-byte
// boundary.
FORCEINLINE void TransformManyPointsByA ( VectorAligned * RESTRICT pVectors , unsigned int numVectors , const matrix3x4_t & pMatrix )
{
return TransformManyPointsBy ( pVectors , numVectors ,
LoadAlignedSIMD ( pMatrix [ 0 ] ) , LoadAlignedSIMD ( pMatrix [ 1 ] ) , LoadAlignedSIMD ( pMatrix [ 2 ] ) ) ;
}
// ------------------------------------
// INTEGER SIMD OPERATIONS.
// ------------------------------------
// Load 4 aligned words into a SIMD register
FORCEINLINE i32x4 LoadAlignedIntSIMD ( const void * RESTRICT pSIMD )
{
return XMLoadVector4A ( pSIMD ) ;
}
// Load 4 unaligned words into a SIMD register
FORCEINLINE i32x4 LoadUnalignedIntSIMD ( const void * RESTRICT pSIMD )
{
return XMLoadVector4 ( pSIMD ) ;
}
// save into four words, 16-byte aligned
FORCEINLINE void StoreAlignedIntSIMD ( int32 * pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < i32x4 * > ( pSIMD ) ) = a ;
}
FORCEINLINE void StoreAlignedIntSIMD ( intx4 & pSIMD , const fltx4 & a )
{
* ( reinterpret_cast < i32x4 * > ( pSIMD . Base ( ) ) ) = a ;
}
FORCEINLINE void StoreUnalignedIntSIMD ( int32 * pSIMD , const fltx4 & a )
{
XMStoreVector4 ( pSIMD , a ) ;
}
// Load four consecutive uint16's, and turn them into floating point numbers.
// This function isn't especially fast and could be made faster if anyone is
// using it heavily.
FORCEINLINE fltx4 LoadAndConvertUint16SIMD ( const uint16 * pInts )
{
return XMLoadUShort4 ( reinterpret_cast < const XMUSHORT4 * > ( pInts ) ) ;
}
// a={ a.x, a.z, b.x, b.z }
// combine two fltx4s by throwing away every other field.
FORCEINLINE fltx4 CompressSIMD ( fltx4 const & a , fltx4 const & b )
{
return XMVectorPermute ( a , b , XMVectorPermuteControl ( 0 , 2 , 4 , 6 ) ) ;
}
// a={ a.x, b.x, c.x, d.x }
// combine 4 fltx4s by throwing away 3/4s of the fields
// TODO: make more efficient by doing this in a parallel way at the caller
// Compress4SIMD(FourVectors.. )
FORCEINLINE fltx4 Compress4SIMD ( fltx4 const a , fltx4 const & b , fltx4 const & c , fltx4 const & d )
{
fltx4 abcd = __vrlimi ( a , b , 4 , 3 ) ; // a.x, b.x, a.z, a.w
abcd = __vrlimi ( abcd , c , 2 , 2 ) ; // ax, bx, cx, aw
abcd = __vrlimi ( abcd , d , 1 , 1 ) ; // ax, bx, cx, dx
return abcd ;
}
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD ( const i32x4 & vSrcA )
{
return __vcfux ( vSrcA , 0 ) ;
}
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 SignedIntConvertToFltSIMD ( const i32x4 & vSrcA )
{
return __vcfsx ( vSrcA , 0 ) ;
}
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. Each uint
// will be divided by 2^immed after conversion
// (eg, this is fixed point math).
/* as if:
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD ( const i32x4 & vSrcA , unsigned int uImmed )
{
return __vcfux ( vSrcA , uImmed ) ;
}
*/
# define UnsignedFixedIntConvertToFltSIMD(vSrcA, uImmed) (__vcfux( (vSrcA), (uImmed) ))
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. Each int
// will be divided by 2^immed (eg, this is fixed point
// math).
/* as if:
FORCEINLINE fltx4 SignedIntConvertToFltSIMD ( const i32x4 & vSrcA , unsigned int uImmed )
{
return __vcfsx ( vSrcA , uImmed ) ;
}
*/
# define SignedFixedIntConvertToFltSIMD(vSrcA, uImmed) (__vcfsx( (vSrcA), (uImmed) ))
// set all components of a vector to a signed immediate int number.
/* as if:
FORCEINLINE fltx4 IntSetImmediateSIMD ( int toImmediate )
{
return __vspltisw ( toImmediate ) ;
}
*/
# define IntSetImmediateSIMD(x) (__vspltisw(x))
/*
works on fltx4 ' s as if they are four uints .
the first parameter contains the words to be shifted ,
the second contains the amount to shift by AS INTS
for i = 0 to 3
shift = vSrcB_i * 32 : ( i * 32 ) + 4
vReturned_i * 32 : ( i * 32 ) + 31 = vSrcA_i * 32 : ( i * 32 ) + 31 < < shift
*/
FORCEINLINE fltx4 IntShiftLeftWordSIMD ( fltx4 vSrcA , fltx4 vSrcB )
{
return __vslw ( vSrcA , vSrcB ) ;
}
FORCEINLINE float SubFloat ( const fltx4 & a , int idx )
{
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
const fltx4_union & a_union = ( const fltx4_union & ) a ;
return a_union . m128_f32 [ idx ] ;
}
FORCEINLINE float & SubFloat ( fltx4 & a , int idx )
{
fltx4_union & a_union = ( fltx4_union & ) a ;
return a_union . m128_f32 [ idx ] ;
}
FORCEINLINE uint32 SubFloatConvertToInt ( const fltx4 & a , int idx )
{
fltx4 t = __vctuxs ( a , 0 ) ;
const fltx4_union & a_union = ( const fltx4_union & ) t ;
return a_union . m128_u32 [ idx ] ;
}
FORCEINLINE uint32 SubInt ( const fltx4 & a , int idx )
{
const fltx4_union & a_union = ( const fltx4_union & ) a ;
return a_union . m128_u32 [ idx ] ;
}
FORCEINLINE uint32 & SubInt ( fltx4 & a , int idx )
{
fltx4_union & a_union = ( fltx4_union & ) a ;
return a_union . m128_u32 [ idx ] ;
}
# else
//---------------------------------------------------------------------
// Intel/SSE implementation
//---------------------------------------------------------------------
FORCEINLINE void StoreAlignedSIMD ( float * RESTRICT pSIMD , const fltx4 & a )
{
_mm_store_ps ( pSIMD , a ) ;
}
FORCEINLINE void StoreUnalignedSIMD ( float * RESTRICT pSIMD , const fltx4 & a )
{
_mm_storeu_ps ( pSIMD , a ) ;
}
FORCEINLINE fltx4 RotateLeft ( const fltx4 & a ) ;
FORCEINLINE fltx4 RotateLeft2 ( const fltx4 & a ) ;
FORCEINLINE void StoreUnaligned3SIMD ( float * pSIMD , const fltx4 & a )
{
_mm_store_ss ( pSIMD , a ) ;
_mm_store_ss ( pSIMD + 1 , RotateLeft ( a ) ) ;
_mm_store_ss ( pSIMD + 2 , RotateLeft2 ( a ) ) ;
}
// strongly typed -- syntactic castor oil used for typechecking as we transition to SIMD
FORCEINLINE void StoreAligned3SIMD ( VectorAligned * RESTRICT pSIMD , const fltx4 & a )
{
StoreAlignedSIMD ( pSIMD - > Base ( ) , a ) ;
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination[0], pDestination[1], pDestination[2], pDestination[3]
// The Vectors are assumed to be unaligned.
FORCEINLINE void StoreFourUnalignedVector3SIMD ( fltx4 a , fltx4 b , fltx4 c , FLTX4 d , // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD ( pDestination - > Base ( ) , a ) ;
StoreUnaligned3SIMD ( ( pDestination + 1 ) - > Base ( ) , b ) ;
StoreUnaligned3SIMD ( ( pDestination + 2 ) - > Base ( ) , c ) ;
StoreUnaligned3SIMD ( ( pDestination + 3 ) - > Base ( ) , d ) ;
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination , pDestination + 1, pDestination + 2, pDestination + 3
// The Vectors are assumed to start on an ALIGNED address, that is,
// pDestination is 16-byte aligned (thhough obviously pDestination+1 is not).
FORCEINLINE void StoreFourAlignedVector3SIMD ( fltx4 a , fltx4 b , fltx4 c , FLTX4 d , // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD ( pDestination - > Base ( ) , a ) ;
StoreUnaligned3SIMD ( ( pDestination + 1 ) - > Base ( ) , b ) ;
StoreUnaligned3SIMD ( ( pDestination + 2 ) - > Base ( ) , c ) ;
StoreUnaligned3SIMD ( ( pDestination + 3 ) - > Base ( ) , d ) ;
}
FORCEINLINE fltx4 LoadAlignedSIMD ( const void * pSIMD )
{
return _mm_load_ps ( reinterpret_cast < const float * > ( pSIMD ) ) ;
}
FORCEINLINE fltx4 AndSIMD ( const fltx4 & a , const fltx4 & b ) // a & b
{
return _mm_and_ps ( a , b ) ;
}
FORCEINLINE fltx4 AndNotSIMD ( const fltx4 & a , const fltx4 & b ) // a & ~b
{
return _mm_andnot_ps ( a , b ) ;
}
FORCEINLINE fltx4 XorSIMD ( const fltx4 & a , const fltx4 & b ) // a ^ b
{
return _mm_xor_ps ( a , b ) ;
}
FORCEINLINE fltx4 OrSIMD ( const fltx4 & a , const fltx4 & b ) // a | b
{
return _mm_or_ps ( a , b ) ;
}
// Squelch the w component of a vector to +0.0.
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
FORCEINLINE fltx4 SetWToZeroSIMD ( const fltx4 & a )
{
return AndSIMD ( a , LoadAlignedSIMD ( g_SIMD_clear_wmask ) ) ;
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD ( const VectorAligned & pSIMD )
{
return SetWToZeroSIMD ( LoadAlignedSIMD ( pSIMD . Base ( ) ) ) ;
}
FORCEINLINE fltx4 LoadUnalignedSIMD ( const void * pSIMD )
{
return _mm_loadu_ps ( reinterpret_cast < const float * > ( pSIMD ) ) ;
}
FORCEINLINE fltx4 LoadUnaligned3SIMD ( const void * pSIMD )
{
return _mm_loadu_ps ( reinterpret_cast < const float * > ( pSIMD ) ) ;
}
// load a single unaligned float into the x component of a SIMD word
FORCEINLINE fltx4 LoadUnalignedFloatSIMD ( const float * pFlt )
{
return _mm_load_ss ( pFlt ) ;
}
/// replicate a single 32 bit integer value to all 4 components of an m128
FORCEINLINE fltx4 ReplicateIX4 ( int i )
{
fltx4 value = _mm_set_ss ( * ( ( float * ) & i ) ) ; ;
return _mm_shuffle_ps ( value , value , 0 ) ;
}
FORCEINLINE fltx4 ReplicateX4 ( float flValue )
{
__m128 value = _mm_set_ss ( flValue ) ;
return _mm_shuffle_ps ( value , value , 0 ) ;
}
FORCEINLINE float SubFloat ( const fltx4 & a , int idx )
{
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
# ifndef POSIX
return a . m128_f32 [ idx ] ;
# else
return ( reinterpret_cast < float const * > ( & a ) ) [ idx ] ;
# endif
}
FORCEINLINE float & SubFloat ( fltx4 & a , int idx )
{
# ifndef POSIX
return a . m128_f32 [ idx ] ;
# else
return ( reinterpret_cast < float * > ( & a ) ) [ idx ] ;
# endif
}
FORCEINLINE uint32 SubFloatConvertToInt ( const fltx4 & a , int idx )
{
return ( uint32 ) SubFloat ( a , idx ) ;
}
FORCEINLINE uint32 SubInt ( const fltx4 & a , int idx )
{
# ifndef POSIX
return a . m128_u32 [ idx ] ;
# else
return ( reinterpret_cast < uint32 const * > ( & a ) ) [ idx ] ;
# endif
}
FORCEINLINE uint32 & SubInt ( fltx4 & a , int idx )
{
# ifndef POSIX
return a . m128_u32 [ idx ] ;
# else
return ( reinterpret_cast < uint32 * > ( & a ) ) [ idx ] ;
# endif
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadZeroSIMD ( void )
{
return Four_Zeros ;
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadOneSIMD ( void )
{
return Four_Ones ;
}
FORCEINLINE fltx4 MaskedAssign ( const fltx4 & ReplacementMask , const fltx4 & NewValue , const fltx4 & OldValue )
{
return OrSIMD (
AndSIMD ( ReplacementMask , NewValue ) ,
AndNotSIMD ( ReplacementMask , OldValue ) ) ;
}
// remember, the SSE numbers its words 3 2 1 0
// The way we want to specify shuffles is backwards from the default
// MM_SHUFFLE_REV is in array index order (default is reversed)
# define MM_SHUFFLE_REV(a,b,c,d) _MM_SHUFFLE(d,c,b,a)
FORCEINLINE fltx4 SplatXSIMD ( fltx4 const & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 0 , 0 , 0 , 0 ) ) ;
}
FORCEINLINE fltx4 SplatYSIMD ( fltx4 const & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 1 , 1 , 1 , 1 ) ) ;
}
FORCEINLINE fltx4 SplatZSIMD ( fltx4 const & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 2 , 2 , 2 , 2 ) ) ;
}
FORCEINLINE fltx4 SplatWSIMD ( fltx4 const & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 3 , 3 , 3 , 3 ) ) ;
}
FORCEINLINE fltx4 SetXSIMD ( const fltx4 & a , const fltx4 & x )
{
fltx4 result = MaskedAssign ( LoadAlignedSIMD ( g_SIMD_ComponentMask [ 0 ] ) , x , a ) ;
return result ;
}
FORCEINLINE fltx4 SetYSIMD ( const fltx4 & a , const fltx4 & y )
{
fltx4 result = MaskedAssign ( LoadAlignedSIMD ( g_SIMD_ComponentMask [ 1 ] ) , y , a ) ;
return result ;
}
FORCEINLINE fltx4 SetZSIMD ( const fltx4 & a , const fltx4 & z )
{
fltx4 result = MaskedAssign ( LoadAlignedSIMD ( g_SIMD_ComponentMask [ 2 ] ) , z , a ) ;
return result ;
}
FORCEINLINE fltx4 SetWSIMD ( const fltx4 & a , const fltx4 & w )
{
fltx4 result = MaskedAssign ( LoadAlignedSIMD ( g_SIMD_ComponentMask [ 3 ] ) , w , a ) ;
return result ;
}
FORCEINLINE fltx4 SetComponentSIMD ( const fltx4 & a , int nComponent , float flValue )
{
fltx4 val = ReplicateX4 ( flValue ) ;
fltx4 result = MaskedAssign ( LoadAlignedSIMD ( g_SIMD_ComponentMask [ nComponent ] ) , val , a ) ;
return result ;
}
// a b c d -> b c d a
FORCEINLINE fltx4 RotateLeft ( const fltx4 & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 1 , 2 , 3 , 0 ) ) ;
}
// a b c d -> c d a b
FORCEINLINE fltx4 RotateLeft2 ( const fltx4 & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 2 , 3 , 0 , 1 ) ) ;
}
// a b c d -> d a b c
FORCEINLINE fltx4 RotateRight ( const fltx4 & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 3 , 0 , 1 , 2 ) ) ;
}
// a b c d -> c d a b
FORCEINLINE fltx4 RotateRight2 ( const fltx4 & a )
{
return _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 2 , 3 , 0 , 1 ) ) ;
}
FORCEINLINE fltx4 AddSIMD ( const fltx4 & a , const fltx4 & b ) // a+b
{
return _mm_add_ps ( a , b ) ;
}
FORCEINLINE fltx4 SubSIMD ( const fltx4 & a , const fltx4 & b ) // a-b
{
return _mm_sub_ps ( a , b ) ;
} ;
FORCEINLINE fltx4 MulSIMD ( const fltx4 & a , const fltx4 & b ) // a*b
{
return _mm_mul_ps ( a , b ) ;
} ;
FORCEINLINE fltx4 DivSIMD ( const fltx4 & a , const fltx4 & b ) // a/b
{
return _mm_div_ps ( a , b ) ;
} ;
FORCEINLINE fltx4 MaddSIMD ( const fltx4 & a , const fltx4 & b , const fltx4 & c ) // a*b + c
{
return AddSIMD ( MulSIMD ( a , b ) , c ) ;
}
FORCEINLINE fltx4 MsubSIMD ( const fltx4 & a , const fltx4 & b , const fltx4 & c ) // c - a*b
{
return SubSIMD ( c , MulSIMD ( a , b ) ) ;
} ;
FORCEINLINE fltx4 Dot3SIMD ( const fltx4 & a , const fltx4 & b )
{
fltx4 m = MulSIMD ( a , b ) ;
float flDot = SubFloat ( m , 0 ) + SubFloat ( m , 1 ) + SubFloat ( m , 2 ) ;
return ReplicateX4 ( flDot ) ;
}
FORCEINLINE fltx4 Dot4SIMD ( const fltx4 & a , const fltx4 & b )
{
fltx4 m = MulSIMD ( a , b ) ;
float flDot = SubFloat ( m , 0 ) + SubFloat ( m , 1 ) + SubFloat ( m , 2 ) + SubFloat ( m , 3 ) ;
return ReplicateX4 ( flDot ) ;
}
//TODO: implement as four-way Taylor series (see xbox implementation)
FORCEINLINE fltx4 SinSIMD ( const fltx4 & radians )
{
fltx4 result ;
SubFloat ( result , 0 ) = sin ( SubFloat ( radians , 0 ) ) ;
SubFloat ( result , 1 ) = sin ( SubFloat ( radians , 1 ) ) ;
SubFloat ( result , 2 ) = sin ( SubFloat ( radians , 2 ) ) ;
SubFloat ( result , 3 ) = sin ( SubFloat ( radians , 3 ) ) ;
return result ;
}
FORCEINLINE void SinCos3SIMD ( fltx4 & sine , fltx4 & cosine , const fltx4 & radians )
{
// FIXME: Make a fast SSE version
SinCos ( SubFloat ( radians , 0 ) , & SubFloat ( sine , 0 ) , & SubFloat ( cosine , 0 ) ) ;
SinCos ( SubFloat ( radians , 1 ) , & SubFloat ( sine , 1 ) , & SubFloat ( cosine , 1 ) ) ;
SinCos ( SubFloat ( radians , 2 ) , & SubFloat ( sine , 2 ) , & SubFloat ( cosine , 2 ) ) ;
}
FORCEINLINE void SinCosSIMD ( fltx4 & sine , fltx4 & cosine , const fltx4 & radians ) // a*b + c
{
// FIXME: Make a fast SSE version
SinCos ( SubFloat ( radians , 0 ) , & SubFloat ( sine , 0 ) , & SubFloat ( cosine , 0 ) ) ;
SinCos ( SubFloat ( radians , 1 ) , & SubFloat ( sine , 1 ) , & SubFloat ( cosine , 1 ) ) ;
SinCos ( SubFloat ( radians , 2 ) , & SubFloat ( sine , 2 ) , & SubFloat ( cosine , 2 ) ) ;
SinCos ( SubFloat ( radians , 3 ) , & SubFloat ( sine , 3 ) , & SubFloat ( cosine , 3 ) ) ;
}
//TODO: implement as four-way Taylor series (see xbox implementation)
FORCEINLINE fltx4 ArcSinSIMD ( const fltx4 & sine )
{
// FIXME: Make a fast SSE version
fltx4 result ;
SubFloat ( result , 0 ) = asin ( SubFloat ( sine , 0 ) ) ;
SubFloat ( result , 1 ) = asin ( SubFloat ( sine , 1 ) ) ;
SubFloat ( result , 2 ) = asin ( SubFloat ( sine , 2 ) ) ;
SubFloat ( result , 3 ) = asin ( SubFloat ( sine , 3 ) ) ;
return result ;
}
FORCEINLINE fltx4 ArcCosSIMD ( const fltx4 & cs )
{
fltx4 result ;
SubFloat ( result , 0 ) = acos ( SubFloat ( cs , 0 ) ) ;
SubFloat ( result , 1 ) = acos ( SubFloat ( cs , 1 ) ) ;
SubFloat ( result , 2 ) = acos ( SubFloat ( cs , 2 ) ) ;
SubFloat ( result , 3 ) = acos ( SubFloat ( cs , 3 ) ) ;
return result ;
}
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
FORCEINLINE fltx4 ArcTan2SIMD ( const fltx4 & a , const fltx4 & b )
{
fltx4 result ;
SubFloat ( result , 0 ) = atan2 ( SubFloat ( a , 0 ) , SubFloat ( b , 0 ) ) ;
SubFloat ( result , 1 ) = atan2 ( SubFloat ( a , 1 ) , SubFloat ( b , 1 ) ) ;
SubFloat ( result , 2 ) = atan2 ( SubFloat ( a , 2 ) , SubFloat ( b , 2 ) ) ;
SubFloat ( result , 3 ) = atan2 ( SubFloat ( a , 3 ) , SubFloat ( b , 3 ) ) ;
return result ;
}
FORCEINLINE fltx4 NegSIMD ( const fltx4 & a ) // negate: -a
{
return SubSIMD ( LoadZeroSIMD ( ) , a ) ;
}
FORCEINLINE int TestSignSIMD ( const fltx4 & a ) // mask of which floats have the high bit set
{
return _mm_movemask_ps ( a ) ;
}
FORCEINLINE bool IsAnyNegative ( const fltx4 & a ) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
{
return ( 0 ! = TestSignSIMD ( a ) ) ;
}
FORCEINLINE fltx4 CmpEqSIMD ( const fltx4 & a , const fltx4 & b ) // (a==b) ? ~0:0
{
return _mm_cmpeq_ps ( a , b ) ;
}
FORCEINLINE fltx4 CmpGtSIMD ( const fltx4 & a , const fltx4 & b ) // (a>b) ? ~0:0
{
return _mm_cmpgt_ps ( a , b ) ;
}
FORCEINLINE fltx4 CmpGeSIMD ( const fltx4 & a , const fltx4 & b ) // (a>=b) ? ~0:0
{
return _mm_cmpge_ps ( a , b ) ;
}
FORCEINLINE fltx4 CmpLtSIMD ( const fltx4 & a , const fltx4 & b ) // (a<b) ? ~0:0
{
return _mm_cmplt_ps ( a , b ) ;
}
FORCEINLINE fltx4 CmpLeSIMD ( const fltx4 & a , const fltx4 & b ) // (a<=b) ? ~0:0
{
return _mm_cmple_ps ( a , b ) ;
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAllGreaterThan ( const fltx4 & a , const fltx4 & b )
{
return TestSignSIMD ( CmpLeSIMD ( a , b ) ) = = 0 ;
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAllGreaterThanOrEq ( const fltx4 & a , const fltx4 & b )
{
return TestSignSIMD ( CmpLtSIMD ( a , b ) ) = = 0 ;
}
// For branching if all a.xyzw == b.xyzw
FORCEINLINE bool IsAllEqual ( const fltx4 & a , const fltx4 & b )
{
return TestSignSIMD ( CmpEqSIMD ( a , b ) ) = = 0xf ;
}
FORCEINLINE fltx4 CmpInBoundsSIMD ( const fltx4 & a , const fltx4 & b ) // (a <= b && a >= -b) ? ~0 : 0
{
return AndSIMD ( CmpLeSIMD ( a , b ) , CmpGeSIMD ( a , NegSIMD ( b ) ) ) ;
}
FORCEINLINE fltx4 MinSIMD ( const fltx4 & a , const fltx4 & b ) // min(a,b)
{
return _mm_min_ps ( a , b ) ;
}
FORCEINLINE fltx4 MaxSIMD ( const fltx4 & a , const fltx4 & b ) // max(a,b)
{
return _mm_max_ps ( a , b ) ;
}
// SSE lacks rounding operations.
// Really.
// You can emulate them by setting the rounding mode for the
// whole processor and then converting to int, and then back again.
// But every time you set the rounding mode, you clear out the
// entire pipeline. So, I can't do them per operation. You
// have to do it once, before the loop that would call these.
// Round towards positive infinity
FORCEINLINE fltx4 CeilSIMD ( const fltx4 & a )
{
fltx4 retVal ;
SubFloat ( retVal , 0 ) = ceil ( SubFloat ( a , 0 ) ) ;
SubFloat ( retVal , 1 ) = ceil ( SubFloat ( a , 1 ) ) ;
SubFloat ( retVal , 2 ) = ceil ( SubFloat ( a , 2 ) ) ;
SubFloat ( retVal , 3 ) = ceil ( SubFloat ( a , 3 ) ) ;
return retVal ;
}
fltx4 fabs ( const fltx4 & x ) ;
// Round towards negative infinity
// This is the implementation that was here before; it assumes
// you are in round-to-floor mode, which I guess is usually the
// case for us vis-a-vis SSE. It's totally unnecessary on
// VMX, which has a native floor op.
FORCEINLINE fltx4 FloorSIMD ( const fltx4 & val )
{
fltx4 fl4Abs = fabs ( val ) ;
fltx4 ival = SubSIMD ( AddSIMD ( fl4Abs , Four_2ToThe23s ) , Four_2ToThe23s ) ;
ival = MaskedAssign ( CmpGtSIMD ( ival , fl4Abs ) , SubSIMD ( ival , Four_Ones ) , ival ) ;
return XorSIMD ( ival , XorSIMD ( val , fl4Abs ) ) ; // restore sign bits
}
FORCEINLINE bool IsAnyZeros ( const fltx4 & a ) // any floats are zero?
{
return TestSignSIMD ( CmpEqSIMD ( a , Four_Zeros ) ) ! = 0 ;
}
inline bool IsAllZeros ( const fltx4 & var )
{
return TestSignSIMD ( CmpEqSIMD ( var , Four_Zeros ) ) = = 0xF ;
}
FORCEINLINE fltx4 SqrtEstSIMD ( const fltx4 & a ) // sqrt(a), more or less
{
return _mm_sqrt_ps ( a ) ;
}
FORCEINLINE fltx4 SqrtSIMD ( const fltx4 & a ) // sqrt(a)
{
return _mm_sqrt_ps ( a ) ;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD ( const fltx4 & a ) // 1/sqrt(a), more or less
{
return _mm_rsqrt_ps ( a ) ;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD ( const fltx4 & a )
{
fltx4 zero_mask = CmpEqSIMD ( a , Four_Zeros ) ;
fltx4 ret = OrSIMD ( a , AndSIMD ( Four_Epsilons , zero_mask ) ) ;
ret = ReciprocalSqrtEstSIMD ( ret ) ;
return ret ;
}
/// uses newton iteration for higher precision results than ReciprocalSqrtEstSIMD
FORCEINLINE fltx4 ReciprocalSqrtSIMD ( const fltx4 & a ) // 1/sqrt(a)
{
fltx4 guess = ReciprocalSqrtEstSIMD ( a ) ;
// newton iteration for 1/sqrt(a) : y(n+1) = 1/2 (y(n)*(3-a*y(n)^2));
guess = MulSIMD ( guess , SubSIMD ( Four_Threes , MulSIMD ( a , MulSIMD ( guess , guess ) ) ) ) ;
guess = MulSIMD ( Four_PointFives , guess ) ;
return guess ;
}
FORCEINLINE fltx4 ReciprocalEstSIMD ( const fltx4 & a ) // 1/a, more or less
{
return _mm_rcp_ps ( a ) ;
}
/// 1/x for all 4 values, more or less
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD ( const fltx4 & a )
{
fltx4 zero_mask = CmpEqSIMD ( a , Four_Zeros ) ;
fltx4 ret = OrSIMD ( a , AndSIMD ( Four_Epsilons , zero_mask ) ) ;
ret = ReciprocalEstSIMD ( ret ) ;
return ret ;
}
/// 1/x for all 4 values. uses reciprocal approximation instruction plus newton iteration.
/// No error checking!
FORCEINLINE fltx4 ReciprocalSIMD ( const fltx4 & a ) // 1/a
{
fltx4 ret = ReciprocalEstSIMD ( a ) ;
// newton iteration is: Y(n+1) = 2*Y(n)-a*Y(n)^2
ret = SubSIMD ( AddSIMD ( ret , ret ) , MulSIMD ( a , MulSIMD ( ret , ret ) ) ) ;
return ret ;
}
/// 1/x for all 4 values.
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalSaturateSIMD ( const fltx4 & a )
{
fltx4 zero_mask = CmpEqSIMD ( a , Four_Zeros ) ;
fltx4 ret = OrSIMD ( a , AndSIMD ( Four_Epsilons , zero_mask ) ) ;
ret = ReciprocalSIMD ( ret ) ;
return ret ;
}
// CHRISG: is it worth doing integer bitfiddling for this?
// 2^x for all values (the antilog)
FORCEINLINE fltx4 ExpSIMD ( const fltx4 & toPower )
{
fltx4 retval ;
SubFloat ( retval , 0 ) = powf ( 2 , SubFloat ( toPower , 0 ) ) ;
SubFloat ( retval , 1 ) = powf ( 2 , SubFloat ( toPower , 1 ) ) ;
SubFloat ( retval , 2 ) = powf ( 2 , SubFloat ( toPower , 2 ) ) ;
SubFloat ( retval , 3 ) = powf ( 2 , SubFloat ( toPower , 3 ) ) ;
return retval ;
}
// Clamps the components of a vector to a specified minimum and maximum range.
FORCEINLINE fltx4 ClampVectorSIMD ( FLTX4 in , FLTX4 min , FLTX4 max )
{
return MaxSIMD ( min , MinSIMD ( max , in ) ) ;
}
FORCEINLINE void TransposeSIMD ( fltx4 & x , fltx4 & y , fltx4 & z , fltx4 & w )
{
_MM_TRANSPOSE4_PS ( x , y , z , w ) ;
}
FORCEINLINE fltx4 FindLowestSIMD3 ( const fltx4 & a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = RotateLeft ( a ) ;
// compareOne is [y,z,G,x]
fltx4 retval = MinSIMD ( a , compareOne ) ;
// retVal is [min(x,y), ... ]
compareOne = RotateLeft2 ( a ) ;
// compareOne is [z, G, x, y]
retval = MinSIMD ( retval , compareOne ) ;
// retVal = [ min(min(x,y),z)..]
// splat the x component out to the whole vector and return
return SplatXSIMD ( retval ) ;
}
FORCEINLINE fltx4 FindHighestSIMD3 ( const fltx4 & a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = RotateLeft ( a ) ;
// compareOne is [y,z,G,x]
fltx4 retval = MaxSIMD ( a , compareOne ) ;
// retVal is [max(x,y), ... ]
compareOne = RotateLeft2 ( a ) ;
// compareOne is [z, G, x, y]
retval = MaxSIMD ( retval , compareOne ) ;
// retVal = [ max(max(x,y),z)..]
// splat the x component out to the whole vector and return
return SplatXSIMD ( retval ) ;
}
// ------------------------------------
// INTEGER SIMD OPERATIONS.
// ------------------------------------
#if 0 /* pc does not have these ops */
// splat all components of a vector to a signed immediate int number.
FORCEINLINE fltx4 IntSetImmediateSIMD ( int to )
{
//CHRISG: SSE2 has this, but not SSE1. What to do?
fltx4 retval ;
SubInt ( retval , 0 ) = to ;
SubInt ( retval , 1 ) = to ;
SubInt ( retval , 2 ) = to ;
SubInt ( retval , 3 ) = to ;
return retval ;
}
# endif
// Load 4 aligned words into a SIMD register
FORCEINLINE i32x4 LoadAlignedIntSIMD ( const void * RESTRICT pSIMD )
{
return _mm_load_ps ( reinterpret_cast < const float * > ( pSIMD ) ) ;
}
// Load 4 unaligned words into a SIMD register
FORCEINLINE i32x4 LoadUnalignedIntSIMD ( const void * RESTRICT pSIMD )
{
return _mm_loadu_ps ( reinterpret_cast < const float * > ( pSIMD ) ) ;
}
// save into four words, 16-byte aligned
FORCEINLINE void StoreAlignedIntSIMD ( int32 * RESTRICT pSIMD , const fltx4 & a )
{
_mm_store_ps ( reinterpret_cast < float * > ( pSIMD ) , a ) ;
}
FORCEINLINE void StoreAlignedIntSIMD ( intx4 & pSIMD , const fltx4 & a )
{
_mm_store_ps ( reinterpret_cast < float * > ( pSIMD . Base ( ) ) , a ) ;
}
FORCEINLINE void StoreUnalignedIntSIMD ( int32 * RESTRICT pSIMD , const fltx4 & a )
{
_mm_storeu_ps ( reinterpret_cast < float * > ( pSIMD ) , a ) ;
}
// a={ a.x, a.z, b.x, b.z }
// combine two fltx4s by throwing away every other field.
FORCEINLINE fltx4 CompressSIMD ( fltx4 const & a , fltx4 const & b )
{
return _mm_shuffle_ps ( a , b , MM_SHUFFLE_REV ( 0 , 2 , 0 , 2 ) ) ;
}
// Load four consecutive uint16's, and turn them into floating point numbers.
// This function isn't especially fast and could be made faster if anyone is
// using it heavily.
FORCEINLINE fltx4 LoadAndConvertUint16SIMD ( const uint16 * pInts )
{
# ifdef POSIX
fltx4 retval ;
SubFloat ( retval , 0 ) = pInts [ 0 ] ;
SubFloat ( retval , 1 ) = pInts [ 1 ] ;
SubFloat ( retval , 2 ) = pInts [ 2 ] ;
SubFloat ( retval , 3 ) = pInts [ 3 ] ;
2012-05-21 02:49:35 -05:00
return retval ;
2010-07-22 01:46:14 -05:00
# else
__m128i inA = _mm_loadl_epi64 ( ( __m128i const * ) pInts ) ; // Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result, zeroing the upper 64 bits of the result.
inA = _mm_unpacklo_epi16 ( inA , _mm_setzero_si128 ( ) ) ; // unpack unsigned 16's to signed 32's
return _mm_cvtepi32_ps ( inA ) ;
# endif
}
// a={ a.x, b.x, c.x, d.x }
// combine 4 fltx4s by throwing away 3/4s of the fields
FORCEINLINE fltx4 Compress4SIMD ( fltx4 const a , fltx4 const & b , fltx4 const & c , fltx4 const & d )
{
fltx4 aacc = _mm_shuffle_ps ( a , c , MM_SHUFFLE_REV ( 0 , 0 , 0 , 0 ) ) ;
fltx4 bbdd = _mm_shuffle_ps ( b , d , MM_SHUFFLE_REV ( 0 , 0 , 0 , 0 ) ) ;
return MaskedAssign ( LoadAlignedSIMD ( g_SIMD_EveryOtherMask ) , bbdd , aacc ) ;
}
// outa={a.x, a.x, a.y, a.y}, outb = a.z, a.z, a.w, a.w }
FORCEINLINE void ExpandSIMD ( fltx4 const & a , fltx4 & fl4OutA , fltx4 & fl4OutB )
{
fl4OutA = _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 0 , 0 , 1 , 1 ) ) ;
fl4OutB = _mm_shuffle_ps ( a , a , MM_SHUFFLE_REV ( 2 , 2 , 3 , 3 ) ) ;
}
// CHRISG: the conversion functions all seem to operate on m64's only...
// how do we make them work here?
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD ( const u32x4 & vSrcA )
{
fltx4 retval ;
SubFloat ( retval , 0 ) = ( ( float ) SubInt ( retval , 0 ) ) ;
SubFloat ( retval , 1 ) = ( ( float ) SubInt ( retval , 1 ) ) ;
SubFloat ( retval , 2 ) = ( ( float ) SubInt ( retval , 2 ) ) ;
SubFloat ( retval , 3 ) = ( ( float ) SubInt ( retval , 3 ) ) ;
return retval ;
}
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 SignedIntConvertToFltSIMD ( const i32x4 & vSrcA )
{
fltx4 retval ;
SubFloat ( retval , 0 ) = ( ( float ) ( reinterpret_cast < const int32 * > ( & vSrcA ) [ 0 ] ) ) ;
SubFloat ( retval , 1 ) = ( ( float ) ( reinterpret_cast < const int32 * > ( & vSrcA ) [ 1 ] ) ) ;
SubFloat ( retval , 2 ) = ( ( float ) ( reinterpret_cast < const int32 * > ( & vSrcA ) [ 2 ] ) ) ;
SubFloat ( retval , 3 ) = ( ( float ) ( reinterpret_cast < const int32 * > ( & vSrcA ) [ 3 ] ) ) ;
return retval ;
}
/*
works on fltx4 ' s as if they are four uints .
the first parameter contains the words to be shifted ,
the second contains the amount to shift by AS INTS
for i = 0 to 3
shift = vSrcB_i * 32 : ( i * 32 ) + 4
vReturned_i * 32 : ( i * 32 ) + 31 = vSrcA_i * 32 : ( i * 32 ) + 31 < < shift
*/
FORCEINLINE i32x4 IntShiftLeftWordSIMD ( const i32x4 & vSrcA , const i32x4 & vSrcB )
{
i32x4 retval ;
SubInt ( retval , 0 ) = SubInt ( vSrcA , 0 ) < < SubInt ( vSrcB , 0 ) ;
SubInt ( retval , 1 ) = SubInt ( vSrcA , 1 ) < < SubInt ( vSrcB , 1 ) ;
SubInt ( retval , 2 ) = SubInt ( vSrcA , 2 ) < < SubInt ( vSrcB , 2 ) ;
SubInt ( retval , 3 ) = SubInt ( vSrcA , 3 ) < < SubInt ( vSrcB , 3 ) ;
return retval ;
}
// Fixed-point conversion and save as SIGNED INTS.
// pDest->x = Int (vSrc.x)
// note: some architectures have means of doing
// fixed point conversion when the fix depth is
// specified as an immediate.. but there is no way
// to guarantee an immediate as a parameter to function
// like this.
FORCEINLINE void ConvertStoreAsIntsSIMD ( intx4 * RESTRICT pDest , const fltx4 & vSrc )
{
__m64 bottom = _mm_cvttps_pi32 ( vSrc ) ;
__m64 top = _mm_cvttps_pi32 ( _mm_movehl_ps ( vSrc , vSrc ) ) ;
* reinterpret_cast < __m64 * > ( & ( * pDest ) [ 0 ] ) = bottom ;
* reinterpret_cast < __m64 * > ( & ( * pDest ) [ 2 ] ) = top ;
_mm_empty ( ) ;
}
# endif
// a={a.y, a.z, a.w, b.x } b={b.y, b.z, b.w, b.x }
FORCEINLINE void RotateLeftDoubleSIMD ( fltx4 & a , fltx4 & b )
{
a = SetWSIMD ( RotateLeft ( a ) , SplatXSIMD ( b ) ) ;
b = RotateLeft ( b ) ;
}
// // Some convenience operator overloads, which are just aliasing the functions above.
// Unneccessary on 360, as you already have them from xboxmath.h
# if !defined(_X360) && !defined( POSIX )
# if 1 // TODO: verify generation of non-bad code.
// Componentwise add
FORCEINLINE fltx4 operator + ( FLTX4 a , FLTX4 b )
{
return AddSIMD ( a , b ) ;
}
// Componentwise subtract
FORCEINLINE fltx4 operator - ( FLTX4 a , FLTX4 b )
{
return SubSIMD ( a , b ) ;
}
// Componentwise multiply
FORCEINLINE fltx4 operator * ( FLTX4 a , FLTX4 b )
{
return MulSIMD ( a , b ) ;
}
// No divide. You need to think carefully about whether you want a reciprocal
// or a reciprocal estimate.
// bitwise and
FORCEINLINE fltx4 operator & ( FLTX4 a , FLTX4 b )
{
return AndSIMD ( a , b ) ;
}
// bitwise or
FORCEINLINE fltx4 operator | ( FLTX4 a , FLTX4 b )
{
return OrSIMD ( a , b ) ;
}
// bitwise xor
FORCEINLINE fltx4 operator ^ ( FLTX4 a , FLTX4 b )
{
return XorSIMD ( a , b ) ;
}
// unary negate
FORCEINLINE fltx4 operator - ( FLTX4 a )
{
return NegSIMD ( a ) ;
}
# endif // 0
# endif
struct ALIGN16 fourplanes_t
{
fltx4 nX ;
fltx4 nY ;
fltx4 nZ ;
fltx4 dist ;
fltx4 xSign ;
fltx4 ySign ;
fltx4 zSign ;
fltx4 nXAbs ;
fltx4 nYAbs ;
fltx4 nZAbs ;
void ComputeSignbits ( ) ;
// fast SIMD loads
void Set4Planes ( const VPlane * pPlanes ) ;
void Set2Planes ( const VPlane * pPlanes ) ;
void Get4Planes ( VPlane * pPlanesOut ) ;
void Get2Planes ( VPlane * pPlanesOut ) ;
// not-SIMD, much slower
void GetPlane ( int index , Vector * pNormal , float * pDist ) const ;
void SetPlane ( int index , const Vector & vecNormal , float planeDist ) ;
} ;
class ALIGN16 Frustum_t
{
public :
Frustum_t ( ) ;
void SetPlane ( int i , const Vector & vecNormal , float dist ) ;
void GetPlane ( int i , Vector * pNormalOut , float * pDistOut ) const ;
void SetPlanes ( const VPlane * pPlanes ) ;
void GetPlanes ( VPlane * pPlanesOut ) ;
// returns false if the box is within the frustum, true if it is outside
bool CullBox ( const Vector & mins , const Vector & maxs ) const ;
bool CullBoxCenterExtents ( const Vector & center , const Vector & extents ) const ;
bool CullBox ( const fltx4 & fl4Mins , const fltx4 & fl4Maxs ) const ;
bool CullBoxCenterExtents ( const fltx4 & fl4Center , const fltx4 & fl4Extents ) const ;
fourplanes_t planes [ 2 ] ;
} ;
/// class FourVectors stores 4 independent vectors for use in SIMD processing. These vectors are
/// stored in the format x x x x y y y y z z z z so that they can be efficiently SIMD-accelerated.
class ALIGN16 FourVectors
{
public :
fltx4 x , y , z ;
FourVectors ( void )
{
}
FourVectors ( FourVectors const & src )
{
x = src . x ;
y = src . y ;
z = src . z ;
}
FORCEINLINE FourVectors ( float a )
{
fltx4 aReplicated = ReplicateX4 ( a ) ;
x = y = z = aReplicated ;
}
/// construct a FourVectors from 4 separate Vectors
FORCEINLINE FourVectors ( Vector const & a , Vector const & b , Vector const & c , Vector const & d )
{
LoadAndSwizzle ( a , b , c , d ) ;
}
/// construct a FourVectors from 4 separate Vectors
FORCEINLINE FourVectors ( VectorAligned const & a , VectorAligned const & b , VectorAligned const & c , VectorAligned const & d )
{
LoadAndSwizzleAligned ( a , b , c , d ) ;
}
// construct from twelve floats; really only useful for static const constructors.
// input arrays must be aligned, and in the fourvectors' native format
// (eg in xxxx,yyyy,zzzz form)
// each pointer should be to an aligned array of four floats
FORCEINLINE FourVectors ( const float * xs , const float * ys , const float * zs ) :
x ( LoadAlignedSIMD ( xs ) ) , y ( LoadAlignedSIMD ( ys ) ) , z ( LoadAlignedSIMD ( zs ) )
{ } ;
FORCEINLINE void DuplicateVector ( Vector const & v ) //< set all 4 vectors to the same vector value
{
x = ReplicateX4 ( v . x ) ;
y = ReplicateX4 ( v . y ) ;
z = ReplicateX4 ( v . z ) ;
}
FORCEINLINE fltx4 const & operator [ ] ( int idx ) const
{
return * ( ( & x ) + idx ) ;
}
FORCEINLINE fltx4 & operator [ ] ( int idx )
{
return * ( ( & x ) + idx ) ;
}
FORCEINLINE void operator + = ( FourVectors const & b ) //< add 4 vectors to another 4 vectors
{
x = AddSIMD ( x , b . x ) ;
y = AddSIMD ( y , b . y ) ;
z = AddSIMD ( z , b . z ) ;
}
FORCEINLINE FourVectors operator + ( FourVectors const & b ) //< add 4 vectors to another 4 vectors
{
FourVectors result ;
result . x = AddSIMD ( x , b . x ) ;
result . y = AddSIMD ( y , b . y ) ;
result . z = AddSIMD ( z , b . z ) ;
return result ;
}
FORCEINLINE void operator - = ( FourVectors const & b ) //< subtract 4 vectors from another 4
{
x = SubSIMD ( x , b . x ) ;
y = SubSIMD ( y , b . y ) ;
z = SubSIMD ( z , b . z ) ;
}
FORCEINLINE FourVectors operator - ( FourVectors const & b ) //< add 4 vectors to another 4 vectors
{
FourVectors result ;
result . x = SubSIMD ( x , b . x ) ;
result . y = SubSIMD ( y , b . y ) ;
result . z = SubSIMD ( z , b . z ) ;
return result ;
}
FORCEINLINE void operator * = ( FourVectors const & b ) //< scale all four vectors per component scale
{
x = MulSIMD ( x , b . x ) ;
y = MulSIMD ( y , b . y ) ;
z = MulSIMD ( z , b . z ) ;
}
FORCEINLINE void operator * = ( const fltx4 & scale ) //< scale
{
x = MulSIMD ( x , scale ) ;
y = MulSIMD ( y , scale ) ;
z = MulSIMD ( z , scale ) ;
}
FORCEINLINE void operator * = ( float scale ) //< uniformly scale all 4 vectors
{
fltx4 scalepacked = ReplicateX4 ( scale ) ;
* this * = scalepacked ;
}
FORCEINLINE fltx4 operator * ( FourVectors const & b ) const //< 4 dot products
{
fltx4 dot = MulSIMD ( x , b . x ) ;
dot = MaddSIMD ( y , b . y , dot ) ;
dot = MaddSIMD ( z , b . z , dot ) ;
return dot ;
}
FORCEINLINE fltx4 operator * ( Vector const & b ) const //< dot product all 4 vectors with 1 vector
{
fltx4 dot = MulSIMD ( x , ReplicateX4 ( b . x ) ) ;
dot = MaddSIMD ( y , ReplicateX4 ( b . y ) , dot ) ;
dot = MaddSIMD ( z , ReplicateX4 ( b . z ) , dot ) ;
return dot ;
}
FORCEINLINE FourVectors operator * ( float b ) const //< scale
{
fltx4 scalepacked = ReplicateX4 ( b ) ;
FourVectors res ;
res . x = MulSIMD ( x , scalepacked ) ;
res . y = MulSIMD ( y , scalepacked ) ;
res . z = MulSIMD ( z , scalepacked ) ;
return res ;
}
FORCEINLINE void VProduct ( FourVectors const & b ) //< component by component mul
{
x = MulSIMD ( x , b . x ) ;
y = MulSIMD ( y , b . y ) ;
z = MulSIMD ( z , b . z ) ;
}
FORCEINLINE void MakeReciprocal ( void ) //< (x,y,z)=(1/x,1/y,1/z)
{
x = ReciprocalSIMD ( x ) ;
y = ReciprocalSIMD ( y ) ;
z = ReciprocalSIMD ( z ) ;
}
FORCEINLINE void MakeReciprocalSaturate ( void ) //< (x,y,z)=(1/x,1/y,1/z), 1/0=1.0e23
{
x = ReciprocalSaturateSIMD ( x ) ;
y = ReciprocalSaturateSIMD ( y ) ;
z = ReciprocalSaturateSIMD ( z ) ;
}
// Assume the given matrix is a rotation, and rotate these vectors by it.
// If you have a long list of FourVectors structures that you all want
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
inline void RotateBy ( const matrix3x4_t & matrix ) ;
/// You can use this to rotate a long array of FourVectors all by the same
/// matrix. The first parameter is the head of the array. The second is the
/// number of vectors to rotate. The third is the matrix.
static void RotateManyBy ( FourVectors * RESTRICT pVectors , unsigned int numVectors , const matrix3x4_t & rotationMatrix ) ;
static void RotateManyBy ( FourVectors * RESTRICT pVectors , unsigned int numVectors , const matrix3x4_t & rotationMatrix , FourVectors * RESTRICT pOut ) ;
/// Assume the vectors are points, and transform them in place by the matrix.
inline void TransformBy ( const matrix3x4_t & matrix ) ;
/// You can use this to Transform a long array of FourVectors all by the same
/// matrix. The first parameter is the head of the array. The second is the
/// number of vectors to rotate. The third is the matrix. The fourth is the
/// output buffer, which must not overlap the pVectors buffer. This is not
/// an in-place transformation.
static void TransformManyBy ( FourVectors * RESTRICT pVectors , unsigned int numVectors , const matrix3x4_t & rotationMatrix , FourVectors * RESTRICT pOut ) ;
/// You can use this to Transform a long array of FourVectors all by the same
/// matrix. The first parameter is the head of the array. The second is the
/// number of vectors to rotate. The third is the matrix. The fourth is the
/// output buffer, which must not overlap the pVectors buffer.
/// This is an in-place transformation.
static void TransformManyBy ( FourVectors * RESTRICT pVectors , unsigned int numVectors , const matrix3x4_t & rotationMatrix ) ;
static void CalcClosestPointOnLineSIMD ( const FourVectors & P , const FourVectors & vLineA , const FourVectors & vLineB , FourVectors & vClosest , fltx4 * outT = 0 ) ;
static fltx4 CalcClosestPointToLineTSIMD ( const FourVectors & P , const FourVectors & vLineA , const FourVectors & vLineB , FourVectors & vDir ) ;
// X(),Y(),Z() - get at the desired component of the i'th (0..3) vector.
FORCEINLINE const float & X ( int idx ) const
{
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
return SubFloat ( ( fltx4 & ) x , idx ) ;
}
FORCEINLINE const float & Y ( int idx ) const
{
return SubFloat ( ( fltx4 & ) y , idx ) ;
}
FORCEINLINE const float & Z ( int idx ) const
{
return SubFloat ( ( fltx4 & ) z , idx ) ;
}
FORCEINLINE float & X ( int idx )
{
return SubFloat ( x , idx ) ;
}
FORCEINLINE float & Y ( int idx )
{
return SubFloat ( y , idx ) ;
}
FORCEINLINE float & Z ( int idx )
{
return SubFloat ( z , idx ) ;
}
FORCEINLINE Vector Vec ( int idx ) const //< unpack one of the vectors
{
return Vector ( X ( idx ) , Y ( idx ) , Z ( idx ) ) ;
}
FORCEINLINE void operator = ( FourVectors const & src )
{
x = src . x ;
y = src . y ;
z = src . z ;
}
/// LoadAndSwizzle - load 4 Vectors into a FourVectors, performing transpose op
FORCEINLINE void LoadAndSwizzle ( Vector const & a , Vector const & b , Vector const & c , Vector const & d )
{
// TransposeSIMD has large sub-expressions that the compiler can't eliminate on x360
// use an unfolded implementation here
# if _X360
fltx4 tx = LoadUnalignedSIMD ( & a . x ) ;
fltx4 ty = LoadUnalignedSIMD ( & b . x ) ;
fltx4 tz = LoadUnalignedSIMD ( & c . x ) ;
fltx4 tw = LoadUnalignedSIMD ( & d . x ) ;
fltx4 r0 = __vmrghw ( tx , tz ) ;
fltx4 r1 = __vmrghw ( ty , tw ) ;
fltx4 r2 = __vmrglw ( tx , tz ) ;
fltx4 r3 = __vmrglw ( ty , tw ) ;
x = __vmrghw ( r0 , r1 ) ;
y = __vmrglw ( r0 , r1 ) ;
z = __vmrghw ( r2 , r3 ) ;
# else
x = LoadUnalignedSIMD ( & ( a . x ) ) ;
y = LoadUnalignedSIMD ( & ( b . x ) ) ;
z = LoadUnalignedSIMD ( & ( c . x ) ) ;
fltx4 w = LoadUnalignedSIMD ( & ( d . x ) ) ;
// now, matrix is:
// x y z ?
// x y z ?
// x y z ?
// x y z ?
TransposeSIMD ( x , y , z , w ) ;
# endif
}
FORCEINLINE void LoadAndSwizzle ( Vector const & a )
{
LoadAndSwizzle ( a , a , a , a ) ;
}
// Broadcasts a, b, c, and d into the four vectors
// This is only performant if the floats are ALREADY IN MEMORY
// and not on registers -- eg,
// .Load( &fltArrray[0], &fltArrray[1], &fltArrray[2], &fltArrray[3] ) is okay,
// .Load( fltArrray[0] * 0.5f, fltArrray[1] * 0.5f, fltArrray[2] * 0.5f, fltArrray[3] * 0.5f ) is not.
FORCEINLINE void Load ( const float & a , const float & b , const float & c , const float & d )
{
# if _X360
fltx4 temp [ 4 ] ;
temp [ 0 ] = LoadUnalignedFloatSIMD ( & a ) ;
temp [ 1 ] = LoadUnalignedFloatSIMD ( & b ) ;
temp [ 2 ] = LoadUnalignedFloatSIMD ( & c ) ;
temp [ 3 ] = LoadUnalignedFloatSIMD ( & d ) ;
y = __vmrghw ( temp [ 0 ] , temp [ 2 ] ) ; // ac__
z = __vmrghw ( temp [ 1 ] , temp [ 3 ] ) ; // bd__
x = __vmrghw ( y , z ) ; // abcd
y = x ;
z = x ;
# else
ALIGN16 float temp [ 4 ] ;
temp [ 0 ] = a ; temp [ 1 ] = b ; temp [ 2 ] = c ; temp [ 3 ] = d ;
fltx4 v = LoadAlignedSIMD ( temp ) ;
x = v ;
y = v ;
z = v ;
# endif
}
// transform four horizontal vectors into the internal vertical ones
FORCEINLINE void LoadAndSwizzle ( FLTX4 a , FLTX4 b , FLTX4 c , FLTX4 d )
{
# if _X360
fltx4 tx = a ;
fltx4 ty = b ;
fltx4 tz = c ;
fltx4 tw = d ;
fltx4 r0 = __vmrghw ( tx , tz ) ;
fltx4 r1 = __vmrghw ( ty , tw ) ;
fltx4 r2 = __vmrglw ( tx , tz ) ;
fltx4 r3 = __vmrglw ( ty , tw ) ;
x = __vmrghw ( r0 , r1 ) ;
y = __vmrglw ( r0 , r1 ) ;
z = __vmrghw ( r2 , r3 ) ;
# else
x = a ;
y = b ;
z = c ;
fltx4 w = d ;
// now, matrix is:
// x y z ?
// x y z ?
// x y z ?
// x y z ?
TransposeSIMD ( x , y , z , w ) ;
# endif
}
/// LoadAndSwizzleAligned - load 4 Vectors into a FourVectors, performing transpose op.
/// all 4 vectors must be 128 bit boundary
FORCEINLINE void LoadAndSwizzleAligned ( const float * RESTRICT a , const float * RESTRICT b , const float * RESTRICT c , const float * RESTRICT d )
{
# if _X360
fltx4 tx = LoadAlignedSIMD ( a ) ;
fltx4 ty = LoadAlignedSIMD ( b ) ;
fltx4 tz = LoadAlignedSIMD ( c ) ;
fltx4 tw = LoadAlignedSIMD ( d ) ;
fltx4 r0 = __vmrghw ( tx , tz ) ;
fltx4 r1 = __vmrghw ( ty , tw ) ;
fltx4 r2 = __vmrglw ( tx , tz ) ;
fltx4 r3 = __vmrglw ( ty , tw ) ;
x = __vmrghw ( r0 , r1 ) ;
y = __vmrglw ( r0 , r1 ) ;
z = __vmrghw ( r2 , r3 ) ;
# else
x = LoadAlignedSIMD ( a ) ;
y = LoadAlignedSIMD ( b ) ;
z = LoadAlignedSIMD ( c ) ;
fltx4 w = LoadAlignedSIMD ( d ) ;
// now, matrix is:
// x y z ?
// x y z ?
// x y z ?
// x y z ?
TransposeSIMD ( x , y , z , w ) ;
# endif
}
FORCEINLINE void LoadAndSwizzleAligned ( Vector const & a , Vector const & b , Vector const & c , Vector const & d )
{
LoadAndSwizzleAligned ( & a . x , & b . x , & c . x , & d . x ) ;
}
/// Unpack a FourVectors back into four horizontal fltx4s.
/// Since the FourVectors doesn't store a w row, you can optionally
/// specify your own; otherwise it will be 0.
/// This function ABSOLUTELY MUST be inlined or the reference parameters will
/// induce a severe load-hit-store.
FORCEINLINE void TransposeOnto ( fltx4 & out0 , fltx4 & out1 , fltx4 & out2 , fltx4 & out3 , FLTX4 w = Four_Zeros ) const
{
// TransposeSIMD has large sub-expressions that the compiler can't eliminate on x360
// use an unfolded implementation here
# if _X360
fltx4 r0 = __vmrghw ( x , z ) ;
fltx4 r1 = __vmrghw ( y , w ) ;
fltx4 r2 = __vmrglw ( x , z ) ;
fltx4 r3 = __vmrglw ( y , w ) ;
out0 = __vmrghw ( r0 , r1 ) ;
out1 = __vmrglw ( r0 , r1 ) ;
out2 = __vmrghw ( r2 , r3 ) ;
out3 = __vmrglw ( r2 , r3 ) ;
# else
out0 = x ;
out1 = y ;
out2 = z ;
out3 = w ;
TransposeSIMD ( out0 , out1 , out2 , out3 ) ;
# endif
}
/// Store a FourVectors into four NON-CONTIGUOUS Vector*'s.
FORCEINLINE void StoreUnalignedVector3SIMD ( Vector * RESTRICT out0 , Vector * RESTRICT out1 , Vector * RESTRICT out2 , Vector * RESTRICT out3 ) const ;
/// Store a FourVectors into four NON-CONTIGUOUS VectorAligned s.
FORCEINLINE void StoreAlignedVectorSIMD ( VectorAligned * RESTRICT out0 , VectorAligned * RESTRICT out1 , VectorAligned * RESTRICT out2 , VectorAligned * RESTRICT out3 ) const ;
/// Store a FourVectors into four CONSECUTIVE Vectors in memory,
/// where the first vector IS NOT aligned on a 16-byte boundary.
FORCEINLINE void StoreUnalignedContigVector3SIMD ( Vector * RESTRICT pDestination )
{
fltx4 a , b , c , d ;
TransposeOnto ( a , b , c , d ) ;
StoreFourUnalignedVector3SIMD ( a , b , c , d , pDestination ) ;
}
/// Store a FourVectors into four CONSECUTIVE Vectors in memory,
/// where the first vector IS aligned on a 16-byte boundary.
/// (since four Vector3s = 48 bytes, groups of four can be said
/// to be 16-byte aligned though obviously the 2nd, 3d, and 4th
/// vectors in the group individually are not)
FORCEINLINE void StoreAlignedContigVector3SIMD ( Vector * RESTRICT pDestination )
{
fltx4 a , b , c , d ;
TransposeOnto ( a , b , c , d ) ;
StoreFourAlignedVector3SIMD ( a , b , c , d , pDestination ) ;
}
/// Store a FourVectors into four CONSECUTIVE VectorAligneds in memory
FORCEINLINE void StoreAlignedContigVectorASIMD ( VectorAligned * RESTRICT pDestination )
{
StoreAlignedVectorSIMD ( pDestination , pDestination + 1 , pDestination + 2 , pDestination + 3 ) ;
}
/// return the squared length of all 4 vectors
FORCEINLINE fltx4 length2 ( void ) const
{
return ( * this ) * ( * this ) ;
}
/// return the approximate length of all 4 vectors. uses the sqrt approximation instruction
FORCEINLINE fltx4 length ( void ) const
{
return SqrtEstSIMD ( length2 ( ) ) ;
}
/// normalize all 4 vectors in place. not mega-accurate (uses reciprocal approximation instruction)
FORCEINLINE void VectorNormalizeFast ( void )
{
fltx4 mag_sq = ( * this ) * ( * this ) ; // length^2
( * this ) * = ReciprocalSqrtEstSIMD ( mag_sq ) ; // *(1.0/sqrt(length^2))
}
/// normalize all 4 vectors in place.
FORCEINLINE void VectorNormalize ( void )
{
fltx4 mag_sq = ( * this ) * ( * this ) ; // length^2
( * this ) * = ReciprocalSqrtSIMD ( mag_sq ) ; // *(1.0/sqrt(length^2))
}
FORCEINLINE fltx4 DistToSqr ( FourVectors const & pnt )
{
fltx4 fl4dX = SubSIMD ( pnt . x , x ) ;
fltx4 fl4dY = SubSIMD ( pnt . y , y ) ;
fltx4 fl4dZ = SubSIMD ( pnt . z , z ) ;
return AddSIMD ( MulSIMD ( fl4dX , fl4dX ) , AddSIMD ( MulSIMD ( fl4dY , fl4dY ) , MulSIMD ( fl4dZ , fl4dZ ) ) ) ;
}
FORCEINLINE fltx4 TValueOfClosestPointOnLine ( FourVectors const & p0 , FourVectors const & p1 ) const
{
FourVectors lineDelta = p1 ;
lineDelta - = p0 ;
fltx4 OOlineDirDotlineDir = ReciprocalSIMD ( p1 * p1 ) ;
FourVectors v4OurPnt = * this ;
v4OurPnt - = p0 ;
return MulSIMD ( OOlineDirDotlineDir , v4OurPnt * lineDelta ) ;
}
FORCEINLINE fltx4 DistSqrToLineSegment ( FourVectors const & p0 , FourVectors const & p1 ) const
{
FourVectors lineDelta = p1 ;
FourVectors v4OurPnt = * this ;
v4OurPnt - = p0 ;
lineDelta - = p0 ;
fltx4 OOlineDirDotlineDir = ReciprocalSIMD ( lineDelta * lineDelta ) ;
fltx4 fl4T = MulSIMD ( OOlineDirDotlineDir , v4OurPnt * lineDelta ) ;
fl4T = MinSIMD ( fl4T , Four_Ones ) ;
fl4T = MaxSIMD ( fl4T , Four_Zeros ) ;
lineDelta * = fl4T ;
return v4OurPnt . DistToSqr ( lineDelta ) ;
}
} ;
//
inline FourVectors Mul ( const FourVectors & a , const fltx4 & b )
{
FourVectors ret ;
ret . x = MulSIMD ( a . x , b ) ;
ret . y = MulSIMD ( a . y , b ) ;
ret . z = MulSIMD ( a . z , b ) ;
return ret ;
}
inline FourVectors Mul ( const FourVectors & a , const FourVectors & b )
{
FourVectors ret ;
ret . x = MulSIMD ( a . x , b . x ) ;
ret . y = MulSIMD ( a . y , b . y ) ;
ret . z = MulSIMD ( a . z , b . z ) ;
return ret ;
}
inline FourVectors Madd ( const FourVectors & a , const fltx4 & b , const FourVectors & c ) // a*b + c
{
FourVectors ret ;
ret . x = MaddSIMD ( a . x , b , c . x ) ;
ret . y = MaddSIMD ( a . y , b , c . y ) ;
ret . z = MaddSIMD ( a . z , b , c . z ) ;
return ret ;
}
/// form 4 cross products
inline FourVectors operator ^ ( const FourVectors & a , const FourVectors & b )
{
FourVectors ret ;
ret . x = SubSIMD ( MulSIMD ( a . y , b . z ) , MulSIMD ( a . z , b . y ) ) ;
ret . y = SubSIMD ( MulSIMD ( a . z , b . x ) , MulSIMD ( a . x , b . z ) ) ;
ret . z = SubSIMD ( MulSIMD ( a . x , b . y ) , MulSIMD ( a . y , b . x ) ) ;
return ret ;
}
inline FourVectors operator - ( const FourVectors & a , const FourVectors & b )
{
FourVectors ret ;
ret . x = SubSIMD ( a . x , b . x ) ;
ret . y = SubSIMD ( a . y , b . y ) ;
ret . z = SubSIMD ( a . z , b . z ) ;
return ret ;
}
/// component-by-componentwise MAX operator
inline FourVectors maximum ( const FourVectors & a , const FourVectors & b )
{
FourVectors ret ;
ret . x = MaxSIMD ( a . x , b . x ) ;
ret . y = MaxSIMD ( a . y , b . y ) ;
ret . z = MaxSIMD ( a . z , b . z ) ;
return ret ;
}
/// component-by-componentwise MIN operator
inline FourVectors minimum ( const FourVectors & a , const FourVectors & b )
{
FourVectors ret ;
ret . x = MinSIMD ( a . x , b . x ) ;
ret . y = MinSIMD ( a . y , b . y ) ;
ret . z = MinSIMD ( a . z , b . z ) ;
return ret ;
}
FORCEINLINE FourVectors RotateLeft ( const FourVectors & src )
{
FourVectors ret ;
ret . x = RotateLeft ( src . x ) ;
ret . y = RotateLeft ( src . y ) ;
ret . z = RotateLeft ( src . z ) ;
return ret ;
}
FORCEINLINE FourVectors RotateRight ( const FourVectors & src )
{
FourVectors ret ;
ret . x = RotateRight ( src . x ) ;
ret . y = RotateRight ( src . y ) ;
ret . z = RotateRight ( src . z ) ;
return ret ;
}
FORCEINLINE FourVectors MaskedAssign ( const fltx4 & ReplacementMask , const FourVectors & NewValue , const FourVectors & OldValue )
{
FourVectors ret ;
ret . x = MaskedAssign ( ReplacementMask , NewValue . x , OldValue . x ) ;
ret . y = MaskedAssign ( ReplacementMask , NewValue . y , OldValue . y ) ;
ret . z = MaskedAssign ( ReplacementMask , NewValue . z , OldValue . z ) ;
return ret ;
}
/// calculate reflection vector. incident and normal dir assumed normalized
FORCEINLINE FourVectors VectorReflect ( const FourVectors & incident , const FourVectors & normal )
{
FourVectors ret = incident ;
fltx4 iDotNx2 = incident * normal ;
iDotNx2 = AddSIMD ( iDotNx2 , iDotNx2 ) ;
FourVectors nPart = normal ;
nPart * = iDotNx2 ;
ret - = nPart ; // i-2(n*i)n
return ret ;
}
/// calculate slide vector. removes all components of a vector which are perpendicular to a normal vector.
FORCEINLINE FourVectors VectorSlide ( const FourVectors & incident , const FourVectors & normal )
{
FourVectors ret = incident ;
fltx4 iDotN = incident * normal ;
FourVectors nPart = normal ;
nPart * = iDotN ;
ret - = nPart ; // i-(n*i)n
return ret ;
}
/// normalize all 4 vectors in place. not mega-accurate (uses reciprocal approximation instruction)
FORCEINLINE FourVectors VectorNormalizeFast ( const FourVectors & src )
{
fltx4 mag_sq = ReciprocalSqrtEstSIMD ( src * src ) ; // *(1.0/sqrt(length^2))
FourVectors result ;
result . x = MulSIMD ( src . x , mag_sq ) ;
result . y = MulSIMD ( src . y , mag_sq ) ;
result . z = MulSIMD ( src . z , mag_sq ) ;
return result ;
}
/// Store a FourVectors into four NON-CONTIGUOUS Vector*'s.
FORCEINLINE void FourVectors : : StoreUnalignedVector3SIMD ( Vector * RESTRICT out0 , Vector * RESTRICT out1 , Vector * RESTRICT out2 , Vector * RESTRICT out3 ) const
{
# ifdef _X360
fltx4 x0 , x1 , x2 , x3 , y0 , y1 , y2 , y3 , z0 , z1 , z2 , z3 ;
x0 = SplatXSIMD ( x ) ; // all x0x0x0x0
x1 = SplatYSIMD ( x ) ;
x2 = SplatZSIMD ( x ) ;
x3 = SplatWSIMD ( x ) ;
y0 = SplatXSIMD ( y ) ;
y1 = SplatYSIMD ( y ) ;
y2 = SplatZSIMD ( y ) ;
y3 = SplatWSIMD ( y ) ;
z0 = SplatXSIMD ( z ) ;
z1 = SplatYSIMD ( z ) ;
z2 = SplatZSIMD ( z ) ;
z3 = SplatWSIMD ( z ) ;
__stvewx ( x0 , out0 - > Base ( ) , 0 ) ; // store X word
__stvewx ( y0 , out0 - > Base ( ) , 4 ) ; // store Y word
__stvewx ( z0 , out0 - > Base ( ) , 8 ) ; // store Z word
__stvewx ( x1 , out1 - > Base ( ) , 0 ) ; // store X word
__stvewx ( y1 , out1 - > Base ( ) , 4 ) ; // store Y word
__stvewx ( z1 , out1 - > Base ( ) , 8 ) ; // store Z word
__stvewx ( x2 , out2 - > Base ( ) , 0 ) ; // store X word
__stvewx ( y2 , out2 - > Base ( ) , 4 ) ; // store Y word
__stvewx ( z2 , out2 - > Base ( ) , 8 ) ; // store Z word
__stvewx ( x3 , out3 - > Base ( ) , 0 ) ; // store X word
__stvewx ( y3 , out3 - > Base ( ) , 4 ) ; // store Y word
__stvewx ( z3 , out3 - > Base ( ) , 8 ) ; // store Z word
# else
fltx4 a , b , c , d ;
TransposeOnto ( a , b , c , d ) ;
StoreUnaligned3SIMD ( out0 - > Base ( ) , a ) ;
StoreUnaligned3SIMD ( out1 - > Base ( ) , b ) ;
StoreUnaligned3SIMD ( out2 - > Base ( ) , c ) ;
StoreUnaligned3SIMD ( out3 - > Base ( ) , d ) ;
# endif
}
/// Store a FourVectors into four NON-CONTIGUOUS VectorAligned s.
FORCEINLINE void FourVectors : : StoreAlignedVectorSIMD ( VectorAligned * RESTRICT out0 , VectorAligned * RESTRICT out1 , VectorAligned * RESTRICT out2 , VectorAligned * RESTRICT out3 ) const
{
fltx4 a , b , c , d ;
TransposeOnto ( a , b , c , d ) ;
StoreAligned3SIMD ( out0 , a ) ;
StoreAligned3SIMD ( out1 , b ) ;
StoreAligned3SIMD ( out2 , c ) ;
StoreAligned3SIMD ( out3 , d ) ;
}
// Assume the given matrix is a rotation, and rotate these vectors by it.
// If you have a long list of FourVectors structures that you all want
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
void FourVectors : : RotateBy ( const matrix3x4_t & matrix )
{
// Splat out each of the entries in the matrix to a fltx4. Do this
// in the order that we will need them, to hide latency. I'm
// avoiding making an array of them, so that they'll remain in
// registers.
fltx4 matSplat00 , matSplat01 , matSplat02 ,
matSplat10 , matSplat11 , matSplat12 ,
matSplat20 , matSplat21 , matSplat22 ;
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
// often unaligned. The w components will be the tranpose row of
// the matrix, but we don't really care about that.
fltx4 matCol0 = LoadUnalignedSIMD ( matrix [ 0 ] ) ;
fltx4 matCol1 = LoadUnalignedSIMD ( matrix [ 1 ] ) ;
fltx4 matCol2 = LoadUnalignedSIMD ( matrix [ 2 ] ) ;
matSplat00 = SplatXSIMD ( matCol0 ) ;
matSplat01 = SplatYSIMD ( matCol0 ) ;
matSplat02 = SplatZSIMD ( matCol0 ) ;
matSplat10 = SplatXSIMD ( matCol1 ) ;
matSplat11 = SplatYSIMD ( matCol1 ) ;
matSplat12 = SplatZSIMD ( matCol1 ) ;
matSplat20 = SplatXSIMD ( matCol2 ) ;
matSplat21 = SplatYSIMD ( matCol2 ) ;
matSplat22 = SplatZSIMD ( matCol2 ) ;
// Trust in the compiler to schedule these operations correctly:
fltx4 outX , outY , outZ ;
outX = AddSIMD ( AddSIMD ( MulSIMD ( x , matSplat00 ) , MulSIMD ( y , matSplat01 ) ) , MulSIMD ( z , matSplat02 ) ) ;
outY = AddSIMD ( AddSIMD ( MulSIMD ( x , matSplat10 ) , MulSIMD ( y , matSplat11 ) ) , MulSIMD ( z , matSplat12 ) ) ;
outZ = AddSIMD ( AddSIMD ( MulSIMD ( x , matSplat20 ) , MulSIMD ( y , matSplat21 ) ) , MulSIMD ( z , matSplat22 ) ) ;
x = outX ;
y = outY ;
z = outZ ;
}
// Assume the given matrix is a rotation, and rotate these vectors by it.
// If you have a long list of FourVectors structures that you all want
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
void FourVectors : : TransformBy ( const matrix3x4_t & matrix )
{
// Splat out each of the entries in the matrix to a fltx4. Do this
// in the order that we will need them, to hide latency. I'm
// avoiding making an array of them, so that they'll remain in
// registers.
fltx4 matSplat00 , matSplat01 , matSplat02 ,
matSplat10 , matSplat11 , matSplat12 ,
matSplat20 , matSplat21 , matSplat22 ;
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
// often unaligned. The w components will be the tranpose row of
// the matrix, but we don't really care about that.
fltx4 matCol0 = LoadUnalignedSIMD ( matrix [ 0 ] ) ;
fltx4 matCol1 = LoadUnalignedSIMD ( matrix [ 1 ] ) ;
fltx4 matCol2 = LoadUnalignedSIMD ( matrix [ 2 ] ) ;
matSplat00 = SplatXSIMD ( matCol0 ) ;
matSplat01 = SplatYSIMD ( matCol0 ) ;
matSplat02 = SplatZSIMD ( matCol0 ) ;
matSplat10 = SplatXSIMD ( matCol1 ) ;
matSplat11 = SplatYSIMD ( matCol1 ) ;
matSplat12 = SplatZSIMD ( matCol1 ) ;
matSplat20 = SplatXSIMD ( matCol2 ) ;
matSplat21 = SplatYSIMD ( matCol2 ) ;
matSplat22 = SplatZSIMD ( matCol2 ) ;
// Trust in the compiler to schedule these operations correctly:
fltx4 outX , outY , outZ ;
outX = MaddSIMD ( z , matSplat02 , AddSIMD ( MulSIMD ( x , matSplat00 ) , MulSIMD ( y , matSplat01 ) ) ) ;
outY = MaddSIMD ( z , matSplat12 , AddSIMD ( MulSIMD ( x , matSplat10 ) , MulSIMD ( y , matSplat11 ) ) ) ;
outZ = MaddSIMD ( z , matSplat22 , AddSIMD ( MulSIMD ( x , matSplat20 ) , MulSIMD ( y , matSplat21 ) ) ) ;
x = AddSIMD ( outX , ReplicateX4 ( matrix [ 0 ] [ 3 ] ) ) ;
y = AddSIMD ( outY , ReplicateX4 ( matrix [ 1 ] [ 3 ] ) ) ;
z = AddSIMD ( outZ , ReplicateX4 ( matrix [ 2 ] [ 3 ] ) ) ;
}
/// quick, low quality perlin-style noise() function suitable for real time use.
/// return value is -1..1. Only reliable around +/- 1 million or so.
fltx4 NoiseSIMD ( const fltx4 & x , const fltx4 & y , const fltx4 & z ) ;
fltx4 NoiseSIMD ( FourVectors const & v ) ;
// vector valued noise direction
FourVectors DNoiseSIMD ( FourVectors const & v ) ;
// vector value "curl" noise function. see http://hyperphysics.phy-astr.gsu.edu/hbase/curl.html
FourVectors CurlNoiseSIMD ( FourVectors const & v ) ;
/// calculate the absolute value of a packed single
inline fltx4 fabs ( const fltx4 & x )
{
return AndSIMD ( x , LoadAlignedSIMD ( g_SIMD_clear_signmask ) ) ;
}
/// negate all four components of a SIMD packed single
inline fltx4 fnegate ( const fltx4 & x )
{
return XorSIMD ( x , LoadAlignedSIMD ( g_SIMD_signmask ) ) ;
}
fltx4 Pow_FixedPoint_Exponent_SIMD ( const fltx4 & x , int exponent ) ;
// PowSIMD - raise a SIMD register to a power. This is analogous to the C pow() function, with some
// restictions: fractional exponents are only handled with 2 bits of precision. Basically,
// fractions of 0,.25,.5, and .75 are handled. PowSIMD(x,.30) will be the same as PowSIMD(x,.25).
// negative and fractional powers are handled by the SIMD reciprocal and square root approximation
// instructions and so are not especially accurate ----Note that this routine does not raise
// numeric exceptions because it uses SIMD--- This routine is O(log2(exponent)).
inline fltx4 PowSIMD ( const fltx4 & x , float exponent )
{
return Pow_FixedPoint_Exponent_SIMD ( x , ( int ) ( 4.0 * exponent ) ) ;
}
// random number generation - generate 4 random numbers quickly.
void SeedRandSIMD ( uint32 seed ) ; // seed the random # generator
fltx4 RandSIMD ( int nContext = 0 ) ; // return 4 numbers in the 0..1 range
// for multithreaded, you need to use these and use the argument form of RandSIMD:
int GetSIMDRandContext ( void ) ;
void ReleaseSIMDRandContext ( int nContext ) ;
FORCEINLINE fltx4 RandSignedSIMD ( void ) // -1..1
{
return SubSIMD ( MulSIMD ( Four_Twos , RandSIMD ( ) ) , Four_Ones ) ;
}
FORCEINLINE fltx4 LerpSIMD ( const fltx4 & percent , const fltx4 & a , const fltx4 & b )
{
return AddSIMD ( a , MulSIMD ( SubSIMD ( b , a ) , percent ) ) ;
}
FORCEINLINE fltx4 RemapValClampedSIMD ( const fltx4 & val , const fltx4 & a , const fltx4 & b , const fltx4 & c , const fltx4 & d ) // Remap val from clamped range between a and b to new range between c and d
{
fltx4 range = MaskedAssign ( CmpEqSIMD ( a , b ) , Four_Ones , SubSIMD ( b , a ) ) ; //make sure range > 0
fltx4 cVal = MaxSIMD ( Four_Zeros , MinSIMD ( Four_Ones , DivSIMD ( SubSIMD ( val , a ) , range ) ) ) ; //saturate
return LerpSIMD ( cVal , c , d ) ;
}
// SIMD versions of mathlib simplespline functions
// hermite basis function for smooth interpolation
// Similar to Gain() above, but very cheap to call
// value should be between 0 & 1 inclusive
inline fltx4 SimpleSpline ( const fltx4 & value )
{
// Arranged to avoid a data dependency between these two MULs:
fltx4 valueDoubled = MulSIMD ( value , Four_Twos ) ;
fltx4 valueSquared = MulSIMD ( value , value ) ;
// Nice little ease-in, ease-out spline-like curve
return SubSIMD (
MulSIMD ( Four_Threes , valueSquared ) ,
MulSIMD ( valueDoubled , valueSquared ) ) ;
}
// remaps a value in [startInterval, startInterval+rangeInterval] from linear to
// spline using SimpleSpline
inline fltx4 SimpleSplineRemapValWithDeltas ( const fltx4 & val ,
const fltx4 & A , const fltx4 & BMinusA ,
const fltx4 & OneOverBMinusA , const fltx4 & C ,
const fltx4 & DMinusC )
{
// if ( A == B )
// return val >= B ? D : C;
fltx4 cVal = MulSIMD ( SubSIMD ( val , A ) , OneOverBMinusA ) ;
return AddSIMD ( C , MulSIMD ( DMinusC , SimpleSpline ( cVal ) ) ) ;
}
inline fltx4 SimpleSplineRemapValWithDeltasClamped ( const fltx4 & val ,
const fltx4 & A , const fltx4 & BMinusA ,
const fltx4 & OneOverBMinusA , const fltx4 & C ,
const fltx4 & DMinusC )
{
// if ( A == B )
// return val >= B ? D : C;
fltx4 cVal = MulSIMD ( SubSIMD ( val , A ) , OneOverBMinusA ) ;
cVal = MinSIMD ( Four_Ones , MaxSIMD ( Four_Zeros , cVal ) ) ;
return AddSIMD ( C , MulSIMD ( DMinusC , SimpleSpline ( cVal ) ) ) ;
}
FORCEINLINE fltx4 FracSIMD ( const fltx4 & val )
{
fltx4 fl4Abs = fabs ( val ) ;
fltx4 ival = SubSIMD ( AddSIMD ( fl4Abs , Four_2ToThe23s ) , Four_2ToThe23s ) ;
ival = MaskedAssign ( CmpGtSIMD ( ival , fl4Abs ) , SubSIMD ( ival , Four_Ones ) , ival ) ;
return XorSIMD ( SubSIMD ( fl4Abs , ival ) , XorSIMD ( val , fl4Abs ) ) ; // restore sign bits
}
FORCEINLINE fltx4 Mod2SIMD ( const fltx4 & val )
{
fltx4 fl4Abs = fabs ( val ) ;
fltx4 ival = SubSIMD ( AndSIMD ( LoadAlignedSIMD ( ( float * ) g_SIMD_lsbmask ) , AddSIMD ( fl4Abs , Four_2ToThe23s ) ) , Four_2ToThe23s ) ;
ival = MaskedAssign ( CmpGtSIMD ( ival , fl4Abs ) , SubSIMD ( ival , Four_Twos ) , ival ) ;
return XorSIMD ( SubSIMD ( fl4Abs , ival ) , XorSIMD ( val , fl4Abs ) ) ; // restore sign bits
}
FORCEINLINE fltx4 Mod2SIMDPositiveInput ( const fltx4 & val )
{
fltx4 ival = SubSIMD ( AndSIMD ( LoadAlignedSIMD ( g_SIMD_lsbmask ) , AddSIMD ( val , Four_2ToThe23s ) ) , Four_2ToThe23s ) ;
ival = MaskedAssign ( CmpGtSIMD ( ival , val ) , SubSIMD ( ival , Four_Twos ) , ival ) ;
return SubSIMD ( val , ival ) ;
}
// approximate sin of an angle, with -1..1 representing the whole sin wave period instead of -pi..pi.
// no range reduction is done - for values outside of 0..1 you won't like the results
FORCEINLINE fltx4 _SinEst01SIMD ( const fltx4 & val )
{
// really rough approximation - x*(4-x*4) - a parabola. s(0) = 0, s(.5) = 1, s(1)=0, smooth in-between.
// sufficient for simple oscillation.
return MulSIMD ( val , SubSIMD ( Four_Fours , MulSIMD ( val , Four_Fours ) ) ) ;
}
FORCEINLINE fltx4 _Sin01SIMD ( const fltx4 & val )
{
// not a bad approximation : parabola always over-estimates. Squared parabola always
// underestimates. So lets blend between them: goodsin = badsin + .225*( badsin^2-badsin)
fltx4 fl4BadEst = MulSIMD ( val , SubSIMD ( Four_Fours , MulSIMD ( val , Four_Fours ) ) ) ;
return AddSIMD ( MulSIMD ( Four_Point225s , SubSIMD ( MulSIMD ( fl4BadEst , fl4BadEst ) , fl4BadEst ) ) , fl4BadEst ) ;
}
// full range useable implementations
FORCEINLINE fltx4 SinEst01SIMD ( const fltx4 & val )
{
fltx4 fl4Abs = fabs ( val ) ;
fltx4 fl4Reduced2 = Mod2SIMDPositiveInput ( fl4Abs ) ;
fltx4 fl4OddMask = CmpGeSIMD ( fl4Reduced2 , Four_Ones ) ;
fltx4 fl4val = SubSIMD ( fl4Reduced2 , AndSIMD ( Four_Ones , fl4OddMask ) ) ;
fltx4 fl4Sin = _SinEst01SIMD ( fl4val ) ;
fl4Sin = XorSIMD ( fl4Sin , AndSIMD ( LoadAlignedSIMD ( g_SIMD_signmask ) , XorSIMD ( val , fl4OddMask ) ) ) ;
return fl4Sin ;
}
FORCEINLINE fltx4 Sin01SIMD ( const fltx4 & val )
{
fltx4 fl4Abs = fabs ( val ) ;
fltx4 fl4Reduced2 = Mod2SIMDPositiveInput ( fl4Abs ) ;
fltx4 fl4OddMask = CmpGeSIMD ( fl4Reduced2 , Four_Ones ) ;
fltx4 fl4val = SubSIMD ( fl4Reduced2 , AndSIMD ( Four_Ones , fl4OddMask ) ) ;
fltx4 fl4Sin = _Sin01SIMD ( fl4val ) ;
fl4Sin = XorSIMD ( fl4Sin , AndSIMD ( LoadAlignedSIMD ( g_SIMD_signmask ) , XorSIMD ( val , fl4OddMask ) ) ) ;
return fl4Sin ;
}
FORCEINLINE fltx4 NatExpSIMD ( const fltx4 & val ) // why is ExpSimd( x ) defined to be 2^x?
{
// need to write this. just stub with normal float implementation for now
fltx4 fl4Result ;
SubFloat ( fl4Result , 0 ) = exp ( SubFloat ( val , 0 ) ) ;
SubFloat ( fl4Result , 1 ) = exp ( SubFloat ( val , 1 ) ) ;
SubFloat ( fl4Result , 2 ) = exp ( SubFloat ( val , 2 ) ) ;
SubFloat ( fl4Result , 3 ) = exp ( SubFloat ( val , 3 ) ) ;
return fl4Result ;
}
// Schlick style Bias approximation see graphics gems 4 : bias(t,a)= t/( (1/a-2)*(1-t)+1)
FORCEINLINE fltx4 PreCalcBiasParameter ( const fltx4 & bias_parameter )
{
// convert perlin-style-bias parameter to the value right for the approximation
return SubSIMD ( ReciprocalSIMD ( bias_parameter ) , Four_Twos ) ;
}
FORCEINLINE fltx4 BiasSIMD ( const fltx4 & val , const fltx4 & precalc_param )
{
// similar to bias function except pass precalced bias value from calling PreCalcBiasParameter.
//!!speed!! use reciprocal est?
//!!speed!! could save one op by precalcing _2_ values
return DivSIMD ( val , AddSIMD ( MulSIMD ( precalc_param , SubSIMD ( Four_Ones , val ) ) , Four_Ones ) ) ;
}
//-----------------------------------------------------------------------------
// Box/plane test
// NOTE: The w component of emins + emaxs must be 1 for this to work
//-----------------------------------------------------------------------------
FORCEINLINE int BoxOnPlaneSideSIMD ( const fltx4 & emins , const fltx4 & emaxs , const cplane_t * p , float tolerance = 0.f )
{
fltx4 corners [ 2 ] ;
fltx4 normal = LoadUnalignedSIMD ( p - > normal . Base ( ) ) ;
fltx4 dist = ReplicateX4 ( - p - > dist ) ;
normal = SetWSIMD ( normal , dist ) ;
fltx4 t4 = ReplicateX4 ( tolerance ) ;
fltx4 negt4 = ReplicateX4 ( - tolerance ) ;
fltx4 cmp = CmpGeSIMD ( normal , Four_Zeros ) ;
corners [ 0 ] = MaskedAssign ( cmp , emaxs , emins ) ;
corners [ 1 ] = MaskedAssign ( cmp , emins , emaxs ) ;
fltx4 dot1 = Dot4SIMD ( normal , corners [ 0 ] ) ;
fltx4 dot2 = Dot4SIMD ( normal , corners [ 1 ] ) ;
cmp = CmpGeSIMD ( dot1 , t4 ) ;
fltx4 cmp2 = CmpGtSIMD ( negt4 , dot2 ) ;
fltx4 result = MaskedAssign ( cmp , Four_Ones , Four_Zeros ) ;
fltx4 result2 = MaskedAssign ( cmp2 , Four_Twos , Four_Zeros ) ;
result = AddSIMD ( result , result2 ) ;
intx4 sides ;
ConvertStoreAsIntsSIMD ( & sides , result ) ;
return sides [ 0 ] ;
}
// k-dop bounding volume. 26-dop bounds with 13 plane-pairs plus 3 other "arbitrary bounds". The arbitrary values could be used to hold type info, etc,
// which can compare against "for free"
class KDop32_t
{
public :
fltx4 m_Mins [ 4 ] ;
fltx4 m_Maxes [ 4 ] ;
FORCEINLINE bool Intersects ( KDop32_t const & other ) const ;
FORCEINLINE void operator | = ( KDop32_t const & other ) ;
FORCEINLINE bool IsEmpty ( void ) const ;
FORCEINLINE void Init ( void )
{
2012-05-21 02:49:35 -05:00
for ( int i = 0 ; i < ( int ) ARRAYSIZE ( m_Mins ) ; i + + )
2010-07-22 01:46:14 -05:00
{
m_Mins [ i ] = Four_FLT_MAX ;
m_Maxes [ i ] = Four_Negative_FLT_MAX ;
}
}
// given a set of points, expand the kdop to contain them
void AddPointSet ( Vector const * pPoints , int nPnts ) ;
void CreateFromPointSet ( Vector const * pPoints , int nPnts ) ;
} ;
FORCEINLINE void KDop32_t : : operator | = ( KDop32_t const & other )
{
m_Mins [ 0 ] = MinSIMD ( m_Mins [ 0 ] , other . m_Mins [ 0 ] ) ;
m_Mins [ 1 ] = MinSIMD ( m_Mins [ 1 ] , other . m_Mins [ 1 ] ) ;
m_Mins [ 2 ] = MinSIMD ( m_Mins [ 2 ] , other . m_Mins [ 2 ] ) ;
m_Mins [ 3 ] = MinSIMD ( m_Mins [ 3 ] , other . m_Mins [ 3 ] ) ;
m_Maxes [ 0 ] = MaxSIMD ( m_Maxes [ 0 ] , other . m_Maxes [ 0 ] ) ;
m_Maxes [ 1 ] = MaxSIMD ( m_Maxes [ 1 ] , other . m_Maxes [ 1 ] ) ;
m_Maxes [ 2 ] = MaxSIMD ( m_Maxes [ 2 ] , other . m_Maxes [ 2 ] ) ;
m_Maxes [ 3 ] = MaxSIMD ( m_Maxes [ 3 ] , other . m_Maxes [ 3 ] ) ;
}
FORCEINLINE bool KDop32_t : : Intersects ( KDop32_t const & other ) const
{
fltx4 c00 = CmpLeSIMD ( m_Mins [ 0 ] , other . m_Maxes [ 0 ] ) ;
fltx4 c01 = CmpLeSIMD ( m_Mins [ 1 ] , other . m_Maxes [ 1 ] ) ;
fltx4 c02 = CmpLeSIMD ( m_Mins [ 2 ] , other . m_Maxes [ 2 ] ) ;
fltx4 c03 = CmpLeSIMD ( m_Mins [ 3 ] , other . m_Maxes [ 3 ] ) ;
fltx4 c10 = CmpGeSIMD ( m_Maxes [ 0 ] , other . m_Mins [ 0 ] ) ;
fltx4 c11 = CmpGeSIMD ( m_Maxes [ 1 ] , other . m_Mins [ 1 ] ) ;
fltx4 c12 = CmpGeSIMD ( m_Maxes [ 2 ] , other . m_Mins [ 2 ] ) ;
fltx4 c13 = CmpGeSIMD ( m_Maxes [ 3 ] , other . m_Mins [ 3 ] ) ;
fltx4 a0 = AndSIMD ( AndSIMD ( c00 , c01 ) , AndSIMD ( c02 , c03 ) ) ;
fltx4 a1 = AndSIMD ( AndSIMD ( c10 , c11 ) , AndSIMD ( c12 , c13 ) ) ;
return ! ( IsAnyZeros ( AndSIMD ( a1 , a0 ) ) ) ;
}
FORCEINLINE bool KDop32_t : : IsEmpty ( void ) const
{
fltx4 c00 = CmpLtSIMD ( m_Maxes [ 0 ] , m_Mins [ 0 ] ) ;
fltx4 c01 = CmpLtSIMD ( m_Maxes [ 1 ] , m_Mins [ 1 ] ) ;
fltx4 c02 = CmpLtSIMD ( m_Maxes [ 2 ] , m_Mins [ 2 ] ) ;
fltx4 c03 = CmpLtSIMD ( m_Maxes [ 3 ] , m_Mins [ 3 ] ) ;
return IsAnyNegative ( OrSIMD ( OrSIMD ( c00 , c01 ) , OrSIMD ( c02 , c03 ) ) ) ;
}
extern const fltx4 g_KDop32XDirs [ 4 ] ;
extern const fltx4 g_KDop32YDirs [ 4 ] ;
extern const fltx4 g_KDop32ZDirs [ 4 ] ;
# endif // _ssemath_h