2008-09-15 01:07:45 -05:00
//===== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: Math primitives.
//
//===========================================================================//
/// FIXME: As soon as all references to mathlib.c are gone, include it in here
# include <math.h>
# include <float.h> // Needed for FLT_EPSILON
# include "tier0/basetypes.h"
# include <memory.h>
# include "tier0/dbg.h"
# include "tier0/vprof.h"
//#define _VPROF_MATHLIB
2008-09-15 02:50:57 -05:00
# ifdef _MSC_VER
2008-09-15 01:07:45 -05:00
# pragma warning(disable:4244) // "conversion from 'const int' to 'float', possible loss of data"
# pragma warning(disable:4730) // "mixing _m64 and floating point expressions may result in incorrect code"
2008-09-15 02:50:57 -05:00
# endif
2008-09-15 01:07:45 -05:00
# include "mathlib/mathlib.h"
# include "mathlib/vector.h"
# if !defined( _X360 )
# include "sse.h"
# endif
# include "mathlib/ssemath.h"
# include "mathlib/ssequaternion.h"
// memdbgon must be the last include file in a .cpp file!!!
# include "tier0/memdbgon.h"
bool s_bMathlibInitialized = false ;
# ifdef PARANOID
// User must provide an implementation of Sys_Error()
void Sys_Error ( char * error , . . . ) ;
# endif
const Vector vec3_origin ( 0 , 0 , 0 ) ;
const QAngle vec3_angle ( 0 , 0 , 0 ) ;
const Vector vec3_invalid ( FLT_MAX , FLT_MAX , FLT_MAX ) ;
const int nanmask = 255 < < 23 ;
//-----------------------------------------------------------------------------
// Standard C implementations of optimized routines:
//-----------------------------------------------------------------------------
float _sqrtf ( float _X )
{
Assert ( s_bMathlibInitialized ) ;
return sqrtf ( _X ) ;
}
float _rsqrtf ( float x )
{
Assert ( s_bMathlibInitialized ) ;
return 1.f / _sqrtf ( x ) ;
}
float FASTCALL _VectorNormalize ( Vector & vec )
{
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " _VectorNormalize " , " Mathlib " ) ;
# endif
Assert ( s_bMathlibInitialized ) ;
float radius = sqrtf ( vec . x * vec . x + vec . y * vec . y + vec . z * vec . z ) ;
// FLT_EPSILON is added to the radius to eliminate the possibility of divide by zero.
float iradius = 1.f / ( radius + FLT_EPSILON ) ;
vec . x * = iradius ;
vec . y * = iradius ;
vec . z * = iradius ;
return radius ;
}
// TODO: Add fast C VectorNormalizeFast.
// Perhaps use approximate rsqrt trick, if the accuracy isn't too bad.
void FASTCALL _VectorNormalizeFast ( Vector & vec )
{
Assert ( s_bMathlibInitialized ) ;
// FLT_EPSILON is added to the radius to eliminate the possibility of divide by zero.
float iradius = 1.f / ( sqrtf ( vec . x * vec . x + vec . y * vec . y + vec . z * vec . z ) + FLT_EPSILON ) ;
vec . x * = iradius ;
vec . y * = iradius ;
vec . z * = iradius ;
}
float _InvRSquared ( const float * v )
{
Assert ( s_bMathlibInitialized ) ;
float r2 = DotProduct ( v , v ) ;
return r2 < 1.f ? 1.f : 1 / r2 ;
}
//-----------------------------------------------------------------------------
// Function pointers selecting the appropriate implementation
//-----------------------------------------------------------------------------
float ( * pfSqrt ) ( float x ) = _sqrtf ;
float ( * pfRSqrt ) ( float x ) = _rsqrtf ;
float ( * pfRSqrtFast ) ( float x ) = _rsqrtf ;
float ( FASTCALL * pfVectorNormalize ) ( Vector & v ) = _VectorNormalize ;
void ( FASTCALL * pfVectorNormalizeFast ) ( Vector & v ) = _VectorNormalizeFast ;
float ( * pfInvRSquared ) ( const float * v ) = _InvRSquared ;
void ( * pfFastSinCos ) ( float x , float * s , float * c ) = SinCos ;
float ( * pfFastCos ) ( float x ) = cosf ;
float SinCosTable [ SIN_TABLE_SIZE ] ;
void InitSinCosTable ( )
{
for ( int i = 0 ; i < SIN_TABLE_SIZE ; i + + )
{
SinCosTable [ i ] = sin ( i * 2.0 * M_PI / SIN_TABLE_SIZE ) ;
}
}
qboolean VectorsEqual ( const float * v1 , const float * v2 )
{
Assert ( s_bMathlibInitialized ) ;
return ( ( v1 [ 0 ] = = v2 [ 0 ] ) & &
( v1 [ 1 ] = = v2 [ 1 ] ) & &
( v1 [ 2 ] = = v2 [ 2 ] ) ) ;
}
//-----------------------------------------------------------------------------
// Purpose: Generates Euler angles given a left-handed orientation matrix. The
// columns of the matrix contain the forward, left, and up vectors.
// Input : matrix - Left-handed orientation matrix.
// angles[PITCH, YAW, ROLL]. Receives right-handed counterclockwise
// rotations in degrees around Y, Z, and X respectively.
//-----------------------------------------------------------------------------
void MatrixAngles ( const matrix3x4_t & matrix , RadianEuler & angles , Vector & position )
{
MatrixGetColumn ( matrix , 3 , position ) ;
MatrixAngles ( matrix , angles ) ;
}
void MatrixAngles ( const matrix3x4_t & matrix , Quaternion & q , Vector & pos )
{
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " MatrixQuaternion " , " Mathlib " ) ;
# endif
float trace ;
trace = matrix [ 0 ] [ 0 ] + matrix [ 1 ] [ 1 ] + matrix [ 2 ] [ 2 ] + 1.0f ;
if ( trace > 1.0f + FLT_EPSILON )
{
// VPROF_INCREMENT_COUNTER("MatrixQuaternion A",1);
q . x = ( matrix [ 2 ] [ 1 ] - matrix [ 1 ] [ 2 ] ) ;
q . y = ( matrix [ 0 ] [ 2 ] - matrix [ 2 ] [ 0 ] ) ;
q . z = ( matrix [ 1 ] [ 0 ] - matrix [ 0 ] [ 1 ] ) ;
q . w = trace ;
}
else if ( matrix [ 0 ] [ 0 ] > matrix [ 1 ] [ 1 ] & & matrix [ 0 ] [ 0 ] > matrix [ 2 ] [ 2 ] )
{
// VPROF_INCREMENT_COUNTER("MatrixQuaternion B",1);
trace = 1.0f + matrix [ 0 ] [ 0 ] - matrix [ 1 ] [ 1 ] - matrix [ 2 ] [ 2 ] ;
q . x = trace ;
q . y = ( matrix [ 1 ] [ 0 ] + matrix [ 0 ] [ 1 ] ) ;
q . z = ( matrix [ 0 ] [ 2 ] + matrix [ 2 ] [ 0 ] ) ;
q . w = ( matrix [ 2 ] [ 1 ] - matrix [ 1 ] [ 2 ] ) ;
}
else if ( matrix [ 1 ] [ 1 ] > matrix [ 2 ] [ 2 ] )
{
// VPROF_INCREMENT_COUNTER("MatrixQuaternion C",1);
trace = 1.0f + matrix [ 1 ] [ 1 ] - matrix [ 0 ] [ 0 ] - matrix [ 2 ] [ 2 ] ;
q . x = ( matrix [ 0 ] [ 1 ] + matrix [ 1 ] [ 0 ] ) ;
q . y = trace ;
q . z = ( matrix [ 2 ] [ 1 ] + matrix [ 1 ] [ 2 ] ) ;
q . w = ( matrix [ 0 ] [ 2 ] - matrix [ 2 ] [ 0 ] ) ;
}
else
{
// VPROF_INCREMENT_COUNTER("MatrixQuaternion D",1);
trace = 1.0f + matrix [ 2 ] [ 2 ] - matrix [ 0 ] [ 0 ] - matrix [ 1 ] [ 1 ] ;
q . x = ( matrix [ 0 ] [ 2 ] + matrix [ 2 ] [ 0 ] ) ;
q . y = ( matrix [ 2 ] [ 1 ] + matrix [ 1 ] [ 2 ] ) ;
q . z = trace ;
q . w = ( matrix [ 1 ] [ 0 ] - matrix [ 0 ] [ 1 ] ) ;
}
QuaternionNormalize ( q ) ;
#if 0
// check against the angle version
RadianEuler ang ;
MatrixAngles ( matrix , ang ) ;
Quaternion test ;
AngleQuaternion ( ang , test ) ;
float d = QuaternionDotProduct ( q , test ) ;
Assert ( fabs ( d ) > 0.99 & & fabs ( d ) < 1.01 ) ;
# endif
MatrixGetColumn ( matrix , 3 , pos ) ;
}
void MatrixAngles ( const matrix3x4_t & matrix , float * angles )
{
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " MatrixAngles " , " Mathlib " ) ;
# endif
Assert ( s_bMathlibInitialized ) ;
float forward [ 3 ] ;
float left [ 3 ] ;
float up [ 3 ] ;
//
// Extract the basis vectors from the matrix. Since we only need the Z
// component of the up vector, we don't get X and Y.
//
forward [ 0 ] = matrix [ 0 ] [ 0 ] ;
forward [ 1 ] = matrix [ 1 ] [ 0 ] ;
forward [ 2 ] = matrix [ 2 ] [ 0 ] ;
left [ 0 ] = matrix [ 0 ] [ 1 ] ;
left [ 1 ] = matrix [ 1 ] [ 1 ] ;
left [ 2 ] = matrix [ 2 ] [ 1 ] ;
up [ 2 ] = matrix [ 2 ] [ 2 ] ;
float xyDist = sqrtf ( forward [ 0 ] * forward [ 0 ] + forward [ 1 ] * forward [ 1 ] ) ;
// enough here to get angles?
if ( xyDist > 0.001f )
{
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
angles [ 1 ] = RAD2DEG ( atan2f ( forward [ 1 ] , forward [ 0 ] ) ) ;
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles [ 0 ] = RAD2DEG ( atan2f ( - forward [ 2 ] , xyDist ) ) ;
// (roll) z = ATAN( left.z, up.z );
angles [ 2 ] = RAD2DEG ( atan2f ( left [ 2 ] , up [ 2 ] ) ) ;
}
else // forward is mostly Z, gimbal lock-
{
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw
angles [ 1 ] = RAD2DEG ( atan2f ( - left [ 0 ] , left [ 1 ] ) ) ;
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles [ 0 ] = RAD2DEG ( atan2f ( - forward [ 2 ] , xyDist ) ) ;
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
angles [ 2 ] = 0 ;
}
}
// transform in1 by the matrix in2
void VectorTransform ( const float * in1 , const matrix3x4_t & in2 , float * out )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( in1 ! = out ) ;
out [ 0 ] = DotProduct ( in1 , in2 [ 0 ] ) + in2 [ 0 ] [ 3 ] ;
out [ 1 ] = DotProduct ( in1 , in2 [ 1 ] ) + in2 [ 1 ] [ 3 ] ;
out [ 2 ] = DotProduct ( in1 , in2 [ 2 ] ) + in2 [ 2 ] [ 3 ] ;
}
// assuming the matrix is orthonormal, transform in1 by the transpose (also the inverse in this case) of in2.
void VectorITransform ( const float * in1 , const matrix3x4_t & in2 , float * out )
{
Assert ( s_bMathlibInitialized ) ;
float in1t [ 3 ] ;
in1t [ 0 ] = in1 [ 0 ] - in2 [ 0 ] [ 3 ] ;
in1t [ 1 ] = in1 [ 1 ] - in2 [ 1 ] [ 3 ] ;
in1t [ 2 ] = in1 [ 2 ] - in2 [ 2 ] [ 3 ] ;
out [ 0 ] = in1t [ 0 ] * in2 [ 0 ] [ 0 ] + in1t [ 1 ] * in2 [ 1 ] [ 0 ] + in1t [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 1 ] = in1t [ 0 ] * in2 [ 0 ] [ 1 ] + in1t [ 1 ] * in2 [ 1 ] [ 1 ] + in1t [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 2 ] = in1t [ 0 ] * in2 [ 0 ] [ 2 ] + in1t [ 1 ] * in2 [ 1 ] [ 2 ] + in1t [ 2 ] * in2 [ 2 ] [ 2 ] ;
}
// assume in2 is a rotation and rotate the input vector
void VectorRotate ( const float * in1 , const matrix3x4_t & in2 , float * out )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( in1 ! = out ) ;
out [ 0 ] = DotProduct ( in1 , in2 [ 0 ] ) ;
out [ 1 ] = DotProduct ( in1 , in2 [ 1 ] ) ;
out [ 2 ] = DotProduct ( in1 , in2 [ 2 ] ) ;
}
// assume in2 is a rotation and rotate the input vector
void VectorRotate ( const Vector & in1 , const QAngle & in2 , Vector & out )
{
matrix3x4_t matRotate ;
AngleMatrix ( in2 , matRotate ) ;
VectorRotate ( in1 , matRotate , out ) ;
}
// assume in2 is a rotation and rotate the input vector
void VectorRotate ( const Vector & in1 , const Quaternion & in2 , Vector & out )
{
matrix3x4_t matRotate ;
QuaternionMatrix ( in2 , matRotate ) ;
VectorRotate ( in1 , matRotate , out ) ;
}
// rotate by the inverse of the matrix
void VectorIRotate ( const float * in1 , const matrix3x4_t & in2 , float * out )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( in1 ! = out ) ;
out [ 0 ] = in1 [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 1 ] * in2 [ 1 ] [ 0 ] + in1 [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 1 ] = in1 [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 1 ] * in2 [ 1 ] [ 1 ] + in1 [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 2 ] = in1 [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 1 ] * in2 [ 1 ] [ 2 ] + in1 [ 2 ] * in2 [ 2 ] [ 2 ] ;
}
# ifndef VECTOR_NO_SLOW_OPERATIONS
// transform a set of angles in the output space of parentMatrix to the input space
QAngle TransformAnglesToLocalSpace ( const QAngle & angles , const matrix3x4_t & parentMatrix )
{
matrix3x4_t angToWorld , worldToParent , localMatrix ;
MatrixInvert ( parentMatrix , worldToParent ) ;
AngleMatrix ( angles , angToWorld ) ;
ConcatTransforms ( worldToParent , angToWorld , localMatrix ) ;
QAngle out ;
MatrixAngles ( localMatrix , out ) ;
return out ;
}
// transform a set of angles in the input space of parentMatrix to the output space
QAngle TransformAnglesToWorldSpace ( const QAngle & angles , const matrix3x4_t & parentMatrix )
{
matrix3x4_t angToParent , angToWorld ;
AngleMatrix ( angles , angToParent ) ;
ConcatTransforms ( parentMatrix , angToParent , angToWorld ) ;
QAngle out ;
MatrixAngles ( angToWorld , out ) ;
return out ;
}
# endif // VECTOR_NO_SLOW_OPERATIONS
void MatrixInitialize ( matrix3x4_t & mat , const Vector & vecOrigin , const Vector & vecXAxis , const Vector & vecYAxis , const Vector & vecZAxis )
{
MatrixSetColumn ( vecXAxis , 0 , mat ) ;
MatrixSetColumn ( vecYAxis , 1 , mat ) ;
MatrixSetColumn ( vecZAxis , 2 , mat ) ;
MatrixSetColumn ( vecOrigin , 3 , mat ) ;
}
void MatrixCopy ( const matrix3x4_t & in , matrix3x4_t & out )
{
Assert ( s_bMathlibInitialized ) ;
memcpy ( out . Base ( ) , in . Base ( ) , sizeof ( float ) * 3 * 4 ) ;
}
//-----------------------------------------------------------------------------
// Matrix equality test
//-----------------------------------------------------------------------------
bool MatricesAreEqual ( const matrix3x4_t & src1 , const matrix3x4_t & src2 , float flTolerance )
{
for ( int i = 0 ; i < 3 ; + + i )
{
for ( int j = 0 ; j < 4 ; + + j )
{
if ( fabs ( src1 [ i ] [ j ] - src2 [ i ] [ j ] ) > flTolerance )
return false ;
}
}
return true ;
}
// NOTE: This is just the transpose not a general inverse
void MatrixInvert ( const matrix3x4_t & in , matrix3x4_t & out )
{
Assert ( s_bMathlibInitialized ) ;
if ( & in = = & out )
{
2020-05-18 17:43:55 -07:00
V_swap ( out [ 0 ] [ 1 ] , out [ 1 ] [ 0 ] ) ;
V_swap ( out [ 0 ] [ 2 ] , out [ 2 ] [ 0 ] ) ;
V_swap ( out [ 1 ] [ 2 ] , out [ 2 ] [ 1 ] ) ;
2008-09-15 01:07:45 -05:00
}
else
{
// transpose the matrix
out [ 0 ] [ 0 ] = in [ 0 ] [ 0 ] ;
out [ 0 ] [ 1 ] = in [ 1 ] [ 0 ] ;
out [ 0 ] [ 2 ] = in [ 2 ] [ 0 ] ;
out [ 1 ] [ 0 ] = in [ 0 ] [ 1 ] ;
out [ 1 ] [ 1 ] = in [ 1 ] [ 1 ] ;
out [ 1 ] [ 2 ] = in [ 2 ] [ 1 ] ;
out [ 2 ] [ 0 ] = in [ 0 ] [ 2 ] ;
out [ 2 ] [ 1 ] = in [ 1 ] [ 2 ] ;
out [ 2 ] [ 2 ] = in [ 2 ] [ 2 ] ;
}
// now fix up the translation to be in the other space
float tmp [ 3 ] ;
tmp [ 0 ] = in [ 0 ] [ 3 ] ;
tmp [ 1 ] = in [ 1 ] [ 3 ] ;
tmp [ 2 ] = in [ 2 ] [ 3 ] ;
out [ 0 ] [ 3 ] = - DotProduct ( tmp , out [ 0 ] ) ;
out [ 1 ] [ 3 ] = - DotProduct ( tmp , out [ 1 ] ) ;
out [ 2 ] [ 3 ] = - DotProduct ( tmp , out [ 2 ] ) ;
}
void MatrixGetColumn ( const matrix3x4_t & in , int column , Vector & out )
{
out . x = in [ 0 ] [ column ] ;
out . y = in [ 1 ] [ column ] ;
out . z = in [ 2 ] [ column ] ;
}
void MatrixSetColumn ( const Vector & in , int column , matrix3x4_t & out )
{
out [ 0 ] [ column ] = in . x ;
out [ 1 ] [ column ] = in . y ;
out [ 2 ] [ column ] = in . z ;
}
int VectorCompare ( const float * v1 , const float * v2 )
{
Assert ( s_bMathlibInitialized ) ;
int i ;
for ( i = 0 ; i < 3 ; i + + )
if ( v1 [ i ] ! = v2 [ i ] )
return 0 ;
return 1 ;
}
void CrossProduct ( const float * v1 , const float * v2 , float * cross )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( v1 ! = cross ) ;
Assert ( v2 ! = cross ) ;
cross [ 0 ] = v1 [ 1 ] * v2 [ 2 ] - v1 [ 2 ] * v2 [ 1 ] ;
cross [ 1 ] = v1 [ 2 ] * v2 [ 0 ] - v1 [ 0 ] * v2 [ 2 ] ;
cross [ 2 ] = v1 [ 0 ] * v2 [ 1 ] - v1 [ 1 ] * v2 [ 0 ] ;
}
int Q_log2 ( int val )
{
int answer = 0 ;
while ( val > > = 1 )
answer + + ;
return answer ;
}
// Matrix is right-handed x=forward, y=left, z=up. We a left-handed convention for vectors in the game code (forward, right, up)
void MatrixVectors ( const matrix3x4_t & matrix , Vector * pForward , Vector * pRight , Vector * pUp )
{
MatrixGetColumn ( matrix , 0 , * pForward ) ;
MatrixGetColumn ( matrix , 1 , * pRight ) ;
MatrixGetColumn ( matrix , 2 , * pUp ) ;
* pRight * = - 1.0f ;
}
void VectorVectors ( const Vector & forward , Vector & right , Vector & up )
{
Assert ( s_bMathlibInitialized ) ;
Vector tmp ;
if ( forward [ 0 ] = = 0 & & forward [ 1 ] = = 0 )
{
// pitch 90 degrees up/down from identity
right [ 0 ] = 0 ;
right [ 1 ] = - 1 ;
right [ 2 ] = 0 ;
up [ 0 ] = - forward [ 2 ] ;
up [ 1 ] = 0 ;
up [ 2 ] = 0 ;
}
else
{
tmp [ 0 ] = 0 ; tmp [ 1 ] = 0 ; tmp [ 2 ] = 1.0 ;
CrossProduct ( forward , tmp , right ) ;
VectorNormalize ( right ) ;
CrossProduct ( right , forward , up ) ;
VectorNormalize ( up ) ;
}
}
void VectorMatrix ( const Vector & forward , matrix3x4_t & matrix )
{
Assert ( s_bMathlibInitialized ) ;
Vector right , up ;
VectorVectors ( forward , right , up ) ;
MatrixSetColumn ( forward , 0 , matrix ) ;
MatrixSetColumn ( - right , 1 , matrix ) ;
MatrixSetColumn ( up , 2 , matrix ) ;
}
void VectorAngles ( const float * forward , float * angles )
{
Assert ( s_bMathlibInitialized ) ;
float tmp , yaw , pitch ;
if ( forward [ 1 ] = = 0 & & forward [ 0 ] = = 0 )
{
yaw = 0 ;
if ( forward [ 2 ] > 0 )
pitch = 270 ;
else
pitch = 90 ;
}
else
{
yaw = ( atan2 ( forward [ 1 ] , forward [ 0 ] ) * 180 / M_PI ) ;
if ( yaw < 0 )
yaw + = 360 ;
tmp = sqrt ( forward [ 0 ] * forward [ 0 ] + forward [ 1 ] * forward [ 1 ] ) ;
pitch = ( atan2 ( - forward [ 2 ] , tmp ) * 180 / M_PI ) ;
if ( pitch < 0 )
pitch + = 360 ;
}
angles [ 0 ] = pitch ;
angles [ 1 ] = yaw ;
angles [ 2 ] = 0 ;
}
/*
= = = = = = = = = = = = = = = =
R_ConcatRotations
= = = = = = = = = = = = = = = =
*/
void ConcatRotations ( const float in1 [ 3 ] [ 3 ] , const float in2 [ 3 ] [ 3 ] , float out [ 3 ] [ 3 ] )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( in1 ! = out ) ;
Assert ( in2 ! = out ) ;
out [ 0 ] [ 0 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 0 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 0 ] [ 1 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 1 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 0 ] [ 2 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 2 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 2 ] ;
out [ 1 ] [ 0 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 0 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 1 ] [ 1 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 1 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 1 ] [ 2 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 2 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 2 ] ;
out [ 2 ] [ 0 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 0 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 2 ] [ 1 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 1 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 2 ] [ 2 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 2 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 2 ] ;
}
/*
= = = = = = = = = = = = = = = =
R_ConcatTransforms
= = = = = = = = = = = = = = = =
*/
void ConcatTransforms ( const matrix3x4_t & in1 , const matrix3x4_t & in2 , matrix3x4_t & out )
{
Assert ( s_bMathlibInitialized ) ;
if ( & in1 = = & out )
{
matrix3x4_t in1b ;
MatrixCopy ( in1 , in1b ) ;
ConcatTransforms ( in1b , in2 , out ) ;
return ;
}
if ( & in2 = = & out )
{
matrix3x4_t in2b ;
MatrixCopy ( in2 , in2b ) ;
ConcatTransforms ( in1 , in2b , out ) ;
return ;
}
out [ 0 ] [ 0 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 0 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 0 ] [ 1 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 1 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 0 ] [ 2 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 2 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 2 ] ;
out [ 0 ] [ 3 ] = in1 [ 0 ] [ 0 ] * in2 [ 0 ] [ 3 ] + in1 [ 0 ] [ 1 ] * in2 [ 1 ] [ 3 ] +
in1 [ 0 ] [ 2 ] * in2 [ 2 ] [ 3 ] + in1 [ 0 ] [ 3 ] ;
out [ 1 ] [ 0 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 0 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 1 ] [ 1 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 1 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 1 ] [ 2 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 2 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 2 ] ;
out [ 1 ] [ 3 ] = in1 [ 1 ] [ 0 ] * in2 [ 0 ] [ 3 ] + in1 [ 1 ] [ 1 ] * in2 [ 1 ] [ 3 ] +
in1 [ 1 ] [ 2 ] * in2 [ 2 ] [ 3 ] + in1 [ 1 ] [ 3 ] ;
out [ 2 ] [ 0 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 0 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 0 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 0 ] ;
out [ 2 ] [ 1 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 1 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 1 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 1 ] ;
out [ 2 ] [ 2 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 2 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 2 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 2 ] ;
out [ 2 ] [ 3 ] = in1 [ 2 ] [ 0 ] * in2 [ 0 ] [ 3 ] + in1 [ 2 ] [ 1 ] * in2 [ 1 ] [ 3 ] +
in1 [ 2 ] [ 2 ] * in2 [ 2 ] [ 3 ] + in1 [ 2 ] [ 3 ] ;
}
/*
= = = = = = = = = = = = = = = = = = =
FloorDivMod
Returns mathematically correct ( floor - based ) quotient and remainder for
numer and denom , both of which should contain no fractional part . The
quotient must fit in 32 bits .
= = = = = = = = = = = = = = = = = = = =
*/
void FloorDivMod ( double numer , double denom , int * quotient ,
int * rem )
{
Assert ( s_bMathlibInitialized ) ;
int q , r ;
double x ;
# ifdef PARANOID
if ( denom < = 0.0 )
Sys_Error ( " FloorDivMod: bad denominator %d \n " , denom ) ;
// if ((floor(numer) != numer) || (floor(denom) != denom))
// Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
// numer, denom);
# endif
if ( numer > = 0.0 )
{
x = floor ( numer / denom ) ;
q = ( int ) x ;
r = Floor2Int ( numer - ( x * denom ) ) ;
}
else
{
//
// perform operations with positive values, and fix mod to make floor-based
//
x = floor ( - numer / denom ) ;
q = - ( int ) x ;
r = Floor2Int ( - numer - ( x * denom ) ) ;
if ( r ! = 0 )
{
q - - ;
r = ( int ) denom - r ;
}
}
* quotient = q ;
* rem = r ;
}
/*
= = = = = = = = = = = = = = = = = = =
GreatestCommonDivisor
= = = = = = = = = = = = = = = = = = = =
*/
int GreatestCommonDivisor ( int i1 , int i2 )
{
Assert ( s_bMathlibInitialized ) ;
if ( i1 > i2 )
{
if ( i2 = = 0 )
return ( i1 ) ;
return GreatestCommonDivisor ( i2 , i1 % i2 ) ;
}
else
{
if ( i1 = = 0 )
return ( i2 ) ;
return GreatestCommonDivisor ( i1 , i2 % i1 ) ;
}
}
bool IsDenormal ( const float & val )
{
const int x = * reinterpret_cast < const int * > ( & val ) ; // needs 32-bit int
const int abs_mantissa = x & 0x007FFFFF ;
const int biased_exponent = x & 0x7F800000 ;
return ( biased_exponent = = 0 & & abs_mantissa ! = 0 ) ;
}
int SignbitsForPlane ( cplane_t * out )
{
Assert ( s_bMathlibInitialized ) ;
int bits , j ;
// for fast box on planeside test
bits = 0 ;
for ( j = 0 ; j < 3 ; j + + )
{
if ( out - > normal [ j ] < 0 )
bits | = 1 < < j ;
}
return bits ;
}
/*
= = = = = = = = = = = = = = = = = =
BoxOnPlaneSide
Returns 1 , 2 , or 1 + 2
= = = = = = = = = = = = = = = = = =
*/
int __cdecl BoxOnPlaneSide ( const float * emins , const float * emaxs , const cplane_t * p )
{
Assert ( s_bMathlibInitialized ) ;
float dist1 , dist2 ;
int sides ;
// fast axial cases
if ( p - > type < 3 )
{
if ( p - > dist < = emins [ p - > type ] )
return 1 ;
if ( p - > dist > = emaxs [ p - > type ] )
return 2 ;
return 3 ;
}
// general case
switch ( p - > signbits )
{
case 0 :
dist1 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
dist2 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
break ;
case 1 :
dist1 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
dist2 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
break ;
case 2 :
dist1 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
dist2 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
break ;
case 3 :
dist1 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
dist2 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
break ;
case 4 :
dist1 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
dist2 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
break ;
case 5 :
dist1 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
dist2 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
break ;
case 6 :
dist1 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
dist2 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
break ;
case 7 :
dist1 = p - > normal [ 0 ] * emins [ 0 ] + p - > normal [ 1 ] * emins [ 1 ] + p - > normal [ 2 ] * emins [ 2 ] ;
dist2 = p - > normal [ 0 ] * emaxs [ 0 ] + p - > normal [ 1 ] * emaxs [ 1 ] + p - > normal [ 2 ] * emaxs [ 2 ] ;
break ;
default :
dist1 = dist2 = 0 ; // shut up compiler
Assert ( 0 ) ;
break ;
}
sides = 0 ;
if ( dist1 > = p - > dist )
sides = 1 ;
if ( dist2 < p - > dist )
sides | = 2 ;
Assert ( sides ! = 0 ) ;
return sides ;
}
//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors
//-----------------------------------------------------------------------------
void AngleVectors ( const QAngle & angles , Vector * forward )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( forward ) ;
float sp , sy , cp , cy ;
SinCos ( DEG2RAD ( angles [ YAW ] ) , & sy , & cy ) ;
SinCos ( DEG2RAD ( angles [ PITCH ] ) , & sp , & cp ) ;
forward - > x = cp * cy ;
forward - > y = cp * sy ;
forward - > z = - sp ;
}
//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors. Each vector is optional
//-----------------------------------------------------------------------------
void AngleVectors ( const QAngle & angles , Vector * forward , Vector * right , Vector * up )
{
Assert ( s_bMathlibInitialized ) ;
float sr , sp , sy , cr , cp , cy ;
# ifdef _X360
fltx4 radians , scale , sine , cosine ;
radians = LoadUnaligned3SIMD ( angles . Base ( ) ) ;
scale = ReplicateX4 ( M_PI_F / 180.f ) ;
radians = MulSIMD ( radians , scale ) ;
SinCos3SIMD ( sine , cosine , radians ) ;
sp = SubFloat ( sine , 0 ) ; sy = SubFloat ( sine , 1 ) ; sr = SubFloat ( sine , 2 ) ;
cp = SubFloat ( cosine , 0 ) ; cy = SubFloat ( cosine , 1 ) ; cr = SubFloat ( cosine , 2 ) ;
# else
SinCos ( DEG2RAD ( angles [ YAW ] ) , & sy , & cy ) ;
SinCos ( DEG2RAD ( angles [ PITCH ] ) , & sp , & cp ) ;
SinCos ( DEG2RAD ( angles [ ROLL ] ) , & sr , & cr ) ;
# endif
if ( forward )
{
forward - > x = cp * cy ;
forward - > y = cp * sy ;
forward - > z = - sp ;
}
if ( right )
{
right - > x = ( - 1 * sr * sp * cy + - 1 * cr * - sy ) ;
right - > y = ( - 1 * sr * sp * sy + - 1 * cr * cy ) ;
right - > z = - 1 * sr * cp ;
}
if ( up )
{
up - > x = ( cr * sp * cy + - sr * - sy ) ;
up - > y = ( cr * sp * sy + - sr * cy ) ;
up - > z = cr * cp ;
}
}
//-----------------------------------------------------------------------------
// Euler QAngle -> Basis Vectors transposed
//-----------------------------------------------------------------------------
void AngleVectorsTranspose ( const QAngle & angles , Vector * forward , Vector * right , Vector * up )
{
Assert ( s_bMathlibInitialized ) ;
float sr , sp , sy , cr , cp , cy ;
SinCos ( DEG2RAD ( angles [ YAW ] ) , & sy , & cy ) ;
SinCos ( DEG2RAD ( angles [ PITCH ] ) , & sp , & cp ) ;
SinCos ( DEG2RAD ( angles [ ROLL ] ) , & sr , & cr ) ;
if ( forward )
{
forward - > x = cp * cy ;
forward - > y = ( sr * sp * cy + cr * - sy ) ;
forward - > z = ( cr * sp * cy + - sr * - sy ) ;
}
if ( right )
{
right - > x = cp * sy ;
right - > y = ( sr * sp * sy + cr * cy ) ;
right - > z = ( cr * sp * sy + - sr * cy ) ;
}
if ( up )
{
up - > x = - sp ;
up - > y = sr * cp ;
up - > z = cr * cp ;
}
}
//-----------------------------------------------------------------------------
// Forward direction vector -> Euler angles
//-----------------------------------------------------------------------------
void VectorAngles ( const Vector & forward , QAngle & angles )
{
Assert ( s_bMathlibInitialized ) ;
float tmp , yaw , pitch ;
if ( forward [ 1 ] = = 0 & & forward [ 0 ] = = 0 )
{
yaw = 0 ;
if ( forward [ 2 ] > 0 )
pitch = 270 ;
else
pitch = 90 ;
}
else
{
yaw = ( atan2 ( forward [ 1 ] , forward [ 0 ] ) * 180 / M_PI ) ;
if ( yaw < 0 )
yaw + = 360 ;
tmp = FastSqrt ( forward [ 0 ] * forward [ 0 ] + forward [ 1 ] * forward [ 1 ] ) ;
pitch = ( atan2 ( - forward [ 2 ] , tmp ) * 180 / M_PI ) ;
if ( pitch < 0 )
pitch + = 360 ;
}
angles [ 0 ] = pitch ;
angles [ 1 ] = yaw ;
angles [ 2 ] = 0 ;
}
//-----------------------------------------------------------------------------
// Forward direction vector with a reference up vector -> Euler angles
//-----------------------------------------------------------------------------
void VectorAngles ( const Vector & forward , const Vector & pseudoup , QAngle & angles )
{
Assert ( s_bMathlibInitialized ) ;
Vector left ;
CrossProduct ( pseudoup , forward , left ) ;
VectorNormalizeFast ( left ) ;
float xyDist = sqrtf ( forward [ 0 ] * forward [ 0 ] + forward [ 1 ] * forward [ 1 ] ) ;
// enough here to get angles?
if ( xyDist > 0.001f )
{
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
angles [ 1 ] = RAD2DEG ( atan2f ( forward [ 1 ] , forward [ 0 ] ) ) ;
// The engine does pitch inverted from this, but we always end up negating it in the DLL
// UNDONE: Fix the engine to make it consistent
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles [ 0 ] = RAD2DEG ( atan2f ( - forward [ 2 ] , xyDist ) ) ;
float up_z = ( left [ 1 ] * forward [ 0 ] ) - ( left [ 0 ] * forward [ 1 ] ) ;
// (roll) z = ATAN( left.z, up.z );
angles [ 2 ] = RAD2DEG ( atan2f ( left [ 2 ] , up_z ) ) ;
}
else // forward is mostly Z, gimbal lock-
{
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw
angles [ 1 ] = RAD2DEG ( atan2f ( - left [ 0 ] , left [ 1 ] ) ) ; //This was originally copied from the "void MatrixAngles( const matrix3x4_t& matrix, float *angles )" code, and it's 180 degrees off, negated the values and it all works now (Dave Kircher)
// The engine does pitch inverted from this, but we always end up negating it in the DLL
// UNDONE: Fix the engine to make it consistent
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles [ 0 ] = RAD2DEG ( atan2f ( - forward [ 2 ] , xyDist ) ) ;
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
angles [ 2 ] = 0 ;
}
}
void SetIdentityMatrix ( matrix3x4_t & matrix )
{
memset ( matrix . Base ( ) , 0 , sizeof ( float ) * 3 * 4 ) ;
matrix [ 0 ] [ 0 ] = 1.0 ;
matrix [ 1 ] [ 1 ] = 1.0 ;
matrix [ 2 ] [ 2 ] = 1.0 ;
}
//-----------------------------------------------------------------------------
// Builds a scale matrix
//-----------------------------------------------------------------------------
void SetScaleMatrix ( float x , float y , float z , matrix3x4_t & dst )
{
dst [ 0 ] [ 0 ] = x ; dst [ 0 ] [ 1 ] = 0.0f ; dst [ 0 ] [ 2 ] = 0.0f ; dst [ 0 ] [ 3 ] = 0.0f ;
dst [ 1 ] [ 0 ] = 0.0f ; dst [ 1 ] [ 1 ] = y ; dst [ 1 ] [ 2 ] = 0.0f ; dst [ 1 ] [ 3 ] = 0.0f ;
dst [ 2 ] [ 0 ] = 0.0f ; dst [ 2 ] [ 1 ] = 0.0f ; dst [ 2 ] [ 2 ] = z ; dst [ 2 ] [ 3 ] = 0.0f ;
}
//-----------------------------------------------------------------------------
// Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis.
//
// | ax2 + (1 - ax2)cosQ axay(1 - cosQ) - azsinQ azax(1 - cosQ) + aysinQ |
// Ra(Q) = | axay(1 - cosQ) + azsinQ ay2 + (1 - ay2)cosQ ayaz(1 - cosQ) - axsinQ |
// | azax(1 - cosQ) - aysinQ ayaz(1 - cosQ) + axsinQ az2 + (1 - az2)cosQ |
//
// Input : mat -
// vAxisOrRot -
// angle -
//-----------------------------------------------------------------------------
void MatrixBuildRotationAboutAxis ( const Vector & vAxisOfRot , float angleDegrees , matrix3x4_t & dst )
{
float radians ;
float axisXSquared ;
float axisYSquared ;
float axisZSquared ;
float fSin ;
float fCos ;
radians = angleDegrees * ( M_PI / 180.0 ) ;
fSin = sin ( radians ) ;
fCos = cos ( radians ) ;
axisXSquared = vAxisOfRot [ 0 ] * vAxisOfRot [ 0 ] ;
axisYSquared = vAxisOfRot [ 1 ] * vAxisOfRot [ 1 ] ;
axisZSquared = vAxisOfRot [ 2 ] * vAxisOfRot [ 2 ] ;
// Column 0:
dst [ 0 ] [ 0 ] = axisXSquared + ( 1 - axisXSquared ) * fCos ;
dst [ 1 ] [ 0 ] = vAxisOfRot [ 0 ] * vAxisOfRot [ 1 ] * ( 1 - fCos ) + vAxisOfRot [ 2 ] * fSin ;
dst [ 2 ] [ 0 ] = vAxisOfRot [ 2 ] * vAxisOfRot [ 0 ] * ( 1 - fCos ) - vAxisOfRot [ 1 ] * fSin ;
// Column 1:
dst [ 0 ] [ 1 ] = vAxisOfRot [ 0 ] * vAxisOfRot [ 1 ] * ( 1 - fCos ) - vAxisOfRot [ 2 ] * fSin ;
dst [ 1 ] [ 1 ] = axisYSquared + ( 1 - axisYSquared ) * fCos ;
dst [ 2 ] [ 1 ] = vAxisOfRot [ 1 ] * vAxisOfRot [ 2 ] * ( 1 - fCos ) + vAxisOfRot [ 0 ] * fSin ;
// Column 2:
dst [ 0 ] [ 2 ] = vAxisOfRot [ 2 ] * vAxisOfRot [ 0 ] * ( 1 - fCos ) + vAxisOfRot [ 1 ] * fSin ;
dst [ 1 ] [ 2 ] = vAxisOfRot [ 1 ] * vAxisOfRot [ 2 ] * ( 1 - fCos ) - vAxisOfRot [ 0 ] * fSin ;
dst [ 2 ] [ 2 ] = axisZSquared + ( 1 - axisZSquared ) * fCos ;
// Column 3:
dst [ 0 ] [ 3 ] = 0 ;
dst [ 1 ] [ 3 ] = 0 ;
dst [ 2 ] [ 3 ] = 0 ;
}
//-----------------------------------------------------------------------------
// Computes the transpose
//-----------------------------------------------------------------------------
void MatrixTranspose ( matrix3x4_t & mat )
{
vec_t tmp ;
tmp = mat [ 0 ] [ 1 ] ; mat [ 0 ] [ 1 ] = mat [ 1 ] [ 0 ] ; mat [ 1 ] [ 0 ] = tmp ;
tmp = mat [ 0 ] [ 2 ] ; mat [ 0 ] [ 2 ] = mat [ 2 ] [ 0 ] ; mat [ 2 ] [ 0 ] = tmp ;
tmp = mat [ 1 ] [ 2 ] ; mat [ 1 ] [ 2 ] = mat [ 2 ] [ 1 ] ; mat [ 2 ] [ 1 ] = tmp ;
}
void MatrixTranspose ( const matrix3x4_t & src , matrix3x4_t & dst )
{
dst [ 0 ] [ 0 ] = src [ 0 ] [ 0 ] ; dst [ 0 ] [ 1 ] = src [ 1 ] [ 0 ] ; dst [ 0 ] [ 2 ] = src [ 2 ] [ 0 ] ; dst [ 0 ] [ 3 ] = 0.0f ;
dst [ 1 ] [ 0 ] = src [ 0 ] [ 1 ] ; dst [ 1 ] [ 1 ] = src [ 1 ] [ 1 ] ; dst [ 1 ] [ 2 ] = src [ 2 ] [ 1 ] ; dst [ 1 ] [ 3 ] = 0.0f ;
dst [ 2 ] [ 0 ] = src [ 0 ] [ 2 ] ; dst [ 2 ] [ 1 ] = src [ 1 ] [ 2 ] ; dst [ 2 ] [ 2 ] = src [ 2 ] [ 2 ] ; dst [ 2 ] [ 3 ] = 0.0f ;
}
//-----------------------------------------------------------------------------
// Purpose: converts engine euler angles into a matrix
// Input : vec3_t angles - PITCH, YAW, ROLL
// Output : *matrix - left-handed column matrix
// the basis vectors for the rotations will be in the columns as follows:
// matrix[][0] is forward
// matrix[][1] is left
// matrix[][2] is up
//-----------------------------------------------------------------------------
void AngleMatrix ( RadianEuler const & angles , const Vector & position , matrix3x4_t & matrix )
{
AngleMatrix ( angles , matrix ) ;
MatrixSetColumn ( position , 3 , matrix ) ;
}
void AngleMatrix ( const RadianEuler & angles , matrix3x4_t & matrix )
{
QAngle quakeEuler ( RAD2DEG ( angles . y ) , RAD2DEG ( angles . z ) , RAD2DEG ( angles . x ) ) ;
AngleMatrix ( quakeEuler , matrix ) ;
}
void AngleMatrix ( const QAngle & angles , const Vector & position , matrix3x4_t & matrix )
{
AngleMatrix ( angles , matrix ) ;
MatrixSetColumn ( position , 3 , matrix ) ;
}
void AngleMatrix ( const QAngle & angles , matrix3x4_t & matrix )
{
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " AngleMatrix " , " Mathlib " ) ;
# endif
Assert ( s_bMathlibInitialized ) ;
float sr , sp , sy , cr , cp , cy ;
# ifdef _X360
fltx4 radians , scale , sine , cosine ;
radians = LoadUnaligned3SIMD ( angles . Base ( ) ) ;
scale = ReplicateX4 ( M_PI_F / 180.f ) ;
radians = MulSIMD ( radians , scale ) ;
SinCos3SIMD ( sine , cosine , radians ) ;
sp = SubFloat ( sine , 0 ) ; sy = SubFloat ( sine , 1 ) ; sr = SubFloat ( sine , 2 ) ;
cp = SubFloat ( cosine , 0 ) ; cy = SubFloat ( cosine , 1 ) ; cr = SubFloat ( cosine , 2 ) ;
# else
SinCos ( DEG2RAD ( angles [ YAW ] ) , & sy , & cy ) ;
SinCos ( DEG2RAD ( angles [ PITCH ] ) , & sp , & cp ) ;
SinCos ( DEG2RAD ( angles [ ROLL ] ) , & sr , & cr ) ;
# endif
// matrix = (YAW * PITCH) * ROLL
matrix [ 0 ] [ 0 ] = cp * cy ;
matrix [ 1 ] [ 0 ] = cp * sy ;
matrix [ 2 ] [ 0 ] = - sp ;
float crcy = cr * cy ;
float crsy = cr * sy ;
float srcy = sr * cy ;
float srsy = sr * sy ;
matrix [ 0 ] [ 1 ] = sp * srcy - crsy ;
matrix [ 1 ] [ 1 ] = sp * srsy + crcy ;
matrix [ 2 ] [ 1 ] = sr * cp ;
matrix [ 0 ] [ 2 ] = ( sp * crcy + srsy ) ;
matrix [ 1 ] [ 2 ] = ( sp * crsy - srcy ) ;
matrix [ 2 ] [ 2 ] = cr * cp ;
matrix [ 0 ] [ 3 ] = 0.0f ;
matrix [ 1 ] [ 3 ] = 0.0f ;
matrix [ 2 ] [ 3 ] = 0.0f ;
}
void AngleIMatrix ( const RadianEuler & angles , matrix3x4_t & matrix )
{
QAngle quakeEuler ( RAD2DEG ( angles . y ) , RAD2DEG ( angles . z ) , RAD2DEG ( angles . x ) ) ;
AngleIMatrix ( quakeEuler , matrix ) ;
}
void AngleIMatrix ( const QAngle & angles , matrix3x4_t & matrix )
{
Assert ( s_bMathlibInitialized ) ;
float sr , sp , sy , cr , cp , cy ;
SinCos ( DEG2RAD ( angles [ YAW ] ) , & sy , & cy ) ;
SinCos ( DEG2RAD ( angles [ PITCH ] ) , & sp , & cp ) ;
SinCos ( DEG2RAD ( angles [ ROLL ] ) , & sr , & cr ) ;
// matrix = (YAW * PITCH) * ROLL
matrix [ 0 ] [ 0 ] = cp * cy ;
matrix [ 0 ] [ 1 ] = cp * sy ;
matrix [ 0 ] [ 2 ] = - sp ;
matrix [ 1 ] [ 0 ] = sr * sp * cy + cr * - sy ;
matrix [ 1 ] [ 1 ] = sr * sp * sy + cr * cy ;
matrix [ 1 ] [ 2 ] = sr * cp ;
matrix [ 2 ] [ 0 ] = ( cr * sp * cy + - sr * - sy ) ;
matrix [ 2 ] [ 1 ] = ( cr * sp * sy + - sr * cy ) ;
matrix [ 2 ] [ 2 ] = cr * cp ;
matrix [ 0 ] [ 3 ] = 0.f ;
matrix [ 1 ] [ 3 ] = 0.f ;
matrix [ 2 ] [ 3 ] = 0.f ;
}
void AngleIMatrix ( const QAngle & angles , const Vector & position , matrix3x4_t & mat )
{
AngleIMatrix ( angles , mat ) ;
Vector vecTranslation ;
VectorRotate ( position , mat , vecTranslation ) ;
vecTranslation * = - 1.0f ;
MatrixSetColumn ( vecTranslation , 3 , mat ) ;
}
//-----------------------------------------------------------------------------
// Bounding box construction methods
//-----------------------------------------------------------------------------
void ClearBounds ( Vector & mins , Vector & maxs )
{
Assert ( s_bMathlibInitialized ) ;
mins [ 0 ] = mins [ 1 ] = mins [ 2 ] = 99999 ;
maxs [ 0 ] = maxs [ 1 ] = maxs [ 2 ] = - 99999 ;
}
void AddPointToBounds ( const Vector & v , Vector & mins , Vector & maxs )
{
Assert ( s_bMathlibInitialized ) ;
int i ;
vec_t val ;
for ( i = 0 ; i < 3 ; i + + )
{
val = v [ i ] ;
if ( val < mins [ i ] )
mins [ i ] = val ;
if ( val > maxs [ i ] )
maxs [ i ] = val ;
}
}
// solve a x^2 + b x + c = 0
bool SolveQuadratic ( float a , float b , float c , float & root1 , float & root2 )
{
Assert ( s_bMathlibInitialized ) ;
if ( a = = 0 )
{
if ( b ! = 0 )
{
// no x^2 component, it's a linear system
root1 = root2 = - c / b ;
return true ;
}
if ( c = = 0 )
{
// all zero's
root1 = root2 = 0 ;
return true ;
}
return false ;
}
float tmp = b * b - 4.0f * a * c ;
if ( tmp < 0 )
{
// imaginary number, bah, no solution.
return false ;
}
tmp = sqrt ( tmp ) ;
root1 = ( - b + tmp ) / ( 2.0f * a ) ;
root2 = ( - b - tmp ) / ( 2.0f * a ) ;
return true ;
}
// solves for "a, b, c" where "a x^2 + b x + c = y", return true if solution exists
bool SolveInverseQuadratic ( float x1 , float y1 , float x2 , float y2 , float x3 , float y3 , float & a , float & b , float & c )
{
float det = ( x1 - x2 ) * ( x1 - x3 ) * ( x2 - x3 ) ;
// FIXME: check with some sort of epsilon
if ( det = = 0.0 )
return false ;
a = ( x3 * ( - y1 + y2 ) + x2 * ( y1 - y3 ) + x1 * ( - y2 + y3 ) ) / det ;
b = ( x3 * x3 * ( y1 - y2 ) + x1 * x1 * ( y2 - y3 ) + x2 * x2 * ( - y1 + y3 ) ) / det ;
c = ( x1 * x3 * ( - x1 + x3 ) * y2 + x2 * x2 * ( x3 * y1 - x1 * y3 ) + x2 * ( - ( x3 * x3 * y1 ) + x1 * x1 * y3 ) ) / det ;
return true ;
}
bool SolveInverseQuadraticMonotonic ( float x1 , float y1 , float x2 , float y2 , float x3 , float y3 ,
float & a , float & b , float & c )
{
// use SolveInverseQuadratic, but if the sigm of the derivative at the start point is the wrong
// sign, displace the mid point
// first, sort parameters
if ( x1 > x2 )
{
2020-05-18 17:43:55 -07:00
V_swap ( x1 , x2 ) ;
V_swap ( y1 , y2 ) ;
2008-09-15 01:07:45 -05:00
}
if ( x2 > x3 )
{
2020-05-18 17:43:55 -07:00
V_swap ( x2 , x3 ) ;
V_swap ( y2 , y3 ) ;
2008-09-15 01:07:45 -05:00
}
if ( x1 > x2 )
{
2020-05-18 17:43:55 -07:00
V_swap ( x1 , x2 ) ;
V_swap ( y1 , y2 ) ;
2008-09-15 01:07:45 -05:00
}
// this code is not fast. what it does is when the curve would be non-monotonic, slowly shifts
// the center point closer to the linear line between the endpoints. Should anyone need htis
// function to be actually fast, it would be fairly easy to change it to be so.
for ( float blend_to_linear_factor = 0.0 ; blend_to_linear_factor < = 1.0 ; blend_to_linear_factor + = 0.05 )
{
float tempy2 = ( 1 - blend_to_linear_factor ) * y2 + blend_to_linear_factor * FLerp ( y1 , y3 , x1 , x3 , x2 ) ;
if ( ! SolveInverseQuadratic ( x1 , y1 , x2 , tempy2 , x3 , y3 , a , b , c ) )
return false ;
float derivative = 2.0 * a + b ;
if ( ( y1 < y2 ) & & ( y2 < y3 ) ) // monotonically increasing
{
if ( derivative > = 0.0 )
return true ;
}
else
{
if ( ( y1 > y2 ) & & ( y2 > y3 ) ) // monotonically decreasing
{
if ( derivative < = 0.0 )
return true ;
}
else
return true ;
}
}
return true ;
}
// solves for "a, b, c" where "1/(a x^2 + b x + c ) = y", return true if solution exists
bool SolveInverseReciprocalQuadratic ( float x1 , float y1 , float x2 , float y2 , float x3 , float y3 , float & a , float & b , float & c )
{
float det = ( x1 - x2 ) * ( x1 - x3 ) * ( x2 - x3 ) * y1 * y2 * y3 ;
// FIXME: check with some sort of epsilon
if ( det = = 0.0 )
return false ;
a = ( x1 * y1 * ( y2 - y3 ) + x3 * ( y1 - y2 ) * y3 + x2 * y2 * ( - y1 + y3 ) ) / det ;
b = ( x2 * x2 * y2 * ( y1 - y3 ) + x3 * x3 * ( - y1 + y2 ) * y3 + x1 * x1 * y1 * ( - y2 + y3 ) ) / det ;
c = ( x2 * ( x2 - x3 ) * x3 * y2 * y3 + x1 * x1 * y1 * ( x2 * y2 - x3 * y3 ) + x1 * ( - ( x2 * x2 * y1 * y2 ) + x3 * x3 * y1 * y3 ) ) / det ;
return true ;
}
// Rotate a vector around the Z axis (YAW)
void VectorYawRotate ( const Vector & in , float flYaw , Vector & out )
{
Assert ( s_bMathlibInitialized ) ;
if ( & in = = & out )
{
Vector tmp ;
tmp = in ;
VectorYawRotate ( tmp , flYaw , out ) ;
return ;
}
float sy , cy ;
SinCos ( DEG2RAD ( flYaw ) , & sy , & cy ) ;
out . x = in . x * cy - in . y * sy ;
out . y = in . x * sy + in . y * cy ;
out . z = in . z ;
}
float Bias ( float x , float biasAmt )
{
// WARNING: not thread safe
static float lastAmt = - 1 ;
static float lastExponent = 0 ;
if ( lastAmt ! = biasAmt )
{
lastExponent = log ( biasAmt ) * - 1.4427f ; // (-1.4427 = 1 / log(0.5))
}
return pow ( x , lastExponent ) ;
}
float Gain ( float x , float biasAmt )
{
// WARNING: not thread safe
if ( x < 0.5 )
return 0.5f * Bias ( 2 * x , 1 - biasAmt ) ;
else
return 1 - 0.5f * Bias ( 2 - 2 * x , 1 - biasAmt ) ;
}
float SmoothCurve ( float x )
{
return ( 1 - cos ( x * M_PI ) ) * 0.5f ;
}
inline float MovePeak ( float x , float flPeakPos )
{
// Todo: make this higher-order?
if ( x < flPeakPos )
return x * 0.5f / flPeakPos ;
else
return 0.5 + 0.5 * ( x - flPeakPos ) / ( 1 - flPeakPos ) ;
}
float SmoothCurve_Tweak ( float x , float flPeakPos , float flPeakSharpness )
{
float flMovedPeak = MovePeak ( x , flPeakPos ) ;
float flSharpened = Gain ( flMovedPeak , flPeakSharpness ) ;
return SmoothCurve ( flSharpened ) ;
}
//-----------------------------------------------------------------------------
// make sure quaternions are within 180 degrees of one another, if not, reverse q
//-----------------------------------------------------------------------------
void QuaternionAlign ( const Quaternion & p , const Quaternion & q , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
// FIXME: can this be done with a quat dot product?
int i ;
// decide if one of the quaternions is backwards
float a = 0 ;
float b = 0 ;
for ( i = 0 ; i < 4 ; i + + )
{
a + = ( p [ i ] - q [ i ] ) * ( p [ i ] - q [ i ] ) ;
b + = ( p [ i ] + q [ i ] ) * ( p [ i ] + q [ i ] ) ;
}
if ( a > b )
{
for ( i = 0 ; i < 4 ; i + + )
{
qt [ i ] = - q [ i ] ;
}
}
else if ( & qt ! = & q )
{
for ( i = 0 ; i < 4 ; i + + )
{
qt [ i ] = q [ i ] ;
}
}
}
//-----------------------------------------------------------------------------
// Do a piecewise addition of the quaternion elements. This actually makes little
// mathematical sense, but it's a cheap way to simulate a slerp.
//-----------------------------------------------------------------------------
void QuaternionBlend ( const Quaternion & p , const Quaternion & q , float t , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
# if ALLOW_SIMD_QUATERNION_MATH
fltx4 psimd , qsimd , qtsimd ;
psimd = LoadUnalignedSIMD ( p . Base ( ) ) ;
qsimd = LoadUnalignedSIMD ( q . Base ( ) ) ;
qtsimd = QuaternionBlendSIMD ( psimd , qsimd , t ) ;
StoreUnalignedSIMD ( qt . Base ( ) , qtsimd ) ;
# else
// decide if one of the quaternions is backwards
Quaternion q2 ;
QuaternionAlign ( p , q , q2 ) ;
QuaternionBlendNoAlign ( p , q2 , t , qt ) ;
# endif
}
void QuaternionBlendNoAlign ( const Quaternion & p , const Quaternion & q , float t , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
float sclp , sclq ;
int i ;
// 0.0 returns p, 1.0 return q.
sclp = 1.0f - t ;
sclq = t ;
for ( i = 0 ; i < 4 ; i + + ) {
qt [ i ] = sclp * p [ i ] + sclq * q [ i ] ;
}
QuaternionNormalize ( qt ) ;
}
void QuaternionIdentityBlend ( const Quaternion & p , float t , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
float sclp ;
sclp = 1.0f - t ;
qt . x = p . x * sclp ;
qt . y = p . y * sclp ;
qt . z = p . z * sclp ;
if ( qt . w < 0.0 )
{
qt . w = p . w * sclp - t ;
}
else
{
qt . w = p . w * sclp + t ;
}
QuaternionNormalize ( qt ) ;
}
//-----------------------------------------------------------------------------
// Quaternion sphereical linear interpolation
//-----------------------------------------------------------------------------
void QuaternionSlerp ( const Quaternion & p , const Quaternion & q , float t , Quaternion & qt )
{
Quaternion q2 ;
// 0.0 returns p, 1.0 return q.
// decide if one of the quaternions is backwards
QuaternionAlign ( p , q , q2 ) ;
QuaternionSlerpNoAlign ( p , q2 , t , qt ) ;
}
void QuaternionSlerpNoAlign ( const Quaternion & p , const Quaternion & q , float t , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
float omega , cosom , sinom , sclp , sclq ;
int i ;
// 0.0 returns p, 1.0 return q.
cosom = p [ 0 ] * q [ 0 ] + p [ 1 ] * q [ 1 ] + p [ 2 ] * q [ 2 ] + p [ 3 ] * q [ 3 ] ;
if ( ( 1.0f + cosom ) > 0.000001f ) {
if ( ( 1.0f - cosom ) > 0.000001f ) {
omega = acos ( cosom ) ;
sinom = sin ( omega ) ;
sclp = sin ( ( 1.0f - t ) * omega ) / sinom ;
sclq = sin ( t * omega ) / sinom ;
}
else {
// TODO: add short circuit for cosom == 1.0f?
sclp = 1.0f - t ;
sclq = t ;
}
for ( i = 0 ; i < 4 ; i + + ) {
qt [ i ] = sclp * p [ i ] + sclq * q [ i ] ;
}
}
else {
Assert ( & qt ! = & q ) ;
qt [ 0 ] = - q [ 1 ] ;
qt [ 1 ] = q [ 0 ] ;
qt [ 2 ] = - q [ 3 ] ;
qt [ 3 ] = q [ 2 ] ;
sclp = sin ( ( 1.0f - t ) * ( 0.5f * M_PI ) ) ;
sclq = sin ( t * ( 0.5f * M_PI ) ) ;
for ( i = 0 ; i < 3 ; i + + ) {
qt [ i ] = sclp * p [ i ] + sclq * qt [ i ] ;
}
}
Assert ( qt . IsValid ( ) ) ;
}
//-----------------------------------------------------------------------------
// Purpose: Returns the angular delta between the two normalized quaternions in degrees.
//-----------------------------------------------------------------------------
float QuaternionAngleDiff ( const Quaternion & p , const Quaternion & q )
{
# if 1
// this code path is here for 2 reasons:
// 1 - acos maps 1-epsilon to values much larger than epsilon (vs asin, which maps epsilon to itself)
// this means that in floats, anything below ~0.05 degrees truncates to 0
// 2 - normalized quaternions are frequently slightly non-normalized due to float precision issues,
// and the epsilon off of normalized can be several percents of a degree
Quaternion qInv , diff ;
QuaternionConjugate ( q , qInv ) ;
QuaternionMult ( p , qInv , diff ) ;
float sinang = sqrt ( diff . x * diff . x + diff . y * diff . y + diff . z * diff . z ) ;
float angle = RAD2DEG ( 2 * asin ( sinang ) ) ;
return angle ;
# else
Quaternion q2 ;
QuaternionAlign ( p , q , q2 ) ;
Assert ( s_bMathlibInitialized ) ;
float cosom = p . x * q2 . x + p . y * q2 . y + p . z * q2 . z + p . w * q2 . w ;
if ( cosom > - 1.0f )
{
if ( cosom < 1.0f )
{
float omega = 2 * fabs ( acos ( cosom ) ) ;
return RAD2DEG ( omega ) ;
}
return 0.0f ;
}
return 180.0f ;
# endif
}
void QuaternionConjugate ( const Quaternion & p , Quaternion & q )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( q . IsValid ( ) ) ;
q . x = - p . x ;
q . y = - p . y ;
q . z = - p . z ;
q . w = p . w ;
}
void QuaternionInvert ( const Quaternion & p , Quaternion & q )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( q . IsValid ( ) ) ;
QuaternionConjugate ( p , q ) ;
float magnitudeSqr = QuaternionDotProduct ( p , p ) ;
Assert ( magnitudeSqr ) ;
if ( magnitudeSqr )
{
float inv = 1.0f / magnitudeSqr ;
q . x * = inv ;
q . y * = inv ;
q . z * = inv ;
q . w * = inv ;
}
}
//-----------------------------------------------------------------------------
// Make sure the quaternion is of unit length
//-----------------------------------------------------------------------------
float QuaternionNormalize ( Quaternion & q )
{
Assert ( s_bMathlibInitialized ) ;
float radius , iradius ;
Assert ( q . IsValid ( ) ) ;
radius = q [ 0 ] * q [ 0 ] + q [ 1 ] * q [ 1 ] + q [ 2 ] * q [ 2 ] + q [ 3 ] * q [ 3 ] ;
if ( radius ) // > FLT_EPSILON && ((radius < 1.0f - 4*FLT_EPSILON) || (radius > 1.0f + 4*FLT_EPSILON))
{
radius = sqrt ( radius ) ;
iradius = 1.0f / radius ;
q [ 3 ] * = iradius ;
q [ 2 ] * = iradius ;
q [ 1 ] * = iradius ;
q [ 0 ] * = iradius ;
}
return radius ;
}
void QuaternionScale ( const Quaternion & p , float t , Quaternion & q )
{
Assert ( s_bMathlibInitialized ) ;
#if 0
Quaternion p0 ;
Quaternion q ;
p0 . Init ( 0.0 , 0.0 , 0.0 , 1.0 ) ;
// slerp in "reverse order" so that p doesn't get realigned
QuaternionSlerp ( p , p0 , 1.0 - fabs ( t ) , q ) ;
if ( t < 0.0 )
{
q . w = - q . w ;
}
# else
float r ;
// FIXME: nick, this isn't overly sensitive to accuracy, and it may be faster to
// use the cos part (w) of the quaternion (sin(omega)*N,cos(omega)) to figure the new scale.
float sinom = sqrt ( DotProduct ( & p . x , & p . x ) ) ;
2011-04-28 01:30:37 -05:00
sinom = MIN ( sinom , 1.f ) ;
2008-09-15 01:07:45 -05:00
float sinsom = sin ( asin ( sinom ) * t ) ;
t = sinsom / ( sinom + FLT_EPSILON ) ;
VectorScale ( & p . x , t , & q . x ) ;
// rescale rotation
r = 1.0f - sinsom * sinsom ;
// Assert( r >= 0 );
if ( r < 0.0f )
r = 0.0f ;
r = sqrt ( r ) ;
// keep sign of rotation
if ( p . w < 0 )
q . w = - r ;
else
q . w = r ;
# endif
Assert ( q . IsValid ( ) ) ;
return ;
}
void QuaternionAdd ( const Quaternion & p , const Quaternion & q , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( p . IsValid ( ) ) ;
Assert ( q . IsValid ( ) ) ;
// decide if one of the quaternions is backwards
Quaternion q2 ;
QuaternionAlign ( p , q , q2 ) ;
// is this right???
qt [ 0 ] = p [ 0 ] + q2 [ 0 ] ;
qt [ 1 ] = p [ 1 ] + q2 [ 1 ] ;
qt [ 2 ] = p [ 2 ] + q2 [ 2 ] ;
qt [ 3 ] = p [ 3 ] + q2 [ 3 ] ;
return ;
}
float QuaternionDotProduct ( const Quaternion & p , const Quaternion & q )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( p . IsValid ( ) ) ;
Assert ( q . IsValid ( ) ) ;
return p . x * q . x + p . y * q . y + p . z * q . z + p . w * q . w ;
}
// qt = p * q
void QuaternionMult ( const Quaternion & p , const Quaternion & q , Quaternion & qt )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( p . IsValid ( ) ) ;
Assert ( q . IsValid ( ) ) ;
if ( & p = = & qt )
{
Quaternion p2 = p ;
QuaternionMult ( p2 , q , qt ) ;
return ;
}
// decide if one of the quaternions is backwards
Quaternion q2 ;
QuaternionAlign ( p , q , q2 ) ;
qt . x = p . x * q2 . w + p . y * q2 . z - p . z * q2 . y + p . w * q2 . x ;
qt . y = - p . x * q2 . z + p . y * q2 . w + p . z * q2 . x + p . w * q2 . y ;
qt . z = p . x * q2 . y - p . y * q2 . x + p . z * q2 . w + p . w * q2 . z ;
qt . w = - p . x * q2 . x - p . y * q2 . y - p . z * q2 . z + p . w * q2 . w ;
}
void QuaternionMatrix ( const Quaternion & q , const Vector & pos , matrix3x4_t & matrix )
{
Assert ( pos . IsValid ( ) ) ;
QuaternionMatrix ( q , matrix ) ;
matrix [ 0 ] [ 3 ] = pos . x ;
matrix [ 1 ] [ 3 ] = pos . y ;
matrix [ 2 ] [ 3 ] = pos . z ;
}
void QuaternionMatrix ( const Quaternion & q , matrix3x4_t & matrix )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( q . IsValid ( ) ) ;
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " QuaternionMatrix " , " Mathlib " ) ;
# endif
// Original code
// This should produce the same code as below with optimization, but looking at the assmebly,
// it doesn't. There are 7 extra multiplies in the release build of this, go figure.
# if 1
matrix [ 0 ] [ 0 ] = 1.0 - 2.0 * q . y * q . y - 2.0 * q . z * q . z ;
matrix [ 1 ] [ 0 ] = 2.0 * q . x * q . y + 2.0 * q . w * q . z ;
matrix [ 2 ] [ 0 ] = 2.0 * q . x * q . z - 2.0 * q . w * q . y ;
matrix [ 0 ] [ 1 ] = 2.0f * q . x * q . y - 2.0f * q . w * q . z ;
matrix [ 1 ] [ 1 ] = 1.0f - 2.0f * q . x * q . x - 2.0f * q . z * q . z ;
matrix [ 2 ] [ 1 ] = 2.0f * q . y * q . z + 2.0f * q . w * q . x ;
matrix [ 0 ] [ 2 ] = 2.0f * q . x * q . z + 2.0f * q . w * q . y ;
matrix [ 1 ] [ 2 ] = 2.0f * q . y * q . z - 2.0f * q . w * q . x ;
matrix [ 2 ] [ 2 ] = 1.0f - 2.0f * q . x * q . x - 2.0f * q . y * q . y ;
matrix [ 0 ] [ 3 ] = 0.0f ;
matrix [ 1 ] [ 3 ] = 0.0f ;
matrix [ 2 ] [ 3 ] = 0.0f ;
# else
float wx , wy , wz , xx , yy , yz , xy , xz , zz , x2 , y2 , z2 ;
// precalculate common multiplitcations
x2 = q . x + q . x ;
y2 = q . y + q . y ;
z2 = q . z + q . z ;
xx = q . x * x2 ;
xy = q . x * y2 ;
xz = q . x * z2 ;
yy = q . y * y2 ;
yz = q . y * z2 ;
zz = q . z * z2 ;
wx = q . w * x2 ;
wy = q . w * y2 ;
wz = q . w * z2 ;
matrix [ 0 ] [ 0 ] = 1.0 - ( yy + zz ) ;
matrix [ 0 ] [ 1 ] = xy - wz ;
matrix [ 0 ] [ 2 ] = xz + wy ;
matrix [ 0 ] [ 3 ] = 0.0f ;
matrix [ 1 ] [ 0 ] = xy + wz ;
matrix [ 1 ] [ 1 ] = 1.0 - ( xx + zz ) ;
matrix [ 1 ] [ 2 ] = yz - wx ;
matrix [ 1 ] [ 3 ] = 0.0f ;
matrix [ 2 ] [ 0 ] = xz - wy ;
matrix [ 2 ] [ 1 ] = yz + wx ;
matrix [ 2 ] [ 2 ] = 1.0 - ( xx + yy ) ;
matrix [ 2 ] [ 3 ] = 0.0f ;
# endif
}
//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion into engine angles
// Input : *quaternion - q3 + q0.i + q1.j + q2.k
// *outAngles - PITCH, YAW, ROLL
//-----------------------------------------------------------------------------
void QuaternionAngles ( const Quaternion & q , QAngle & angles )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( q . IsValid ( ) ) ;
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " QuaternionAngles " , " Mathlib " ) ;
# endif
# if 1
// FIXME: doing it this way calculates too much data, needs to do an optimized version...
matrix3x4_t matrix ;
QuaternionMatrix ( q , matrix ) ;
MatrixAngles ( matrix , angles ) ;
# else
float m11 , m12 , m13 , m23 , m33 ;
m11 = ( 2.0f * q . w * q . w ) + ( 2.0f * q . x * q . x ) - 1.0f ;
m12 = ( 2.0f * q . x * q . y ) + ( 2.0f * q . w * q . z ) ;
m13 = ( 2.0f * q . x * q . z ) - ( 2.0f * q . w * q . y ) ;
m23 = ( 2.0f * q . y * q . z ) + ( 2.0f * q . w * q . x ) ;
m33 = ( 2.0f * q . w * q . w ) + ( 2.0f * q . z * q . z ) - 1.0f ;
// FIXME: this code has a singularity near PITCH +-90
angles [ YAW ] = RAD2DEG ( atan2 ( m12 , m11 ) ) ;
angles [ PITCH ] = RAD2DEG ( asin ( - m13 ) ) ;
angles [ ROLL ] = RAD2DEG ( atan2 ( m23 , m33 ) ) ;
# endif
Assert ( angles . IsValid ( ) ) ;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion to an axis / angle in degrees
// (exponential map)
//-----------------------------------------------------------------------------
void QuaternionAxisAngle ( const Quaternion & q , Vector & axis , float & angle )
{
angle = RAD2DEG ( 2 * acos ( q . w ) ) ;
if ( angle > 180 )
{
angle - = 360 ;
}
axis . x = q . x ;
axis . y = q . y ;
axis . z = q . z ;
VectorNormalize ( axis ) ;
}
//-----------------------------------------------------------------------------
// Purpose: Converts an exponential map (ang/axis) to a quaternion
//-----------------------------------------------------------------------------
void AxisAngleQuaternion ( const Vector & axis , float angle , Quaternion & q )
{
float sa , ca ;
SinCos ( DEG2RAD ( angle ) * 0.5f , & sa , & ca ) ;
q . x = axis . x * sa ;
q . y = axis . y * sa ;
q . z = axis . z * sa ;
q . w = ca ;
}
//-----------------------------------------------------------------------------
// Purpose: Converts radian-euler axis aligned angles to a quaternion
// Input : *pfAngles - Right-handed Euler angles in radians
// *outQuat - quaternion of form (i,j,k,real)
//-----------------------------------------------------------------------------
void AngleQuaternion ( const RadianEuler & angles , Quaternion & outQuat )
{
Assert ( s_bMathlibInitialized ) ;
// Assert( angles.IsValid() );
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " AngleQuaternion " , " Mathlib " ) ;
# endif
float sr , sp , sy , cr , cp , cy ;
# ifdef _X360
fltx4 radians , scale , sine , cosine ;
radians = LoadUnaligned3SIMD ( & angles . x ) ;
scale = ReplicateX4 ( 0.5f ) ;
radians = MulSIMD ( radians , scale ) ;
SinCos3SIMD ( sine , cosine , radians ) ;
// NOTE: The ordering here is *different* from the AngleQuaternion below
// because p, y, r are not in the same locations in QAngle + RadianEuler. Yay!
sr = SubFloat ( sine , 0 ) ; sp = SubFloat ( sine , 1 ) ; sy = SubFloat ( sine , 2 ) ;
cr = SubFloat ( cosine , 0 ) ; cp = SubFloat ( cosine , 1 ) ; cy = SubFloat ( cosine , 2 ) ;
# else
SinCos ( angles . z * 0.5f , & sy , & cy ) ;
SinCos ( angles . y * 0.5f , & sp , & cp ) ;
SinCos ( angles . x * 0.5f , & sr , & cr ) ;
# endif
// NJS: for some reason VC6 wasn't recognizing the common subexpressions:
float srXcp = sr * cp , crXsp = cr * sp ;
outQuat . x = srXcp * cy - crXsp * sy ; // X
outQuat . y = crXsp * cy + srXcp * sy ; // Y
float crXcp = cr * cp , srXsp = sr * sp ;
outQuat . z = crXcp * sy - srXsp * cy ; // Z
outQuat . w = crXcp * cy + srXsp * sy ; // W (real component)
}
//-----------------------------------------------------------------------------
// Purpose: Converts engine-format euler angles to a quaternion
// Input : angles - Right-handed Euler angles in degrees as follows:
// [0]: PITCH: Clockwise rotation around the Y axis.
// [1]: YAW: Counterclockwise rotation around the Z axis.
// [2]: ROLL: Counterclockwise rotation around the X axis.
// *outQuat - quaternion of form (i,j,k,real)
//-----------------------------------------------------------------------------
void AngleQuaternion ( const QAngle & angles , Quaternion & outQuat )
{
# ifdef _VPROF_MATHLIB
VPROF_BUDGET ( " AngleQuaternion " , " Mathlib " ) ;
# endif
float sr , sp , sy , cr , cp , cy ;
# ifdef _X360
fltx4 radians , scale , sine , cosine ;
radians = LoadUnaligned3SIMD ( angles . Base ( ) ) ;
scale = ReplicateX4 ( 0.5f * M_PI_F / 180.f ) ;
radians = MulSIMD ( radians , scale ) ;
SinCos3SIMD ( sine , cosine , radians ) ;
// NOTE: The ordering here is *different* from the AngleQuaternion above
// because p, y, r are not in the same locations in QAngle + RadianEuler. Yay!
sp = SubFloat ( sine , 0 ) ; sy = SubFloat ( sine , 1 ) ; sr = SubFloat ( sine , 2 ) ;
cp = SubFloat ( cosine , 0 ) ; cy = SubFloat ( cosine , 1 ) ; cr = SubFloat ( cosine , 2 ) ;
# else
SinCos ( DEG2RAD ( angles . y ) * 0.5f , & sy , & cy ) ;
SinCos ( DEG2RAD ( angles . x ) * 0.5f , & sp , & cp ) ;
SinCos ( DEG2RAD ( angles . z ) * 0.5f , & sr , & cr ) ;
# endif
// NJS: for some reason VC6 wasn't recognizing the common subexpressions:
float srXcp = sr * cp , crXsp = cr * sp ;
outQuat . x = srXcp * cy - crXsp * sy ; // X
outQuat . y = crXsp * cy + srXcp * sy ; // Y
float crXcp = cr * cp , srXsp = sr * sp ;
outQuat . z = crXcp * sy - srXsp * cy ; // Z
outQuat . w = crXcp * cy + srXsp * sy ; // W (real component)
}
//-----------------------------------------------------------------------------
// Purpose: Converts a basis to a quaternion
//-----------------------------------------------------------------------------
void BasisToQuaternion ( const Vector & vecForward , const Vector & vecRight , const Vector & vecUp , Quaternion & q )
{
Assert ( fabs ( vecForward . LengthSqr ( ) - 1.0f ) < 1e-3 ) ;
Assert ( fabs ( vecRight . LengthSqr ( ) - 1.0f ) < 1e-3 ) ;
Assert ( fabs ( vecUp . LengthSqr ( ) - 1.0f ) < 1e-3 ) ;
Vector vecLeft ;
VectorMultiply ( vecRight , - 1.0f , vecLeft ) ;
// FIXME: Don't know why, but this doesn't match at all with other result
// so we can't use this super-fast way.
/*
// Find the trace of the matrix:
float flTrace = vecForward . x + vecLeft . y + vecUp . z + 1.0f ;
if ( flTrace > 1e-6 )
{
float flSqrtTrace = FastSqrt ( flTrace ) ;
float s = 0.5f / flSqrtTrace ;
q . x = ( vecUp . y - vecLeft . z ) * s ;
q . y = ( vecForward . z - vecUp . x ) * s ;
q . z = ( vecLeft . x - vecForward . y ) * s ;
q . w = 0.5f * flSqrtTrace ;
}
else
{
if ( ( vecForward . x > vecLeft . y ) & & ( vecForward . x > vecUp . z ) )
{
float flSqrtTrace = FastSqrt ( 1.0f + vecForward . x - vecLeft . y - vecUp . z ) ;
float s = 0.5f / flSqrtTrace ;
q . x = 0.5f * flSqrtTrace ;
q . y = ( vecForward . y + vecLeft . x ) * s ;
q . z = ( vecUp . x + vecForward . z ) * s ;
q . w = ( vecUp . y - vecLeft . z ) * s ;
}
else if ( vecLeft . y > vecUp . z )
{
float flSqrtTrace = FastSqrt ( 1.0f + vecLeft . y - vecForward . x - vecUp . z ) ;
float s = 0.5f / flSqrtTrace ;
q . x = ( vecForward . y + vecLeft . x ) * s ;
q . y = 0.5f * flSqrtTrace ;
q . z = ( vecUp . y + vecLeft . z ) * s ;
q . w = ( vecForward . z - vecUp . x ) * s ;
}
else
{
float flSqrtTrace = FastSqrt ( 1.0 + vecUp . z - vecForward . x - vecLeft . y ) ;
float s = 0.5f / flSqrtTrace ;
q . x = ( vecUp . x + vecForward . z ) * s ;
q . y = ( vecUp . y + vecLeft . z ) * s ;
q . z = 0.5f * flSqrtTrace ;
q . w = ( vecLeft . x - vecForward . y ) * s ;
}
}
QuaternionNormalize ( q ) ;
*/
// Version 2: Go through angles
matrix3x4_t mat ;
MatrixSetColumn ( vecForward , 0 , mat ) ;
MatrixSetColumn ( vecLeft , 1 , mat ) ;
MatrixSetColumn ( vecUp , 2 , mat ) ;
QAngle angles ;
MatrixAngles ( mat , angles ) ;
// Quaternion q2;
AngleQuaternion ( angles , q ) ;
// Assert( fabs(q.x - q2.x) < 1e-3 );
// Assert( fabs(q.y - q2.y) < 1e-3 );
// Assert( fabs(q.z - q2.z) < 1e-3 );
// Assert( fabs(q.w - q2.w) < 1e-3 );
}
// FIXME: Optimize!
void MatrixQuaternion ( const matrix3x4_t & mat , Quaternion & q )
{
QAngle angles ;
MatrixAngles ( mat , angles ) ;
AngleQuaternion ( angles , q ) ;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a quaternion into engine angles
// Input : *quaternion - q3 + q0.i + q1.j + q2.k
// *outAngles - PITCH, YAW, ROLL
//-----------------------------------------------------------------------------
void QuaternionAngles ( const Quaternion & q , RadianEuler & angles )
{
Assert ( s_bMathlibInitialized ) ;
Assert ( q . IsValid ( ) ) ;
// FIXME: doing it this way calculates too much data, needs to do an optimized version...
matrix3x4_t matrix ;
QuaternionMatrix ( q , matrix ) ;
MatrixAngles ( matrix , angles ) ;
Assert ( angles . IsValid ( ) ) ;
}
//-----------------------------------------------------------------------------
// Purpose: A helper function to normalize p2.x->p1.x and p3.x->p4.x to
// be the same length as p2.x->p3.x
// Input : &p2 -
// &p4 -
// p4n -
//-----------------------------------------------------------------------------
void Spline_Normalize (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
Vector & p1n ,
Vector & p4n )
{
float dt = p3 . x - p2 . x ;
p1n = p1 ;
p4n = p4 ;
if ( dt ! = 0.0 )
{
if ( p1 . x ! = p2 . x )
{
// Equivalent to p1n = p2 - (p2 - p1) * (dt / (p2.x - p1.x));
VectorLerp ( p2 , p1 , dt / ( p2 . x - p1 . x ) , p1n ) ;
}
if ( p4 . x ! = p3 . x )
{
// Equivalent to p4n = p3 + (p4 - p3) * (dt / (p4.x - p3.x));
VectorLerp ( p3 , p4 , dt / ( p4 . x - p3 . x ) , p4n ) ;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input :
//-----------------------------------------------------------------------------
void Catmull_Rom_Spline (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float tSqr = t * t * 0.5f ;
float tSqrSqr = t * tSqr ;
t * = 0.5f ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & p3 ) ;
Assert ( & output ! = & p4 ) ;
output . Init ( ) ;
Vector a , b , c , d ;
// matrix row 1
VectorScale ( p1 , - tSqrSqr , a ) ; // 0.5 t^3 * [ (-1*p1) + ( 3*p2) + (-3*p3) + p4 ]
VectorScale ( p2 , tSqrSqr * 3 , b ) ;
VectorScale ( p3 , tSqrSqr * - 3 , c ) ;
VectorScale ( p4 , tSqrSqr , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 2
VectorScale ( p1 , tSqr * 2 , a ) ; // 0.5 t^2 * [ ( 2*p1) + (-5*p2) + ( 4*p3) - p4 ]
VectorScale ( p2 , tSqr * - 5 , b ) ;
VectorScale ( p3 , tSqr * 4 , c ) ;
VectorScale ( p4 , - tSqr , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 3
VectorScale ( p1 , - t , a ) ; // 0.5 t * [ (-1*p1) + p3 ]
VectorScale ( p3 , t , b ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
// matrix row 4
VectorAdd ( p2 , output , output ) ; // p2
}
void Catmull_Rom_Spline_Tangent (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float tOne = 3 * t * t * 0.5f ;
float tTwo = 2 * t * 0.5f ;
float tThree = 0.5 ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & p3 ) ;
Assert ( & output ! = & p4 ) ;
output . Init ( ) ;
Vector a , b , c , d ;
// matrix row 1
VectorScale ( p1 , - tOne , a ) ; // 0.5 t^3 * [ (-1*p1) + ( 3*p2) + (-3*p3) + p4 ]
VectorScale ( p2 , tOne * 3 , b ) ;
VectorScale ( p3 , tOne * - 3 , c ) ;
VectorScale ( p4 , tOne , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 2
VectorScale ( p1 , tTwo * 2 , a ) ; // 0.5 t^2 * [ ( 2*p1) + (-5*p2) + ( 4*p3) - p4 ]
VectorScale ( p2 , tTwo * - 5 , b ) ;
VectorScale ( p3 , tTwo * 4 , c ) ;
VectorScale ( p4 , - tTwo , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 3
VectorScale ( p1 , - tThree , a ) ; // 0.5 t * [ (-1*p1) + p3 ]
VectorScale ( p3 , tThree , b ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
}
// area under the curve [0..t]
void Catmull_Rom_Spline_Integral (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
output = p2 * t
- 0.25f * ( p1 - p3 ) * t * t
+ ( 1.0f / 6.0f ) * ( 2.0f * p1 - 5.0f * p2 + 4.0f * p3 - p4 ) * t * t * t
- 0.125f * ( p1 - 3.0f * p2 + 3.0f * p3 - p4 ) * t * t * t * t ;
}
// area under the curve [0..1]
void Catmull_Rom_Spline_Integral (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
Vector & output )
{
output = ( - 0.25f * p1 + 3.25f * p2 + 3.25f * p3 - 0.25f * p4 ) * ( 1.0f / 6.0f ) ;
}
void Catmull_Rom_Spline_Normalize (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
float dt = p3 . DistTo ( p2 ) ;
Vector p1n , p4n ;
VectorSubtract ( p1 , p2 , p1n ) ;
VectorSubtract ( p4 , p3 , p4n ) ;
VectorNormalize ( p1n ) ;
VectorNormalize ( p4n ) ;
VectorMA ( p2 , dt , p1n , p1n ) ;
VectorMA ( p3 , dt , p4n , p4n ) ;
Catmull_Rom_Spline ( p1n , p2 , p3 , p4n , t , output ) ;
}
void Catmull_Rom_Spline_Integral_Normalize (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
float dt = p3 . DistTo ( p2 ) ;
Vector p1n , p4n ;
VectorSubtract ( p1 , p2 , p1n ) ;
VectorSubtract ( p4 , p3 , p4n ) ;
VectorNormalize ( p1n ) ;
VectorNormalize ( p4n ) ;
VectorMA ( p2 , dt , p1n , p1n ) ;
VectorMA ( p3 , dt , p4n , p4n ) ;
Catmull_Rom_Spline_Integral ( p1n , p2 , p3 , p4n , t , output ) ;
}
void Catmull_Rom_Spline_NormalizeX (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Vector p1n , p4n ;
Spline_Normalize ( p1 , p2 , p3 , p4 , p1n , p4n ) ;
Catmull_Rom_Spline ( p1n , p2 , p3 , p4n , t , output ) ;
}
//-----------------------------------------------------------------------------
// Purpose: basic hermite spline. t = 0 returns p1, t = 1 returns p2,
// d1 and d2 are used to entry and exit slope of curve
// Input :
//-----------------------------------------------------------------------------
void Hermite_Spline (
const Vector & p1 ,
const Vector & p2 ,
const Vector & d1 ,
const Vector & d2 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float tSqr = t * t ;
float tCube = t * tSqr ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & d1 ) ;
Assert ( & output ! = & d2 ) ;
float b1 = 2.0f * tCube - 3.0f * tSqr + 1.0f ;
float b2 = 1.0f - b1 ; // -2*tCube+3*tSqr;
float b3 = tCube - 2 * tSqr + t ;
float b4 = tCube - tSqr ;
VectorScale ( p1 , b1 , output ) ;
VectorMA ( output , b2 , p2 , output ) ;
VectorMA ( output , b3 , d1 , output ) ;
VectorMA ( output , b4 , d2 , output ) ;
}
float Hermite_Spline (
float p1 ,
float p2 ,
float d1 ,
float d2 ,
float t )
{
Assert ( s_bMathlibInitialized ) ;
float output ;
float tSqr = t * t ;
float tCube = t * tSqr ;
float b1 = 2.0f * tCube - 3.0f * tSqr + 1.0f ;
float b2 = 1.0f - b1 ; // -2*tCube+3*tSqr;
float b3 = tCube - 2 * tSqr + t ;
float b4 = tCube - tSqr ;
output = p1 * b1 ;
output + = p2 * b2 ;
output + = d1 * b3 ;
output + = d2 * b4 ;
return output ;
}
void Hermite_SplineBasis ( float t , float basis [ 4 ] )
{
float tSqr = t * t ;
float tCube = t * tSqr ;
basis [ 0 ] = 2.0f * tCube - 3.0f * tSqr + 1.0f ;
basis [ 1 ] = 1.0f - basis [ 0 ] ; // -2*tCube+3*tSqr;
basis [ 2 ] = tCube - 2 * tSqr + t ;
basis [ 3 ] = tCube - tSqr ;
}
//-----------------------------------------------------------------------------
// Purpose: simple three data point hermite spline.
// t = 0 returns p1, t = 1 returns p2,
// slopes are generated from the p0->p1 and p1->p2 segments
// this is reasonable C1 method when there's no "p3" data yet.
// Input :
//-----------------------------------------------------------------------------
// BUG: the VectorSubtract()'s calls go away if the global optimizer is enabled
2008-09-15 02:50:57 -05:00
# ifdef _MSC_VER
2008-09-15 01:07:45 -05:00
# pragma optimize( "g", off )
2008-09-15 02:50:57 -05:00
# endif
2008-09-15 01:07:45 -05:00
void Hermite_Spline ( const Vector & p0 , const Vector & p1 , const Vector & p2 , float t , Vector & output )
{
Vector e10 , e21 ;
VectorSubtract ( p1 , p0 , e10 ) ;
VectorSubtract ( p2 , p1 , e21 ) ;
Hermite_Spline ( p1 , p2 , e10 , e21 , t , output ) ;
}
2008-09-15 02:50:57 -05:00
# ifdef _MSC_VER
2008-09-15 01:07:45 -05:00
# pragma optimize( "", on )
2008-09-15 02:50:57 -05:00
# endif
2008-09-15 01:07:45 -05:00
float Hermite_Spline ( float p0 , float p1 , float p2 , float t )
{
return Hermite_Spline ( p1 , p2 , p1 - p0 , p2 - p1 , t ) ;
}
void Hermite_Spline ( const Quaternion & q0 , const Quaternion & q1 , const Quaternion & q2 , float t , Quaternion & output )
{
// cheap, hacked version of quaternions
Quaternion q0a ;
Quaternion q1a ;
QuaternionAlign ( q2 , q0 , q0a ) ;
QuaternionAlign ( q2 , q1 , q1a ) ;
output . x = Hermite_Spline ( q0a . x , q1a . x , q2 . x , t ) ;
output . y = Hermite_Spline ( q0a . y , q1a . y , q2 . y , t ) ;
output . z = Hermite_Spline ( q0a . z , q1a . z , q2 . z , t ) ;
output . w = Hermite_Spline ( q0a . w , q1a . w , q2 . w , t ) ;
QuaternionNormalize ( output ) ;
}
// See http://en.wikipedia.org/wiki/Kochanek-Bartels_curves
//
// Tension: -1 = Round -> 1 = Tight
// Bias: -1 = Pre-shoot (bias left) -> 1 = Post-shoot (bias right)
// Continuity: -1 = Box corners -> 1 = Inverted corners
//
// If T=B=C=0 it's the same matrix as Catmull-Rom.
// If T=1 & B=C=0 it's the same as Cubic.
// If T=B=0 & C=-1 it's just linear interpolation
//
// See http://news.povray.org/povray.binaries.tutorials/attachment/%3CXns91B880592482seed7@povray.org%3E/Splines.bas.txt
// for example code and descriptions of various spline types...
//
void Kochanek_Bartels_Spline (
float tension ,
float bias ,
float continuity ,
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float ffa , ffb , ffc , ffd ;
ffa = ( 1.0f - tension ) * ( 1.0f + continuity ) * ( 1.0f + bias ) ;
ffb = ( 1.0f - tension ) * ( 1.0f - continuity ) * ( 1.0f - bias ) ;
ffc = ( 1.0f - tension ) * ( 1.0f - continuity ) * ( 1.0f + bias ) ;
ffd = ( 1.0f - tension ) * ( 1.0f + continuity ) * ( 1.0f - bias ) ;
float tSqr = t * t * 0.5f ;
float tSqrSqr = t * tSqr ;
t * = 0.5f ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & p3 ) ;
Assert ( & output ! = & p4 ) ;
output . Init ( ) ;
Vector a , b , c , d ;
// matrix row 1
VectorScale ( p1 , tSqrSqr * - ffa , a ) ;
VectorScale ( p2 , tSqrSqr * ( 4.0f + ffa - ffb - ffc ) , b ) ;
VectorScale ( p3 , tSqrSqr * ( - 4.0f + ffb + ffc - ffd ) , c ) ;
VectorScale ( p4 , tSqrSqr * ffd , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 2
VectorScale ( p1 , tSqr * 2 * ffa , a ) ;
VectorScale ( p2 , tSqr * ( - 6 - 2 * ffa + 2 * ffb + ffc ) , b ) ;
VectorScale ( p3 , tSqr * ( 6 - 2 * ffb - ffc + ffd ) , c ) ;
VectorScale ( p4 , tSqr * - ffd , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 3
VectorScale ( p1 , t * - ffa , a ) ;
VectorScale ( p2 , t * ( ffa - ffb ) , b ) ;
VectorScale ( p3 , t * ffb , c ) ;
// p4 unchanged
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
// matrix row 4
// p1, p3, p4 unchanged
// p2 is multiplied by 1 and added, so just added it directly
VectorAdd ( p2 , output , output ) ;
}
void Kochanek_Bartels_Spline_NormalizeX (
float tension ,
float bias ,
float continuity ,
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Vector p1n , p4n ;
Spline_Normalize ( p1 , p2 , p3 , p4 , p1n , p4n ) ;
Kochanek_Bartels_Spline ( tension , bias , continuity , p1n , p2 , p3 , p4n , t , output ) ;
}
void Cubic_Spline (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float tSqr = t * t ;
float tSqrSqr = t * tSqr ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & p3 ) ;
Assert ( & output ! = & p4 ) ;
output . Init ( ) ;
Vector a , b , c , d ;
// matrix row 1
VectorScale ( p2 , tSqrSqr * 2 , b ) ;
VectorScale ( p3 , tSqrSqr * - 2 , c ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
// matrix row 2
VectorScale ( p2 , tSqr * - 3 , b ) ;
VectorScale ( p3 , tSqr * 3 , c ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
// matrix row 3
// no influence
// p4 unchanged
// matrix row 4
// p1, p3, p4 unchanged
VectorAdd ( p2 , output , output ) ;
}
void Cubic_Spline_NormalizeX (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Vector p1n , p4n ;
Spline_Normalize ( p1 , p2 , p3 , p4 , p1n , p4n ) ;
Cubic_Spline ( p1n , p2 , p3 , p4n , t , output ) ;
}
void BSpline (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float oneOver6 = 1.0f / 6.0f ;
float tSqr = t * t * oneOver6 ;
float tSqrSqr = t * tSqr ;
t * = oneOver6 ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & p3 ) ;
Assert ( & output ! = & p4 ) ;
output . Init ( ) ;
Vector a , b , c , d ;
// matrix row 1
VectorScale ( p1 , - tSqrSqr , a ) ;
VectorScale ( p2 , tSqrSqr * 3.0f , b ) ;
VectorScale ( p3 , tSqrSqr * - 3.0f , c ) ;
VectorScale ( p4 , tSqrSqr , d ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
VectorAdd ( d , output , output ) ;
// matrix row 2
VectorScale ( p1 , tSqr * 3.0f , a ) ;
VectorScale ( p2 , tSqr * - 6.0f , b ) ;
VectorScale ( p3 , tSqr * 3.0f , c ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
// matrix row 3
VectorScale ( p1 , t * - 3.0f , a ) ;
VectorScale ( p3 , t * 3.0f , c ) ;
// p4 unchanged
VectorAdd ( a , output , output ) ;
VectorAdd ( c , output , output ) ;
// matrix row 4
// p1 and p3 scaled by 1.0f, so done below
VectorScale ( p1 , oneOver6 , a ) ;
VectorScale ( p2 , 4.0f * oneOver6 , b ) ;
VectorScale ( p3 , oneOver6 , c ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
}
void BSpline_NormalizeX (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Vector p1n , p4n ;
Spline_Normalize ( p1 , p2 , p3 , p4 , p1n , p4n ) ;
BSpline ( p1n , p2 , p3 , p4n , t , output ) ;
}
void Parabolic_Spline (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Assert ( s_bMathlibInitialized ) ;
float tSqr = t * t * 0.5f ;
t * = 0.5f ;
Assert ( & output ! = & p1 ) ;
Assert ( & output ! = & p2 ) ;
Assert ( & output ! = & p3 ) ;
Assert ( & output ! = & p4 ) ;
output . Init ( ) ;
Vector a , b , c , d ;
// matrix row 1
// no influence from t cubed
// matrix row 2
VectorScale ( p1 , tSqr , a ) ;
VectorScale ( p2 , tSqr * - 2.0f , b ) ;
VectorScale ( p3 , tSqr , c ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
VectorAdd ( c , output , output ) ;
// matrix row 3
VectorScale ( p1 , t * - 2.0f , a ) ;
VectorScale ( p2 , t * 2.0f , b ) ;
// p4 unchanged
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
// matrix row 4
VectorScale ( p1 , 0.5f , a ) ;
VectorScale ( p2 , 0.5f , b ) ;
VectorAdd ( a , output , output ) ;
VectorAdd ( b , output , output ) ;
}
void Parabolic_Spline_NormalizeX (
const Vector & p1 ,
const Vector & p2 ,
const Vector & p3 ,
const Vector & p4 ,
float t ,
Vector & output )
{
Vector p1n , p4n ;
Spline_Normalize ( p1 , p2 , p3 , p4 , p1n , p4n ) ;
Parabolic_Spline ( p1n , p2 , p3 , p4n , t , output ) ;
}
//-----------------------------------------------------------------------------
// Purpose: Compress the input values for a ranged result such that from 75% to 200% smoothly of the range maps
//-----------------------------------------------------------------------------
float RangeCompressor ( float flValue , float flMin , float flMax , float flBase )
{
// clamp base
if ( flBase < flMin )
flBase = flMin ;
if ( flBase > flMax )
flBase = flMax ;
flValue + = flBase ;
// convert to 0 to 1 value
float flMid = ( flValue - flMin ) / ( flMax - flMin ) ;
// convert to -1 to 1 value
float flTarget = flMid * 2 - 1 ;
if ( fabs ( flTarget ) > 0.75 )
{
float t = ( fabs ( flTarget ) - 0.75 ) / ( 1.25 ) ;
if ( t < 1.0 )
{
if ( flTarget > 0 )
{
flTarget = Hermite_Spline ( 0.75 , 1 , 0.75 , 0 , t ) ;
}
else
{
flTarget = - Hermite_Spline ( 0.75 , 1 , 0.75 , 0 , t ) ;
}
}
else
{
flTarget = ( flTarget > 0 ) ? 1.0f : - 1.0f ;
}
}
flMid = ( flTarget + 1 ) / 2.0 ;
flValue = flMin * ( 1 - flMid ) + flMax * flMid ;
flValue - = flBase ;
return flValue ;
}
//#pragma optimize( "", on )
//-----------------------------------------------------------------------------
// Transforms a AABB into another space; which will inherently grow the box.
//-----------------------------------------------------------------------------
void TransformAABB ( const matrix3x4_t & transform , const Vector & vecMinsIn , const Vector & vecMaxsIn , Vector & vecMinsOut , Vector & vecMaxsOut )
{
Vector localCenter ;
VectorAdd ( vecMinsIn , vecMaxsIn , localCenter ) ;
localCenter * = 0.5f ;
Vector localExtents ;
VectorSubtract ( vecMaxsIn , localCenter , localExtents ) ;
Vector worldCenter ;
VectorTransform ( localCenter , transform , worldCenter ) ;
Vector worldExtents ;
worldExtents . x = DotProductAbs ( localExtents , transform [ 0 ] ) ;
worldExtents . y = DotProductAbs ( localExtents , transform [ 1 ] ) ;
worldExtents . z = DotProductAbs ( localExtents , transform [ 2 ] ) ;
VectorSubtract ( worldCenter , worldExtents , vecMinsOut ) ;
VectorAdd ( worldCenter , worldExtents , vecMaxsOut ) ;
}
//-----------------------------------------------------------------------------
// Uses the inverse transform of in1
//-----------------------------------------------------------------------------
void ITransformAABB ( const matrix3x4_t & transform , const Vector & vecMinsIn , const Vector & vecMaxsIn , Vector & vecMinsOut , Vector & vecMaxsOut )
{
Vector worldCenter ;
VectorAdd ( vecMinsIn , vecMaxsIn , worldCenter ) ;
worldCenter * = 0.5f ;
Vector worldExtents ;
VectorSubtract ( vecMaxsIn , worldCenter , worldExtents ) ;
Vector localCenter ;
VectorITransform ( worldCenter , transform , localCenter ) ;
Vector localExtents ;
localExtents . x = FloatMakePositive ( worldExtents . x * transform [ 0 ] [ 0 ] ) +
FloatMakePositive ( worldExtents . y * transform [ 1 ] [ 0 ] ) +
FloatMakePositive ( worldExtents . z * transform [ 2 ] [ 0 ] ) ;
localExtents . y = FloatMakePositive ( worldExtents . x * transform [ 0 ] [ 1 ] ) +
FloatMakePositive ( worldExtents . y * transform [ 1 ] [ 1 ] ) +
FloatMakePositive ( worldExtents . z * transform [ 2 ] [ 1 ] ) ;
localExtents . z = FloatMakePositive ( worldExtents . x * transform [ 0 ] [ 2 ] ) +
FloatMakePositive ( worldExtents . y * transform [ 1 ] [ 2 ] ) +
FloatMakePositive ( worldExtents . z * transform [ 2 ] [ 2 ] ) ;
VectorSubtract ( localCenter , localExtents , vecMinsOut ) ;
VectorAdd ( localCenter , localExtents , vecMaxsOut ) ;
}
//-----------------------------------------------------------------------------
// Rotates a AABB into another space; which will inherently grow the box.
// (same as TransformAABB, but doesn't take the translation into account)
//-----------------------------------------------------------------------------
void RotateAABB ( const matrix3x4_t & transform , const Vector & vecMinsIn , const Vector & vecMaxsIn , Vector & vecMinsOut , Vector & vecMaxsOut )
{
Vector localCenter ;
VectorAdd ( vecMinsIn , vecMaxsIn , localCenter ) ;
localCenter * = 0.5f ;
Vector localExtents ;
VectorSubtract ( vecMaxsIn , localCenter , localExtents ) ;
Vector newCenter ;
VectorRotate ( localCenter , transform , newCenter ) ;
Vector newExtents ;
newExtents . x = DotProductAbs ( localExtents , transform [ 0 ] ) ;
newExtents . y = DotProductAbs ( localExtents , transform [ 1 ] ) ;
newExtents . z = DotProductAbs ( localExtents , transform [ 2 ] ) ;
VectorSubtract ( newCenter , newExtents , vecMinsOut ) ;
VectorAdd ( newCenter , newExtents , vecMaxsOut ) ;
}
//-----------------------------------------------------------------------------
// Uses the inverse transform of in1
//-----------------------------------------------------------------------------
void IRotateAABB ( const matrix3x4_t & transform , const Vector & vecMinsIn , const Vector & vecMaxsIn , Vector & vecMinsOut , Vector & vecMaxsOut )
{
Vector oldCenter ;
VectorAdd ( vecMinsIn , vecMaxsIn , oldCenter ) ;
oldCenter * = 0.5f ;
Vector oldExtents ;
VectorSubtract ( vecMaxsIn , oldCenter , oldExtents ) ;
Vector newCenter ;
VectorIRotate ( oldCenter , transform , newCenter ) ;
Vector newExtents ;
newExtents . x = FloatMakePositive ( oldExtents . x * transform [ 0 ] [ 0 ] ) +
FloatMakePositive ( oldExtents . y * transform [ 1 ] [ 0 ] ) +
FloatMakePositive ( oldExtents . z * transform [ 2 ] [ 0 ] ) ;
newExtents . y = FloatMakePositive ( oldExtents . x * transform [ 0 ] [ 1 ] ) +
FloatMakePositive ( oldExtents . y * transform [ 1 ] [ 1 ] ) +
FloatMakePositive ( oldExtents . z * transform [ 2 ] [ 1 ] ) ;
newExtents . z = FloatMakePositive ( oldExtents . x * transform [ 0 ] [ 2 ] ) +
FloatMakePositive ( oldExtents . y * transform [ 1 ] [ 2 ] ) +
FloatMakePositive ( oldExtents . z * transform [ 2 ] [ 2 ] ) ;
VectorSubtract ( newCenter , newExtents , vecMinsOut ) ;
VectorAdd ( newCenter , newExtents , vecMaxsOut ) ;
}
float CalcSqrDistanceToAABB ( const Vector & mins , const Vector & maxs , const Vector & point )
{
float flDelta ;
float flDistSqr = 0.0f ;
if ( point . x < mins . x )
{
flDelta = ( mins . x - point . x ) ;
flDistSqr + = flDelta * flDelta ;
}
else if ( point . x > maxs . x )
{
flDelta = ( point . x - maxs . x ) ;
flDistSqr + = flDelta * flDelta ;
}
if ( point . y < mins . y )
{
flDelta = ( mins . y - point . y ) ;
flDistSqr + = flDelta * flDelta ;
}
else if ( point . y > maxs . y )
{
flDelta = ( point . y - maxs . y ) ;
flDistSqr + = flDelta * flDelta ;
}
if ( point . z < mins . z )
{
flDelta = ( mins . z - point . z ) ;
flDistSqr + = flDelta * flDelta ;
}
else if ( point . z > maxs . z )
{
flDelta = ( point . z - maxs . z ) ;
flDistSqr + = flDelta * flDelta ;
}
return flDistSqr ;
}
void CalcClosestPointOnAABB ( const Vector & mins , const Vector & maxs , const Vector & point , Vector & closestOut )
{
closestOut . x = clamp ( point . x , mins . x , maxs . x ) ;
closestOut . y = clamp ( point . y , mins . y , maxs . y ) ;
closestOut . z = clamp ( point . z , mins . z , maxs . z ) ;
}
void CalcSqrDistAndClosestPointOnAABB ( const Vector & mins , const Vector & maxs , const Vector & point , Vector & closestOut , float & distSqrOut )
{
distSqrOut = 0.0f ;
for ( int i = 0 ; i < 3 ; i + + )
{
if ( point [ i ] < mins [ i ] )
{
closestOut [ i ] = mins [ i ] ;
float flDelta = closestOut [ i ] - mins [ i ] ;
distSqrOut + = flDelta * flDelta ;
}
else if ( point [ i ] > maxs [ i ] )
{
closestOut [ i ] = maxs [ i ] ;
float flDelta = closestOut [ i ] - maxs [ i ] ;
distSqrOut + = flDelta * flDelta ;
}
else
{
closestOut [ i ] = point [ i ] ;
}
}
}
float CalcClosestPointToLineT ( const Vector & P , const Vector & vLineA , const Vector & vLineB , Vector & vDir )
{
Assert ( s_bMathlibInitialized ) ;
VectorSubtract ( vLineB , vLineA , vDir ) ;
// D dot [P - (A + D*t)] = 0
// t = ( DP - DA) / DD
float div = vDir . Dot ( vDir ) ;
if ( div < 0.00001f )
{
return 0 ;
}
else
{
return ( vDir . Dot ( P ) - vDir . Dot ( vLineA ) ) / div ;
}
}
void CalcClosestPointOnLine ( const Vector & P , const Vector & vLineA , const Vector & vLineB , Vector & vClosest , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector vDir ;
float t = CalcClosestPointToLineT ( P , vLineA , vLineB , vDir ) ;
if ( outT ) * outT = t ;
vClosest . MulAdd ( vLineA , vDir , t ) ;
}
float CalcDistanceToLine ( const Vector & P , const Vector & vLineA , const Vector & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector vClosest ;
CalcClosestPointOnLine ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistTo ( vClosest ) ;
}
float CalcDistanceSqrToLine ( const Vector & P , const Vector & vLineA , const Vector & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector vClosest ;
CalcClosestPointOnLine ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistToSqr ( vClosest ) ;
}
void CalcClosestPointOnLineSegment ( const Vector & P , const Vector & vLineA , const Vector & vLineB , Vector & vClosest , float * outT )
{
Vector vDir ;
float t = CalcClosestPointToLineT ( P , vLineA , vLineB , vDir ) ;
t = clamp ( t , 0 , 1 ) ;
if ( outT )
{
* outT = t ;
}
vClosest . MulAdd ( vLineA , vDir , t ) ;
}
float CalcDistanceToLineSegment ( const Vector & P , const Vector & vLineA , const Vector & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector vClosest ;
CalcClosestPointOnLineSegment ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistTo ( vClosest ) ;
}
float CalcDistanceSqrToLineSegment ( const Vector & P , const Vector & vLineA , const Vector & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector vClosest ;
CalcClosestPointOnLineSegment ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistToSqr ( vClosest ) ;
}
float CalcClosestPointToLineT2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , Vector2D & vDir )
{
Assert ( s_bMathlibInitialized ) ;
Vector2DSubtract ( vLineB , vLineA , vDir ) ;
// D dot [P - (A + D*t)] = 0
// t = (DP - DA) / DD
float div = vDir . Dot ( vDir ) ;
if ( div < 0.00001f )
{
return 0 ;
}
else
{
return ( vDir . Dot ( P ) - vDir . Dot ( vLineA ) ) / div ;
}
}
void CalcClosestPointOnLine2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , Vector2D & vClosest , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector2D vDir ;
float t = CalcClosestPointToLineT2D ( P , vLineA , vLineB , vDir ) ;
if ( outT ) * outT = t ;
vClosest . MulAdd ( vLineA , vDir , t ) ;
}
float CalcDistanceToLine2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector2D vClosest ;
CalcClosestPointOnLine2D ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistTo ( vClosest ) ;
}
float CalcDistanceSqrToLine2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector2D vClosest ;
CalcClosestPointOnLine2D ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistToSqr ( vClosest ) ;
}
void CalcClosestPointOnLineSegment2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , Vector2D & vClosest , float * outT )
{
Vector2D vDir ;
float t = CalcClosestPointToLineT2D ( P , vLineA , vLineB , vDir ) ;
t = clamp ( t , 0 , 1 ) ;
if ( outT )
{
* outT = t ;
}
vClosest . MulAdd ( vLineA , vDir , t ) ;
}
float CalcDistanceToLineSegment2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector2D vClosest ;
CalcClosestPointOnLineSegment2D ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistTo ( vClosest ) ;
}
float CalcDistanceSqrToLineSegment2D ( const Vector2D & P , const Vector2D & vLineA , const Vector2D & vLineB , float * outT )
{
Assert ( s_bMathlibInitialized ) ;
Vector2D vClosest ;
CalcClosestPointOnLineSegment2D ( P , vLineA , vLineB , vClosest , outT ) ;
return P . DistToSqr ( vClosest ) ;
}
// Do we have another epsilon we could use
# define LINE_EPS ( 0.000001f )
//-----------------------------------------------------------------------------
// Purpose: Given lines p1->p2 and p3->p4, computes a line segment (pa->pb) and returns the parameters 0->1 multipliers
// along each segment for the returned points
// Input : p1 -
// p2 -
// p3 -
// p4 -
// *s1 -
// *s2 -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CalcLineToLineIntersectionSegment (
const Vector & p1 , const Vector & p2 , const Vector & p3 , const Vector & p4 , Vector * s1 , Vector * s2 ,
float * t1 , float * t2 )
{
Vector p13 , p43 , p21 ;
float d1343 , d4321 , d1321 , d4343 , d2121 ;
float numer , denom ;
p13 . x = p1 . x - p3 . x ;
p13 . y = p1 . y - p3 . y ;
p13 . z = p1 . z - p3 . z ;
p43 . x = p4 . x - p3 . x ;
p43 . y = p4 . y - p3 . y ;
p43 . z = p4 . z - p3 . z ;
if ( fabs ( p43 . x ) < LINE_EPS & & fabs ( p43 . y ) < LINE_EPS & & fabs ( p43 . z ) < LINE_EPS )
return false ;
p21 . x = p2 . x - p1 . x ;
p21 . y = p2 . y - p1 . y ;
p21 . z = p2 . z - p1 . z ;
if ( fabs ( p21 . x ) < LINE_EPS & & fabs ( p21 . y ) < LINE_EPS & & fabs ( p21 . z ) < LINE_EPS )
return false ;
d1343 = p13 . x * p43 . x + p13 . y * p43 . y + p13 . z * p43 . z ;
d4321 = p43 . x * p21 . x + p43 . y * p21 . y + p43 . z * p21 . z ;
d1321 = p13 . x * p21 . x + p13 . y * p21 . y + p13 . z * p21 . z ;
d4343 = p43 . x * p43 . x + p43 . y * p43 . y + p43 . z * p43 . z ;
d2121 = p21 . x * p21 . x + p21 . y * p21 . y + p21 . z * p21 . z ;
denom = d2121 * d4343 - d4321 * d4321 ;
if ( fabs ( denom ) < LINE_EPS )
return false ;
numer = d1343 * d4321 - d1321 * d4343 ;
* t1 = numer / denom ;
* t2 = ( d1343 + d4321 * ( * t1 ) ) / d4343 ;
s1 - > x = p1 . x + * t1 * p21 . x ;
s1 - > y = p1 . y + * t1 * p21 . y ;
s1 - > z = p1 . z + * t1 * p21 . z ;
s2 - > x = p3 . x + * t2 * p43 . x ;
s2 - > y = p3 . y + * t2 * p43 . y ;
s2 - > z = p3 . z + * t2 * p43 . z ;
return true ;
}
2008-09-15 02:50:57 -05:00
# ifdef _MSC_VER
2008-09-15 01:07:45 -05:00
# pragma optimize( "", off )
2008-09-15 02:50:57 -05:00
# endif
2008-09-15 01:07:45 -05:00
# ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
# endif
2008-09-15 02:50:57 -05:00
# ifdef _MSC_VER
2008-09-15 01:07:45 -05:00
# pragma optimize( "", on )
2008-09-15 02:50:57 -05:00
# endif
2008-09-15 01:07:45 -05:00
static bool s_bMMXEnabled = false ;
static bool s_bSSEEnabled = false ;
static bool s_bSSE2Enabled = false ;
void MathLib_Init ( float gamma , float texGamma , float brightness , int overbright , bool bAllow3DNow , bool bAllowSSE , bool bAllowSSE2 , bool bAllowMMX )
{
if ( s_bMathlibInitialized )
return ;
// FIXME: Hook SSE into VectorAligned + Vector4DAligned
# if !defined( _X360 )
// Grab the processor information:
const CPUInformation & pi = GetCPUInformation ( ) ;
// Select the default generic routines.
pfSqrt = _sqrtf ;
pfRSqrt = _rsqrtf ;
pfRSqrtFast = _rsqrtf ;
pfVectorNormalize = _VectorNormalize ;
pfVectorNormalizeFast = _VectorNormalizeFast ;
pfInvRSquared = _InvRSquared ;
pfFastSinCos = SinCos ;
pfFastCos = cosf ;
if ( bAllowMMX & & pi . m_bMMX )
{
// Select the MMX specific routines if available
// (MMX routines were used by SW span fillers - not currently used for HW)
s_bMMXEnabled = true ;
}
else
{
s_bMMXEnabled = false ;
}
if ( bAllowSSE & & pi . m_bSSE )
{
s_bSSEEnabled = true ;
// Select the SSE specific routines if available
pfVectorNormalize = _VectorNormalize ;
pfVectorNormalizeFast = _SSE_VectorNormalizeFast ;
pfInvRSquared = _SSE_InvRSquared ;
pfSqrt = _SSE_Sqrt ;
pfRSqrt = _SSE_RSqrtAccurate ;
pfRSqrtFast = _SSE_RSqrtFast ;
# ifdef _WIN32
pfFastSinCos = _SSE_SinCos ;
pfFastCos = _SSE_cos ;
# endif
}
else
{
s_bSSEEnabled = false ;
}
if ( bAllowSSE2 & & pi . m_bSSE2 )
{
s_bSSE2Enabled = true ;
# ifdef _WIN32
pfFastSinCos = _SSE2_SinCos ;
pfFastCos = _SSE2_cos ;
# endif
}
else
{
s_bSSE2Enabled = false ;
}
# endif
s_bMathlibInitialized = true ;
InitSinCosTable ( ) ;
BuildGammaTable ( gamma , texGamma , brightness , overbright ) ;
}
bool MathLib_MMXEnabled ( void )
{
Assert ( s_bMathlibInitialized ) ;
return s_bMMXEnabled ;
}
bool MathLib_SSEEnabled ( void )
{
Assert ( s_bMathlibInitialized ) ;
return s_bSSEEnabled ;
}
bool MathLib_SSE2Enabled ( void )
{
Assert ( s_bMathlibInitialized ) ;
return s_bSSE2Enabled ;
}
float Approach ( float target , float value , float speed )
{
float delta = target - value ;
if ( delta > speed )
value + = speed ;
else if ( delta < - speed )
value - = speed ;
else
value = target ;
return value ;
}
// BUGBUG: Why doesn't this call angle diff?!?!?
float ApproachAngle ( float target , float value , float speed )
{
target = anglemod ( target ) ;
value = anglemod ( value ) ;
float delta = target - value ;
// Speed is assumed to be positive
if ( speed < 0 )
speed = - speed ;
if ( delta < - 180 )
delta + = 360 ;
else if ( delta > 180 )
delta - = 360 ;
if ( delta > speed )
value + = speed ;
else if ( delta < - speed )
value - = speed ;
else
value = target ;
return value ;
}
// BUGBUG: Why do we need both of these?
float AngleDiff ( float destAngle , float srcAngle )
{
float delta ;
delta = fmodf ( destAngle - srcAngle , 360.0f ) ;
if ( destAngle > srcAngle )
{
if ( delta > = 180 )
delta - = 360 ;
}
else
{
if ( delta < = - 180 )
delta + = 360 ;
}
return delta ;
}
float AngleDistance ( float next , float cur )
{
float delta = next - cur ;
if ( delta < - 180 )
delta + = 360 ;
else if ( delta > 180 )
delta - = 360 ;
return delta ;
}
float AngleNormalize ( float angle )
{
angle = fmodf ( angle , 360.0f ) ;
if ( angle > 180 )
{
angle - = 360 ;
}
if ( angle < - 180 )
{
angle + = 360 ;
}
return angle ;
}
//--------------------------------------------------------------------------------------------------------------
// ensure that 0 <= angle <= 360
float AngleNormalizePositive ( float angle )
{
angle = fmodf ( angle , 360.0f ) ;
if ( angle < 0.0f )
{
angle + = 360.0f ;
}
return angle ;
}
//--------------------------------------------------------------------------------------------------------------
bool AnglesAreEqual ( float a , float b , float tolerance )
{
return ( fabs ( AngleDiff ( a , b ) ) < tolerance ) ;
}
void RotationDeltaAxisAngle ( const QAngle & srcAngles , const QAngle & destAngles , Vector & deltaAxis , float & deltaAngle )
{
Quaternion srcQuat , destQuat , srcQuatInv , out ;
AngleQuaternion ( srcAngles , srcQuat ) ;
AngleQuaternion ( destAngles , destQuat ) ;
QuaternionScale ( srcQuat , - 1 , srcQuatInv ) ;
QuaternionMult ( destQuat , srcQuatInv , out ) ;
QuaternionNormalize ( out ) ;
QuaternionAxisAngle ( out , deltaAxis , deltaAngle ) ;
}
void RotationDelta ( const QAngle & srcAngles , const QAngle & destAngles , QAngle * out )
{
matrix3x4_t src , srcInv ;
matrix3x4_t dest ;
AngleMatrix ( srcAngles , src ) ;
AngleMatrix ( destAngles , dest ) ;
// xform = src(-1) * dest
MatrixInvert ( src , srcInv ) ;
matrix3x4_t xform ;
ConcatTransforms ( dest , srcInv , xform ) ;
QAngle xformAngles ;
MatrixAngles ( xform , xformAngles ) ;
if ( out )
{
* out = xformAngles ;
}
}
//-----------------------------------------------------------------------------
// Purpose: Computes a triangle normal
//-----------------------------------------------------------------------------
void ComputeTrianglePlane ( const Vector & v1 , const Vector & v2 , const Vector & v3 , Vector & normal , float & intercept )
{
Vector e1 , e2 ;
VectorSubtract ( v2 , v1 , e1 ) ;
VectorSubtract ( v3 , v1 , e2 ) ;
CrossProduct ( e1 , e2 , normal ) ;
VectorNormalize ( normal ) ;
intercept = DotProduct ( normal , v1 ) ;
}
//-----------------------------------------------------------------------------
// Purpose: This is a clone of BaseWindingForPlane()
// Input : *outVerts - an array of preallocated verts to build the polygon in
// normal - the plane normal
// dist - the plane constant
// Output : int - vert count (always 4)
//-----------------------------------------------------------------------------
int PolyFromPlane ( Vector * outVerts , const Vector & normal , float dist , float fHalfScale )
{
int i , x ;
vec_t max , v ;
Vector org , vright , vup ;
// find the major axis
max = - 16384 ; //MAX_COORD_INTEGER
x = - 1 ;
for ( i = 0 ; i < 3 ; i + + )
{
v = fabs ( normal [ i ] ) ;
if ( v > max )
{
x = i ;
max = v ;
}
}
if ( x = = - 1 )
return 0 ;
// Build a unit vector along something other than the major axis
VectorCopy ( vec3_origin , vup ) ;
switch ( x )
{
case 0 :
case 1 :
vup [ 2 ] = 1 ;
break ;
case 2 :
vup [ 0 ] = 1 ;
break ;
}
// Remove the component of this vector along the normal
v = DotProduct ( vup , normal ) ;
VectorMA ( vup , - v , normal , vup ) ;
// Make it a unit (perpendicular)
VectorNormalize ( vup ) ;
// Center of the poly is at normal * dist
VectorScale ( normal , dist , org ) ;
// Calculate the third orthonormal basis vector for our plane space (this one and vup are in the plane)
CrossProduct ( vup , normal , vright ) ;
// Make the plane's basis vectors big (these are the half-sides of the polygon we're making)
VectorScale ( vup , fHalfScale , vup ) ;
VectorScale ( vright , fHalfScale , vright ) ;
// Move diagonally away from org to create the corner verts
VectorSubtract ( org , vright , outVerts [ 0 ] ) ; // left
VectorAdd ( outVerts [ 0 ] , vup , outVerts [ 0 ] ) ; // up
VectorAdd ( org , vright , outVerts [ 1 ] ) ; // right
VectorAdd ( outVerts [ 1 ] , vup , outVerts [ 1 ] ) ; // up
VectorAdd ( org , vright , outVerts [ 2 ] ) ; // right
VectorSubtract ( outVerts [ 2 ] , vup , outVerts [ 2 ] ) ; // down
VectorSubtract ( org , vright , outVerts [ 3 ] ) ; // left
VectorSubtract ( outVerts [ 3 ] , vup , outVerts [ 3 ] ) ; // down
// The four corners form a planar quadrilateral normal to "normal"
return 4 ;
}
//-----------------------------------------------------------------------------
// Purpose: clip a poly to the plane and return the poly on the front side of the plane
// Input : *inVerts - input polygon
// vertCount - # verts in input poly
// *outVerts - destination poly
// normal - plane normal
// dist - plane constant
// Output : int - # verts in output poly
//-----------------------------------------------------------------------------
int ClipPolyToPlane ( Vector * inVerts , int vertCount , Vector * outVerts , const Vector & normal , float dist , float fOnPlaneEpsilon )
{
vec_t * dists = ( vec_t * ) stackalloc ( sizeof ( vec_t ) * vertCount * 4 ) ; //4x vertcount should cover all cases
int * sides = ( int * ) stackalloc ( sizeof ( vec_t ) * vertCount * 4 ) ;
int counts [ 3 ] ;
vec_t dot ;
int i , j ;
Vector mid = vec3_origin ;
int outCount ;
counts [ 0 ] = counts [ 1 ] = counts [ 2 ] = 0 ;
// determine sides for each point
for ( i = 0 ; i < vertCount ; i + + )
{
dot = DotProduct ( inVerts [ i ] , normal ) - dist ;
dists [ i ] = dot ;
if ( dot > fOnPlaneEpsilon )
{
sides [ i ] = SIDE_FRONT ;
}
else if ( dot < - fOnPlaneEpsilon )
{
sides [ i ] = SIDE_BACK ;
}
else
{
sides [ i ] = SIDE_ON ;
}
counts [ sides [ i ] ] + + ;
}
sides [ i ] = sides [ 0 ] ;
dists [ i ] = dists [ 0 ] ;
if ( ! counts [ 0 ] )
return 0 ;
if ( ! counts [ 1 ] )
{
// Copy to output verts
for ( i = 0 ; i < vertCount ; i + + )
{
VectorCopy ( inVerts [ i ] , outVerts [ i ] ) ;
}
return vertCount ;
}
outCount = 0 ;
for ( i = 0 ; i < vertCount ; i + + )
{
Vector & p1 = inVerts [ i ] ;
if ( sides [ i ] = = SIDE_ON )
{
VectorCopy ( p1 , outVerts [ outCount ] ) ;
outCount + + ;
continue ;
}
if ( sides [ i ] = = SIDE_FRONT )
{
VectorCopy ( p1 , outVerts [ outCount ] ) ;
outCount + + ;
}
if ( sides [ i + 1 ] = = SIDE_ON | | sides [ i + 1 ] = = sides [ i ] )
continue ;
// generate a split point
Vector & p2 = inVerts [ ( i + 1 ) % vertCount ] ;
dot = dists [ i ] / ( dists [ i ] - dists [ i + 1 ] ) ;
for ( j = 0 ; j < 3 ; j + + )
{ // avoid round off error when possible
if ( normal [ j ] = = 1 )
mid [ j ] = dist ;
else if ( normal [ j ] = = - 1 )
mid [ j ] = - dist ;
else
mid [ j ] = p1 [ j ] + dot * ( p2 [ j ] - p1 [ j ] ) ;
}
VectorCopy ( mid , outVerts [ outCount ] ) ;
outCount + + ;
}
return outCount ;
}
int ClipPolyToPlane_Precise ( double * inVerts , int vertCount , double * outVerts , const double * normal , double dist , double fOnPlaneEpsilon )
{
double * dists = ( double * ) stackalloc ( sizeof ( double ) * vertCount * 4 ) ; //4x vertcount should cover all cases
int * sides = ( int * ) stackalloc ( sizeof ( double ) * vertCount * 4 ) ;
int counts [ 3 ] ;
double dot ;
int i , j ;
//Vector mid = vec3_origin;
double mid [ 3 ] ;
mid [ 0 ] = 0.0 ;
mid [ 1 ] = 0.0 ;
mid [ 2 ] = 0.0 ;
int outCount ;
counts [ 0 ] = counts [ 1 ] = counts [ 2 ] = 0 ;
// determine sides for each point
for ( i = 0 ; i < vertCount ; i + + )
{
//dot = DotProduct( inVerts[i], normal) - dist;
dot = ( ( inVerts [ i * 3 + 0 ] * normal [ 0 ] ) + ( inVerts [ i * 3 + 1 ] * normal [ 1 ] ) + ( inVerts [ i * 3 + 2 ] * normal [ 2 ] ) ) - dist ;
dists [ i ] = dot ;
if ( dot > fOnPlaneEpsilon )
{
sides [ i ] = SIDE_FRONT ;
}
else if ( dot < - fOnPlaneEpsilon )
{
sides [ i ] = SIDE_BACK ;
}
else
{
sides [ i ] = SIDE_ON ;
}
counts [ sides [ i ] ] + + ;
}
sides [ i ] = sides [ 0 ] ;
dists [ i ] = dists [ 0 ] ;
if ( ! counts [ 0 ] )
return 0 ;
if ( ! counts [ 1 ] )
{
// Copy to output verts
//for ( i = 0; i < vertCount; i++ )
for ( i = 0 ; i < vertCount * 3 ; i + + )
{
//VectorCopy( inVerts[i], outVerts[i] );
outVerts [ i ] = inVerts [ i ] ;
}
return vertCount ;
}
outCount = 0 ;
for ( i = 0 ; i < vertCount ; i + + )
{
//Vector& p1 = inVerts[i];
double * p1 = & inVerts [ i * 3 ] ;
//p1[0] = inVerts[i*3 + 0];
//p1[1] = inVerts[i*3 + 1];
//p1[2] = inVerts[i*3 + 2];
if ( sides [ i ] = = SIDE_ON )
{
//VectorCopy( p1, outVerts[outCount]);
outVerts [ outCount * 3 + 0 ] = p1 [ 0 ] ;
outVerts [ outCount * 3 + 1 ] = p1 [ 1 ] ;
outVerts [ outCount * 3 + 2 ] = p1 [ 2 ] ;
outCount + + ;
continue ;
}
if ( sides [ i ] = = SIDE_FRONT )
{
//VectorCopy( p1, outVerts[outCount]);
outVerts [ outCount * 3 + 0 ] = p1 [ 0 ] ;
outVerts [ outCount * 3 + 1 ] = p1 [ 1 ] ;
outVerts [ outCount * 3 + 2 ] = p1 [ 2 ] ;
outCount + + ;
}
if ( sides [ i + 1 ] = = SIDE_ON | | sides [ i + 1 ] = = sides [ i ] )
continue ;
// generate a split point
//Vector& p2 = inVerts[(i+1)%vertCount];
int wrappedindex = ( i + 1 ) % vertCount ;
double * p2 = & inVerts [ wrappedindex * 3 ] ;
//p2[0] = inVerts[wrappedindex*3 + 0];
//p2[1] = inVerts[wrappedindex*3 + 1];
//p2[2] = inVerts[wrappedindex*3 + 2];
dot = dists [ i ] / ( dists [ i ] - dists [ i + 1 ] ) ;
for ( j = 0 ; j < 3 ; j + + )
{
mid [ j ] = ( double ) p1 [ j ] + dot * ( ( double ) p2 [ j ] - ( double ) p1 [ j ] ) ;
}
//VectorCopy (mid, outVerts[outCount]);
outVerts [ outCount * 3 + 0 ] = mid [ 0 ] ;
outVerts [ outCount * 3 + 1 ] = mid [ 1 ] ;
outVerts [ outCount * 3 + 2 ] = mid [ 2 ] ;
outCount + + ;
}
return outCount ;
}
int CeilPow2 ( int in )
{
int retval ;
retval = 1 ;
while ( retval < in )
retval < < = 1 ;
return retval ;
}
int FloorPow2 ( int in )
{
int retval ;
retval = 1 ;
while ( retval < in )
retval < < = 1 ;
return retval > > 1 ;
}
//-----------------------------------------------------------------------------
// Computes Y fov from an X fov and a screen aspect ratio
//-----------------------------------------------------------------------------
float CalcFovY ( float flFovX , float flAspect )
{
if ( flFovX < 1 | | flFovX > 179 )
{
flFovX = 90 ; // error, set to 90
}
// The long, but illustrative version (more closely matches CShaderAPIDX8::PerspectiveX, which
// is what it's based on).
//
//float width = 2 * zNear * tan( DEG2RAD( fov_x / 2.0 ) );
//float height = width / screenaspect;
//float yRadians = atan( (height/2.0) / zNear );
//return RAD2DEG( yRadians ) * 2;
// The short and sweet version.
float val = atan ( tan ( DEG2RAD ( flFovX ) * 0.5f ) / flAspect ) ;
val = RAD2DEG ( val ) * 2.0f ;
return val ;
}
float CalcFovX ( float flFovY , float flAspect )
{
return RAD2DEG ( atan ( tan ( DEG2RAD ( flFovY ) * 0.5f ) * flAspect ) ) * 2.0f ;
}
//-----------------------------------------------------------------------------
// Generate a frustum based on perspective view parameters
//-----------------------------------------------------------------------------
void GeneratePerspectiveFrustum ( const Vector & origin , const Vector & forward ,
const Vector & right , const Vector & up , float flZNear , float flZFar ,
float flFovX , float flFovY , Frustum_t & frustum )
{
float flIntercept = DotProduct ( origin , forward ) ;
// Setup the near and far planes.
frustum . SetPlane ( FRUSTUM_FARZ , PLANE_ANYZ , - forward , - flZFar - flIntercept ) ;
frustum . SetPlane ( FRUSTUM_NEARZ , PLANE_ANYZ , forward , flZNear + flIntercept ) ;
flFovX * = 0.5f ;
flFovY * = 0.5f ;
float flTanX = tan ( DEG2RAD ( flFovX ) ) ;
float flTanY = tan ( DEG2RAD ( flFovY ) ) ;
// OPTIMIZE: Normalizing these planes is not necessary for culling
Vector normalPos , normalNeg ;
VectorMA ( right , flTanX , forward , normalPos ) ;
VectorMA ( normalPos , - 2.0f , right , normalNeg ) ;
VectorNormalize ( normalPos ) ;
VectorNormalize ( normalNeg ) ;
frustum . SetPlane ( FRUSTUM_LEFT , PLANE_ANYZ , normalPos , normalPos . Dot ( origin ) ) ;
frustum . SetPlane ( FRUSTUM_RIGHT , PLANE_ANYZ , normalNeg , normalNeg . Dot ( origin ) ) ;
VectorMA ( up , flTanY , forward , normalPos ) ;
VectorMA ( normalPos , - 2.0f , up , normalNeg ) ;
VectorNormalize ( normalPos ) ;
VectorNormalize ( normalNeg ) ;
frustum . SetPlane ( FRUSTUM_BOTTOM , PLANE_ANYZ , normalPos , normalPos . Dot ( origin ) ) ;
frustum . SetPlane ( FRUSTUM_TOP , PLANE_ANYZ , normalNeg , normalNeg . Dot ( origin ) ) ;
}
//-----------------------------------------------------------------------------
// Version that accepts angles instead of vectors
//-----------------------------------------------------------------------------
void GeneratePerspectiveFrustum ( const Vector & origin , const QAngle & angles , float flZNear , float flZFar , float flFovX , float flAspectRatio , Frustum_t & frustum )
{
Vector vecForward , vecRight , vecUp ;
AngleVectors ( angles , & vecForward , & vecRight , & vecUp ) ;
float flFovY = CalcFovY ( flFovX , flAspectRatio ) ;
GeneratePerspectiveFrustum ( origin , vecForward , vecRight , vecUp , flZNear , flZFar , flFovX , flFovY , frustum ) ;
}
bool R_CullBox ( const Vector & mins , const Vector & maxs , const Frustum_t & frustum )
{
return ( ( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_RIGHT ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_LEFT ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_TOP ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_BOTTOM ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_NEARZ ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_FARZ ) ) = = 2 ) ) ;
}
bool R_CullBoxSkipNear ( const Vector & mins , const Vector & maxs , const Frustum_t & frustum )
{
return ( ( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_RIGHT ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_LEFT ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_TOP ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_BOTTOM ) ) = = 2 ) | |
( BoxOnPlaneSide ( mins , maxs , frustum . GetPlane ( FRUSTUM_FARZ ) ) = = 2 ) ) ;
}
// NOTE: This routine was taken (and modified) from NVidia's BlinnReflection demo
// Creates basis vectors, based on a vertex and index list.
// See the NVidia white paper 'GDC2K PerPixel Lighting' for a description
// of how this computation works
# define SMALL_FLOAT 1e-12
void CalcTriangleTangentSpace ( const Vector & p0 , const Vector & p1 , const Vector & p2 ,
const Vector2D & t0 , const Vector2D & t1 , const Vector2D & t2 ,
Vector & sVect , Vector & tVect )
{
/* Compute the partial derivatives of X, Y, and Z with respect to S and T. */
sVect . Init ( 0.0f , 0.0f , 0.0f ) ;
tVect . Init ( 0.0f , 0.0f , 0.0f ) ;
// x, s, t
Vector edge01 ( p1 . x - p0 . x , t1 . x - t0 . x , t1 . y - t0 . y ) ;
Vector edge02 ( p2 . x - p0 . x , t2 . x - t0 . x , t2 . y - t0 . y ) ;
Vector cross ;
CrossProduct ( edge01 , edge02 , cross ) ;
if ( fabs ( cross . x ) > SMALL_FLOAT )
{
sVect . x + = - cross . y / cross . x ;
tVect . x + = - cross . z / cross . x ;
}
// y, s, t
edge01 . Init ( p1 . y - p0 . y , t1 . x - t0 . x , t1 . y - t0 . y ) ;
edge02 . Init ( p2 . y - p0 . y , t2 . x - t0 . x , t2 . y - t0 . y ) ;
CrossProduct ( edge01 , edge02 , cross ) ;
if ( fabs ( cross . x ) > SMALL_FLOAT )
{
sVect . y + = - cross . y / cross . x ;
tVect . y + = - cross . z / cross . x ;
}
// z, s, t
edge01 . Init ( p1 . z - p0 . z , t1 . x - t0 . x , t1 . y - t0 . y ) ;
edge02 . Init ( p2 . z - p0 . z , t2 . x - t0 . x , t2 . y - t0 . y ) ;
CrossProduct ( edge01 , edge02 , cross ) ;
if ( fabs ( cross . x ) > SMALL_FLOAT )
{
sVect . z + = - cross . y / cross . x ;
tVect . z + = - cross . z / cross . x ;
}
// Normalize sVect and tVect
VectorNormalize ( sVect ) ;
VectorNormalize ( tVect ) ;
}
//-----------------------------------------------------------------------------
// Convert RGB to HSV
//-----------------------------------------------------------------------------
void RGBtoHSV ( const Vector & rgb , Vector & hsv )
{
2011-04-28 01:30:37 -05:00
float flMax = MAX ( rgb . x , rgb . y ) ;
flMax = MAX ( flMax , rgb . z ) ;
float flMin = MIN ( rgb . x , rgb . y ) ;
flMin = MIN ( flMin , rgb . z ) ;
2008-09-15 01:07:45 -05:00
// hsv.z is the value
hsv . z = flMax ;
// hsv.y is the saturation
if ( flMax ! = 0.0F )
{
hsv . y = ( flMax - flMin ) / flMax ;
}
else
{
hsv . y = 0.0F ;
}
// hsv.x is the hue
if ( hsv . y = = 0.0F )
{
hsv . x = - 1.0f ;
}
else
{
float32 d = flMax - flMin ;
if ( rgb . x = = flMax )
{
hsv . x = ( rgb . y - rgb . z ) / d ;
}
else if ( rgb . y = = flMax )
{
hsv . x = 2.0F + ( rgb . z - rgb . x ) / d ;
}
else
{
hsv . x = 4.0F + ( rgb . x - rgb . y ) / d ;
}
hsv . x * = 60.0F ;
if ( hsv . x < 0.0F )
{
hsv . x + = 360.0F ;
}
}
}
//-----------------------------------------------------------------------------
// Convert HSV to RGB
//-----------------------------------------------------------------------------
void HSVtoRGB ( const Vector & hsv , Vector & rgb )
{
if ( hsv . y = = 0.0F )
{
rgb . Init ( hsv . z , hsv . z , hsv . z ) ;
return ;
}
float32 hue = hsv . x ;
if ( hue = = 360.0F )
{
hue = 0.0F ;
}
hue / = 60.0F ;
2008-09-15 02:50:57 -05:00
int i = static_cast < int > ( hue ) ; // integer part
float32 f = hue - i ; // fractional part
2008-09-15 01:07:45 -05:00
float32 p = hsv . z * ( 1.0F - hsv . y ) ;
float32 q = hsv . z * ( 1.0F - hsv . y * f ) ;
float32 t = hsv . z * ( 1.0F - hsv . y * ( 1.0F - f ) ) ;
switch ( i )
{
case 0 : rgb . Init ( hsv . z , t , p ) ; break ;
case 1 : rgb . Init ( q , hsv . z , p ) ; break ;
case 2 : rgb . Init ( p , hsv . z , t ) ; break ;
case 3 : rgb . Init ( p , q , hsv . z ) ; break ;
case 4 : rgb . Init ( t , p , hsv . z ) ; break ;
case 5 : rgb . Init ( hsv . z , p , q ) ; break ;
}
}
void GetInterpolationData ( float const * pKnotPositions ,
float const * pKnotValues ,
int nNumValuesinList ,
int nInterpolationRange ,
float flPositionToInterpolateAt ,
bool bWrap ,
float * pValueA ,
float * pValueB ,
float * pInterpolationValue )
{
// first, find the bracketting knots by looking for the first knot >= our index
int idx ;
for ( idx = 0 ; idx < nNumValuesinList ; idx + + )
{
if ( pKnotPositions [ idx ] > = flPositionToInterpolateAt )
break ;
}
int nKnot1 , nKnot2 ;
float flOffsetFromStartOfGap , flSizeOfGap ;
if ( idx = = 0 )
{
if ( bWrap )
{
nKnot1 = nNumValuesinList - 1 ;
nKnot2 = 0 ;
flSizeOfGap =
( pKnotPositions [ nKnot2 ] + ( nInterpolationRange - pKnotPositions [ nKnot1 ] ) ) ;
flOffsetFromStartOfGap =
flPositionToInterpolateAt + ( nInterpolationRange - pKnotPositions [ nKnot1 ] ) ;
}
else
{
* pValueA = * pValueB = pKnotValues [ 0 ] ;
* pInterpolationValue = 1.0 ;
return ;
}
}
else if ( idx = = nNumValuesinList ) // ran out of values
{
if ( bWrap )
{
nKnot1 = nNumValuesinList - 1 ;
nKnot2 = 0 ;
flSizeOfGap = ( pKnotPositions [ nKnot2 ] +
( nInterpolationRange - pKnotPositions [ nKnot1 ] ) ) ;
flOffsetFromStartOfGap = flPositionToInterpolateAt - pKnotPositions [ nKnot1 ] ;
}
else
{
* pValueA = * pValueB = pKnotValues [ nNumValuesinList - 1 ] ;
* pInterpolationValue = 1.0 ;
return ;
}
}
else
{
nKnot1 = idx - 1 ;
nKnot2 = idx ;
flSizeOfGap = pKnotPositions [ nKnot2 ] - pKnotPositions [ nKnot1 ] ;
flOffsetFromStartOfGap = flPositionToInterpolateAt - pKnotPositions [ nKnot1 ] ;
}
* pValueA = pKnotValues [ nKnot1 ] ;
* pValueB = pKnotValues [ nKnot2 ] ;
* pInterpolationValue = FLerp ( 0 , 1 , 0 , flSizeOfGap , flOffsetFromStartOfGap ) ;
return ;
}