1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-07 09:43:40 +08:00
hl2sdk/game/client/swarm/c_asw_generic_emitter.cpp

1323 lines
44 KiB
C++
Raw Permalink Normal View History

#include "cbase.h"
#include "c_asw_mesh_emitter_entity.h"
#include "c_asw_generic_emitter.h"
#include "KeyValues.h"
#include <filesystem.h>
#include "gamestringpool.h"
#include "c_tracer.h"
#include "precache_register.h"
#include "asw_shareddefs.h"
#include "tier0/vprof.h"
#include "datacache/imdlcache.h"
#include "engine/IVDebugOverlay.h"
#include "soundemittersystem/isoundemittersystembase.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
ConVar asw_mesh_emitter_draw("asw_mesh_emitter_draw", "1", FCVAR_CHEAT, "Draw meshes from mesh emitters");
ConVar asw_emitter_min_collision_speed("asw_emitter_min_collision_speed", "50", FCVAR_CHEAT, "Minimum speed to make a sound");
ConVar asw_emitter_max_collision_speed("asw_emitter_max_collision_speed", "80", FCVAR_CHEAT, "Maximum speed that makes a full volume");
CASWGenericEmitter::CASWGenericEmitter( const char *pDebugName ) : CSimpleEmitter( pDebugName )
{
m_iResetEmitter = 0;
m_ParticlesPerSecond = 1;
m_tParticleTimer.Init( m_ParticlesPerSecond );
m_CurrentParticlesPerSecond = m_ParticlesPerSecond;
m_hMaterial = GetPMaterial( "effects/yellowflare" );
m_hGlowMaterial = NULL;
m_bEmit = true;
m_szGlowMaterialName[0] = '\0';
m_fGlowScale = 1.7f;
Q_snprintf(m_szMaterialName, sizeof(m_szTemplateName), "effects/yellowflare");
Q_snprintf(m_szTemplateName, sizeof(m_szTemplateName), "None");
Q_snprintf(m_szCollisionTemplateName, sizeof(m_szCollisionTemplateName), "None");
Q_snprintf(m_szDropletTemplateName, sizeof(m_szDropletTemplateName), "None");
m_Colors[0].bUse = true;
m_Colors[0].fTime = 0;
m_Colors[0].fBandLength = 100;
m_Colors[0].Color.r = 255;
m_Colors[0].Color.g = 255;
m_Colors[0].Color.b = 255;
m_Scales[0].bUse = true;
m_Scales[0].fTime = 0;
m_Scales[0].fBandLength = 100;
m_Scales[0].fScale = 30;
m_Alphas[0].bUse = true;
m_Alphas[0].fTime = 0;
m_Alphas[0].fBandLength = 100;
m_Alphas[0].fAlpha = 255;
for (int i=1;i<5;i++)
{
m_Colors[i].bUse = false;
m_Colors[i].fTime = 0;
m_Colors[i].fBandLength = 0;
m_Colors[i].Color.r = 0;
m_Colors[i].Color.g = 0;
m_Colors[i].Color.b = 0;
m_Scales[i].bUse = false;
m_Scales[i].fTime = 0;
m_Scales[i].fBandLength = 0;
m_Scales[i].fScale = 0;
m_Alphas[i].bUse = false;
m_Alphas[i].fTime = 0;
m_Alphas[i].fBandLength = 0;
m_Alphas[i].fAlpha = 0;
}
m_fParticleLifeMin = 3;
m_fParticleLifeMax = 5;
m_fPresimulateTime = 0;
velocityMin.Init(-30,-30,0);
velocityMax.Init(30,30,0);
positionMin.Init();
positionMax.Init();
accelerationMin.Init();
accelerationMax.Init();
fGravity = 0;
fRollMin = 0;
fRollMax = 0;
fRollDeltaMin = 0;
fRollDeltaMax = 0;
m_fEmitterScale = 1.0f;
m_bWrapParticlesToSpawnBounds = false;
m_bLocalCoordSpace = false; // if true, particles are stored in local space and transformed to the position of the emitter when rendered
m_vecPosition.Init();
m_vecEmitterPositionDelta.Init();
m_vecLastSimulatePosition.Init();
m_angFacing.Init();
m_UseCollision = aswpc_none;
m_hCollisionIgnoreEntity = NULL;
m_fCollisionDampening = 50.0f;
m_hCollisionEmitter = NULL;
m_hDropletEmitter = NULL;
m_DrawType = aswpdt_sprite;
m_fBeamLength = 1.0f;
m_bScaleBeamByVelocity = true;
m_bScaleBeamByLifeLeft = true;
m_iBeamPosition = ASW_EMITTER_BEAM_POS_BEHIND;
m_fDropletChance = 40.f;
m_fLargestParticleSize = 0;
m_iParticleSupply = -1;
m_iInitialParticleSupply = -1;
m_fDieTime = 0;
m_fLifeLostOnCollision= 0;
// lighting
m_iLightingType = 0;
m_fLightApply = 0.5f;
m_vecLighting.Init();
// custom collision
m_bUseCustomCollisionMask = false;
m_bUseCustomCollisionGroup = false;
m_CustomCollisionMask = MASK_SOLID;
m_CustomCollisionGroup = COLLISION_GROUP_NONE;
m_hMeshEmitter = NULL;
m_vecTraceMins = Vector(-10, -10, -10);
m_vecTraceMaxs = Vector(10, 10, 10);
m_bHullTraces = false;
m_fReduceRollRateOnCollision = 1.0f;
m_szCollisionSoundName[0] = '\0';
m_szCollisionDecalName[0] = '\0';
m_fParticleLocal = 0;
}
CSmartPtr<CASWGenericEmitter> CASWGenericEmitter::Create( const char *pDebugName )
{
CASWGenericEmitter *pRet = new CASWGenericEmitter( pDebugName );
pRet->SetDynamicallyAllocated( true );
return pRet;
}
// returns the desired alpha for this particle (based upon its lifetime, dietime and our alpha nodes)
float CASWGenericEmitter::UpdateAlpha( const SimpleParticle *pParticle )
{
float fLightingScale = m_iLightingType < 2 ?
1.0f : // no scaling alpha by lighting
((m_vecLighting.x + m_vecLighting.y + m_vecLighting.z) / 3.0f); // scale alpha by average of rgb lighting
// check for only applying some fraction of the shading
fLightingScale += (1.0f - fLightingScale) * (1.0f - m_fLightApply);
// find which band we're in
float fTime = (pParticle->m_flLifetime / pParticle->m_flDieTime) * 100.0f;
if (fTime < m_Alphas[0].fTime)
{
return (m_Alphas[0].fAlpha / 255.0f) * fLightingScale;
}
for (unsigned int i=0; i<5; i++)
{
if (fTime >= m_Alphas[i].fTime && (fTime - m_Alphas[i].fTime) <= m_Alphas[i].fBandLength)
{
if (i==4 || !m_Alphas[i+1].bUse) // last band, use the solid alpha
return (m_Alphas[i].fAlpha / 255.0f) * fLightingScale;
// transition = into band / band length
float fTransition = (fTime - m_Alphas[i].fTime) / m_Alphas[i].fBandLength;
// transition is how far to go between this band's alpha and the next band's alpha
float fDifference = m_Alphas[i+1].fAlpha - m_Alphas[i].fAlpha;
return ((m_Alphas[i].fAlpha + fDifference * fTransition) / 255.0f) * fLightingScale;
}
}
return (m_Alphas[0].fAlpha / 255.0f) * fLightingScale;
}
float CASWGenericEmitter::ASWUpdateScale( const ASWParticle *pParticle )
{
// find which band we're in
float fTime = (pParticle->m_flLifetime / pParticle->m_flDieTime) * 100.0f;
bool bGlow = (pParticle->m_ParticleType == aswpt_glow);
if (fTime < m_Scales[0].fTime)
{
if (bGlow)
return m_Scales[0].fScale * m_fEmitterScale * m_fGlowScale;
return m_Scales[0].fScale * m_fEmitterScale;
}
for (unsigned int i=0; i<5; i++)
{
if (fTime >= m_Scales[i].fTime && (fTime - m_Scales[i].fTime) <= m_Scales[i].fBandLength)
{
if (i==4 || !m_Scales[i+1].bUse) // last band, use the solid fScale
return m_Scales[i].fScale * m_fEmitterScale;
// transition = into band / band length
float fTransition = (fTime - m_Scales[i].fTime) / m_Scales[i].fBandLength;
// transition is how far to go between this band's fScale and the next band's fScale
float fDifference = m_Scales[i+1].fScale - m_Scales[i].fScale;
if (bGlow)
return (m_Scales[i].fScale + fDifference * fTransition) * m_fEmitterScale * m_fGlowScale;
return (m_Scales[i].fScale + fDifference * fTransition) * m_fEmitterScale;
}
}
if (bGlow)
return m_Scales[0].fScale * m_fEmitterScale * m_fGlowScale;
return m_Scales[0].fScale * m_fEmitterScale;
}
Vector CASWGenericEmitter::UpdateColor( const SimpleParticle *pParticle )
{
bool bUseLighting = (m_iLightingType == 1) || (m_iLightingType == 3);
float fLightingScaleR = bUseLighting ? m_vecLighting.x : 1.0f;
float fLightingScaleG = bUseLighting ? m_vecLighting.y : 1.0f;
float fLightingScaleB = bUseLighting ? m_vecLighting.z : 1.0f;
fLightingScaleR += (1.0f - fLightingScaleR) * (1.0f - m_fLightApply);
fLightingScaleG += (1.0f - fLightingScaleG) * (1.0f - m_fLightApply);
fLightingScaleB += (1.0f - fLightingScaleB) * (1.0f - m_fLightApply);
// find which band we're in
float fTime = (pParticle->m_flLifetime / pParticle->m_flDieTime) * 100.0f;
if (fTime < m_Colors[0].fTime)
{
Vector result;
result[0] = (m_Colors[0].Color.r / 255.0f) * fLightingScaleR;
result[1] = (m_Colors[0].Color.g / 255.0f) * fLightingScaleG;
result[2] = (m_Colors[0].Color.b / 255.0f) * fLightingScaleB;
return result;
}
for (unsigned int i=0; i<5; i++)
{
if (fTime >= m_Colors[i].fTime && (fTime - m_Colors[i].fTime) <= m_Colors[i].fBandLength)
{
if (i==4 || !m_Colors[i+1].bUse) // last band, use the solid fScale
{
Vector result;
result[0] = (m_Colors[i].Color.r / 255.0f) * fLightingScaleR;
result[1] = (m_Colors[i].Color.g / 255.0f) * fLightingScaleG;
result[2] = (m_Colors[i].Color.b / 255.0f) * fLightingScaleB;
return result;
}
// transition = into band / band length
float fTransition = (fTime - m_Colors[i].fTime) / m_Colors[i].fBandLength;
// transition is how far to go between this band's fScale and the next band's fScale
float fDifferenceR = m_Colors[i+1].Color.r - m_Colors[i].Color.r;
float fDifferenceG = m_Colors[i+1].Color.g - m_Colors[i].Color.g;
float fDifferenceB = m_Colors[i+1].Color.b - m_Colors[i].Color.b;
Vector result;
result[0] = ((m_Colors[i].Color.r + fDifferenceR * fTransition) / 255.0f) * fLightingScaleR;
result[1] = ((m_Colors[i].Color.g + fDifferenceG * fTransition) / 255.0f) * fLightingScaleG;
result[2] = ((m_Colors[i].Color.b + fDifferenceB * fTransition) / 255.0f) * fLightingScaleB;
return result;
}
}
Vector result;
result[0] = (m_Colors[0].Color.r / 255.0f) * fLightingScaleR;
result[1] = (m_Colors[0].Color.g / 255.0f) * fLightingScaleG;
result[2] = (m_Colors[0].Color.b / 255.0f) * fLightingScaleB;
return result;
}
// precalcuate each band length (where a band is one straight line on the node graph)
void CASWGenericEmitter::CalcBandLengths()
{
float fCurrentTime = 0;
for (unsigned int i=0; i<5; i++)
{
if (!m_Colors[i].bUse)
break;
if (i==4 || !m_Colors[i+1].bUse) // last band
{
m_Colors[i].fBandLength = 100.0f - fCurrentTime;
}
else
{
m_Colors[i].fBandLength = m_Colors[i+1].fTime - fCurrentTime;
}
fCurrentTime += m_Colors[i].fBandLength;
}
fCurrentTime = 0;
for (unsigned int i=0; i<5; i++)
{
if (!m_Scales[i].bUse)
break;
if (i==4 || !m_Scales[i+1].bUse) // last band
{
m_Scales[i].fBandLength = 100.0f - fCurrentTime;
}
else
{
m_Scales[i].fBandLength = m_Scales[i+1].fTime - fCurrentTime;
}
fCurrentTime += m_Scales[i].fBandLength;
}
fCurrentTime = 0;
for (unsigned int i=0; i<5; i++)
{
if (!m_Alphas[i].bUse)
break;
if (i==4 || !m_Alphas[i+1].bUse) // last band
{
m_Alphas[i].fBandLength = 100.0f - fCurrentTime;
}
else
{
m_Alphas[i].fBandLength = m_Alphas[i+1].fTime - fCurrentTime;
}
fCurrentTime += m_Alphas[i].fBandLength;
}
}
void CASWGenericEmitter::StartRender( VMatrix &effectMatrix )
{
BaseClass::StartRender(effectMatrix);
if (m_iResetEmitter > 0) // this gets set to 2 when someone wants the emitter reset. It ticks down once here, then all the particles are removed in the subsequent simulate, then it gets ticked down to 0 again next time.
m_iResetEmitter--;
}
void CASWGenericEmitter::SimulateParticles( CParticleSimulateIterator *pIterator )
{
float timeDelta = pIterator->GetTimeDelta();
// work out how much the emitter moved since the last simulate
if (m_vecLastSimulatePosition != vec3_origin)
m_vecEmitterPositionDelta = m_vecPosition - m_vecLastSimulatePosition;
else
m_vecEmitterPositionDelta = vec3_origin;
ASWParticle *pParticle = (ASWParticle*)pIterator->GetFirst();
while ( pParticle )
{
if (SimulateParticle(pParticle, timeDelta))
{
if (pParticle->m_pPartner)
pParticle->m_pPartner->m_pPartner = NULL;
pIterator->RemoveParticle(pParticle);
}
pParticle = (ASWParticle*)pIterator->GetNext();
}
m_vecLastSimulatePosition = m_vecPosition;
}
bool CASWGenericEmitter::SimulateParticle(ASWParticle* pParticle, float timeDelta)
{
timeDelta += pParticle->m_fExtraSimulateTime;
pParticle->m_fExtraSimulateTime = 0;
if (pParticle->m_ParticleType == aswpt_glow) // glow particles move in a special way, so as to stay linked to their main particle
{
// advance the life of the particle
pParticle->m_flLifetime += timeDelta;
// position it relative to its parent based on its lifetime and constant velocity
if (pParticle->m_pPartner && pParticle->m_pPartner->m_pPartner == pParticle) // check it's a valid partner
{
pParticle->m_Pos = pParticle->m_pPartner->m_Pos + pParticle->m_vecVelocity * pParticle->m_flLifetime;
}
else
{
pParticle->m_Pos += pParticle->m_vecVelocity * timeDelta;
}
}
else
{
//Update velocity
ASWUpdateVelocity( pParticle, timeDelta );
Vector newPos = pParticle->m_Pos + pParticle->m_vecVelocity * timeDelta;
// move the particle along with the emitter origin?
newPos += m_vecEmitterPositionDelta * (m_fParticleLocal / 100.0f);
// check for wrapping spawn bounds (used primarily for particle emitters attached to the camera)
if (m_bWrapParticlesToSpawnBounds && !m_bLocalCoordSpace)
{
for (int i=0;i<2;i++)
{
float width = positionMax[i] - positionMin[i];
while (newPos[i] > m_vecPosition[i] + positionMax[i])
{
newPos[i] -= width;
}
while (newPos[i] < m_vecPosition[i] + positionMin[i])
{
newPos[i] += width;
}
}
}
if (m_UseCollision != aswpc_none)
{
trace_t trace;
int mask = MASK_SOLID_BRUSHONLY;
if (m_UseCollision == aswpc_all)
mask = MASK_SOLID;
if (m_bUseCustomCollisionMask)
mask = m_CustomCollisionMask;
int col_group = COLLISION_GROUP_NONE;
if (m_bUseCustomCollisionGroup)
col_group = m_CustomCollisionGroup;
if (m_bHullTraces)
{
UTIL_TraceHull(pParticle->m_Pos, newPos, m_vecTraceMins, m_vecTraceMaxs, mask, m_hCollisionIgnoreEntity.Get(), col_group, &trace);
}
else
UTIL_TraceLine(pParticle->m_Pos, newPos, mask, m_hCollisionIgnoreEntity.Get(), col_group, &trace);
if ( trace.fraction >= 1.0f )
{
pParticle->m_Pos = newPos;
}
else
{
// if we're going fast enough to do a sound
if (m_szCollisionSoundName[0] != '\0')
{
float speed = pParticle->m_vecVelocity.Length();
if (speed > asw_emitter_min_collision_speed.GetFloat())
{
float fVolume = 1.0f;
if (speed < asw_emitter_max_collision_speed.GetFloat())
{
fVolume = (speed - asw_emitter_min_collision_speed.GetFloat()) /
(asw_emitter_max_collision_speed.GetFloat() - asw_emitter_min_collision_speed.GetFloat());
}
CLocalPlayerFilter filter;
CSoundParameters params;
if ( C_BaseEntity::GetParametersForSound( m_szCollisionSoundName, params, NULL ) )
{
EmitSound_t ep( params );
ep.m_flVolume = fVolume;
ep.m_nChannel = CHAN_AUTO;
ep.m_pOrigin = &pParticle->m_Pos;
C_BaseEntity::EmitSound( filter, 0, ep );
}
}
}
// if we're going fast enough to do a decal
if ( m_szCollisionDecalName[0] != '\0' && !pParticle->bPlacedDecal )
{
float speed = pParticle->m_vecVelocity.Length();
if (speed > asw_emitter_min_collision_speed.GetFloat())
{
Vector diff = newPos - pParticle->m_Pos;
trace_t tr;
UTIL_TraceLine( pParticle->m_Pos, pParticle->m_Pos + diff * 64.0f, MASK_SOLID, m_hCollisionIgnoreEntity.Get(), COLLISION_GROUP_NONE, &tr );
UTIL_DecalTrace( &tr, m_szCollisionDecalName );
pParticle->bPlacedDecal = true;
}
}
// reflect off the surface
float proj = (pParticle->m_vecVelocity).Dot(trace.plane.normal);
VectorMA( pParticle->m_vecVelocity, -proj*2, trace.plane.normal, pParticle->m_vecVelocity );
proj = (pParticle->m_vecAccn).Dot(trace.plane.normal);
VectorMA( pParticle->m_vecAccn, -proj*2, trace.plane.normal, pParticle->m_vecAccn );
// dampen
pParticle->m_vecAccn *= m_fCollisionDampening * 0.01f;
pParticle->m_vecVelocity *= m_fCollisionDampening * 0.01f;
// dampen roll rate
pParticle->m_flRollDelta *= m_fReduceRollRateOnCollision;
// reduce lifespan
pParticle->m_flLifetime += m_fLifeLostOnCollision;
if (pParticle->m_flLifetime > pParticle->m_flDieTime)
pParticle->m_flLifetime = pParticle->m_flDieTime;
// if we're dropping particles, drop a bunch more when we collide
if (pParticle->m_ParticleType == aswpt_normal)
{
// if we have a collide emitter, make it spit out a particle on collision
if (m_hCollisionEmitter.IsValid())
{
m_hCollisionEmitter->SpawnParticle(pParticle->m_Pos, QAngle(0,0,0));
}
}
}
}
else
{
pParticle->m_Pos = newPos;
}
//Should this particle die?
pParticle->m_flLifetime += timeDelta;
}
if (m_iResetEmitter > 0)
{
pParticle->m_flLifetime = pParticle->m_flDieTime;
}
UpdateRoll( pParticle, timeDelta );
// Droplet Particles?
if (m_hDropletEmitter.IsValid() && pParticle->m_fDropTime > 0 && pParticle->m_fDropTime <= pParticle->m_flLifetime)
{
if (m_fDropletChance < 0) // negative droplet chance indicates we want a droplet every interval, instead of 1 random droplet
{
pParticle->m_fDropTime += -m_fDropletChance; // spawn another droplet next interval
}
else
pParticle->m_fDropTime = 0;
m_hDropletEmitter->SpawnParticle(pParticle->m_Pos, QAngle(0,0,0));
}
return ( pParticle->m_flLifetime >= pParticle->m_flDieTime );
}
ASWParticle* CASWGenericEmitter::AddASWParticle(
PMaterialHandle hMaterial,
const Vector &vOrigin,
float flDieTime,
unsigned char uchSize )
{
ASWParticle *pRet = (ASWParticle*)AddParticle( sizeof( ASWParticle ), hMaterial, vOrigin );
if ( pRet )
{
pRet->m_Pos = vOrigin;
pRet->m_vecVelocity.Init();
pRet->m_vecAccn.Init();
pRet->m_flRoll = 0;
pRet->m_flRollDelta = 0;
pRet->m_flLifetime = 0;
pRet->m_flDieTime = flDieTime;
pRet->m_uchColor[0] = pRet->m_uchColor[1] = pRet->m_uchColor[2] = 0;
pRet->m_uchStartAlpha = pRet->m_uchEndAlpha = 255;
pRet->m_uchStartSize = pRet->m_uchEndSize = uchSize;
pRet->m_iFlags = 0;
pRet->m_fExtraSimulateTime = 0;
pRet->m_ParticleType = aswpt_normal;
pRet->m_fDropTime = 0;
pRet->m_pPartner = NULL;
pRet->bPlacedDecal = false;
}
return pRet;
}
void CASWGenericEmitter::ASWUpdateVelocity( ASWParticle *pParticle, float timeDelta )
{
// add particle acceleration to its velocity
pParticle->m_vecVelocity += pParticle->m_vecAccn * timeDelta;
// add gravity
pParticle->m_vecVelocity.z += fGravity * timeDelta;
BaseClass::UpdateVelocity(pParticle, timeDelta);
}
ASWParticle* CASWGenericEmitter::SpawnParticle(const Vector& Position, const QAngle& Angle)
{
ASWParticle *pParticle;
matrix3x4_t matrix;
AngleMatrix( Angle, matrix );
Vector v, pos;
v.x = (positionMin.x + (positionMax.x - positionMin.x) * random->RandomFloat()) * m_fEmitterScale;
v.y = (positionMin.y + (positionMax.y - positionMin.y) * random->RandomFloat()) * m_fEmitterScale;
v.z = (positionMin.z + (positionMax.z - positionMin.z) * random->RandomFloat()) * m_fEmitterScale;
if (m_bLocalCoordSpace)
{
pos = v;
}
else
{
VectorTransform(v, matrix, pos);
pos += Position;
}
// Create the particle
pParticle = AddASWParticle( m_hMaterial, pos );
if ( pParticle == NULL )
return NULL;
// Setup our roll
pParticle->m_flRoll = DEG2RAD(fRollMin) + (DEG2RAD(fRollMax) - DEG2RAD(fRollMin)) * random->RandomFloat();
pParticle->m_flRollDelta = DEG2RAD(fRollDeltaMin) + (DEG2RAD(fRollDeltaMax) - DEG2RAD(fRollDeltaMin)) * random->RandomFloat();
// Set our velocity
v.x = (velocityMin.x + (velocityMax.x - velocityMin.x) * random->RandomFloat()) * m_fEmitterScale;
v.y = (velocityMin.y + (velocityMax.y - velocityMin.y) * random->RandomFloat()) * m_fEmitterScale;
v.z = (velocityMin.z + (velocityMax.z - velocityMin.z) * random->RandomFloat()) * m_fEmitterScale;
VectorTransform(v, matrix, pParticle->m_vecVelocity);
// set our acceleration
v.x = (accelerationMin.x + (accelerationMax.x - accelerationMin.x) * random->RandomFloat()) * m_fEmitterScale;
v.y = (accelerationMin.y + (accelerationMax.y - accelerationMin.y) * random->RandomFloat()) * m_fEmitterScale;
v.z = (accelerationMin.z + (accelerationMax.z - accelerationMin.z) * random->RandomFloat()) * m_fEmitterScale;
VectorTransform(v, matrix, pParticle->m_vecAccn);
// Die in a short range of time
pParticle->m_flDieTime = m_fParticleLifeMin + (m_fParticleLifeMax - m_fParticleLifeMin) * random->RandomFloat();
// alpha, color, scale are set before rendering from the emitter calcs
return pParticle;
}
ASWParticle* CASWGenericEmitter::SpawnGlowParticle(const Vector& Position, const QAngle& Angle, ASWParticle* pParent)
{
if (!pParent || *GetGlowMaterial()==NULL)
return NULL;
ASWParticle *pParticle;
// Create the particle
pParticle = AddASWParticle( m_hGlowMaterial, pParent->m_Pos );
if ( pParticle == NULL )
return NULL;
pParticle->m_ParticleType = aswpt_glow;
// Setup our roll
pParticle->m_flRoll = pParent->m_flRoll;
pParticle->m_flRollDelta = pParent->m_flRollDelta;
// Set our velocity/accn/etc
float f = pParent->m_vecVelocity.Length() * (m_fGlowDeviation / 100); // 0.05f;
pParticle->m_vecVelocity = RandomVector(-f, f);
pParticle->m_vecAccn.Init();// = pParent->m_vecAccn;
pParticle->m_flDieTime = pParent->m_flDieTime;
// link the glow particle to its parent
pParticle->m_pPartner = pParent;
pParent->m_pPartner = pParticle;
// alpha, color, scale are set before rendering from the emitter calcs
return pParticle;
}
// simulate the emitter running for x seconds, instantly
void CASWGenericEmitter::DoPresimulate(const Vector& Position, const QAngle& Angle)
{
float fTimeLeft = m_fPresimulateTime;
while (fTimeLeft > 0)
{
fTimeLeft -= 1.0f / m_ParticlesPerSecond;
if (fTimeLeft > 0 && (m_iParticleSupply == -1 || m_iParticleSupply > 0))
{
ASWParticle* pParticle = SpawnParticle(Position, Angle);
if (pParticle)
{
pParticle->m_fExtraSimulateTime = fTimeLeft;
if (m_iParticleSupply > 0)
m_iParticleSupply--;
if (*GetGlowMaterial()!=NULL && pParticle)
{
ASWParticle* pGlowParticle = SpawnGlowParticle(Position, Angle, pParticle);
if (pGlowParticle)
pGlowParticle->m_fExtraSimulateTime = fTimeLeft;
}
}
}
}
m_tParticleTimer.Init( m_ParticlesPerSecond );
}
// Change the material given to particles spat out by this emitter
void CASWGenericEmitter::SetMaterial(const char* materialname )
{
strcpy(m_szMaterialName, materialname);
m_hMaterial = GetPMaterial( materialname );
ResetEmitter();
}
void CASWGenericEmitter::SetGlowMaterial(const char* materialname )
{
if (!stricmp(materialname, "None"))
{
m_szGlowMaterialName[0]='\0';
m_hGlowMaterial = NULL;
}
else
{
strcpy(m_szGlowMaterialName, materialname);
m_hGlowMaterial = GetPMaterial( materialname );
}
ResetEmitter();
}
void CASWGenericEmitter::SetCustomCollisionMask(int iMask)
{
m_bUseCustomCollisionMask = true;
m_CustomCollisionMask = iMask;
}
void CASWGenericEmitter::SetCustomCollisionGroup(int iColGroup)
{
m_bUseCustomCollisionGroup = true;
m_CustomCollisionGroup = iColGroup;
}
// Makes all the particles get destroyed in the next simulate, and triggers the presimulate
void CASWGenericEmitter::ResetEmitter()
{
if (m_hCollisionEmitter.IsValid())
{
m_hCollisionEmitter = NULL;
}
if (m_hDropletEmitter.IsValid())
{
m_hDropletEmitter = NULL;
}
// if we have a collision template, instantiate that emitter too
if (stricmp(m_szCollisionTemplateName, "None") && m_szCollisionTemplateName[0]!=0)
{
m_hCollisionEmitter = CASWGenericEmitter::Create("CollisionTemplate");
m_hCollisionEmitter->UseTemplate(m_szCollisionTemplateName);
m_hCollisionEmitter->SetActive(false);
m_hCollisionEmitter->m_ParticlesPerSecond = 0; // stop it producing particles over time
}
if (stricmp(m_szDropletTemplateName, "None") && m_szDropletTemplateName[0]!=0)
{
m_hDropletEmitter = CASWGenericEmitter::Create("DropletTemplate");
m_hDropletEmitter->UseTemplate(m_szDropletTemplateName);
m_hDropletEmitter->SetActive(false);
m_hDropletEmitter->m_ParticlesPerSecond = 0; // stop it producing particles over time
}
// set particle cull radius
m_fLargestParticleSize = 1.0f;
for (int i=0;i<5;i++)
{
if (m_Scales[i].bUse && m_Scales[0].fScale > m_fLargestParticleSize)
m_fLargestParticleSize = m_Scales[0].fScale;
}
SetParticleCullRadius(m_fLargestParticleSize * m_fEmitterScale);
m_iResetEmitter = 2;
m_iParticleSupply = m_iInitialParticleSupply;
}
// this should be called when something else changes our variables
void CASWGenericEmitter::Update()
{
CalcBandLengths();
}
void CASWGenericEmitter::Think(float deltaTime, const Vector& Position, const QAngle& Angle)
{
VPROF_BUDGET( "CASWGenericEmitter::Think", VPROF_BUDGETGROUP_ASW_CLIENT );
// store position and facing (used by rendering when particles are stored in local space)
m_vecPosition = Position;
m_angFacing = Angle;
// calculate the max bbox for this emitter
// todo: rotate by angle, take into account gravity + acceleration
//Vector PosMax = Position + velocityMax * m_fParticleLifeMax + positionMax;
//Vector PosMin = Position + velocityMin * m_fParticleLifeMax + positionMin;
//m_ParticleEffect.SetBBox( PosMin, PosMax );
if (m_iResetEmitter && GetBinding().GetNumActiveParticles()==0)
{
m_iResetEmitter = 0;
// calc lighting
if (m_iLightingType > 0)
{
m_vecLighting = engine->GetLightForPoint(Position, true);
m_vecLighting.x = LinearToTexture( m_vecLighting.x ) / 255.0f;
m_vecLighting.y = LinearToTexture( m_vecLighting.y ) / 255.0f;
m_vecLighting.z = LinearToTexture( m_vecLighting.z ) / 255.0f;
//Msg("Baked lighting for emitter: %f, %f, %f\n", m_vecLighting.x, m_vecLighting.y, m_vecLighting.z);
}
DoPresimulate(Position, Angle);
}
float curTime = gpGlobals->frametime;
// Add as many particles as required this frame
while ( m_tParticleTimer.NextEvent( curTime ) )
{
if (m_bEmit && (m_iParticleSupply == -1 || m_iParticleSupply > 0))
{
ASWParticle* pParticle = SpawnParticle(Position, Angle);
if (pParticle)
{
if (m_iParticleSupply > 0)
m_iParticleSupply--;
if (curTime > 0)
pParticle->m_fExtraSimulateTime = curTime;
if (*GetGlowMaterial()!=NULL)
{
ASWParticle* pGlow = SpawnGlowParticle(Position, Angle, pParticle);
if (pGlow)
pGlow->m_fExtraSimulateTime = pParticle->m_fExtraSimulateTime;
}
if (m_hDropletEmitter.IsValid())
{
if (m_fDropletChance < 0) // negative droplet chance indicates we want a droplet every interval, instead of 1 random droplet
{
pParticle->m_fDropTime = -m_fDropletChance;
}
else if (random->RandomFloat() < (m_fDropletChance / 100.0f))
pParticle->m_fDropTime = random->RandomFloat(0.25f, 1.0f) * pParticle->m_flDieTime;
}
}
}
}
if (m_CurrentParticlesPerSecond != m_ParticlesPerSecond)
{
m_tParticleTimer.Init( m_ParticlesPerSecond );
m_CurrentParticlesPerSecond = m_ParticlesPerSecond;
}
if (m_hCollisionEmitter.IsValid())
{
m_hCollisionEmitter->Think(deltaTime, Position, Angle);
}
if (m_hDropletEmitter.IsValid())
{
m_hDropletEmitter->Think(deltaTime, Position, Angle);
}
if (m_fDieTime > 0 && m_fDieTime < gpGlobals->curtime)
{
m_bEmit = false;
// ASWTODO - find out a good way to destroy this CParticleEffect
//Release();
}
}
void CASWGenericEmitter::SetActive(bool b)
{
if (!IsReleased()) // don't change our active state if we're dying
m_bEmit = b;
}
void CASWGenericEmitter::RenderParticles( CParticleRenderIterator *pIterator )
{
/*
if (asw_mesh_emitter_draw.GetBool())
{
// check for drawing by some parent entity mesh - is this going to mess up draw order and things?
if ( m_DrawType == aswpdt_mesh && m_hMeshEmitter.Get())
{
MDLCACHE_CRITICAL_SECTION();
if (m_hMeshEmitter->PrepareToDraw())
{
const ASWParticle *pParticle = (const ASWParticle *)pIterator->GetFirst();
int iDrawn = 0;
while ( pParticle )
{
//Render
Vector tPos;
Vector vecParticlePos = pParticle->m_Pos;
// if particles are stored in local coord space, then transform them to the particle system's last known coords
//if (m_bLocalCoordSpace)
//{
//matrix3x4_t matrix;
//AngleMatrix( m_angFacing, matrix );
//VectorTransform(pParticle->m_Pos, matrix, vecParticlePos);
//vecParticlePos += m_vecPosition;
//}
debugoverlay->AddLineOverlay( vecParticlePos, vecParticlePos+Vector(3, 3, 3),
0, 0, 255, true, 0.01f );
iDrawn += m_hMeshEmitter->DrawParticle(vecParticlePos);
TransformParticle( ParticleMgr()->GetModelView(), vecParticlePos, tPos );
float sortKey = (int) tPos.z;
pParticle = (const ASWParticle *)pIterator->GetNext( sortKey );
}
Msg("Drew mesh particles: %d\n", iDrawn);
}
return;
}
}*/
const ASWParticle *pParticle = (const ASWParticle *)pIterator->GetFirst();
while ( pParticle )
{
//Render
Vector tPos;
Vector vecParticlePos = pParticle->m_Pos;
// if particles are stored in local coord space, then transform them to the particle system's last known coords
if (m_bLocalCoordSpace)
{
matrix3x4_t matrix;
AngleMatrix( m_angFacing, matrix );
VectorTransform(pParticle->m_Pos, matrix, vecParticlePos);
vecParticlePos += m_vecPosition;
}
TransformParticle( ParticleMgr()->GetModelView(), vecParticlePos, tPos );
float sortKey = (int) tPos.z;
if (m_DrawType == aswpdt_sprite)
{
//Render it as a normal sprite
Vector col = UpdateColor( pParticle );
RenderParticle_ColorSizeAngle(
pIterator->GetParticleDraw(),
tPos,
col,
//UpdateColor( pParticle ),
UpdateAlpha( pParticle ) * GetAlphaDistanceFade( tPos, m_flNearClipMin, m_flNearClipMax ),
ASWUpdateScale( pParticle ),
pParticle->m_flRoll
);
}
else if (m_DrawType == aswpdt_tracer) // beam drawing
{
// render the particle as a tracer beam
float fSize = ASWUpdateScale( pParticle );
float lifePerc = 1.0f - ( pParticle->m_flLifetime / pParticle->m_flDieTime );
float scale = fSize * 0.1;
if (m_bScaleBeamByLifeLeft)
scale *= lifePerc;
if ( scale < 0.01f )
scale = 0.01f;
Vector delta;
Vector3DMultiply( ParticleMgr()->GetModelView(), pParticle->m_vecVelocity, delta );
float flLength = (pParticle->m_vecVelocity * scale).Length();//( delta - pos ).Length();
float flWidth = ( flLength < fSize ) ? flLength : fSize;
float color[4];
Vector col = UpdateColor( pParticle );
color[0] = col[0];
color[1] = col[1];
color[2] = col[2];
color[3] = UpdateAlpha( pParticle ) * GetAlphaDistanceFade( tPos, m_flNearClipMin, m_flNearClipMax );
if (!m_bScaleBeamByVelocity)
{
VectorNormalize(delta);
}
if (m_iBeamPosition == ASW_EMITTER_BEAM_POS_FRONT)
{
tPos += (delta*scale)*m_fBeamLength;
}
else if (m_iBeamPosition == ASW_EMITTER_BEAM_POS_CENTER)
{
tPos += (delta*scale)*m_fBeamLength*0.5f;
}
Tracer_Draw( pIterator->GetParticleDraw(), tPos, -(delta*scale)*m_fBeamLength, flWidth, color );
}
pParticle = (const ASWParticle *)pIterator->GetNext( sortKey );
}
}
void CASWGenericEmitter::SetCollisionTemplate(const char* templatename )
{
strcpy(m_szCollisionTemplateName, templatename);
ResetEmitter();
}
void CASWGenericEmitter::SetDropletTemplate(const char* templatename )
{
strcpy(m_szDropletTemplateName, templatename);
ResetEmitter();
}
void CASWGenericEmitter::SetCollisionSound(const char* szSoundName )
{
strcpy(m_szCollisionSoundName, szSoundName);
}
void CASWGenericEmitter::SetCollisionDecal(const char* szDecalName )
{
strcpy(m_szCollisionDecalName, szDecalName);
}
void CASWGenericEmitter::SetDieTime(float fTime)
{
m_fDieTime = fTime;
}
// load our emitter settings from a particular template
void CASWGenericEmitter::UseTemplate(const char* templatename, bool bReset, bool bLoadFromCache)
{
char buf[MAX_PATH];
Q_snprintf(buf, sizeof(buf), "resource/particletemplates/%s.ptm", templatename);
KeyValues* kv = NULL;
if (bLoadFromCache)
kv = g_ASWGenericEmitterCache.FindTemplate(templatename);
else
{
Msg("UseTemplate uncache force\n");
kv = new KeyValues("UncachedParticleEmitter");
if ( !kv->LoadFromFile(filesystem, buf, "GAME") )
{
DevMsg( 1, "C_ASW_Emitter::UseTemplate: couldn't load file: %s\n", buf );
return;
}
}
// couldn't find the template
if ( !kv )
{
DevMsg( 1, "Couldn't load emitter template from cache. %s\n", buf );
return;
}
strcpy(m_szTemplateName, templatename);
strcpy(m_szMaterialName, kv->GetString("Material"));
m_hMaterial = GetPMaterial( m_szMaterialName );
strcpy(m_szGlowMaterialName, kv->GetString("GlowMaterial"));
if (Q_strlen(m_szGlowMaterialName) <= 0)
m_hGlowMaterial = NULL;
else
m_hGlowMaterial = GetPMaterial( m_szGlowMaterialName );
m_ParticlesPerSecond = kv->GetFloat("ParticlesPerSecond");
m_fParticleLifeMin = kv->GetFloat("ParticleLifeMin");
m_fParticleLifeMax = kv->GetFloat("ParticleLifeMax");
m_fPresimulateTime = kv->GetFloat("PresimulateTime");
fRollMin = kv->GetFloat("RollMin");
fRollMax = kv->GetFloat("RollMax");
fRollDeltaMin = kv->GetFloat("RollDeltaMin");
fRollDeltaMax = kv->GetFloat("RollDeltaMax");
velocityMin.x = kv->GetFloat("VelocityMinX");
velocityMin.y = kv->GetFloat("VelocityMinY");
velocityMin.z = kv->GetFloat("VelocityMinZ");
velocityMax.x = kv->GetFloat("VelocityMaxX");
velocityMax.y = kv->GetFloat("VelocityMaxY");
velocityMax.z = kv->GetFloat("VelocityMaxZ");
positionMin.x = kv->GetFloat("PositionMinX");
positionMin.y = kv->GetFloat("PositionMinY");
positionMin.z = kv->GetFloat("PositionMinZ");
positionMax.x = kv->GetFloat("PositionMaxX");
positionMax.y = kv->GetFloat("PositionMaxY");
positionMax.z = kv->GetFloat("PositionMaxZ");
accelerationMin.x = kv->GetFloat("AccnMinX");
accelerationMin.y = kv->GetFloat("AccnMinY");
accelerationMin.z = kv->GetFloat("AccnMinZ");
accelerationMax.x = kv->GetFloat("AccnMaxX");
accelerationMax.y = kv->GetFloat("AccnMaxY");
accelerationMax.z = kv->GetFloat("AccnMaxZ");
fGravity = kv->GetFloat("Gravity");
m_fCollisionDampening = kv->GetFloat("CollisionDampening", 50.0f);
m_fBeamLength = kv->GetFloat("BeamLength", 1.0f);
m_bScaleBeamByVelocity = kv->GetInt("ScaleBeamByVelocity", 1) != 0;
m_bScaleBeamByLifeLeft = kv->GetInt("ScaleBeamByLifeLeft", 1) != 0;
m_iBeamPosition = kv->GetInt("BeamPosition");
m_fGlowScale = kv->GetFloat("GlowScale", 1.7f);
m_fGlowDeviation = kv->GetFloat("GlowDeviation", 5);
m_fDropletChance = kv->GetFloat("DropletChance");
m_fParticleLocal = kv->GetFloat("ParticleLocal");
m_fLifeLostOnCollision = kv->GetFloat("LifeLostOnCollision");
m_iParticleSupply = m_iInitialParticleSupply = kv->GetInt("ParticleSupply", -1);
m_DrawType = (ASWParticleDrawType) kv->GetInt("DrawType");
m_iLightingType = kv->GetInt("Lighting");
m_fLightApply = kv->GetFloat("LightApply");
strcpy(m_szCollisionTemplateName, kv->GetString("CollisionTemplate"));
strcpy(m_szDropletTemplateName, kv->GetString("DropletTemplate"));
// save color nodes
for (int i=0;i<5;i++)
{
char buf[64];
Q_snprintf(buf, 64, "Color%dUse", i); m_Colors[i].bUse = kv->GetBool(buf);
Q_snprintf(buf, 64, "Color%dTime", i); m_Colors[i].fTime = kv->GetFloat(buf);
Q_snprintf(buf, 64, "Color%dRed", i); m_Colors[i].Color.r = kv->GetInt(buf);
Q_snprintf(buf, 64, "Color%dGreen", i); m_Colors[i].Color.g = kv->GetInt(buf);
Q_snprintf(buf, 64, "Color%dBlue", i); m_Colors[i].Color.b = kv->GetInt(buf);
}
// save scale nodes
for (int i=0;i<5;i++)
{
char buf[64];
Q_snprintf(buf, 64, "Scale%dUse", i); m_Scales[i].bUse = kv->GetBool(buf);
Q_snprintf(buf, 64, "Scale%dTime", i); m_Scales[i].fTime = kv->GetFloat(buf);
Q_snprintf(buf, 64, "Scale%dValue", i); m_Scales[i].fScale = kv->GetFloat(buf);
}
// save alpha nodes
for (int i=0;i<5;i++)
{
char buf[64];
Q_snprintf(buf, 64, "Alpha%dUse", i); m_Alphas[i].bUse = kv->GetBool(buf);
Q_snprintf(buf, 64, "Alpha%dTime", i); m_Alphas[i].fTime = kv->GetFloat(buf);
Q_snprintf(buf, 64, "Alpha%dValue", i); m_Alphas[i].fAlpha = kv->GetFloat(buf);
}
// collision
m_UseCollision = (ASWParticleCollision) kv->GetInt("Collision");
strcpy(m_szCollisionSoundName, kv->GetString("CollisionSound"));
strcpy(m_szCollisionDecalName, kv->GetString("CollisionDecal"));
Update();
if (bReset)
ResetEmitter();
}
void CASWGenericEmitter::SetMeshEmitter(C_ASW_Mesh_Emitter *pMeshEmitter)
{
m_hMeshEmitter = pMeshEmitter;
m_DrawType = aswpdt_mesh;
}
// save our emitter settings to a template
void CASWGenericEmitter::SaveTemplateAs(const char* templatename)
{
char filename[MAX_PATH];
Q_snprintf(filename, sizeof(filename), "resource/particletemplates/%s.ptm", templatename);
strcpy(m_szTemplateName, templatename);
KeyValues* kv = new KeyValues( "ParticleTemplate" );
kv->SetString("Material", m_szMaterialName);
kv->SetString("GlowMaterial", m_szGlowMaterialName);
kv->SetFloat("ParticlesPerSecond", m_ParticlesPerSecond);
kv->SetFloat("ParticleLifeMin", m_fParticleLifeMin);
kv->SetFloat("ParticleLifeMax", m_fParticleLifeMax);
kv->SetFloat("PresimulateTime", m_fPresimulateTime);
kv->SetFloat("RollMin", fRollMin);
kv->SetFloat("RollMax", fRollMax);
kv->SetFloat("RollDeltaMin", fRollDeltaMin);
kv->SetFloat("RollDeltaMax", fRollDeltaMax);
kv->SetFloat("VelocityMinX", velocityMin.x);
kv->SetFloat("VelocityMinY", velocityMin.y);
kv->SetFloat("VelocityMinZ", velocityMin.z);
kv->SetFloat("VelocityMaxX", velocityMax.x);
kv->SetFloat("VelocityMaxY", velocityMax.y);
kv->SetFloat("VelocityMaxZ", velocityMax.z);
kv->SetFloat("PositionMinX", positionMin.x);
kv->SetFloat("PositionMinY", positionMin.y);
kv->SetFloat("PositionMinZ", positionMin.z);
kv->SetFloat("PositionMaxX", positionMax.x);
kv->SetFloat("PositionMaxY", positionMax.y);
kv->SetFloat("PositionMaxZ", positionMax.z);
kv->SetFloat("AccnMinX", accelerationMin.x);
kv->SetFloat("AccnMinY", accelerationMin.y);
kv->SetFloat("AccnMinZ", accelerationMin.z);
kv->SetFloat("AccnMaxX", accelerationMax.x);
kv->SetFloat("AccnMaxY", accelerationMax.y);
kv->SetFloat("AccnMaxZ", accelerationMax.z);
kv->SetFloat("Gravity", fGravity);
kv->SetFloat("CollisionDampening", m_fCollisionDampening);
kv->SetFloat("GlowScale", m_fGlowScale);
kv->SetFloat("GlowDeviation", m_fGlowDeviation);
kv->SetFloat("BeamLength", m_fBeamLength);
kv->SetBool("ScaleBeamByVelocity", m_bScaleBeamByVelocity);
kv->SetBool("ScaleBeamByLifeLeft", m_bScaleBeamByLifeLeft);
kv->SetInt("BeamPosition", m_iBeamPosition);
kv->SetInt("Lighting", m_iLightingType);
kv->SetFloat("LightApply", m_fLightApply);
kv->SetFloat("DropletChance", m_fDropletChance);
kv->SetFloat("ParticleLocal", m_fParticleLocal);
kv->SetFloat("LifeLostOnCollision", m_fLifeLostOnCollision);
kv->SetInt("ParticleSupply", m_iInitialParticleSupply);
kv->SetInt("DrawType", m_DrawType);
kv->SetString("CollisionTemplate", m_szCollisionTemplateName);
kv->SetString("DropletTemplate", m_szDropletTemplateName);
// save color nodes
for (int i=0;i<5;i++)
{
char buf[64];
Q_snprintf(buf, 64, "Color%dUse", i); kv->SetInt(buf, m_Colors[i].bUse);
Q_snprintf(buf, 64, "Color%dTime", i); kv->SetFloat(buf, m_Colors[i].fTime);
Q_snprintf(buf, 64, "Color%dRed", i); kv->SetInt(buf, m_Colors[i].Color.r);
Q_snprintf(buf, 64, "Color%dGreen", i); kv->SetInt(buf, m_Colors[i].Color.g);
Q_snprintf(buf, 64, "Color%dBlue", i); kv->SetInt(buf, m_Colors[i].Color.b);
}
// save scale nodes
for (int i=0;i<5;i++)
{
char buf[64];
Q_snprintf(buf, 64, "Scale%dUse", i); kv->SetInt(buf, m_Scales[i].bUse);
Q_snprintf(buf, 64, "Scale%dTime", i); kv->SetFloat(buf, m_Scales[i].fTime);
Q_snprintf(buf, 64, "Scale%dValue", i); kv->SetFloat(buf, m_Scales[i].fScale);
}
// save alpha nodes
for (int i=0;i<5;i++)
{
char buf[64];
Q_snprintf(buf, 64, "Alpha%dUse", i); kv->SetInt(buf, m_Alphas[i].bUse);
Q_snprintf(buf, 64, "Alpha%dTime", i); kv->SetFloat(buf, m_Alphas[i].fTime);
Q_snprintf(buf, 64, "Alpha%dValue", i); kv->SetFloat(buf, m_Alphas[i].fAlpha);
}
// collision
kv->SetInt("Collision", m_UseCollision);
kv->SetString("CollisionSound", m_szCollisionSoundName);
kv->SetString("CollisionDecal", m_szCollisionDecalName);
// save the template
kv->SaveToFile( filesystem, filename );
}
KeyValues* CASWGenericEmitterCache::FindTemplate(const char* szTemplateName)
{
//Msg("CASWGenericEmitterCache::FindTemplate %s\n", szTemplateName);
// check if it's in our cache of templates already
int k = m_TemplateNames.Count();
for (int i=0;i<k;i++)
{
if (!Q_strcmp(m_TemplateNames[i], szTemplateName))
{
//Msg(" cache hit!\n");
return m_Templates[i];
}
}
// otherwise, load it;
KeyValues* kv = new KeyValues( "ParticleEmitters" );
char buf[MAX_PATH];
Q_snprintf(buf, sizeof(buf), "resource/particletemplates/%s.ptm", szTemplateName);
if (!kv->LoadFromFile( filesystem, buf, "GAME" ))
{
Warning("Failed to load particle emitter: %s\n", szTemplateName);
return NULL;
}
// add it to the cache
m_Templates.AddToTail(kv);
int length = Q_strlen(szTemplateName)+1;
char *pNewString = new char[length];
Q_memcpy( pNewString, szTemplateName, length );
m_TemplateNames.AddToTail(pNewString);
//Msg(" cache miss (now have %d templates loaded)\n", m_Templates.Count());
return kv;
}
CASWGenericEmitterCache::~CASWGenericEmitterCache()
{
// free up all the keyvalues we allocated
int k=m_Templates.Count();
for (int i=0;i<k;i++)
{
KeyValues* kv = m_Templates[i];
kv->deleteThis();
// also free the template name strings we allocated
delete[] m_TemplateNames[i];
}
}
void CASWGenericEmitterCache::ListCachedEmitters()
{
int k=m_Templates.Count();
for (int i=0;i<k;i++)
{
KeyValues* kv = m_Templates[i];
Msg("Template %d = %s (addr:%d)\n", i, STRING(m_TemplateNames[i]), kv);
}
}
void CASWGenericEmitterCache::PrecacheTemplates()
{
// precache our standard templates
FindTemplate("snow2");
FindTemplate("snow3");
FindTemplate("snowclouds");
FindTemplate("sollyopenfire");
FindTemplate("radjet1");
FindTemplate("radcloud1");
FindTemplate("envfiresol");
FindTemplate("envfireslow");
FindTemplate("envfire3");
FindTemplate("incendiary");
FindTemplate("flamer5");
FindTemplate("flamerstream1");
FindTemplate("fireextinguisher2");
FindTemplate("healfast");
FindTemplate("doorsmoke1");
FindTemplate("fireextinguisherdisperse1");
FindTemplate("flamerdroplets1");
FindTemplate("dronebloodjet");
FindTemplate("dronebloodburst");
FindTemplate("droneblooddroplets");
FindTemplate("piercespark");
FindTemplate("fireextinguisherself");
FindTemplate("railgunsmoke");
FindTemplate("railgunspray");
FindTemplate("railgunspray");
FindTemplate("fireburst");
FindTemplate("incendiarycloud1");
FindTemplate("shotgunsmoke");
FindTemplate("queendie");
FindTemplate("queenburst");
FindTemplate("queenspit");
FindTemplate("dronegib1");
FindTemplate("dronegib2");
FindTemplate("dronegib3");
FindTemplate("dronegibfire1");
FindTemplate("eggfluid");
FindTemplate("egggib1");
FindTemplate("fireextinguisherdisperse");
FindTemplate("flamerdroplets1");
FindTemplate("flamersparks1");
FindTemplate("grubgib1");
FindTemplate("grubgibfire1");
FindTemplate("parasitegib1");
FindTemplate("parasitegib1quiet");
FindTemplate("parasitegib2");
FindTemplate("parasitegib2quiet");
FindTemplate("parasitegibfire1");
FindTemplate("parasitegibfire1quiet");
}
CASWGenericEmitterCache g_ASWGenericEmitterCache;
void asw_list_cached_emitters_f()
{
g_ASWGenericEmitterCache.ListCachedEmitters();
}
static ConCommand asw_list_cached_emitters("asw_list_cached_emitters", asw_list_cached_emitters_f, "Lists all emitter templates currently loaded", FCVAR_CHEAT);