2021-07-24 21:11:47 -07:00

260 lines
8.2 KiB
C++

//========= Copyright © Valve Corporation, All rights reserved. ============//
#include "capsule.h"
#include "trace.h"
//#include "body.h"
//#include "mass.h"
//#include "distance.h"
//#include "gjk.h"
//#include "sat.h"
#define NUM_STACKS 8
#define NUM_SLICES 16
//--------------------------------------------------------------------------------------------------
// Local utilities
//--------------------------------------------------------------------------------------------------
struct CapsuleCast2D_t
{
float m_flCapsule, m_flRay;
};
//--------------------------------------------------------------------------------------------------
static void CastCapsuleRay2DCoaxialInternal( CapsuleCast2D_t &out, float mx, float dx, float h, float e )
{
Assert( e >= 0 );
float mxProj = mx + e; // m.x - (-e)
if( mxProj < 0 )
{
// ray starts before the capsule cap
out.m_flCapsule = 0;
if( dx >= -mxProj ) // otherwise, ending before capsule starts: FLT_MAX
{
out.m_flRay = -mxProj / dx;
}
}
else if( mx < h + e ) // otherwise, starting after capsule ends : FLT_MAX
{
out.m_flCapsule = Clamp( mx, 0.0f, h );
out.m_flRay = 0;
}
else
{
// ray starts after the capsule cap
out.m_flCapsule = h;
float mxEnd = mx - ( h + e );
if( -dx >= mxEnd )
{
out.m_flRay = mxEnd / -dx;
}
}
}
//--------------------------------------------------------------------------------------------------
static void CastCapsuleRay2DParallelInternal( CapsuleCast2D_t &out, const Vector2D &m, float dx, float h, float rr )
{
float e2 = rr - Sqr( m.y );
if( e2 > 0 ) // otherwise, going parallel and outside : FLT_MAX
{
// going parallel and inside the infinite slab at level m.y, left to right
float e = sqrtf( e2 ); // -e..h+e is the extent
CastCapsuleRay2DCoaxialInternal( out, m.x, dx, h, e );
}
}
//--------------------------------------------------------------------------------------------------
// Intersect 2D ray with 2D capsule; capsule has radius r, length h, it starts at (0,0) and ends at (h,0)
// ray goes from m, delta d
// return: time of hit
static void CastCapsuleRay2DInternal( CapsuleCast2D_t &out, const Vector2D &m, const Vector2D &d, float h, float rr )
{
Assert( rr >= 0 );
Assert( d.y > -FLT_EPSILON );
Assert( d.y != 0.0f ); // otherwise it's going parallel
float my2 = Sqr( m.y );
out.m_flCapsule = Clamp( m.x, 0.0f, h );
// Easy case we'll have to check a few times if we delay: are we starting in solid?
// same idea as with box-box distance: cut out x=0..h, capsule becomes a circle, find distance to circle
// I'm sure there's more elegant way to handle it
if( Sqr( m.x - out.m_flCapsule ) + my2 < rr )
{
out.m_flRay = 0; // start-in-solid
return;
}
// well, we don't start inside the capsule. Good to know
float r = sqrtf( rr ), dd = Sqr( d.x ) + Sqr( d.y ), ddInv = 1.0f / dd, dymy = d.y * m.y;
// first, intersect the ray with the rectangle
float t = ( -r - m.y ) / d.y, t0 = fpmax( 0, t ), s0 = m.x + d.x * t0;
// solutions: -b0±sqrt(b0^2-c0) , -b1±sqrt(b1^2-c1) with ± controlled by d.x sign
// since we know we go left-bottom to right-top, we can just choose the circle we wanna hit
// since we know we don't start-in-solid, we know the first root (if any) will be t>=0
float mxh;
if( s0 < 0 )
{
// we're entering through the left cap
// if we hit, we hit left circle
out.m_flCapsule = 0;
mxh = m.x;
}
else if( s0 < h )
{
// we're entering through the side of the capsule
out.m_flCapsule = s0;
if( t >= 0 ) // only if we didn't enter before ray started; otherwise, since we didn't start-in-solid, we don't hit capsule at all
{
out.m_flRay = t; // the caller will sort out if it's >1 or not
}
return;
}
else
{
out.m_flCapsule = h;
mxh = m.x - h;
}
float b = ( d.x * mxh + dymy ) * ddInv, c = ( mxh * mxh + my2 - rr ) * ddInv, D = b * b - c;
if( D >= 0 )
{
float tc = -b - sqrtf( D );
Assert( tc - t >= -1e-4f ); // the ray should really enter the circle after it entered the stripe of halfspaces
// if tc < 0, we entered capsule before ray began; since we didn't start-in-solid, it means we don't hit the capsule at all
if( tc >= 0 )
{
out.m_flRay = tc;
}
}
}
static void CastCapsuleShortRay( CShapeCastResult &out, const Vector &sUnit, float sLen, const Vector &m, const Vector &vRayStart, const Vector vCenter[], float flRadius )
{
// the ray is too short, just compute the distance to the capsule and compare with radius
// if we really need both high precision and stability, we need to compute distance to capsule from both ends of the ray: the capsule curvature is very low in the vicinity of the ray and is o(d^2) effect
float flProjOnCapsule = DotProduct( sUnit, m );
Vector vDistance;
if( flProjOnCapsule < 0 )
{
vDistance = m;
}
else if( flProjOnCapsule > sLen )
{
vDistance = vRayStart - vCenter[ 1 ];
}
else
{
vDistance = m - vCenter[ 0 ] * flProjOnCapsule ;
}
float flDistFromCapsuleSqr = vDistance.LengthSqr();
if( flDistFromCapsuleSqr > flRadius )
{
// the ray is outside of the capsule
out.m_bStartInSolid = false;
out.m_flHitTime = 1.0f;
}
else
{
out.m_bStartInSolid = true;
out.m_flHitTime = 0;
out.m_vHitNormal = flDistFromCapsuleSqr > 1e-8f ? vDistance / sqrtf( flDistFromCapsuleSqr ) : VectorPerpendicularToVector( sUnit );
out.m_vHitPoint = vRayStart;
}
}
void CastSphereRay( CShapeCastResult& out, const Vector &m, const Vector& p, const Vector& d, float flRadius );
//--------------------------------------------------------------------------------------------------
void CastCapsuleRay( CShapeCastResult& out, const Vector& vRayStart, const Vector& vRayDelta, const Vector vCenter[], float flRadius )
{
Vector m = vRayStart - vCenter[0], s = vCenter[1] - vCenter[0];
float sLen = s.Length();
if( flRadius < 1e-5f )
{
return;
}
if( sLen < 1e-3f ) // note: we should filter out 0-length capsules somewhere outside of this function
{
CastSphereRay( out, m, vRayStart, vRayDelta, flRadius );
return;
}
Vector sUnit = s / sLen;
float dLen = vRayDelta.Length();
if( dLen > 1e-4f )
{
Vector dUnit = vRayDelta / dLen;
Vector z = CrossProduct( sUnit, dUnit );
float zLenSqr = z.LengthSqr();
float dsUnit = DotProduct( vRayDelta, sUnit );
CapsuleCast2D_t cast;
cast.m_flRay = FLT_MAX;
if( zLenSqr > 256*256 * FLT_EPSILON * FLT_EPSILON ) // the tolerance here is found experimentally, with the target of achieving minimal orthogonality of 1e-3 between z^s and z^d
{
float zLen = sqrtf( zLenSqr );
Vector zUnit = z / zLen;
#ifdef _DEBUG
// z must be orthogonal to capsule and ray (it's a cross product of the two); if it's not, we need to handle this case as parallel
float flOrthogonality[2] = { DotProduct( zUnit, s ), DotProduct( zUnit, vRayDelta ) };
Assert( fabsf( flOrthogonality[0] ) < 1e-3f * MAX( 1, MAX( zLen, sLen ) ) && fabsf( flOrthogonality[1] ) < 1e-3f * MAX( 1, MAX( zLen, dLen ) ) );
#endif
float mzUnit = DotProduct( m, zUnit ), rr = Sqr( flRadius ) - Sqr( mzUnit );
if( rr <= 0 )
{
out.m_flHitTime = FLT_MAX;
return;
}
else
{
Vector yUnit = CrossProduct( zUnit, sUnit );
Vector2D mProj( DotProduct( m, sUnit ), DotProduct( m, yUnit ) );
float dyUnit = DotProduct( vRayDelta, yUnit );
CastCapsuleRay2DInternal( cast, mProj, Vector2D( dsUnit, dyUnit ), sLen, rr );
}
}
else
{
// they're parallel..
float msUnit = DotProduct( m, sUnit );
Vector zAlt = m - sUnit * msUnit;
float zAltLenSqr = zAlt.LengthSqr();
if( zAltLenSqr < FLT_EPSILON * FLT_EPSILON )
{
// ray and capsule are coaxial...
CastCapsuleRay2DCoaxialInternal( cast, msUnit, dsUnit, sLen, flRadius ); // note: we're passing radius!
}
else
{
// ray and capsule are parallel
Vector zUnit = zAlt / sqrtf( zAltLenSqr ), yUnit = CrossProduct( zUnit, sUnit );
CastCapsuleRay2DParallelInternal( cast, Vector2D( DotProduct( m, sUnit ), DotProduct( m, yUnit ) ), dsUnit, sLen, Sqr( flRadius ) - zAltLenSqr ); // r^2 may be negative here - it'll just return no hit
}
}
Assert( cast.m_flRay >= 0 );
out.m_flHitTime = cast.m_flRay;
out.m_vHitPoint = vRayStart + vRayDelta * cast.m_flRay;
out.m_vHitNormal = ( out.m_vHitPoint - ( vCenter[0] + sUnit * cast.m_flCapsule ) ).Normalized();
}
else
{
CastCapsuleShortRay( out, sUnit, sLen, m, vRayStart, vCenter, flRadius );
}
}