csgo-2018-source/materialsystem/stdshaders/depth_of_field_ps20b.fxc
2021-07-24 21:11:47 -07:00

138 lines
4.9 KiB
Plaintext

//========== Copyright (c) Valve Corporation, All rights reserved. ==========//
// DYNAMIC: "QUALITY" "0..3"
// Includes =======================================================================================
#include "common_ps_fxc.h"
// Texture Samplers ===============================================================================
sampler g_tFullFB : register( s0 );
sampler g_tSmallFB : register( s1 );
// Shaders Constants and Globals ==================================================================
float4 g_vDists : register( c0 );
#define g_flNearBlurDist g_vDists.x
#define g_flNearFocusDist g_vDists.y
#define g_flFarFocusDist g_vDists.z
#define g_flFarBlurDist g_vDists.w
float3 g_vBlurAmounts : register( c1 );
#define g_flMaxBlurRadius g_vBlurAmounts.x
#define g_flNearBlurStrength g_vBlurAmounts.y
#define g_flFarBlurStrength g_vBlurAmounts.z
float3 g_vNearFarDists : register( c2 );
#define g_flNearPlaneDist g_vNearFarDists.x
#define g_flFarPlaneDist g_vNearFarDists.y
#define g_flDepthConv g_vNearFarDists.z
float4 g_vMagicConsts : register( c3 );
#if ( QUALITY == 0 )
#define NUM_SAMPLES 8 // These must match the C code
#elif ( QUALITY == 1 )
#define NUM_SAMPLES 16
#elif ( QUALITY == 2 )
#define NUM_SAMPLES 16
#elif ( QUALITY == 3 )
#define NUM_SAMPLES 32
#endif
float4 g_vPoisson[ NUM_SAMPLES/2 ] : register( c4 );
// Interpolated values ============================================================================
struct PS_INPUT
{
float2 vUv0 : TEXCOORD0;
};
float DestAlphaDepthToViewSpaceDepth( float flDepth )
{
return g_flDepthConv * flDepth + g_flNearPlaneDist;
}
// returns blur radius from depth as a fraction of max_blur.
float BlurAmountFromDepth( float flDestAlphaDepth )
{
/*
dist = DestAlphaDepthToViewSpaceDepth( flDestAlphaDepth );
float flBlur = max( g_flNearBlurStrength * saturate( (flDestAlphaDepth - g_flNearFocusDist) / ( g_flNearBlurDist - g_flNearFocusDist ) ),
g_flFarBlurStrength * saturate( (flDestAlphaDepth - g_flFarFocusDist) / ( g_flFarBlurDist - g_flFarFocusDist ) ) );
*/
// A more optimized version that concatenates the math above and the one in DestAlphaDepthToViewSpaceDepth to a single muladd
float flBlur = max( g_flNearBlurStrength * saturate( g_vMagicConsts.x * flDestAlphaDepth + g_vMagicConsts.y ),
g_flFarBlurStrength * saturate( g_vMagicConsts.z * flDestAlphaDepth + g_vMagicConsts.w ) );
return flBlur;
}
float BlurRadiusFromDepth( float flDepth )
{
return g_flMaxBlurRadius * BlurAmountFromDepth( flDepth );
}
float4 ComputeTap( float flCenterDepth, float flCenterBlurRadius, float2 vUV, float2 vPoisson )
{
float4 cTapSmall;
float4 cTap;
float2 vPoissonUV = vUV.xy + flCenterBlurRadius * vPoisson.xy;
cTapSmall = tex2D( g_tSmallFB, vPoissonUV.xy );
cTap = tex2D( g_tFullFB, vPoissonUV.xy );
float flTapBlur = BlurAmountFromDepth( cTap.a ); // Maybe 50/50 mix between low and high here?
cTap = lerp( cTap, cTapSmall, saturate( 2.2 * flTapBlur ) ); // TODO: tweak blur amount.
float flLerpedTapBlur = BlurAmountFromDepth( cTap.a );
float weight = ( cTap.a >= flCenterDepth ) ? 1.0 : ( flLerpedTapBlur*flLerpedTapBlur );
return float4( cTap.rgb, 1 ) * weight;
}
float4 ComputeTapHQ( float flCenterDepth, float flCenterBlurRadius, float2 vUV, float2 vPoisson )
{
float4 cTap;
cTap = tex2D( g_tFullFB, vUV.xy + flCenterBlurRadius * vPoisson.xy );
float flTapBlur = BlurAmountFromDepth( cTap.a );
float weight = ( cTap.a >= flCenterDepth ) ? 1.0 : ( flTapBlur * flTapBlur );
return float4( cTap.rgb, 1 ) * weight;
}
// Main ===========================================================================================
float4 main( PS_INPUT i ) : COLOR
{
// TODO: BETTER DOWNSAMPLE THAT TAKES DEPTH INTO ACCOUNT?
float4 cOut = { 0, 0, 0, 0 };
float4 cCenterTap = tex2D( g_tFullFB, i.vUv0 );
float flCenterBlurRadius = BlurRadiusFromDepth( cCenterTap.a ); // circle of confusion radius for current pixel
cCenterTap.a -= 0.001; // z-bias to avoid strange banding artifact on almost orthogonal walls
#if ( QUALITY < 2 )
// ATI's Ruby1-style algorithm
for ( int t = 0; t < NUM_SAMPLES/2; t++ )
{
cOut.rgba += ComputeTap( cCenterTap.a, flCenterBlurRadius, i.vUv0, g_vPoisson[t].xy );
cOut.rgba += ComputeTap( cCenterTap.a, flCenterBlurRadius, i.vUv0, g_vPoisson[t].wz );
}
#else
// Less fancy, with less fetches per tap and less math. Needs more samples to look smooth.
cOut = cCenterTap;
cOut.a = 1.0; // Use the center sample we just fetched
for ( int t = 0; t < NUM_SAMPLES/2; t++ )
{
cOut.rgba += ComputeTapHQ( cCenterTap.a, flCenterBlurRadius, i.vUv0, g_vPoisson[t].xy );
cOut.rgba += ComputeTapHQ( cCenterTap.a, flCenterBlurRadius, i.vUv0, g_vPoisson[t].wz );
}
#endif
//cOut.rgb = cOut.a / float(NUM_SAMPLES+1);
//cOut = lerp( tex2D( g_tFullFB, i.vUv0 ), tex2D( g_tSmallFB, i.vUv0 ).aaaa, 0.5 );
if ( cOut.a > 0.0 )
cOut.rgba /= cOut.a;
else
cOut.rgba = cCenterTap.rgba;
return cOut;
}