2021-07-24 21:11:47 -07:00

13280 lines
372 KiB
C++

/*++
Copyright (c) Microsoft Corporation. All rights reserved.
Module Name:
xnamathvector.inl
Abstract:
XNA math library for Windows and Xbox 360: Vector functions
--*/
#if defined(_MSC_VER) && (_MSC_VER > 1000)
#pragma once
#endif
#ifndef __XNAMATHVECTOR_INL__
#define __XNAMATHVECTOR_INL__
#if defined(_XM_NO_INTRINSICS_)
#define XMISNAN(x) ((*(UINT*)&(x) & 0x7F800000) == 0x7F800000 && (*(UINT*)&(x) & 0x7FFFFF) != 0)
#define XMISINF(x) ((*(UINT*)&(x) & 0x7FFFFFFF) == 0x7F800000)
#endif
/****************************************************************************
*
* General Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Assignment operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Return a vector with all elements equaling zero
XMFINLINE XMVECTOR XMVectorZero()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {0.0f,0.0f,0.0f,0.0f};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_setzero_ps();
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with four floating point values
XMFINLINE XMVECTOR XMVectorSet
(
FLOAT x,
FLOAT y,
FLOAT z,
FLOAT w
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORF32 vResult = {x,y,z,w};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_set_ps( w, z, y, x );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with four integer values
XMFINLINE XMVECTOR XMVectorSetInt
(
UINT x,
UINT y,
UINT z,
UINT w
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult = {x,y,z,w};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_set_epi32( w, z, y, x );
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated floating point value
XMFINLINE XMVECTOR XMVectorReplicate
(
FLOAT Value
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
XMVECTORF32 vResult = {Value,Value,Value,Value};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_set_ps1( Value );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated floating point value passed by pointer
XMFINLINE XMVECTOR XMVectorReplicatePtr
(
CONST FLOAT *pValue
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
FLOAT Value = pValue[0];
XMVECTORF32 vResult = {Value,Value,Value,Value};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ps1( pValue );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated integer value
XMFINLINE XMVECTOR XMVectorReplicateInt
(
UINT Value
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
XMVECTORU32 vResult = {Value,Value,Value,Value};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_set1_epi32( Value );
return reinterpret_cast<const __m128 *>(&vTemp)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with a replicated integer value passed by pointer
XMFINLINE XMVECTOR XMVectorReplicateIntPtr
(
CONST UINT *pValue
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
UINT Value = pValue[0];
XMVECTORU32 vResult = {Value,Value,Value,Value};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_load_ps1(reinterpret_cast<const float *>(pValue));
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with all bits set (true mask)
XMFINLINE XMVECTOR XMVectorTrueInt()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vResult = {0xFFFFFFFFU,0xFFFFFFFFU,0xFFFFFFFFU,0xFFFFFFFFU};
return vResult.v;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_set1_epi32(-1);
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Initialize a vector with all bits clear (false mask)
XMFINLINE XMVECTOR XMVectorFalseInt()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {0.0f,0.0f,0.0f,0.0f};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_setzero_ps();
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Replicate the x component of the vector
XMFINLINE XMVECTOR XMVectorSplatX
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_f32[0] =
vResult.vector4_f32[1] =
vResult.vector4_f32[2] =
vResult.vector4_f32[3] = V.vector4_f32[0];
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_shuffle_ps( V, V, _MM_SHUFFLE(0, 0, 0, 0) );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Replicate the y component of the vector
XMFINLINE XMVECTOR XMVectorSplatY
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_f32[0] =
vResult.vector4_f32[1] =
vResult.vector4_f32[2] =
vResult.vector4_f32[3] = V.vector4_f32[1];
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_shuffle_ps( V, V, _MM_SHUFFLE(1, 1, 1, 1) );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Replicate the z component of the vector
XMFINLINE XMVECTOR XMVectorSplatZ
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_f32[0] =
vResult.vector4_f32[1] =
vResult.vector4_f32[2] =
vResult.vector4_f32[3] = V.vector4_f32[2];
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_shuffle_ps( V, V, _MM_SHUFFLE(2, 2, 2, 2) );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Replicate the w component of the vector
XMFINLINE XMVECTOR XMVectorSplatW
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_f32[0] =
vResult.vector4_f32[1] =
vResult.vector4_f32[2] =
vResult.vector4_f32[3] = V.vector4_f32[3];
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_shuffle_ps( V, V, _MM_SHUFFLE(3, 3, 3, 3) );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return a vector of 1.0f,1.0f,1.0f,1.0f
XMFINLINE XMVECTOR XMVectorSplatOne()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_f32[0] =
vResult.vector4_f32[1] =
vResult.vector4_f32[2] =
vResult.vector4_f32[3] = 1.0f;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMOne;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return a vector of INF,INF,INF,INF
XMFINLINE XMVECTOR XMVectorSplatInfinity()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_u32[0] =
vResult.vector4_u32[1] =
vResult.vector4_u32[2] =
vResult.vector4_u32[3] = 0x7F800000;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMInfinity;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return a vector of Q_NAN,Q_NAN,Q_NAN,Q_NAN
XMFINLINE XMVECTOR XMVectorSplatQNaN()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_u32[0] =
vResult.vector4_u32[1] =
vResult.vector4_u32[2] =
vResult.vector4_u32[3] = 0x7FC00000;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMQNaN;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return a vector of 1.192092896e-7f,1.192092896e-7f,1.192092896e-7f,1.192092896e-7f
XMFINLINE XMVECTOR XMVectorSplatEpsilon()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_u32[0] =
vResult.vector4_u32[1] =
vResult.vector4_u32[2] =
vResult.vector4_u32[3] = 0x34000000;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
return g_XMEpsilon;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return a vector of -0.0f (0x80000000),-0.0f,-0.0f,-0.0f
XMFINLINE XMVECTOR XMVectorSplatSignMask()
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult;
vResult.vector4_u32[0] =
vResult.vector4_u32[1] =
vResult.vector4_u32[2] =
vResult.vector4_u32[3] = 0x80000000U;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_set1_epi32( 0x80000000 );
return reinterpret_cast<__m128*>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return a floating point value via an index. This is not a recommended
// function to use due to performance loss.
XMFINLINE FLOAT XMVectorGetByIndex(FXMVECTOR V,UINT i)
{
XMASSERT( i <= 3 );
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[i];
#elif defined(_XM_SSE_INTRINSICS_)
return V.m128_f32[i];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return the X component in an FPU register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE FLOAT XMVectorGetX(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[0];
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_MSC_VER) && (_MSC_VER>=1500)
return _mm_cvtss_f32(V);
#else
return V.m128_f32[0];
#endif
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Return the Y component in an FPU register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE FLOAT XMVectorGetY(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[1];
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_MSC_VER) && (_MSC_VER>=1500)
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
return _mm_cvtss_f32(vTemp);
#else
return V.m128_f32[1];
#endif
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Return the Z component in an FPU register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE FLOAT XMVectorGetZ(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[2];
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_MSC_VER) && (_MSC_VER>=1500)
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
return _mm_cvtss_f32(vTemp);
#else
return V.m128_f32[2];
#endif
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Return the W component in an FPU register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE FLOAT XMVectorGetW(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_f32[3];
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_MSC_VER) && (_MSC_VER>=1500)
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
return _mm_cvtss_f32(vTemp);
#else
return V.m128_f32[3];
#endif
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Store a component indexed by i into a 32 bit float location in memory.
// This causes Load/Hit/Store on VMX targets
XMFINLINE VOID XMVectorGetByIndexPtr(FLOAT *f,FXMVECTOR V,UINT i)
{
XMASSERT( f != 0 );
XMASSERT( i < 4 );
#if defined(_XM_NO_INTRINSICS_)
*f = V.vector4_f32[i];
#elif defined(_XM_SSE_INTRINSICS_)
*f = V.m128_f32[i];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Store the X component into a 32 bit float location in memory.
XMFINLINE VOID XMVectorGetXPtr(FLOAT *x,FXMVECTOR V)
{
XMASSERT( x != 0 );
#if defined(_XM_NO_INTRINSICS_)
*x = V.vector4_f32[0];
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ss(x,V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Store the Y component into a 32 bit float location in memory.
XMFINLINE VOID XMVectorGetYPtr(FLOAT *y,FXMVECTOR V)
{
XMASSERT( y != 0 );
#if defined(_XM_NO_INTRINSICS_)
*y = V.vector4_f32[1];
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
_mm_store_ss(y,vResult);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Store the Z component into a 32 bit float location in memory.
XMFINLINE VOID XMVectorGetZPtr(FLOAT *z,FXMVECTOR V)
{
XMASSERT( z != 0 );
#if defined(_XM_NO_INTRINSICS_)
*z = V.vector4_f32[2];
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
_mm_store_ss(z,vResult);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Store the W component into a 32 bit float location in memory.
XMFINLINE VOID XMVectorGetWPtr(FLOAT *w,FXMVECTOR V)
{
XMASSERT( w != 0 );
#if defined(_XM_NO_INTRINSICS_)
*w = V.vector4_f32[3];
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
_mm_store_ss(w,vResult);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return an integer value via an index. This is not a recommended
// function to use due to performance loss.
XMFINLINE UINT XMVectorGetIntByIndex(FXMVECTOR V, UINT i)
{
XMASSERT( i < 4 );
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[i];
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_MSC_VER) && (_MSC_VER<1400)
XMVECTORU32 tmp;
tmp.v = V;
return tmp.u[i];
#else
return V.m128_u32[i];
#endif
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return the X component in an integer register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE UINT XMVectorGetIntX(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[0];
#elif defined(_XM_SSE_INTRINSICS_)
return static_cast<UINT>(_mm_cvtsi128_si32(reinterpret_cast<const __m128i *>(&V)[0]));
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Return the Y component in an integer register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE UINT XMVectorGetIntY(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[1];
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vResulti = _mm_shuffle_epi32(reinterpret_cast<const __m128i *>(&V)[0],_MM_SHUFFLE(1,1,1,1));
return static_cast<UINT>(_mm_cvtsi128_si32(vResulti));
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Return the Z component in an integer register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE UINT XMVectorGetIntZ(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[2];
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vResulti = _mm_shuffle_epi32(reinterpret_cast<const __m128i *>(&V)[0],_MM_SHUFFLE(2,2,2,2));
return static_cast<UINT>(_mm_cvtsi128_si32(vResulti));
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Return the W component in an integer register.
// This causes Load/Hit/Store on VMX targets
XMFINLINE UINT XMVectorGetIntW(FXMVECTOR V)
{
#if defined(_XM_NO_INTRINSICS_)
return V.vector4_u32[3];
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vResulti = _mm_shuffle_epi32(reinterpret_cast<const __m128i *>(&V)[0],_MM_SHUFFLE(3,3,3,3));
return static_cast<UINT>(_mm_cvtsi128_si32(vResulti));
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Store a component indexed by i into a 32 bit integer location in memory.
// This causes Load/Hit/Store on VMX targets
XMFINLINE VOID XMVectorGetIntByIndexPtr(UINT *x,FXMVECTOR V,UINT i)
{
XMASSERT( x != 0 );
XMASSERT( i < 4 );
#if defined(_XM_NO_INTRINSICS_)
*x = V.vector4_u32[i];
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_MSC_VER) && (_MSC_VER<1400)
XMVECTORU32 tmp;
tmp.v = V;
*x = tmp.u[i];
#else
*x = V.m128_u32[i];
#endif
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Store the X component into a 32 bit integer location in memory.
XMFINLINE VOID XMVectorGetIntXPtr(UINT *x,FXMVECTOR V)
{
XMASSERT( x != 0 );
#if defined(_XM_NO_INTRINSICS_)
*x = V.vector4_u32[0];
#elif defined(_XM_SSE_INTRINSICS_)
_mm_store_ss(reinterpret_cast<float *>(x),V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Store the Y component into a 32 bit integer location in memory.
XMFINLINE VOID XMVectorGetIntYPtr(UINT *y,FXMVECTOR V)
{
XMASSERT( y != 0 );
#if defined(_XM_NO_INTRINSICS_)
*y = V.vector4_u32[1];
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
_mm_store_ss(reinterpret_cast<float *>(y),vResult);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Store the Z component into a 32 bit integer locaCantion in memory.
XMFINLINE VOID XMVectorGetIntZPtr(UINT *z,FXMVECTOR V)
{
XMASSERT( z != 0 );
#if defined(_XM_NO_INTRINSICS_)
*z = V.vector4_u32[2];
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
_mm_store_ss(reinterpret_cast<float *>(z),vResult);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Store the W component into a 32 bit integer location in memory.
XMFINLINE VOID XMVectorGetIntWPtr(UINT *w,FXMVECTOR V)
{
XMASSERT( w != 0 );
#if defined(_XM_NO_INTRINSICS_)
*w = V.vector4_u32[3];
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
_mm_store_ss(reinterpret_cast<float *>(w),vResult);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Set a single indexed floating point component
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetByIndex(FXMVECTOR V, FLOAT f,UINT i)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( i <= 3 );
U = V;
U.vector4_f32[i] = f;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( i <= 3 );
XMVECTOR U = V;
U.m128_f32[i] = f;
return U;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to a passed floating point value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetX(FXMVECTOR V, FLOAT x)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_f32[0] = x;
U.vector4_f32[1] = V.vector4_f32[1];
U.vector4_f32[2] = V.vector4_f32[2];
U.vector4_f32[3] = V.vector4_f32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_f32[0] = x;
return vResult;
#else
XMVECTOR vResult = _mm_set_ss(x);
vResult = _mm_move_ss(V,vResult);
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Y component of a vector to a passed floating point value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetY(FXMVECTOR V, FLOAT y)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_f32[0] = V.vector4_f32[0];
U.vector4_f32[1] = y;
U.vector4_f32[2] = V.vector4_f32[2];
U.vector4_f32[3] = V.vector4_f32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_f32[1] = y;
return vResult;
#else
// Swap y and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
// Convert input to vector
XMVECTOR vTemp = _mm_set_ss(y);
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap y and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Z component of a vector to a passed floating point value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetZ(FXMVECTOR V, FLOAT z)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_f32[0] = V.vector4_f32[0];
U.vector4_f32[1] = V.vector4_f32[1];
U.vector4_f32[2] = z;
U.vector4_f32[3] = V.vector4_f32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_f32[2] = z;
return vResult;
#else
// Swap z and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
// Convert input to vector
XMVECTOR vTemp = _mm_set_ss(z);
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap z and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the W component of a vector to a passed floating point value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetW(FXMVECTOR V, FLOAT w)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_f32[0] = V.vector4_f32[0];
U.vector4_f32[1] = V.vector4_f32[1];
U.vector4_f32[2] = V.vector4_f32[2];
U.vector4_f32[3] = w;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_f32[3] = w;
return vResult;
#else
// Swap w and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
// Convert input to vector
XMVECTOR vTemp = _mm_set_ss(w);
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap w and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets a component of a vector to a floating point value passed by pointer
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetByIndexPtr(FXMVECTOR V,CONST FLOAT *f,UINT i)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( f != 0 );
XMASSERT( i <= 3 );
U = V;
U.vector4_f32[i] = *f;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( f != 0 );
XMASSERT( i <= 3 );
XMVECTOR U = V;
U.m128_f32[i] = *f;
return U;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to a floating point value passed by pointer
XMFINLINE XMVECTOR XMVectorSetXPtr(FXMVECTOR V,CONST FLOAT *x)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( x != 0 );
U.vector4_f32[0] = *x;
U.vector4_f32[1] = V.vector4_f32[1];
U.vector4_f32[2] = V.vector4_f32[2];
U.vector4_f32[3] = V.vector4_f32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( x != 0 );
XMVECTOR vResult = _mm_load_ss(x);
vResult = _mm_move_ss(V,vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Y component of a vector to a floating point value passed by pointer
XMFINLINE XMVECTOR XMVectorSetYPtr(FXMVECTOR V,CONST FLOAT *y)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( y != 0 );
U.vector4_f32[0] = V.vector4_f32[0];
U.vector4_f32[1] = *y;
U.vector4_f32[2] = V.vector4_f32[2];
U.vector4_f32[3] = V.vector4_f32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( y != 0 );
// Swap y and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(y);
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap y and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Z component of a vector to a floating point value passed by pointer
XMFINLINE XMVECTOR XMVectorSetZPtr(FXMVECTOR V,CONST FLOAT *z)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( z != 0 );
U.vector4_f32[0] = V.vector4_f32[0];
U.vector4_f32[1] = V.vector4_f32[1];
U.vector4_f32[2] = *z;
U.vector4_f32[3] = V.vector4_f32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( z != 0 );
// Swap z and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(z);
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap z and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the W component of a vector to a floating point value passed by pointer
XMFINLINE XMVECTOR XMVectorSetWPtr(FXMVECTOR V,CONST FLOAT *w)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( w != 0 );
U.vector4_f32[0] = V.vector4_f32[0];
U.vector4_f32[1] = V.vector4_f32[1];
U.vector4_f32[2] = V.vector4_f32[2];
U.vector4_f32[3] = *w;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( w != 0 );
// Swap w and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(w);
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap w and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets a component of a vector to an integer passed by value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetIntByIndex(FXMVECTOR V, UINT x, UINT i)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( i <= 3 );
U = V;
U.vector4_u32[i] = x;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( i <= 3 );
XMVECTORU32 tmp;
tmp.v = V;
tmp.u[i] = x;
return tmp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to an integer passed by value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetIntX(FXMVECTOR V, UINT x)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_u32[0] = x;
U.vector4_u32[1] = V.vector4_u32[1];
U.vector4_u32[2] = V.vector4_u32[2];
U.vector4_u32[3] = V.vector4_u32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_i32[0] = x;
return vResult;
#else
__m128i vTemp = _mm_cvtsi32_si128(x);
XMVECTOR vResult = _mm_move_ss(V,reinterpret_cast<const __m128 *>(&vTemp)[0]);
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Y component of a vector to an integer passed by value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetIntY(FXMVECTOR V, UINT y)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_u32[0] = V.vector4_u32[0];
U.vector4_u32[1] = y;
U.vector4_u32[2] = V.vector4_u32[2];
U.vector4_u32[3] = V.vector4_u32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_i32[1] = y;
return vResult;
#else // Swap y and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
// Convert input to vector
__m128i vTemp = _mm_cvtsi32_si128(y);
// Replace the x component
vResult = _mm_move_ss(vResult,reinterpret_cast<const __m128 *>(&vTemp)[0]);
// Swap y and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Z component of a vector to an integer passed by value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetIntZ(FXMVECTOR V, UINT z)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_u32[0] = V.vector4_u32[0];
U.vector4_u32[1] = V.vector4_u32[1];
U.vector4_u32[2] = z;
U.vector4_u32[3] = V.vector4_u32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_i32[2] = z;
return vResult;
#else
// Swap z and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
// Convert input to vector
__m128i vTemp = _mm_cvtsi32_si128(z);
// Replace the x component
vResult = _mm_move_ss(vResult,reinterpret_cast<const __m128 *>(&vTemp)[0]);
// Swap z and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the W component of a vector to an integer passed by value
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetIntW(FXMVECTOR V, UINT w)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
U.vector4_u32[0] = V.vector4_u32[0];
U.vector4_u32[1] = V.vector4_u32[1];
U.vector4_u32[2] = V.vector4_u32[2];
U.vector4_u32[3] = w;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_XM_ISVS2005_)
XMVECTOR vResult = V;
vResult.m128_i32[3] = w;
return vResult;
#else
// Swap w and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
// Convert input to vector
__m128i vTemp = _mm_cvtsi32_si128(w);
// Replace the x component
vResult = _mm_move_ss(vResult,reinterpret_cast<const __m128 *>(&vTemp)[0]);
// Swap w and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
return vResult;
#endif // _XM_ISVS2005_
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets a component of a vector to an integer value passed by pointer
// This causes Load/Hit/Store on VMX targets
XMFINLINE XMVECTOR XMVectorSetIntByIndexPtr(FXMVECTOR V, CONST UINT *x,UINT i)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( x != 0 );
XMASSERT( i <= 3 );
U = V;
U.vector4_u32[i] = *x;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( x != 0 );
XMASSERT( i <= 3 );
XMVECTORU32 tmp;
tmp.v = V;
tmp.u[i] = *x;
return tmp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Sets the X component of a vector to an integer value passed by pointer
XMFINLINE XMVECTOR XMVectorSetIntXPtr(FXMVECTOR V,CONST UINT *x)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( x != 0 );
U.vector4_u32[0] = *x;
U.vector4_u32[1] = V.vector4_u32[1];
U.vector4_u32[2] = V.vector4_u32[2];
U.vector4_u32[3] = V.vector4_u32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( x != 0 );
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(x));
XMVECTOR vResult = _mm_move_ss(V,vTemp);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Y component of a vector to an integer value passed by pointer
XMFINLINE XMVECTOR XMVectorSetIntYPtr(FXMVECTOR V,CONST UINT *y)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( y != 0 );
U.vector4_u32[0] = V.vector4_u32[0];
U.vector4_u32[1] = *y;
U.vector4_u32[2] = V.vector4_u32[2];
U.vector4_u32[3] = V.vector4_u32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( y != 0 );
// Swap y and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(y));
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap y and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,2,0,1));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the Z component of a vector to an integer value passed by pointer
XMFINLINE XMVECTOR XMVectorSetIntZPtr(FXMVECTOR V,CONST UINT *z)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( z != 0 );
U.vector4_u32[0] = V.vector4_u32[0];
U.vector4_u32[1] = V.vector4_u32[1];
U.vector4_u32[2] = *z;
U.vector4_u32[3] = V.vector4_u32[3];
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( z != 0 );
// Swap z and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,0,1,2));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(z));
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap z and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,0,1,2));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
// Sets the W component of a vector to an integer value passed by pointer
XMFINLINE XMVECTOR XMVectorSetIntWPtr(FXMVECTOR V,CONST UINT *w)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR U;
XMASSERT( w != 0 );
U.vector4_u32[0] = V.vector4_u32[0];
U.vector4_u32[1] = V.vector4_u32[1];
U.vector4_u32[2] = V.vector4_u32[2];
U.vector4_u32[3] = *w;
return U;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( w != 0 );
// Swap w and x
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,2,1,3));
// Convert input to vector
XMVECTOR vTemp = _mm_load_ss(reinterpret_cast<const float *>(w));
// Replace the x component
vResult = _mm_move_ss(vResult,vTemp);
// Swap w and x again
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,2,1,3));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Define a control vector to be used in XMVectorPermute
// operations. Visualize the two vectors V1 and V2 given
// in a permute as arranged back to back in a linear fashion,
// such that they form an array of 8 floating point values.
// The four integers specified in XMVectorPermuteControl
// will serve as indices into the array to select components
// from the two vectors. ElementIndex0 is used to select
// an element from the vectors to be placed in the first
// component of the resulting vector, ElementIndex1 is used
// to select an element for the second component, etc.
XMFINLINE XMVECTOR XMVectorPermuteControl
(
UINT ElementIndex0,
UINT ElementIndex1,
UINT ElementIndex2,
UINT ElementIndex3
)
{
#if defined(_XM_SSE_INTRINSICS_) || defined(_XM_NO_INTRINSICS_)
XMVECTORU32 vControl;
static CONST UINT ControlElement[] = {
XM_PERMUTE_0X,
XM_PERMUTE_0Y,
XM_PERMUTE_0Z,
XM_PERMUTE_0W,
XM_PERMUTE_1X,
XM_PERMUTE_1Y,
XM_PERMUTE_1Z,
XM_PERMUTE_1W
};
XMASSERT(ElementIndex0 < 8);
XMASSERT(ElementIndex1 < 8);
XMASSERT(ElementIndex2 < 8);
XMASSERT(ElementIndex3 < 8);
vControl.u[0] = ControlElement[ElementIndex0];
vControl.u[1] = ControlElement[ElementIndex1];
vControl.u[2] = ControlElement[ElementIndex2];
vControl.u[3] = ControlElement[ElementIndex3];
return vControl.v;
#else
#endif
}
//------------------------------------------------------------------------------
// Using a control vector made up of 16 bytes from 0-31, remap V1 and V2's byte
// entries into a single 16 byte vector and return it. Index 0-15 = V1,
// 16-31 = V2
XMFINLINE XMVECTOR XMVectorPermute
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Control
)
{
#if defined(_XM_NO_INTRINSICS_)
const BYTE *aByte[2];
XMVECTOR Result;
UINT i, uIndex, VectorIndex;
const BYTE *pControl;
BYTE *pWork;
// Indices must be in range from 0 to 31
XMASSERT((Control.vector4_u32[0] & 0xE0E0E0E0) == 0);
XMASSERT((Control.vector4_u32[1] & 0xE0E0E0E0) == 0);
XMASSERT((Control.vector4_u32[2] & 0xE0E0E0E0) == 0);
XMASSERT((Control.vector4_u32[3] & 0xE0E0E0E0) == 0);
// 0-15 = V1, 16-31 = V2
aByte[0] = (const BYTE*)(&V1);
aByte[1] = (const BYTE*)(&V2);
i = 16;
pControl = (const BYTE *)(&Control);
pWork = (BYTE *)(&Result);
do {
// Get the byte to map from
uIndex = pControl[0];
++pControl;
VectorIndex = (uIndex>>4)&1;
uIndex &= 0x0F;
#if defined(_XM_LITTLEENDIAN_)
uIndex ^= 3; // Swap byte ordering on little endian machines
#endif
pWork[0] = aByte[VectorIndex][uIndex];
++pWork;
} while (--i);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
#if defined(_PREFAST_) || defined(XMDEBUG)
// Indices must be in range from 0 to 31
static const XMVECTORI32 PremuteTest = {0xE0E0E0E0,0xE0E0E0E0,0xE0E0E0E0,0xE0E0E0E0};
XMVECTOR vAssert = _mm_and_ps(Control,PremuteTest);
__m128i vAsserti = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&vAssert)[0],g_XMZero);
XMASSERT(_mm_movemask_ps(*reinterpret_cast<const __m128 *>(&vAsserti)) == 0xf);
#endif
// Store the vectors onto local memory on the stack
XMVECTOR Array[2];
Array[0] = V1;
Array[1] = V2;
// Output vector, on the stack
XMVECTORU8 vResult;
// Get pointer to the two vectors on the stack
const BYTE *pInput = reinterpret_cast<const BYTE *>(Array);
// Store the Control vector on the stack to access the bytes
// don't use Control, it can cause a register variable to spill on the stack.
XMVECTORU8 vControl;
vControl.v = Control; // Write to memory
UINT i = 0;
do {
UINT ComponentIndex = vControl.u[i] & 0x1FU;
ComponentIndex ^= 3; // Swap byte ordering
vResult.u[i] = pInput[ComponentIndex];
} while (++i<16);
return vResult;
#else // _XM_SSE_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Define a control vector to be used in XMVectorSelect
// operations. The four integers specified in XMVectorSelectControl
// serve as indices to select between components in two vectors.
// The first index controls selection for the first component of
// the vectors involved in a select operation, the second index
// controls selection for the second component etc. A value of
// zero for an index causes the corresponding component from the first
// vector to be selected whereas a one causes the component from the
// second vector to be selected instead.
XMFINLINE XMVECTOR XMVectorSelectControl
(
UINT VectorIndex0,
UINT VectorIndex1,
UINT VectorIndex2,
UINT VectorIndex3
)
{
#if defined(_XM_SSE_INTRINSICS_) && !defined(_XM_NO_INTRINSICS_)
// x=Index0,y=Index1,z=Index2,w=Index3
__m128i vTemp = _mm_set_epi32(VectorIndex3,VectorIndex2,VectorIndex1,VectorIndex0);
// Any non-zero entries become 0xFFFFFFFF else 0
vTemp = _mm_cmpgt_epi32(vTemp,g_XMZero);
return reinterpret_cast<__m128 *>(&vTemp)[0];
#else
XMVECTOR ControlVector;
CONST UINT ControlElement[] =
{
XM_SELECT_0,
XM_SELECT_1
};
XMASSERT(VectorIndex0 < 2);
XMASSERT(VectorIndex1 < 2);
XMASSERT(VectorIndex2 < 2);
XMASSERT(VectorIndex3 < 2);
ControlVector.vector4_u32[0] = ControlElement[VectorIndex0];
ControlVector.vector4_u32[1] = ControlElement[VectorIndex1];
ControlVector.vector4_u32[2] = ControlElement[VectorIndex2];
ControlVector.vector4_u32[3] = ControlElement[VectorIndex3];
return ControlVector;
#endif
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSelect
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Control
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = (V1.vector4_u32[0] & ~Control.vector4_u32[0]) | (V2.vector4_u32[0] & Control.vector4_u32[0]);
Result.vector4_u32[1] = (V1.vector4_u32[1] & ~Control.vector4_u32[1]) | (V2.vector4_u32[1] & Control.vector4_u32[1]);
Result.vector4_u32[2] = (V1.vector4_u32[2] & ~Control.vector4_u32[2]) | (V2.vector4_u32[2] & Control.vector4_u32[2]);
Result.vector4_u32[3] = (V1.vector4_u32[3] & ~Control.vector4_u32[3]) | (V2.vector4_u32[3] & Control.vector4_u32[3]);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp1 = _mm_andnot_ps(Control,V1);
XMVECTOR vTemp2 = _mm_and_ps(V2,Control);
return _mm_or_ps(vTemp1,vTemp2);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMergeXY
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = V1.vector4_u32[0];
Result.vector4_u32[1] = V2.vector4_u32[0];
Result.vector4_u32[2] = V1.vector4_u32[1];
Result.vector4_u32[3] = V2.vector4_u32[1];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_unpacklo_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMergeZW
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = V1.vector4_u32[2];
Result.vector4_u32[1] = V2.vector4_u32[2];
Result.vector4_u32[2] = V1.vector4_u32[3];
Result.vector4_u32[3] = V2.vector4_u32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_unpackhi_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_f32[0] == V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_f32[1] == V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_f32[2] == V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_f32[3] == V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpeq_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorEqualR
(
UINT* pCR,
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT ux, uy, uz, uw, CR;
XMVECTOR Control;
XMASSERT( pCR );
ux = (V1.vector4_f32[0] == V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uy = (V1.vector4_f32[1] == V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uz = (V1.vector4_f32[2] == V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uw = (V1.vector4_f32[3] == V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
CR = 0;
if (ux&uy&uz&uw)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!(ux|uy|uz|uw))
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
Control.vector4_u32[0] = ux;
Control.vector4_u32[1] = uy;
Control.vector4_u32[2] = uz;
Control.vector4_u32[3] = uw;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( pCR );
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
UINT CR = 0;
int iTest = _mm_movemask_ps(vTemp);
if (iTest==0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vTemp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Treat the components of the vectors as unsigned integers and
// compare individual bits between the two. This is useful for
// comparing control vectors and result vectors returned from
// other comparison operations.
XMFINLINE XMVECTOR XMVectorEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_u32[0] == V2.vector4_u32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_u32[1] == V2.vector4_u32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_u32[2] == V2.vector4_u32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_u32[3] == V2.vector4_u32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_cmpeq_epi32( reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0] );
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorEqualIntR
(
UINT* pCR,
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
XMASSERT(pCR);
Control = XMVectorEqualInt(V1, V2);
*pCR = 0;
if (XMVector4EqualInt(Control, XMVectorTrueInt()))
{
// All elements are equal
*pCR |= XM_CRMASK_CR6TRUE;
}
else if (XMVector4EqualInt(Control, XMVectorFalseInt()))
{
// All elements are not equal
*pCR |= XM_CRMASK_CR6FALSE;
}
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pCR);
__m128i V = _mm_cmpeq_epi32( reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0] );
int iTemp = _mm_movemask_ps(reinterpret_cast<const __m128*>(&V)[0]);
UINT CR = 0;
if (iTemp==0x0F)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTemp)
{
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorNearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fDeltax, fDeltay, fDeltaz, fDeltaw;
XMVECTOR Control;
fDeltax = V1.vector4_f32[0]-V2.vector4_f32[0];
fDeltay = V1.vector4_f32[1]-V2.vector4_f32[1];
fDeltaz = V1.vector4_f32[2]-V2.vector4_f32[2];
fDeltaw = V1.vector4_f32[3]-V2.vector4_f32[3];
fDeltax = fabsf(fDeltax);
fDeltay = fabsf(fDeltay);
fDeltaz = fabsf(fDeltaz);
fDeltaw = fabsf(fDeltaw);
Control.vector4_u32[0] = (fDeltax <= Epsilon.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[1] = (fDeltay <= Epsilon.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[2] = (fDeltaz <= Epsilon.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[3] = (fDeltaw <= Epsilon.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1,V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp,vDelta);
vTemp = _mm_max_ps(vTemp,vDelta);
vTemp = _mm_cmple_ps(vTemp,Epsilon);
return vTemp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorNotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_f32[0] != V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_f32[1] != V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_f32[2] != V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_f32[3] != V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpneq_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorNotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_u32[0] != V2.vector4_u32[0]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[1] = (V1.vector4_u32[1] != V2.vector4_u32[1]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[2] = (V1.vector4_u32[2] != V2.vector4_u32[2]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[3] = (V1.vector4_u32[3] != V2.vector4_u32[3]) ? 0xFFFFFFFFU : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_cmpeq_epi32( reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0] );
return _mm_xor_ps(reinterpret_cast<__m128 *>(&V)[0],g_XMNegOneMask);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorGreater
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpgt_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorGreaterR
(
UINT* pCR,
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT ux, uy, uz, uw, CR;
XMVECTOR Control;
XMASSERT( pCR );
ux = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uy = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uz = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uw = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
CR = 0;
if (ux&uy&uz&uw)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!(ux|uy|uz|uw))
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
Control.vector4_u32[0] = ux;
Control.vector4_u32[1] = uy;
Control.vector4_u32[2] = uz;
Control.vector4_u32[3] = uw;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( pCR );
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
UINT CR = 0;
int iTest = _mm_movemask_ps(vTemp);
if (iTest==0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vTemp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorGreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_f32[0] >= V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_f32[1] >= V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_f32[2] >= V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_f32[3] >= V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmpge_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorGreaterOrEqualR
(
UINT* pCR,
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT ux, uy, uz, uw, CR;
XMVECTOR Control;
XMASSERT( pCR );
ux = (V1.vector4_f32[0] >= V2.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uy = (V1.vector4_f32[1] >= V2.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uz = (V1.vector4_f32[2] >= V2.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uw = (V1.vector4_f32[3] >= V2.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
CR = 0;
if (ux&uy&uz&uw)
{
// All elements are greater
CR = XM_CRMASK_CR6TRUE;
}
else if (!(ux|uy|uz|uw))
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
Control.vector4_u32[0] = ux;
Control.vector4_u32[1] = uy;
Control.vector4_u32[2] = uz;
Control.vector4_u32[3] = uw;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( pCR );
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
UINT CR = 0;
int iTest = _mm_movemask_ps(vTemp);
if (iTest==0xf)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
// All elements are not greater
CR = XM_CRMASK_CR6FALSE;
}
*pCR = CR;
return vTemp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorLess
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_f32[0] < V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_f32[1] < V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_f32[2] < V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_f32[3] < V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmplt_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorLessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V1.vector4_f32[0] <= V2.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V1.vector4_f32[1] <= V2.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V1.vector4_f32[2] <= V2.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V1.vector4_f32[3] <= V2.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_cmple_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorInBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = (V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[1] = (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[2] = (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) ? 0xFFFFFFFF : 0;
Control.vector4_u32[3] = (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]) ? 0xFFFFFFFF : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
return vTemp1;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorInBoundsR
(
UINT* pCR,
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT ux, uy, uz, uw, CR;
XMVECTOR Control;
XMASSERT( pCR != 0 );
ux = (V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
uy = (V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
uz = (V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
uw = (V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
CR = 0;
if (ux&uy&uz&uw)
{
// All elements are in bounds
CR = XM_CRMASK_CR6BOUNDS;
}
*pCR = CR;
Control.vector4_u32[0] = ux;
Control.vector4_u32[1] = uy;
Control.vector4_u32[2] = uz;
Control.vector4_u32[3] = uw;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT( pCR != 0 );
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
UINT CR = 0;
if (_mm_movemask_ps(vTemp1)==0xf) {
// All elements are in bounds
CR = XM_CRMASK_CR6BOUNDS;
}
*pCR = CR;
return vTemp1;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorIsNaN
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = XMISNAN(V.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[1] = XMISNAN(V.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[2] = XMISNAN(V.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[3] = XMISNAN(V.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the exponent
__m128i vTempInf = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMInfinity);
// Mask off the mantissa
__m128i vTempNan = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMQNaNTest);
// Are any of the exponents == 0x7F800000?
vTempInf = _mm_cmpeq_epi32(vTempInf,g_XMInfinity);
// Are any of the mantissa's zero? (SSE2 doesn't have a neq test)
vTempNan = _mm_cmpeq_epi32(vTempNan,g_XMZero);
// Perform a not on the NaN test to be true on NON-zero mantissas
vTempNan = _mm_andnot_si128(vTempNan,vTempInf);
// If any are NaN, the signs are true after the merge above
return reinterpret_cast<const XMVECTOR *>(&vTempNan)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorIsInfinite
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Control;
Control.vector4_u32[0] = XMISINF(V.vector4_f32[0]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[1] = XMISINF(V.vector4_f32[1]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[2] = XMISINF(V.vector4_f32[2]) ? 0xFFFFFFFFU : 0;
Control.vector4_u32[3] = XMISINF(V.vector4_f32[3]) ? 0xFFFFFFFFU : 0;
return Control;
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
__m128 vTemp = _mm_and_ps(V,g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
// If any are infinity, the signs are true.
return vTemp;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Rounding and clamping operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMin
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = (V1.vector4_f32[0] < V2.vector4_f32[0]) ? V1.vector4_f32[0] : V2.vector4_f32[0];
Result.vector4_f32[1] = (V1.vector4_f32[1] < V2.vector4_f32[1]) ? V1.vector4_f32[1] : V2.vector4_f32[1];
Result.vector4_f32[2] = (V1.vector4_f32[2] < V2.vector4_f32[2]) ? V1.vector4_f32[2] : V2.vector4_f32[2];
Result.vector4_f32[3] = (V1.vector4_f32[3] < V2.vector4_f32[3]) ? V1.vector4_f32[3] : V2.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_min_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMax
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = (V1.vector4_f32[0] > V2.vector4_f32[0]) ? V1.vector4_f32[0] : V2.vector4_f32[0];
Result.vector4_f32[1] = (V1.vector4_f32[1] > V2.vector4_f32[1]) ? V1.vector4_f32[1] : V2.vector4_f32[1];
Result.vector4_f32[2] = (V1.vector4_f32[2] > V2.vector4_f32[2]) ? V1.vector4_f32[2] : V2.vector4_f32[2];
Result.vector4_f32[3] = (V1.vector4_f32[3] > V2.vector4_f32[3]) ? V1.vector4_f32[3] : V2.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_max_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorRound
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
XMVECTOR Bias;
CONST XMVECTOR Zero = XMVectorZero();
CONST XMVECTOR BiasPos = XMVectorReplicate(0.5f);
CONST XMVECTOR BiasNeg = XMVectorReplicate(-0.5f);
Bias = XMVectorLess(V, Zero);
Bias = XMVectorSelect(BiasPos, BiasNeg, Bias);
Result = XMVectorAdd(V, Bias);
Result = XMVectorTruncate(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// To handle NAN, INF and numbers greater than 8388608, use masking
// Get the abs value
__m128i vTest = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMAbsMask);
// Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
vTest = _mm_cmplt_epi32(vTest,g_XMNoFraction);
// Convert to int and back to float for rounding
__m128i vInt = _mm_cvtps_epi32(V);
// Convert back to floats
XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
// All numbers less than 8388608 will use the round to int
vResult = _mm_and_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
// All others, use the ORIGINAL value
vTest = _mm_andnot_si128(vTest,reinterpret_cast<const __m128i *>(&V)[0]);
vResult = _mm_or_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorTruncate
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
UINT i;
// Avoid C4701
Result.vector4_f32[0] = 0.0f;
for (i = 0; i < 4; i++)
{
if (XMISNAN(V.vector4_f32[i]))
{
Result.vector4_u32[i] = 0x7FC00000;
}
else if (fabsf(V.vector4_f32[i]) < 8388608.0f)
{
Result.vector4_f32[i] = (FLOAT)((INT)V.vector4_f32[i]);
}
else
{
Result.vector4_f32[i] = V.vector4_f32[i];
}
}
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// To handle NAN, INF and numbers greater than 8388608, use masking
// Get the abs value
__m128i vTest = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMAbsMask);
// Test for greater than 8388608 (All floats with NO fractionals, NAN and INF
vTest = _mm_cmplt_epi32(vTest,g_XMNoFraction);
// Convert to int and back to float for rounding with truncation
__m128i vInt = _mm_cvttps_epi32(V);
// Convert back to floats
XMVECTOR vResult = _mm_cvtepi32_ps(vInt);
// All numbers less than 8388608 will use the round to int
vResult = _mm_and_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
// All others, use the ORIGINAL value
vTest = _mm_andnot_si128(vTest,reinterpret_cast<const __m128i *>(&V)[0]);
vResult = _mm_or_ps(vResult,reinterpret_cast<const XMVECTOR *>(&vTest)[0]);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorFloor
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
floorf(V.vector4_f32[0]),
floorf(V.vector4_f32[1]),
floorf(V.vector4_f32[2]),
floorf(V.vector4_f32[3])
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_sub_ps(V,g_XMOneHalfMinusEpsilon);
__m128i vInt = _mm_cvtps_epi32(vResult);
vResult = _mm_cvtepi32_ps(vInt);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorCeiling
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
ceilf(V.vector4_f32[0]),
ceilf(V.vector4_f32[1]),
ceilf(V.vector4_f32[2]),
ceilf(V.vector4_f32[3])
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_add_ps(V,g_XMOneHalfMinusEpsilon);
__m128i vInt = _mm_cvtps_epi32(vResult);
vResult = _mm_cvtepi32_ps(vInt);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorClamp
(
FXMVECTOR V,
FXMVECTOR Min,
FXMVECTOR Max
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
XMASSERT(XMVector4LessOrEqual(Min, Max));
Result = XMVectorMax(Min, V);
Result = XMVectorMin(Max, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult;
XMASSERT(XMVector4LessOrEqual(Min, Max));
vResult = _mm_max_ps(Min,V);
vResult = _mm_min_ps(vResult,Max);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSaturate
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
CONST XMVECTOR Zero = XMVectorZero();
return XMVectorClamp(V, Zero, g_XMOne.v);
#elif defined(_XM_SSE_INTRINSICS_)
// Set <0 to 0
XMVECTOR vResult = _mm_max_ps(V,g_XMZero);
// Set>1 to 1
return _mm_min_ps(vResult,g_XMOne);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Bitwise logical operations
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorAndInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = V1.vector4_u32[0] & V2.vector4_u32[0];
Result.vector4_u32[1] = V1.vector4_u32[1] & V2.vector4_u32[1];
Result.vector4_u32[2] = V1.vector4_u32[2] & V2.vector4_u32[2];
Result.vector4_u32[3] = V1.vector4_u32[3] & V2.vector4_u32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_and_ps(V1,V2);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorAndCInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = V1.vector4_u32[0] & ~V2.vector4_u32[0];
Result.vector4_u32[1] = V1.vector4_u32[1] & ~V2.vector4_u32[1];
Result.vector4_u32[2] = V1.vector4_u32[2] & ~V2.vector4_u32[2];
Result.vector4_u32[3] = V1.vector4_u32[3] & ~V2.vector4_u32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_andnot_si128( reinterpret_cast<const __m128i *>(&V2)[0], reinterpret_cast<const __m128i *>(&V1)[0] );
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorOrInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = V1.vector4_u32[0] | V2.vector4_u32[0];
Result.vector4_u32[1] = V1.vector4_u32[1] | V2.vector4_u32[1];
Result.vector4_u32[2] = V1.vector4_u32[2] | V2.vector4_u32[2];
Result.vector4_u32[3] = V1.vector4_u32[3] | V2.vector4_u32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_or_si128( reinterpret_cast<const __m128i *>(&V1)[0], reinterpret_cast<const __m128i *>(&V2)[0] );
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorNorInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = ~(V1.vector4_u32[0] | V2.vector4_u32[0]);
Result.vector4_u32[1] = ~(V1.vector4_u32[1] | V2.vector4_u32[1]);
Result.vector4_u32[2] = ~(V1.vector4_u32[2] | V2.vector4_u32[2]);
Result.vector4_u32[3] = ~(V1.vector4_u32[3] | V2.vector4_u32[3]);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i Result;
Result = _mm_or_si128( reinterpret_cast<const __m128i *>(&V1)[0], reinterpret_cast<const __m128i *>(&V2)[0] );
Result = _mm_andnot_si128( Result,g_XMNegOneMask);
return reinterpret_cast<__m128 *>(&Result)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorXorInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_u32[0] = V1.vector4_u32[0] ^ V2.vector4_u32[0];
Result.vector4_u32[1] = V1.vector4_u32[1] ^ V2.vector4_u32[1];
Result.vector4_u32[2] = V1.vector4_u32[2] ^ V2.vector4_u32[2];
Result.vector4_u32[3] = V1.vector4_u32[3] ^ V2.vector4_u32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i V = _mm_xor_si128( reinterpret_cast<const __m128i *>(&V1)[0], reinterpret_cast<const __m128i *>(&V2)[0] );
return reinterpret_cast<__m128 *>(&V)[0];
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorNegate
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = -V.vector4_f32[0];
Result.vector4_f32[1] = -V.vector4_f32[1];
Result.vector4_f32[2] = -V.vector4_f32[2];
Result.vector4_f32[3] = -V.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Z;
Z = _mm_setzero_ps();
return _mm_sub_ps( Z, V );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorAdd
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = V1.vector4_f32[0] + V2.vector4_f32[0];
Result.vector4_f32[1] = V1.vector4_f32[1] + V2.vector4_f32[1];
Result.vector4_f32[2] = V1.vector4_f32[2] + V2.vector4_f32[2];
Result.vector4_f32[3] = V1.vector4_f32[3] + V2.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_add_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorAddAngles
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Mask;
XMVECTOR Offset;
XMVECTOR Result;
CONST XMVECTOR Zero = XMVectorZero();
// Add the given angles together. If the range of V1 is such
// that -Pi <= V1 < Pi and the range of V2 is such that
// -2Pi <= V2 <= 2Pi, then the range of the resulting angle
// will be -Pi <= Result < Pi.
Result = XMVectorAdd(V1, V2);
Mask = XMVectorLess(Result, g_XMNegativePi.v);
Offset = XMVectorSelect(Zero, g_XMTwoPi.v, Mask);
Mask = XMVectorGreaterOrEqual(Result, g_XMPi.v);
Offset = XMVectorSelect(Offset, g_XMNegativeTwoPi.v, Mask);
Result = XMVectorAdd(Result, Offset);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Adjust the angles
XMVECTOR vResult = _mm_add_ps(V1,V2);
// Less than Pi?
XMVECTOR vOffset = _mm_cmplt_ps(vResult,g_XMNegativePi);
vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
// Add 2Pi to all entries less than -Pi
vResult = _mm_add_ps(vResult,vOffset);
// Greater than or equal to Pi?
vOffset = _mm_cmpge_ps(vResult,g_XMPi);
vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
// Sub 2Pi to all entries greater than Pi
vResult = _mm_sub_ps(vResult,vOffset);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSubtract
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = V1.vector4_f32[0] - V2.vector4_f32[0];
Result.vector4_f32[1] = V1.vector4_f32[1] - V2.vector4_f32[1];
Result.vector4_f32[2] = V1.vector4_f32[2] - V2.vector4_f32[2];
Result.vector4_f32[3] = V1.vector4_f32[3] - V2.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_sub_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSubtractAngles
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Mask;
XMVECTOR Offset;
XMVECTOR Result;
CONST XMVECTOR Zero = XMVectorZero();
// Subtract the given angles. If the range of V1 is such
// that -Pi <= V1 < Pi and the range of V2 is such that
// -2Pi <= V2 <= 2Pi, then the range of the resulting angle
// will be -Pi <= Result < Pi.
Result = XMVectorSubtract(V1, V2);
Mask = XMVectorLess(Result, g_XMNegativePi.v);
Offset = XMVectorSelect(Zero, g_XMTwoPi.v, Mask);
Mask = XMVectorGreaterOrEqual(Result, g_XMPi.v);
Offset = XMVectorSelect(Offset, g_XMNegativeTwoPi.v, Mask);
Result = XMVectorAdd(Result, Offset);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Adjust the angles
XMVECTOR vResult = _mm_sub_ps(V1,V2);
// Less than Pi?
XMVECTOR vOffset = _mm_cmplt_ps(vResult,g_XMNegativePi);
vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
// Add 2Pi to all entries less than -Pi
vResult = _mm_add_ps(vResult,vOffset);
// Greater than or equal to Pi?
vOffset = _mm_cmpge_ps(vResult,g_XMPi);
vOffset = _mm_and_ps(vOffset,g_XMTwoPi);
// Sub 2Pi to all entries greater than Pi
vResult = _mm_sub_ps(vResult,vOffset);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMultiply
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result = {
V1.vector4_f32[0] * V2.vector4_f32[0],
V1.vector4_f32[1] * V2.vector4_f32[1],
V1.vector4_f32[2] * V2.vector4_f32[2],
V1.vector4_f32[3] * V2.vector4_f32[3]
};
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_mul_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMultiplyAdd
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR V3
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
(V1.vector4_f32[0] * V2.vector4_f32[0]) + V3.vector4_f32[0],
(V1.vector4_f32[1] * V2.vector4_f32[1]) + V3.vector4_f32[1],
(V1.vector4_f32[2] * V2.vector4_f32[2]) + V3.vector4_f32[2],
(V1.vector4_f32[3] * V2.vector4_f32[3]) + V3.vector4_f32[3]
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_mul_ps( V1, V2 );
return _mm_add_ps(vResult, V3 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorDivide
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = V1.vector4_f32[0] / V2.vector4_f32[0];
Result.vector4_f32[1] = V1.vector4_f32[1] / V2.vector4_f32[1];
Result.vector4_f32[2] = V1.vector4_f32[2] / V2.vector4_f32[2];
Result.vector4_f32[3] = V1.vector4_f32[3] / V2.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_div_ps( V1, V2 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorNegativeMultiplySubtract
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR V3
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
V3.vector4_f32[0] - (V1.vector4_f32[0] * V2.vector4_f32[0]),
V3.vector4_f32[1] - (V1.vector4_f32[1] * V2.vector4_f32[1]),
V3.vector4_f32[2] - (V1.vector4_f32[2] * V2.vector4_f32[2]),
V3.vector4_f32[3] - (V1.vector4_f32[3] * V2.vector4_f32[3])
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR R = _mm_mul_ps( V1, V2 );
return _mm_sub_ps( V3, R );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorScale
(
FXMVECTOR V,
FLOAT ScaleFactor
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
V.vector4_f32[0] * ScaleFactor,
V.vector4_f32[1] * ScaleFactor,
V.vector4_f32[2] * ScaleFactor,
V.vector4_f32[3] * ScaleFactor
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_set_ps1(ScaleFactor);
return _mm_mul_ps(vResult,V);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorReciprocalEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
UINT i;
// Avoid C4701
Result.vector4_f32[0] = 0.0f;
for (i = 0; i < 4; i++)
{
if (XMISNAN(V.vector4_f32[i]))
{
Result.vector4_u32[i] = 0x7FC00000;
}
else if (V.vector4_f32[i] == 0.0f || V.vector4_f32[i] == -0.0f)
{
Result.vector4_u32[i] = 0x7F800000 | (V.vector4_u32[i] & 0x80000000);
}
else
{
Result.vector4_f32[i] = 1.f / V.vector4_f32[i];
}
}
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_rcp_ps(V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorReciprocal
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return XMVectorReciprocalEst(V);
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_div_ps(g_XMOne,V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return an estimated square root
XMFINLINE XMVECTOR XMVectorSqrtEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Select;
// if (x == +Infinity) sqrt(x) = +Infinity
// if (x == +0.0f) sqrt(x) = +0.0f
// if (x == -0.0f) sqrt(x) = -0.0f
// if (x < 0.0f) sqrt(x) = QNaN
XMVECTOR Result = XMVectorReciprocalSqrtEst(V);
XMVECTOR Zero = XMVectorZero();
XMVECTOR VEqualsInfinity = XMVectorEqualInt(V, g_XMInfinity.v);
XMVECTOR VEqualsZero = XMVectorEqual(V, Zero);
Result = XMVectorMultiply(V, Result);
Select = XMVectorEqualInt(VEqualsInfinity, VEqualsZero);
Result = XMVectorSelect(V, Result, Select);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_sqrt_ps(V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSqrt
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Zero;
XMVECTOR VEqualsInfinity, VEqualsZero;
XMVECTOR Select;
XMVECTOR Result;
// if (x == +Infinity) sqrt(x) = +Infinity
// if (x == +0.0f) sqrt(x) = +0.0f
// if (x == -0.0f) sqrt(x) = -0.0f
// if (x < 0.0f) sqrt(x) = QNaN
Result = XMVectorReciprocalSqrt(V);
Zero = XMVectorZero();
VEqualsInfinity = XMVectorEqualInt(V, g_XMInfinity.v);
VEqualsZero = XMVectorEqual(V, Zero);
Result = XMVectorMultiply(V, Result);
Select = XMVectorEqualInt(VEqualsInfinity, VEqualsZero);
Result = XMVectorSelect(V, Result, Select);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_sqrt_ps(V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorReciprocalSqrtEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
// if (x == +Infinity) rsqrt(x) = 0
// if (x == +0.0f) rsqrt(x) = +Infinity
// if (x == -0.0f) rsqrt(x) = -Infinity
// if (x < 0.0f) rsqrt(x) = QNaN
XMVECTOR Result;
UINT i;
// Avoid C4701
Result.vector4_f32[0] = 0.0f;
for (i = 0; i < 4; i++)
{
if (XMISNAN(V.vector4_f32[i]))
{
Result.vector4_u32[i] = 0x7FC00000;
}
else if (V.vector4_f32[i] == 0.0f || V.vector4_f32[i] == -0.0f)
{
Result.vector4_u32[i] = 0x7F800000 | (V.vector4_u32[i] & 0x80000000);
}
else if (V.vector4_f32[i] < 0.0f)
{
Result.vector4_u32[i] = 0x7FFFFFFF;
}
else if (XMISINF(V.vector4_f32[i]))
{
Result.vector4_f32[i] = 0.0f;
}
else
{
Result.vector4_f32[i] = 1.0f / sqrtf(V.vector4_f32[i]);
}
}
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
return _mm_rsqrt_ps(V);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorReciprocalSqrt
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return XMVectorReciprocalSqrtEst(V);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_sqrt_ps(V);
vResult = _mm_div_ps(g_XMOne,vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorExpEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = powf(2.0f, V.vector4_f32[0]);
Result.vector4_f32[1] = powf(2.0f, V.vector4_f32[1]);
Result.vector4_f32[2] = powf(2.0f, V.vector4_f32[2]);
Result.vector4_f32[3] = powf(2.0f, V.vector4_f32[3]);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_setr_ps(
powf(2.0f,XMVectorGetX(V)),
powf(2.0f,XMVectorGetY(V)),
powf(2.0f,XMVectorGetZ(V)),
powf(2.0f,XMVectorGetW(V)));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorExp
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR E, S;
XMVECTOR R, R2, R3, R4;
XMVECTOR V0, V1;
XMVECTOR C0X, C0Y, C0Z, C0W;
XMVECTOR C1X, C1Y, C1Z, C1W;
XMVECTOR Result;
static CONST XMVECTOR C0 = {1.0f, -6.93147182e-1f, 2.40226462e-1f, -5.55036440e-2f};
static CONST XMVECTOR C1 = {9.61597636e-3f, -1.32823968e-3f, 1.47491097e-4f, -1.08635004e-5f};
R = XMVectorFloor(V);
E = XMVectorExpEst(R);
R = XMVectorSubtract(V, R);
R2 = XMVectorMultiply(R, R);
R3 = XMVectorMultiply(R, R2);
R4 = XMVectorMultiply(R2, R2);
C0X = XMVectorSplatX(C0);
C0Y = XMVectorSplatY(C0);
C0Z = XMVectorSplatZ(C0);
C0W = XMVectorSplatW(C0);
C1X = XMVectorSplatX(C1);
C1Y = XMVectorSplatY(C1);
C1Z = XMVectorSplatZ(C1);
C1W = XMVectorSplatW(C1);
V0 = XMVectorMultiplyAdd(R, C0Y, C0X);
V0 = XMVectorMultiplyAdd(R2, C0Z, V0);
V0 = XMVectorMultiplyAdd(R3, C0W, V0);
V1 = XMVectorMultiplyAdd(R, C1Y, C1X);
V1 = XMVectorMultiplyAdd(R2, C1Z, V1);
V1 = XMVectorMultiplyAdd(R3, C1W, V1);
S = XMVectorMultiplyAdd(R4, V1, V0);
S = XMVectorReciprocal(S);
Result = XMVectorMultiply(E, S);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 C0 = {1.0f, -6.93147182e-1f, 2.40226462e-1f, -5.55036440e-2f};
static CONST XMVECTORF32 C1 = {9.61597636e-3f, -1.32823968e-3f, 1.47491097e-4f, -1.08635004e-5f};
// Get the integer of the input
XMVECTOR R = XMVectorFloor(V);
// Get the exponent estimate
XMVECTOR E = XMVectorExpEst(R);
// Get the fractional only
R = _mm_sub_ps(V,R);
// Get R^2
XMVECTOR R2 = _mm_mul_ps(R,R);
// And R^3
XMVECTOR R3 = _mm_mul_ps(R,R2);
XMVECTOR V0 = _mm_load_ps1(&C0.f[1]);
V0 = _mm_mul_ps(V0,R);
XMVECTOR vConstants = _mm_load_ps1(&C0.f[0]);
V0 = _mm_add_ps(V0,vConstants);
vConstants = _mm_load_ps1(&C0.f[2]);
vConstants = _mm_mul_ps(vConstants,R2);
V0 = _mm_add_ps(V0,vConstants);
vConstants = _mm_load_ps1(&C0.f[3]);
vConstants = _mm_mul_ps(vConstants,R3);
V0 = _mm_add_ps(V0,vConstants);
XMVECTOR V1 = _mm_load_ps1(&C1.f[1]);
V1 = _mm_mul_ps(V1,R);
vConstants = _mm_load_ps1(&C1.f[0]);
V1 = _mm_add_ps(V1,vConstants);
vConstants = _mm_load_ps1(&C1.f[2]);
vConstants = _mm_mul_ps(vConstants,R2);
V1 = _mm_add_ps(V1,vConstants);
vConstants = _mm_load_ps1(&C1.f[3]);
vConstants = _mm_mul_ps(vConstants,R3);
V1 = _mm_add_ps(V1,vConstants);
// R2 = R^4
R2 = _mm_mul_ps(R2,R2);
R2 = _mm_mul_ps(R2,V1);
R2 = _mm_add_ps(R2,V0);
E = _mm_div_ps(E,R2);
return E;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorLogEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fScale = (1.0f / logf(2.0f));
XMVECTOR Result;
Result.vector4_f32[0] = logf(V.vector4_f32[0])*fScale;
Result.vector4_f32[1] = logf(V.vector4_f32[1])*fScale;
Result.vector4_f32[2] = logf(V.vector4_f32[2])*fScale;
Result.vector4_f32[3] = logf(V.vector4_f32[3])*fScale;
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vScale = _mm_set_ps1(1.0f / logf(2.0f));
XMVECTOR vResult = _mm_setr_ps(
logf(XMVectorGetX(V)),
logf(XMVectorGetY(V)),
logf(XMVectorGetZ(V)),
logf(XMVectorGetW(V)));
vResult = _mm_mul_ps(vResult,vScale);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorLog
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fScale = (1.0f / logf(2.0f));
XMVECTOR Result;
Result.vector4_f32[0] = logf(V.vector4_f32[0])*fScale;
Result.vector4_f32[1] = logf(V.vector4_f32[1])*fScale;
Result.vector4_f32[2] = logf(V.vector4_f32[2])*fScale;
Result.vector4_f32[3] = logf(V.vector4_f32[3])*fScale;
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vScale = _mm_set_ps1(1.0f / logf(2.0f));
XMVECTOR vResult = _mm_setr_ps(
logf(XMVectorGetX(V)),
logf(XMVectorGetY(V)),
logf(XMVectorGetZ(V)),
logf(XMVectorGetW(V)));
vResult = _mm_mul_ps(vResult,vScale);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorPowEst
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = powf(V1.vector4_f32[0], V2.vector4_f32[0]);
Result.vector4_f32[1] = powf(V1.vector4_f32[1], V2.vector4_f32[1]);
Result.vector4_f32[2] = powf(V1.vector4_f32[2], V2.vector4_f32[2]);
Result.vector4_f32[3] = powf(V1.vector4_f32[3], V2.vector4_f32[3]);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_setr_ps(
powf(XMVectorGetX(V1),XMVectorGetX(V2)),
powf(XMVectorGetY(V1),XMVectorGetY(V2)),
powf(XMVectorGetZ(V1),XMVectorGetZ(V2)),
powf(XMVectorGetW(V1),XMVectorGetW(V2)));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorPow
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(_XM_SSE_INTRINSICS_)
return XMVectorPowEst(V1, V2);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorAbs
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
fabsf(V.vector4_f32[0]),
fabsf(V.vector4_f32[1]),
fabsf(V.vector4_f32[2]),
fabsf(V.vector4_f32[3])
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_setzero_ps();
vResult = _mm_sub_ps(vResult,V);
vResult = _mm_max_ps(vResult,V);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorMod
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Reciprocal;
XMVECTOR Quotient;
XMVECTOR Result;
// V1 % V2 = V1 - V2 * truncate(V1 / V2)
Reciprocal = XMVectorReciprocal(V2);
Quotient = XMVectorMultiply(V1, Reciprocal);
Quotient = XMVectorTruncate(Quotient);
Result = XMVectorNegativeMultiplySubtract(V2, Quotient, V1);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_div_ps(V1, V2);
vResult = XMVectorTruncate(vResult);
vResult = _mm_mul_ps(vResult,V2);
vResult = _mm_sub_ps(V1,vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorModAngles
(
FXMVECTOR Angles
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR Result;
// Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
V = XMVectorMultiply(Angles, g_XMReciprocalTwoPi.v);
V = XMVectorRound(V);
Result = XMVectorNegativeMultiplySubtract(g_XMTwoPi.v, V, Angles);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Modulo the range of the given angles such that -XM_PI <= Angles < XM_PI
XMVECTOR vResult = _mm_mul_ps(Angles,g_XMReciprocalTwoPi);
// Use the inline function due to complexity for rounding
vResult = XMVectorRound(vResult);
vResult = _mm_mul_ps(vResult,g_XMTwoPi);
vResult = _mm_sub_ps(Angles,vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorSin
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2, V3, V5, V7, V9, V11, V13, V15, V17, V19, V21, V23;
XMVECTOR S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11;
XMVECTOR Result;
V1 = XMVectorModAngles(V);
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! -
// V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI)
V2 = XMVectorMultiply(V1, V1);
V3 = XMVectorMultiply(V2, V1);
V5 = XMVectorMultiply(V3, V2);
V7 = XMVectorMultiply(V5, V2);
V9 = XMVectorMultiply(V7, V2);
V11 = XMVectorMultiply(V9, V2);
V13 = XMVectorMultiply(V11, V2);
V15 = XMVectorMultiply(V13, V2);
V17 = XMVectorMultiply(V15, V2);
V19 = XMVectorMultiply(V17, V2);
V21 = XMVectorMultiply(V19, V2);
V23 = XMVectorMultiply(V21, V2);
S1 = XMVectorSplatY(g_XMSinCoefficients0.v);
S2 = XMVectorSplatZ(g_XMSinCoefficients0.v);
S3 = XMVectorSplatW(g_XMSinCoefficients0.v);
S4 = XMVectorSplatX(g_XMSinCoefficients1.v);
S5 = XMVectorSplatY(g_XMSinCoefficients1.v);
S6 = XMVectorSplatZ(g_XMSinCoefficients1.v);
S7 = XMVectorSplatW(g_XMSinCoefficients1.v);
S8 = XMVectorSplatX(g_XMSinCoefficients2.v);
S9 = XMVectorSplatY(g_XMSinCoefficients2.v);
S10 = XMVectorSplatZ(g_XMSinCoefficients2.v);
S11 = XMVectorSplatW(g_XMSinCoefficients2.v);
Result = XMVectorMultiplyAdd(S1, V3, V1);
Result = XMVectorMultiplyAdd(S2, V5, Result);
Result = XMVectorMultiplyAdd(S3, V7, Result);
Result = XMVectorMultiplyAdd(S4, V9, Result);
Result = XMVectorMultiplyAdd(S5, V11, Result);
Result = XMVectorMultiplyAdd(S6, V13, Result);
Result = XMVectorMultiplyAdd(S7, V15, Result);
Result = XMVectorMultiplyAdd(S8, V17, Result);
Result = XMVectorMultiplyAdd(S9, V19, Result);
Result = XMVectorMultiplyAdd(S10, V21, Result);
Result = XMVectorMultiplyAdd(S11, V23, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR vResult = XMVectorModAngles(V);
// Each on is V to the "num" power
// V2 = V1^2
XMVECTOR V2 = _mm_mul_ps(vResult,vResult);
// V1^3
XMVECTOR vPower = _mm_mul_ps(vResult,V2);
XMVECTOR vConstants = _mm_load_ps1(&g_XMSinCoefficients0.f[1]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^5
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients0.f[2]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^7
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients0.f[3]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^9
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[0]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^11
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[1]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^13
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[2]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^15
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients1.f[3]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^17
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[0]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^19
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[1]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^21
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[2]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^23
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMSinCoefficients2.f[3]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorCos
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2, V4, V6, V8, V10, V12, V14, V16, V18, V20, V22;
XMVECTOR C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
XMVECTOR Result;
V1 = XMVectorModAngles(V);
// cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! -
// V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI)
V2 = XMVectorMultiply(V1, V1);
V4 = XMVectorMultiply(V2, V2);
V6 = XMVectorMultiply(V4, V2);
V8 = XMVectorMultiply(V4, V4);
V10 = XMVectorMultiply(V6, V4);
V12 = XMVectorMultiply(V6, V6);
V14 = XMVectorMultiply(V8, V6);
V16 = XMVectorMultiply(V8, V8);
V18 = XMVectorMultiply(V10, V8);
V20 = XMVectorMultiply(V10, V10);
V22 = XMVectorMultiply(V12, V10);
C1 = XMVectorSplatY(g_XMCosCoefficients0.v);
C2 = XMVectorSplatZ(g_XMCosCoefficients0.v);
C3 = XMVectorSplatW(g_XMCosCoefficients0.v);
C4 = XMVectorSplatX(g_XMCosCoefficients1.v);
C5 = XMVectorSplatY(g_XMCosCoefficients1.v);
C6 = XMVectorSplatZ(g_XMCosCoefficients1.v);
C7 = XMVectorSplatW(g_XMCosCoefficients1.v);
C8 = XMVectorSplatX(g_XMCosCoefficients2.v);
C9 = XMVectorSplatY(g_XMCosCoefficients2.v);
C10 = XMVectorSplatZ(g_XMCosCoefficients2.v);
C11 = XMVectorSplatW(g_XMCosCoefficients2.v);
Result = XMVectorMultiplyAdd(C1, V2, g_XMOne.v);
Result = XMVectorMultiplyAdd(C2, V4, Result);
Result = XMVectorMultiplyAdd(C3, V6, Result);
Result = XMVectorMultiplyAdd(C4, V8, Result);
Result = XMVectorMultiplyAdd(C5, V10, Result);
Result = XMVectorMultiplyAdd(C6, V12, Result);
Result = XMVectorMultiplyAdd(C7, V14, Result);
Result = XMVectorMultiplyAdd(C8, V16, Result);
Result = XMVectorMultiplyAdd(C9, V18, Result);
Result = XMVectorMultiplyAdd(C10, V20, Result);
Result = XMVectorMultiplyAdd(C11, V22, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Force the value within the bounds of pi
XMVECTOR V2 = XMVectorModAngles(V);
// Each on is V to the "num" power
// V2 = V1^2
V2 = _mm_mul_ps(V2,V2);
// V^2
XMVECTOR vConstants = _mm_load_ps1(&g_XMCosCoefficients0.f[1]);
vConstants = _mm_mul_ps(vConstants,V2);
XMVECTOR vResult = _mm_add_ps(vConstants,g_XMOne);
// V^4
XMVECTOR vPower = _mm_mul_ps(V2,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients0.f[2]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^6
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients0.f[3]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^8
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[0]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^10
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[1]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^12
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[2]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^14
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients1.f[3]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^16
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[0]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^18
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[1]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^20
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[2]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
// V^22
vPower = _mm_mul_ps(vPower,V2);
vConstants = _mm_load_ps1(&g_XMCosCoefficients2.f[3]);
vConstants = _mm_mul_ps(vConstants,vPower);
vResult = _mm_add_ps(vResult,vConstants);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE VOID XMVectorSinCos
(
XMVECTOR* pSin,
XMVECTOR* pCos,
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13;
XMVECTOR V14, V15, V16, V17, V18, V19, V20, V21, V22, V23;
XMVECTOR S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11;
XMVECTOR C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
XMVECTOR Sin, Cos;
XMASSERT(pSin);
XMASSERT(pCos);
V1 = XMVectorModAngles(V);
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! -
// V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI)
// cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! -
// V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI)
V2 = XMVectorMultiply(V1, V1);
V3 = XMVectorMultiply(V2, V1);
V4 = XMVectorMultiply(V2, V2);
V5 = XMVectorMultiply(V3, V2);
V6 = XMVectorMultiply(V3, V3);
V7 = XMVectorMultiply(V4, V3);
V8 = XMVectorMultiply(V4, V4);
V9 = XMVectorMultiply(V5, V4);
V10 = XMVectorMultiply(V5, V5);
V11 = XMVectorMultiply(V6, V5);
V12 = XMVectorMultiply(V6, V6);
V13 = XMVectorMultiply(V7, V6);
V14 = XMVectorMultiply(V7, V7);
V15 = XMVectorMultiply(V8, V7);
V16 = XMVectorMultiply(V8, V8);
V17 = XMVectorMultiply(V9, V8);
V18 = XMVectorMultiply(V9, V9);
V19 = XMVectorMultiply(V10, V9);
V20 = XMVectorMultiply(V10, V10);
V21 = XMVectorMultiply(V11, V10);
V22 = XMVectorMultiply(V11, V11);
V23 = XMVectorMultiply(V12, V11);
S1 = XMVectorSplatY(g_XMSinCoefficients0.v);
S2 = XMVectorSplatZ(g_XMSinCoefficients0.v);
S3 = XMVectorSplatW(g_XMSinCoefficients0.v);
S4 = XMVectorSplatX(g_XMSinCoefficients1.v);
S5 = XMVectorSplatY(g_XMSinCoefficients1.v);
S6 = XMVectorSplatZ(g_XMSinCoefficients1.v);
S7 = XMVectorSplatW(g_XMSinCoefficients1.v);
S8 = XMVectorSplatX(g_XMSinCoefficients2.v);
S9 = XMVectorSplatY(g_XMSinCoefficients2.v);
S10 = XMVectorSplatZ(g_XMSinCoefficients2.v);
S11 = XMVectorSplatW(g_XMSinCoefficients2.v);
C1 = XMVectorSplatY(g_XMCosCoefficients0.v);
C2 = XMVectorSplatZ(g_XMCosCoefficients0.v);
C3 = XMVectorSplatW(g_XMCosCoefficients0.v);
C4 = XMVectorSplatX(g_XMCosCoefficients1.v);
C5 = XMVectorSplatY(g_XMCosCoefficients1.v);
C6 = XMVectorSplatZ(g_XMCosCoefficients1.v);
C7 = XMVectorSplatW(g_XMCosCoefficients1.v);
C8 = XMVectorSplatX(g_XMCosCoefficients2.v);
C9 = XMVectorSplatY(g_XMCosCoefficients2.v);
C10 = XMVectorSplatZ(g_XMCosCoefficients2.v);
C11 = XMVectorSplatW(g_XMCosCoefficients2.v);
Sin = XMVectorMultiplyAdd(S1, V3, V1);
Sin = XMVectorMultiplyAdd(S2, V5, Sin);
Sin = XMVectorMultiplyAdd(S3, V7, Sin);
Sin = XMVectorMultiplyAdd(S4, V9, Sin);
Sin = XMVectorMultiplyAdd(S5, V11, Sin);
Sin = XMVectorMultiplyAdd(S6, V13, Sin);
Sin = XMVectorMultiplyAdd(S7, V15, Sin);
Sin = XMVectorMultiplyAdd(S8, V17, Sin);
Sin = XMVectorMultiplyAdd(S9, V19, Sin);
Sin = XMVectorMultiplyAdd(S10, V21, Sin);
Sin = XMVectorMultiplyAdd(S11, V23, Sin);
Cos = XMVectorMultiplyAdd(C1, V2, g_XMOne.v);
Cos = XMVectorMultiplyAdd(C2, V4, Cos);
Cos = XMVectorMultiplyAdd(C3, V6, Cos);
Cos = XMVectorMultiplyAdd(C4, V8, Cos);
Cos = XMVectorMultiplyAdd(C5, V10, Cos);
Cos = XMVectorMultiplyAdd(C6, V12, Cos);
Cos = XMVectorMultiplyAdd(C7, V14, Cos);
Cos = XMVectorMultiplyAdd(C8, V16, Cos);
Cos = XMVectorMultiplyAdd(C9, V18, Cos);
Cos = XMVectorMultiplyAdd(C10, V20, Cos);
Cos = XMVectorMultiplyAdd(C11, V22, Cos);
*pSin = Sin;
*pCos = Cos;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pSin);
XMASSERT(pCos);
XMVECTOR V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13;
XMVECTOR V14, V15, V16, V17, V18, V19, V20, V21, V22, V23;
XMVECTOR S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11;
XMVECTOR C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
XMVECTOR Sin, Cos;
V1 = XMVectorModAngles(V);
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! -
// V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI)
// cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! -
// V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI)
V2 = XMVectorMultiply(V1, V1);
V3 = XMVectorMultiply(V2, V1);
V4 = XMVectorMultiply(V2, V2);
V5 = XMVectorMultiply(V3, V2);
V6 = XMVectorMultiply(V3, V3);
V7 = XMVectorMultiply(V4, V3);
V8 = XMVectorMultiply(V4, V4);
V9 = XMVectorMultiply(V5, V4);
V10 = XMVectorMultiply(V5, V5);
V11 = XMVectorMultiply(V6, V5);
V12 = XMVectorMultiply(V6, V6);
V13 = XMVectorMultiply(V7, V6);
V14 = XMVectorMultiply(V7, V7);
V15 = XMVectorMultiply(V8, V7);
V16 = XMVectorMultiply(V8, V8);
V17 = XMVectorMultiply(V9, V8);
V18 = XMVectorMultiply(V9, V9);
V19 = XMVectorMultiply(V10, V9);
V20 = XMVectorMultiply(V10, V10);
V21 = XMVectorMultiply(V11, V10);
V22 = XMVectorMultiply(V11, V11);
V23 = XMVectorMultiply(V12, V11);
S1 = _mm_load_ps1(&g_XMSinCoefficients0.f[1]);
S2 = _mm_load_ps1(&g_XMSinCoefficients0.f[2]);
S3 = _mm_load_ps1(&g_XMSinCoefficients0.f[3]);
S4 = _mm_load_ps1(&g_XMSinCoefficients1.f[0]);
S5 = _mm_load_ps1(&g_XMSinCoefficients1.f[1]);
S6 = _mm_load_ps1(&g_XMSinCoefficients1.f[2]);
S7 = _mm_load_ps1(&g_XMSinCoefficients1.f[3]);
S8 = _mm_load_ps1(&g_XMSinCoefficients2.f[0]);
S9 = _mm_load_ps1(&g_XMSinCoefficients2.f[1]);
S10 = _mm_load_ps1(&g_XMSinCoefficients2.f[2]);
S11 = _mm_load_ps1(&g_XMSinCoefficients2.f[3]);
C1 = _mm_load_ps1(&g_XMCosCoefficients0.f[1]);
C2 = _mm_load_ps1(&g_XMCosCoefficients0.f[2]);
C3 = _mm_load_ps1(&g_XMCosCoefficients0.f[3]);
C4 = _mm_load_ps1(&g_XMCosCoefficients1.f[0]);
C5 = _mm_load_ps1(&g_XMCosCoefficients1.f[1]);
C6 = _mm_load_ps1(&g_XMCosCoefficients1.f[2]);
C7 = _mm_load_ps1(&g_XMCosCoefficients1.f[3]);
C8 = _mm_load_ps1(&g_XMCosCoefficients2.f[0]);
C9 = _mm_load_ps1(&g_XMCosCoefficients2.f[1]);
C10 = _mm_load_ps1(&g_XMCosCoefficients2.f[2]);
C11 = _mm_load_ps1(&g_XMCosCoefficients2.f[3]);
S1 = _mm_mul_ps(S1,V3);
Sin = _mm_add_ps(S1,V1);
Sin = XMVectorMultiplyAdd(S2, V5, Sin);
Sin = XMVectorMultiplyAdd(S3, V7, Sin);
Sin = XMVectorMultiplyAdd(S4, V9, Sin);
Sin = XMVectorMultiplyAdd(S5, V11, Sin);
Sin = XMVectorMultiplyAdd(S6, V13, Sin);
Sin = XMVectorMultiplyAdd(S7, V15, Sin);
Sin = XMVectorMultiplyAdd(S8, V17, Sin);
Sin = XMVectorMultiplyAdd(S9, V19, Sin);
Sin = XMVectorMultiplyAdd(S10, V21, Sin);
Sin = XMVectorMultiplyAdd(S11, V23, Sin);
Cos = _mm_mul_ps(C1,V2);
Cos = _mm_add_ps(Cos,g_XMOne);
Cos = XMVectorMultiplyAdd(C2, V4, Cos);
Cos = XMVectorMultiplyAdd(C3, V6, Cos);
Cos = XMVectorMultiplyAdd(C4, V8, Cos);
Cos = XMVectorMultiplyAdd(C5, V10, Cos);
Cos = XMVectorMultiplyAdd(C6, V12, Cos);
Cos = XMVectorMultiplyAdd(C7, V14, Cos);
Cos = XMVectorMultiplyAdd(C8, V16, Cos);
Cos = XMVectorMultiplyAdd(C9, V18, Cos);
Cos = XMVectorMultiplyAdd(C10, V20, Cos);
Cos = XMVectorMultiplyAdd(C11, V22, Cos);
*pSin = Sin;
*pCos = Cos;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorTan
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
// Cody and Waite algorithm to compute tangent.
XMVECTOR VA, VB, VC, VC2;
XMVECTOR T0, T1, T2, T3, T4, T5, T6, T7;
XMVECTOR C0, C1, TwoDivPi, Epsilon;
XMVECTOR N, D;
XMVECTOR R0, R1;
XMVECTOR VIsZero, VCNearZero, VBIsEven;
XMVECTOR Zero;
XMVECTOR Result;
UINT i;
static CONST XMVECTOR TanCoefficients0 = {1.0f, -4.667168334e-1f, 2.566383229e-2f, -3.118153191e-4f};
static CONST XMVECTOR TanCoefficients1 = {4.981943399e-7f, -1.333835001e-1f, 3.424887824e-3f, -1.786170734e-5f};
static CONST XMVECTOR TanConstants = {1.570796371f, 6.077100628e-11f, 0.000244140625f, 2.0f / XM_PI};
static CONST XMVECTORU32 Mask = {0x1, 0x1, 0x1, 0x1};
TwoDivPi = XMVectorSplatW(TanConstants);
Zero = XMVectorZero();
C0 = XMVectorSplatX(TanConstants);
C1 = XMVectorSplatY(TanConstants);
Epsilon = XMVectorSplatZ(TanConstants);
VA = XMVectorMultiply(V, TwoDivPi);
VA = XMVectorRound(VA);
VC = XMVectorNegativeMultiplySubtract(VA, C0, V);
VB = XMVectorAbs(VA);
VC = XMVectorNegativeMultiplySubtract(VA, C1, VC);
for (i = 0; i < 4; i++)
{
VB.vector4_u32[i] = (UINT)VB.vector4_f32[i];
}
VC2 = XMVectorMultiply(VC, VC);
T7 = XMVectorSplatW(TanCoefficients1);
T6 = XMVectorSplatZ(TanCoefficients1);
T4 = XMVectorSplatX(TanCoefficients1);
T3 = XMVectorSplatW(TanCoefficients0);
T5 = XMVectorSplatY(TanCoefficients1);
T2 = XMVectorSplatZ(TanCoefficients0);
T1 = XMVectorSplatY(TanCoefficients0);
T0 = XMVectorSplatX(TanCoefficients0);
VBIsEven = XMVectorAndInt(VB, Mask.v);
VBIsEven = XMVectorEqualInt(VBIsEven, Zero);
N = XMVectorMultiplyAdd(VC2, T7, T6);
D = XMVectorMultiplyAdd(VC2, T4, T3);
N = XMVectorMultiplyAdd(VC2, N, T5);
D = XMVectorMultiplyAdd(VC2, D, T2);
N = XMVectorMultiply(VC2, N);
D = XMVectorMultiplyAdd(VC2, D, T1);
N = XMVectorMultiplyAdd(VC, N, VC);
VCNearZero = XMVectorInBounds(VC, Epsilon);
D = XMVectorMultiplyAdd(VC2, D, T0);
N = XMVectorSelect(N, VC, VCNearZero);
D = XMVectorSelect(D, g_XMOne.v, VCNearZero);
R0 = XMVectorNegate(N);
R1 = XMVectorReciprocal(D);
R0 = XMVectorReciprocal(R0);
R1 = XMVectorMultiply(N, R1);
R0 = XMVectorMultiply(D, R0);
VIsZero = XMVectorEqual(V, Zero);
Result = XMVectorSelect(R0, R1, VBIsEven);
Result = XMVectorSelect(Result, Zero, VIsZero);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Cody and Waite algorithm to compute tangent.
XMVECTOR VA, VB, VC, VC2;
XMVECTOR T0, T1, T2, T3, T4, T5, T6, T7;
XMVECTOR C0, C1, TwoDivPi, Epsilon;
XMVECTOR N, D;
XMVECTOR R0, R1;
XMVECTOR VIsZero, VCNearZero, VBIsEven;
XMVECTOR Zero;
XMVECTOR Result;
static CONST XMVECTORF32 TanCoefficients0 = {1.0f, -4.667168334e-1f, 2.566383229e-2f, -3.118153191e-4f};
static CONST XMVECTORF32 TanCoefficients1 = {4.981943399e-7f, -1.333835001e-1f, 3.424887824e-3f, -1.786170734e-5f};
static CONST XMVECTORF32 TanConstants = {1.570796371f, 6.077100628e-11f, 0.000244140625f, 2.0f / XM_PI};
static CONST XMVECTORI32 Mask = {0x1, 0x1, 0x1, 0x1};
TwoDivPi = XMVectorSplatW(TanConstants);
Zero = XMVectorZero();
C0 = XMVectorSplatX(TanConstants);
C1 = XMVectorSplatY(TanConstants);
Epsilon = XMVectorSplatZ(TanConstants);
VA = XMVectorMultiply(V, TwoDivPi);
VA = XMVectorRound(VA);
VC = XMVectorNegativeMultiplySubtract(VA, C0, V);
VB = XMVectorAbs(VA);
VC = XMVectorNegativeMultiplySubtract(VA, C1, VC);
reinterpret_cast<__m128i *>(&VB)[0] = _mm_cvttps_epi32(VB);
VC2 = XMVectorMultiply(VC, VC);
T7 = XMVectorSplatW(TanCoefficients1);
T6 = XMVectorSplatZ(TanCoefficients1);
T4 = XMVectorSplatX(TanCoefficients1);
T3 = XMVectorSplatW(TanCoefficients0);
T5 = XMVectorSplatY(TanCoefficients1);
T2 = XMVectorSplatZ(TanCoefficients0);
T1 = XMVectorSplatY(TanCoefficients0);
T0 = XMVectorSplatX(TanCoefficients0);
VBIsEven = XMVectorAndInt(VB,Mask);
VBIsEven = XMVectorEqualInt(VBIsEven, Zero);
N = XMVectorMultiplyAdd(VC2, T7, T6);
D = XMVectorMultiplyAdd(VC2, T4, T3);
N = XMVectorMultiplyAdd(VC2, N, T5);
D = XMVectorMultiplyAdd(VC2, D, T2);
N = XMVectorMultiply(VC2, N);
D = XMVectorMultiplyAdd(VC2, D, T1);
N = XMVectorMultiplyAdd(VC, N, VC);
VCNearZero = XMVectorInBounds(VC, Epsilon);
D = XMVectorMultiplyAdd(VC2, D, T0);
N = XMVectorSelect(N, VC, VCNearZero);
D = XMVectorSelect(D, g_XMOne, VCNearZero);
R0 = XMVectorNegate(N);
R1 = _mm_div_ps(N,D);
R0 = _mm_div_ps(D,R0);
VIsZero = XMVectorEqual(V, Zero);
Result = XMVectorSelect(R0, R1, VBIsEven);
Result = XMVectorSelect(Result, Zero, VIsZero);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorSinH
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = XMVectorMultiplyAdd(V, Scale.v, g_XMNegativeOne.v);
V2 = XMVectorNegativeMultiplySubtract(V, Scale.v, g_XMNegativeOne.v);
E1 = XMVectorExp(V1);
E2 = XMVectorExp(V2);
Result = XMVectorSubtract(E1, E2);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = _mm_mul_ps(V, Scale);
V1 = _mm_add_ps(V1,g_XMNegativeOne);
V2 = _mm_mul_ps(V, Scale);
V2 = _mm_sub_ps(g_XMNegativeOne,V2);
E1 = XMVectorExp(V1);
E2 = XMVectorExp(V2);
Result = _mm_sub_ps(E1, E2);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorCosH
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTOR Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = XMVectorMultiplyAdd(V, Scale, g_XMNegativeOne.v);
V2 = XMVectorNegativeMultiplySubtract(V, Scale, g_XMNegativeOne.v);
E1 = XMVectorExp(V1);
E2 = XMVectorExp(V2);
Result = XMVectorAdd(E1, E2);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = _mm_mul_ps(V,Scale);
V1 = _mm_add_ps(V1,g_XMNegativeOne);
V2 = _mm_mul_ps(V, Scale);
V2 = _mm_sub_ps(g_XMNegativeOne,V2);
E1 = XMVectorExp(V1);
E2 = XMVectorExp(V2);
Result = _mm_add_ps(E1, E2);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorTanH
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR E;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
E = XMVectorMultiply(V, Scale.v);
E = XMVectorExp(E);
E = XMVectorMultiplyAdd(E, g_XMOneHalf.v, g_XMOneHalf.v);
E = XMVectorReciprocal(E);
Result = XMVectorSubtract(g_XMOne.v, E);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
XMVECTOR E = _mm_mul_ps(V, Scale);
E = XMVectorExp(E);
E = _mm_mul_ps(E,g_XMOneHalf);
E = _mm_add_ps(E,g_XMOneHalf);
E = XMVectorReciprocal(E);
E = _mm_sub_ps(g_XMOne, E);
return E;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorASin
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V2, V3, AbsV;
XMVECTOR C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
XMVECTOR R0, R1, R2, R3, R4;
XMVECTOR OneMinusAbsV;
XMVECTOR Rsq;
XMVECTOR Result;
static CONST XMVECTOR OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
// asin(V) = V * (C0 + C1 * V + C2 * V^2 + C3 * V^3 + C4 * V^4 + C5 * V^5) + (1 - V) * rsq(1 - V) *
// V * (C6 + C7 * V + C8 * V^2 + C9 * V^3 + C10 * V^4 + C11 * V^5)
AbsV = XMVectorAbs(V);
V2 = XMVectorMultiply(V, V);
V3 = XMVectorMultiply(V2, AbsV);
R4 = XMVectorNegativeMultiplySubtract(AbsV, V, V);
OneMinusAbsV = XMVectorSubtract(OnePlusEpsilon, AbsV);
Rsq = XMVectorReciprocalSqrt(OneMinusAbsV);
C0 = XMVectorSplatX(g_XMASinCoefficients0.v);
C1 = XMVectorSplatY(g_XMASinCoefficients0.v);
C2 = XMVectorSplatZ(g_XMASinCoefficients0.v);
C3 = XMVectorSplatW(g_XMASinCoefficients0.v);
C4 = XMVectorSplatX(g_XMASinCoefficients1.v);
C5 = XMVectorSplatY(g_XMASinCoefficients1.v);
C6 = XMVectorSplatZ(g_XMASinCoefficients1.v);
C7 = XMVectorSplatW(g_XMASinCoefficients1.v);
C8 = XMVectorSplatX(g_XMASinCoefficients2.v);
C9 = XMVectorSplatY(g_XMASinCoefficients2.v);
C10 = XMVectorSplatZ(g_XMASinCoefficients2.v);
C11 = XMVectorSplatW(g_XMASinCoefficients2.v);
R0 = XMVectorMultiplyAdd(C3, AbsV, C7);
R1 = XMVectorMultiplyAdd(C1, AbsV, C5);
R2 = XMVectorMultiplyAdd(C2, AbsV, C6);
R3 = XMVectorMultiplyAdd(C0, AbsV, C4);
R0 = XMVectorMultiplyAdd(R0, AbsV, C11);
R1 = XMVectorMultiplyAdd(R1, AbsV, C9);
R2 = XMVectorMultiplyAdd(R2, AbsV, C10);
R3 = XMVectorMultiplyAdd(R3, AbsV, C8);
R0 = XMVectorMultiplyAdd(R2, V3, R0);
R1 = XMVectorMultiplyAdd(R3, V3, R1);
R0 = XMVectorMultiply(V, R0);
R1 = XMVectorMultiply(R4, R1);
Result = XMVectorMultiplyAdd(R1, Rsq, R0);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
// asin(V) = V * (C0 + C1 * V + C2 * V^2 + C3 * V^3 + C4 * V^4 + C5 * V^5) + (1 - V) * rsq(1 - V) *
// V * (C6 + C7 * V + C8 * V^2 + C9 * V^3 + C10 * V^4 + C11 * V^5)
// Get abs(V)
XMVECTOR vAbsV = _mm_setzero_ps();
vAbsV = _mm_sub_ps(vAbsV,V);
vAbsV = _mm_max_ps(vAbsV,V);
XMVECTOR R0 = vAbsV;
XMVECTOR vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[3]);
R0 = _mm_mul_ps(R0,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[3]);
R0 = _mm_add_ps(R0,vConstants);
XMVECTOR R1 = vAbsV;
vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[1]);
R1 = _mm_mul_ps(R1,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[1]);
R1 = _mm_add_ps(R1, vConstants);
XMVECTOR R2 = vAbsV;
vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[2]);
R2 = _mm_mul_ps(R2,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[2]);
R2 = _mm_add_ps(R2, vConstants);
XMVECTOR R3 = vAbsV;
vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[0]);
R3 = _mm_mul_ps(R3,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[0]);
R3 = _mm_add_ps(R3, vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[3]);
R0 = _mm_mul_ps(R0,vAbsV);
R0 = _mm_add_ps(R0,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[1]);
R1 = _mm_mul_ps(R1,vAbsV);
R1 = _mm_add_ps(R1,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[2]);
R2 = _mm_mul_ps(R2,vAbsV);
R2 = _mm_add_ps(R2,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[0]);
R3 = _mm_mul_ps(R3,vAbsV);
R3 = _mm_add_ps(R3,vConstants);
// V3 = V^3
vConstants = _mm_mul_ps(V,V);
vConstants = _mm_mul_ps(vConstants, vAbsV);
// Mul by V^3
R2 = _mm_mul_ps(R2,vConstants);
R3 = _mm_mul_ps(R3,vConstants);
// Merge the results
R0 = _mm_add_ps(R0,R2);
R1 = _mm_add_ps(R1,R3);
R0 = _mm_mul_ps(R0,V);
// vConstants = V-(V^2 retaining sign)
vConstants = _mm_mul_ps(vAbsV, V);
vConstants = _mm_sub_ps(V,vConstants);
R1 = _mm_mul_ps(R1,vConstants);
vConstants = _mm_sub_ps(OnePlusEpsilon,vAbsV);
// Do NOT use rsqrt/mul. This needs the precision
vConstants = _mm_sqrt_ps(vConstants);
R1 = _mm_div_ps(R1,vConstants);
R0 = _mm_add_ps(R0,R1);
return R0;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorACos
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V2, V3, AbsV;
XMVECTOR C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11;
XMVECTOR R0, R1, R2, R3, R4;
XMVECTOR OneMinusAbsV;
XMVECTOR Rsq;
XMVECTOR Result;
static CONST XMVECTOR OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
// acos(V) = PI / 2 - asin(V)
AbsV = XMVectorAbs(V);
V2 = XMVectorMultiply(V, V);
V3 = XMVectorMultiply(V2, AbsV);
R4 = XMVectorNegativeMultiplySubtract(AbsV, V, V);
OneMinusAbsV = XMVectorSubtract(OnePlusEpsilon, AbsV);
Rsq = XMVectorReciprocalSqrt(OneMinusAbsV);
C0 = XMVectorSplatX(g_XMASinCoefficients0.v);
C1 = XMVectorSplatY(g_XMASinCoefficients0.v);
C2 = XMVectorSplatZ(g_XMASinCoefficients0.v);
C3 = XMVectorSplatW(g_XMASinCoefficients0.v);
C4 = XMVectorSplatX(g_XMASinCoefficients1.v);
C5 = XMVectorSplatY(g_XMASinCoefficients1.v);
C6 = XMVectorSplatZ(g_XMASinCoefficients1.v);
C7 = XMVectorSplatW(g_XMASinCoefficients1.v);
C8 = XMVectorSplatX(g_XMASinCoefficients2.v);
C9 = XMVectorSplatY(g_XMASinCoefficients2.v);
C10 = XMVectorSplatZ(g_XMASinCoefficients2.v);
C11 = XMVectorSplatW(g_XMASinCoefficients2.v);
R0 = XMVectorMultiplyAdd(C3, AbsV, C7);
R1 = XMVectorMultiplyAdd(C1, AbsV, C5);
R2 = XMVectorMultiplyAdd(C2, AbsV, C6);
R3 = XMVectorMultiplyAdd(C0, AbsV, C4);
R0 = XMVectorMultiplyAdd(R0, AbsV, C11);
R1 = XMVectorMultiplyAdd(R1, AbsV, C9);
R2 = XMVectorMultiplyAdd(R2, AbsV, C10);
R3 = XMVectorMultiplyAdd(R3, AbsV, C8);
R0 = XMVectorMultiplyAdd(R2, V3, R0);
R1 = XMVectorMultiplyAdd(R3, V3, R1);
R0 = XMVectorMultiply(V, R0);
R1 = XMVectorMultiply(R4, R1);
Result = XMVectorMultiplyAdd(R1, Rsq, R0);
Result = XMVectorSubtract(g_XMHalfPi.v, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 OnePlusEpsilon = {1.00000011921f, 1.00000011921f, 1.00000011921f, 1.00000011921f};
// Uses only 6 registers for good code on x86 targets
// acos(V) = PI / 2 - asin(V)
// Get abs(V)
XMVECTOR vAbsV = _mm_setzero_ps();
vAbsV = _mm_sub_ps(vAbsV,V);
vAbsV = _mm_max_ps(vAbsV,V);
// Perform the series in precision groups to
// retain precision across 20 bits. (3 bits of imprecision due to operations)
XMVECTOR R0 = vAbsV;
XMVECTOR vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[3]);
R0 = _mm_mul_ps(R0,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[3]);
R0 = _mm_add_ps(R0,vConstants);
R0 = _mm_mul_ps(R0,vAbsV);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[3]);
R0 = _mm_add_ps(R0,vConstants);
XMVECTOR R1 = vAbsV;
vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[1]);
R1 = _mm_mul_ps(R1,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[1]);
R1 = _mm_add_ps(R1,vConstants);
R1 = _mm_mul_ps(R1, vAbsV);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[1]);
R1 = _mm_add_ps(R1,vConstants);
XMVECTOR R2 = vAbsV;
vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[2]);
R2 = _mm_mul_ps(R2,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[2]);
R2 = _mm_add_ps(R2,vConstants);
R2 = _mm_mul_ps(R2, vAbsV);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[2]);
R2 = _mm_add_ps(R2,vConstants);
XMVECTOR R3 = vAbsV;
vConstants = _mm_load_ps1(&g_XMASinCoefficients0.f[0]);
R3 = _mm_mul_ps(R3,vConstants);
vConstants = _mm_load_ps1(&g_XMASinCoefficients1.f[0]);
R3 = _mm_add_ps(R3,vConstants);
R3 = _mm_mul_ps(R3, vAbsV);
vConstants = _mm_load_ps1(&g_XMASinCoefficients2.f[0]);
R3 = _mm_add_ps(R3,vConstants);
// vConstants = V^3
vConstants = _mm_mul_ps(V,V);
vConstants = _mm_mul_ps(vConstants,vAbsV);
R2 = _mm_mul_ps(R2,vConstants);
R3 = _mm_mul_ps(R3,vConstants);
// Add the pair of values together here to retain
// as much precision as possible
R0 = _mm_add_ps(R0,R2);
R1 = _mm_add_ps(R1,R3);
R0 = _mm_mul_ps(R0,V);
// vConstants = V-(V*abs(V))
vConstants = _mm_mul_ps(V,vAbsV);
vConstants = _mm_sub_ps(V,vConstants);
R1 = _mm_mul_ps(R1,vConstants);
// Episilon exists to allow 1.0 as an answer
vConstants = _mm_sub_ps(OnePlusEpsilon, vAbsV);
// Use sqrt instead of rsqrt for precision
vConstants = _mm_sqrt_ps(vConstants);
R1 = _mm_div_ps(R1,vConstants);
R1 = _mm_add_ps(R1,R0);
vConstants = _mm_sub_ps(g_XMHalfPi,R1);
return vConstants;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorATan
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
// Cody and Waite algorithm to compute inverse tangent.
XMVECTOR N, D;
XMVECTOR VF, G, ReciprocalF, AbsF, FA, FB;
XMVECTOR Sqrt3, Sqrt3MinusOne, TwoMinusSqrt3;
XMVECTOR HalfPi, OneThirdPi, OneSixthPi, Epsilon, MinV, MaxV;
XMVECTOR Zero;
XMVECTOR NegativeHalfPi;
XMVECTOR Angle1, Angle2;
XMVECTOR F_GT_One, F_GT_TwoMinusSqrt3, AbsF_LT_Epsilon, V_LT_Zero, V_GT_MaxV, V_LT_MinV;
XMVECTOR NegativeResult, Result;
XMVECTOR P0, P1, P2, P3, Q0, Q1, Q2, Q3;
static CONST XMVECTOR ATanConstants0 = {-1.3688768894e+1f, -2.0505855195e+1f, -8.4946240351f, -8.3758299368e-1f};
static CONST XMVECTOR ATanConstants1 = {4.1066306682e+1f, 8.6157349597e+1f, 5.9578436142e+1f, 1.5024001160e+1f};
static CONST XMVECTOR ATanConstants2 = {1.732050808f, 7.320508076e-1f, 2.679491924e-1f, 0.000244140625f}; // <sqrt(3), sqrt(3) - 1, 2 - sqrt(3), Epsilon>
static CONST XMVECTOR ATanConstants3 = {XM_PIDIV2, XM_PI / 3.0f, XM_PI / 6.0f, 8.507059173e+37f}; // <Pi / 2, Pi / 3, Pi / 6, MaxV>
Zero = XMVectorZero();
P0 = XMVectorSplatX(ATanConstants0);
P1 = XMVectorSplatY(ATanConstants0);
P2 = XMVectorSplatZ(ATanConstants0);
P3 = XMVectorSplatW(ATanConstants0);
Q0 = XMVectorSplatX(ATanConstants1);
Q1 = XMVectorSplatY(ATanConstants1);
Q2 = XMVectorSplatZ(ATanConstants1);
Q3 = XMVectorSplatW(ATanConstants1);
Sqrt3 = XMVectorSplatX(ATanConstants2);
Sqrt3MinusOne = XMVectorSplatY(ATanConstants2);
TwoMinusSqrt3 = XMVectorSplatZ(ATanConstants2);
Epsilon = XMVectorSplatW(ATanConstants2);
HalfPi = XMVectorSplatX(ATanConstants3);
OneThirdPi = XMVectorSplatY(ATanConstants3);
OneSixthPi = XMVectorSplatZ(ATanConstants3);
MaxV = XMVectorSplatW(ATanConstants3);
VF = XMVectorAbs(V);
ReciprocalF = XMVectorReciprocal(VF);
F_GT_One = XMVectorGreater(VF, g_XMOne.v);
VF = XMVectorSelect(VF, ReciprocalF, F_GT_One);
Angle1 = XMVectorSelect(Zero, HalfPi, F_GT_One);
Angle2 = XMVectorSelect(OneSixthPi, OneThirdPi, F_GT_One);
F_GT_TwoMinusSqrt3 = XMVectorGreater(VF, TwoMinusSqrt3);
FA = XMVectorMultiplyAdd(Sqrt3MinusOne, VF, VF);
FA = XMVectorAdd(FA, g_XMNegativeOne.v);
FB = XMVectorAdd(VF, Sqrt3);
FB = XMVectorReciprocal(FB);
FA = XMVectorMultiply(FA, FB);
VF = XMVectorSelect(VF, FA, F_GT_TwoMinusSqrt3);
Angle1 = XMVectorSelect(Angle1, Angle2, F_GT_TwoMinusSqrt3);
AbsF = XMVectorAbs(VF);
AbsF_LT_Epsilon = XMVectorLess(AbsF, Epsilon);
G = XMVectorMultiply(VF, VF);
D = XMVectorAdd(G, Q3);
D = XMVectorMultiplyAdd(D, G, Q2);
D = XMVectorMultiplyAdd(D, G, Q1);
D = XMVectorMultiplyAdd(D, G, Q0);
D = XMVectorReciprocal(D);
N = XMVectorMultiplyAdd(P3, G, P2);
N = XMVectorMultiplyAdd(N, G, P1);
N = XMVectorMultiplyAdd(N, G, P0);
N = XMVectorMultiply(N, G);
Result = XMVectorMultiply(N, D);
Result = XMVectorMultiplyAdd(Result, VF, VF);
Result = XMVectorSelect(Result, VF, AbsF_LT_Epsilon);
NegativeResult = XMVectorNegate(Result);
Result = XMVectorSelect(Result, NegativeResult, F_GT_One);
Result = XMVectorAdd(Result, Angle1);
V_LT_Zero = XMVectorLess(V, Zero);
NegativeResult = XMVectorNegate(Result);
Result = XMVectorSelect(Result, NegativeResult, V_LT_Zero);
MinV = XMVectorNegate(MaxV);
NegativeHalfPi = XMVectorNegate(HalfPi);
V_GT_MaxV = XMVectorGreater(V, MaxV);
V_LT_MinV = XMVectorLess(V, MinV);
Result = XMVectorSelect(Result, g_XMHalfPi.v, V_GT_MaxV);
Result = XMVectorSelect(Result, NegativeHalfPi, V_LT_MinV);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 ATanConstants0 = {-1.3688768894e+1f, -2.0505855195e+1f, -8.4946240351f, -8.3758299368e-1f};
static CONST XMVECTORF32 ATanConstants1 = {4.1066306682e+1f, 8.6157349597e+1f, 5.9578436142e+1f, 1.5024001160e+1f};
static CONST XMVECTORF32 ATanConstants2 = {1.732050808f, 7.320508076e-1f, 2.679491924e-1f, 0.000244140625f}; // <sqrt(3), sqrt(3) - 1, 2 - sqrt(3), Epsilon>
static CONST XMVECTORF32 ATanConstants3 = {XM_PIDIV2, XM_PI / 3.0f, XM_PI / 6.0f, 8.507059173e+37f}; // <Pi / 2, Pi / 3, Pi / 6, MaxV>
XMVECTOR VF = XMVectorAbs(V);
XMVECTOR F_GT_One = _mm_cmpgt_ps(VF,g_XMOne);
XMVECTOR ReciprocalF = XMVectorReciprocal(VF);
VF = XMVectorSelect(VF, ReciprocalF, F_GT_One);
XMVECTOR Zero = XMVectorZero();
XMVECTOR HalfPi = _mm_load_ps1(&ATanConstants3.f[0]);
XMVECTOR Angle1 = XMVectorSelect(Zero, HalfPi, F_GT_One);
// Pi/3
XMVECTOR vConstants = _mm_load_ps1(&ATanConstants3.f[1]);
// Pi/6
XMVECTOR Angle2 = _mm_load_ps1(&ATanConstants3.f[2]);
Angle2 = XMVectorSelect(Angle2, vConstants, F_GT_One);
// 1-sqrt(3)
XMVECTOR FA = _mm_load_ps1(&ATanConstants2.f[1]);
FA = _mm_mul_ps(FA,VF);
FA = _mm_add_ps(FA,VF);
FA = _mm_add_ps(FA,g_XMNegativeOne);
// sqrt(3)
vConstants = _mm_load_ps1(&ATanConstants2.f[0]);
vConstants = _mm_add_ps(vConstants,VF);
FA = _mm_div_ps(FA,vConstants);
// 2-sqrt(3)
vConstants = _mm_load_ps1(&ATanConstants2.f[2]);
// >2-sqrt(3)?
vConstants = _mm_cmpgt_ps(VF,vConstants);
VF = XMVectorSelect(VF, FA, vConstants);
Angle1 = XMVectorSelect(Angle1, Angle2, vConstants);
XMVECTOR AbsF = XMVectorAbs(VF);
XMVECTOR G = _mm_mul_ps(VF,VF);
XMVECTOR D = _mm_load_ps1(&ATanConstants1.f[3]);
D = _mm_add_ps(D,G);
D = _mm_mul_ps(D,G);
vConstants = _mm_load_ps1(&ATanConstants1.f[2]);
D = _mm_add_ps(D,vConstants);
D = _mm_mul_ps(D,G);
vConstants = _mm_load_ps1(&ATanConstants1.f[1]);
D = _mm_add_ps(D,vConstants);
D = _mm_mul_ps(D,G);
vConstants = _mm_load_ps1(&ATanConstants1.f[0]);
D = _mm_add_ps(D,vConstants);
XMVECTOR N = _mm_load_ps1(&ATanConstants0.f[3]);
N = _mm_mul_ps(N,G);
vConstants = _mm_load_ps1(&ATanConstants0.f[2]);
N = _mm_add_ps(N,vConstants);
N = _mm_mul_ps(N,G);
vConstants = _mm_load_ps1(&ATanConstants0.f[1]);
N = _mm_add_ps(N,vConstants);
N = _mm_mul_ps(N,G);
vConstants = _mm_load_ps1(&ATanConstants0.f[0]);
N = _mm_add_ps(N,vConstants);
N = _mm_mul_ps(N,G);
XMVECTOR Result = _mm_div_ps(N,D);
Result = _mm_mul_ps(Result,VF);
Result = _mm_add_ps(Result,VF);
// Epsilon
vConstants = _mm_load_ps1(&ATanConstants2.f[3]);
vConstants = _mm_cmpge_ps(vConstants,AbsF);
Result = XMVectorSelect(Result,VF,vConstants);
XMVECTOR NegativeResult = _mm_mul_ps(Result,g_XMNegativeOne);
Result = XMVectorSelect(Result,NegativeResult,F_GT_One);
Result = _mm_add_ps(Result,Angle1);
Zero = _mm_cmpge_ps(Zero,V);
NegativeResult = _mm_mul_ps(Result,g_XMNegativeOne);
Result = XMVectorSelect(Result,NegativeResult,Zero);
XMVECTOR MaxV = _mm_load_ps1(&ATanConstants3.f[3]);
XMVECTOR MinV = _mm_mul_ps(MaxV,g_XMNegativeOne);
// Negate HalfPi
HalfPi = _mm_mul_ps(HalfPi,g_XMNegativeOne);
MaxV = _mm_cmple_ps(MaxV,V);
MinV = _mm_cmpge_ps(MinV,V);
Result = XMVectorSelect(Result,g_XMHalfPi,MaxV);
// HalfPi = -HalfPi
Result = XMVectorSelect(Result,HalfPi,MinV);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVectorATan2
(
FXMVECTOR Y,
FXMVECTOR X
)
{
#if defined(_XM_NO_INTRINSICS_)
// Return the inverse tangent of Y / X in the range of -Pi to Pi with the following exceptions:
// Y == 0 and X is Negative -> Pi with the sign of Y
// y == 0 and x is positive -> 0 with the sign of y
// Y != 0 and X == 0 -> Pi / 2 with the sign of Y
// Y != 0 and X is Negative -> atan(y/x) + (PI with the sign of Y)
// X == -Infinity and Finite Y -> Pi with the sign of Y
// X == +Infinity and Finite Y -> 0 with the sign of Y
// Y == Infinity and X is Finite -> Pi / 2 with the sign of Y
// Y == Infinity and X == -Infinity -> 3Pi / 4 with the sign of Y
// Y == Infinity and X == +Infinity -> Pi / 4 with the sign of Y
XMVECTOR Reciprocal;
XMVECTOR V;
XMVECTOR YSign;
XMVECTOR Pi, PiOverTwo, PiOverFour, ThreePiOverFour;
XMVECTOR YEqualsZero, XEqualsZero, XIsPositive, YEqualsInfinity, XEqualsInfinity;
XMVECTOR ATanResultValid;
XMVECTOR R0, R1, R2, R3, R4, R5;
XMVECTOR Zero;
XMVECTOR Result;
static CONST XMVECTOR ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
Zero = XMVectorZero();
ATanResultValid = XMVectorTrueInt();
Pi = XMVectorSplatX(ATan2Constants);
PiOverTwo = XMVectorSplatY(ATan2Constants);
PiOverFour = XMVectorSplatZ(ATan2Constants);
ThreePiOverFour = XMVectorSplatW(ATan2Constants);
YEqualsZero = XMVectorEqual(Y, Zero);
XEqualsZero = XMVectorEqual(X, Zero);
XIsPositive = XMVectorAndInt(X, g_XMNegativeZero.v);
XIsPositive = XMVectorEqualInt(XIsPositive, Zero);
YEqualsInfinity = XMVectorIsInfinite(Y);
XEqualsInfinity = XMVectorIsInfinite(X);
YSign = XMVectorAndInt(Y, g_XMNegativeZero.v);
Pi = XMVectorOrInt(Pi, YSign);
PiOverTwo = XMVectorOrInt(PiOverTwo, YSign);
PiOverFour = XMVectorOrInt(PiOverFour, YSign);
ThreePiOverFour = XMVectorOrInt(ThreePiOverFour, YSign);
R1 = XMVectorSelect(Pi, YSign, XIsPositive);
R2 = XMVectorSelect(ATanResultValid, PiOverTwo, XEqualsZero);
R3 = XMVectorSelect(R2, R1, YEqualsZero);
R4 = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
R5 = XMVectorSelect(PiOverTwo, R4, XEqualsInfinity);
Result = XMVectorSelect(R3, R5, YEqualsInfinity);
ATanResultValid = XMVectorEqualInt(Result, ATanResultValid);
Reciprocal = XMVectorReciprocal(X);
V = XMVectorMultiply(Y, Reciprocal);
R0 = XMVectorATan(V);
R1 = XMVectorSelect( Pi, Zero, XIsPositive );
R2 = XMVectorAdd(R0, R1);
Result = XMVectorSelect(Result, R2, ATanResultValid);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
// Mask if Y>0 && Y!=INF
XMVECTOR YEqualsInfinity = XMVectorIsInfinite(Y);
// Get the sign of (Y&0x80000000)
XMVECTOR YSign = _mm_and_ps(Y, g_XMNegativeZero);
// Get the sign bits of X
XMVECTOR XIsPositive = _mm_and_ps(X,g_XMNegativeZero);
// Change them to masks
XIsPositive = XMVectorEqualInt(XIsPositive,g_XMZero);
// Get Pi
XMVECTOR Pi = _mm_load_ps1(&ATan2Constants.f[0]);
// Copy the sign of Y
Pi = _mm_or_ps(Pi,YSign);
XMVECTOR R1 = XMVectorSelect(Pi,YSign,XIsPositive);
// Mask for X==0
XMVECTOR vConstants = _mm_cmpeq_ps(X,g_XMZero);
// Get Pi/2 with with sign of Y
XMVECTOR PiOverTwo = _mm_load_ps1(&ATan2Constants.f[1]);
PiOverTwo = _mm_or_ps(PiOverTwo,YSign);
XMVECTOR R2 = XMVectorSelect(g_XMNegOneMask,PiOverTwo,vConstants);
// Mask for Y==0
vConstants = _mm_cmpeq_ps(Y,g_XMZero);
R2 = XMVectorSelect(R2,R1,vConstants);
// Get Pi/4 with sign of Y
XMVECTOR PiOverFour = _mm_load_ps1(&ATan2Constants.f[2]);
PiOverFour = _mm_or_ps(PiOverFour,YSign);
// Get (Pi*3)/4 with sign of Y
XMVECTOR ThreePiOverFour = _mm_load_ps1(&ATan2Constants.f[3]);
ThreePiOverFour = _mm_or_ps(ThreePiOverFour,YSign);
vConstants = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
XMVECTOR XEqualsInfinity = XMVectorIsInfinite(X);
vConstants = XMVectorSelect(PiOverTwo,vConstants,XEqualsInfinity);
XMVECTOR vResult = XMVectorSelect(R2,vConstants,YEqualsInfinity);
vConstants = XMVectorSelect(R1,vResult,YEqualsInfinity);
// At this point, any entry that's zero will get the result
// from XMVectorATan(), otherwise, return the failsafe value
vResult = XMVectorSelect(vResult,vConstants,XEqualsInfinity);
// Any entries not 0xFFFFFFFF, are considered precalculated
XMVECTOR ATanResultValid = XMVectorEqualInt(vResult,g_XMNegOneMask);
// Let's do the ATan2 function
vConstants = _mm_div_ps(Y,X);
vConstants = XMVectorATan(vConstants);
// Discard entries that have been declared void
XMVECTOR R3 = XMVectorSelect( Pi, g_XMZero, XIsPositive );
vConstants = _mm_add_ps( vConstants, R3 );
vResult = XMVectorSelect(vResult,vConstants,ATanResultValid);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSinEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V2, V3, V5, V7;
XMVECTOR S1, S2, S3;
XMVECTOR Result;
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
V2 = XMVectorMultiply(V, V);
V3 = XMVectorMultiply(V2, V);
V5 = XMVectorMultiply(V3, V2);
V7 = XMVectorMultiply(V5, V2);
S1 = XMVectorSplatY(g_XMSinEstCoefficients.v);
S2 = XMVectorSplatZ(g_XMSinEstCoefficients.v);
S3 = XMVectorSplatW(g_XMSinEstCoefficients.v);
Result = XMVectorMultiplyAdd(S1, V3, V);
Result = XMVectorMultiplyAdd(S2, V5, Result);
Result = XMVectorMultiplyAdd(S3, V7, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
XMVECTOR V2 = _mm_mul_ps(V,V);
XMVECTOR V3 = _mm_mul_ps(V2,V);
XMVECTOR vResult = _mm_load_ps1(&g_XMSinEstCoefficients.f[1]);
vResult = _mm_mul_ps(vResult,V3);
vResult = _mm_add_ps(vResult,V);
XMVECTOR vConstants = _mm_load_ps1(&g_XMSinEstCoefficients.f[2]);
// V^5
V3 = _mm_mul_ps(V3,V2);
vConstants = _mm_mul_ps(vConstants,V3);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMSinEstCoefficients.f[3]);
// V^7
V3 = _mm_mul_ps(V3,V2);
vConstants = _mm_mul_ps(vConstants,V3);
vResult = _mm_add_ps(vResult,vConstants);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorCosEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V2, V4, V6;
XMVECTOR C0, C1, C2, C3;
XMVECTOR Result;
V2 = XMVectorMultiply(V, V);
V4 = XMVectorMultiply(V2, V2);
V6 = XMVectorMultiply(V4, V2);
C0 = XMVectorSplatX(g_XMCosEstCoefficients.v);
C1 = XMVectorSplatY(g_XMCosEstCoefficients.v);
C2 = XMVectorSplatZ(g_XMCosEstCoefficients.v);
C3 = XMVectorSplatW(g_XMCosEstCoefficients.v);
Result = XMVectorMultiplyAdd(C1, V2, C0);
Result = XMVectorMultiplyAdd(C2, V4, Result);
Result = XMVectorMultiplyAdd(C3, V6, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Get V^2
XMVECTOR V2 = _mm_mul_ps(V,V);
XMVECTOR vResult = _mm_load_ps1(&g_XMCosEstCoefficients.f[1]);
vResult = _mm_mul_ps(vResult,V2);
XMVECTOR vConstants = _mm_load_ps1(&g_XMCosEstCoefficients.f[0]);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMCosEstCoefficients.f[2]);
// Get V^4
XMVECTOR V4 = _mm_mul_ps(V2, V2);
vConstants = _mm_mul_ps(vConstants,V4);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMCosEstCoefficients.f[3]);
// It's really V^6
V4 = _mm_mul_ps(V4,V2);
vConstants = _mm_mul_ps(vConstants,V4);
vResult = _mm_add_ps(vResult,vConstants);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE VOID XMVectorSinCosEst
(
XMVECTOR* pSin,
XMVECTOR* pCos,
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V2, V3, V4, V5, V6, V7;
XMVECTOR S1, S2, S3;
XMVECTOR C0, C1, C2, C3;
XMVECTOR Sin, Cos;
XMASSERT(pSin);
XMASSERT(pCos);
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
// cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! (for -PI <= V < PI)
V2 = XMVectorMultiply(V, V);
V3 = XMVectorMultiply(V2, V);
V4 = XMVectorMultiply(V2, V2);
V5 = XMVectorMultiply(V3, V2);
V6 = XMVectorMultiply(V3, V3);
V7 = XMVectorMultiply(V4, V3);
S1 = XMVectorSplatY(g_XMSinEstCoefficients.v);
S2 = XMVectorSplatZ(g_XMSinEstCoefficients.v);
S3 = XMVectorSplatW(g_XMSinEstCoefficients.v);
C0 = XMVectorSplatX(g_XMCosEstCoefficients.v);
C1 = XMVectorSplatY(g_XMCosEstCoefficients.v);
C2 = XMVectorSplatZ(g_XMCosEstCoefficients.v);
C3 = XMVectorSplatW(g_XMCosEstCoefficients.v);
Sin = XMVectorMultiplyAdd(S1, V3, V);
Sin = XMVectorMultiplyAdd(S2, V5, Sin);
Sin = XMVectorMultiplyAdd(S3, V7, Sin);
Cos = XMVectorMultiplyAdd(C1, V2, C0);
Cos = XMVectorMultiplyAdd(C2, V4, Cos);
Cos = XMVectorMultiplyAdd(C3, V6, Cos);
*pSin = Sin;
*pCos = Cos;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pSin);
XMASSERT(pCos);
XMVECTOR V2, V3, V4, V5, V6, V7;
XMVECTOR S1, S2, S3;
XMVECTOR C0, C1, C2, C3;
XMVECTOR Sin, Cos;
// sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! (for -PI <= V < PI)
// cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! (for -PI <= V < PI)
V2 = XMVectorMultiply(V, V);
V3 = XMVectorMultiply(V2, V);
V4 = XMVectorMultiply(V2, V2);
V5 = XMVectorMultiply(V3, V2);
V6 = XMVectorMultiply(V3, V3);
V7 = XMVectorMultiply(V4, V3);
S1 = _mm_load_ps1(&g_XMSinEstCoefficients.f[1]);
S2 = _mm_load_ps1(&g_XMSinEstCoefficients.f[2]);
S3 = _mm_load_ps1(&g_XMSinEstCoefficients.f[3]);
C0 = _mm_load_ps1(&g_XMCosEstCoefficients.f[0]);
C1 = _mm_load_ps1(&g_XMCosEstCoefficients.f[1]);
C2 = _mm_load_ps1(&g_XMCosEstCoefficients.f[2]);
C3 = _mm_load_ps1(&g_XMCosEstCoefficients.f[3]);
Sin = XMVectorMultiplyAdd(S1, V3, V);
Sin = XMVectorMultiplyAdd(S2, V5, Sin);
Sin = XMVectorMultiplyAdd(S3, V7, Sin);
Cos = XMVectorMultiplyAdd(C1, V2, C0);
Cos = XMVectorMultiplyAdd(C2, V4, Cos);
Cos = XMVectorMultiplyAdd(C3, V6, Cos);
*pSin = Sin;
*pCos = Cos;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorTanEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2, V1T0, V1T1, V2T2;
XMVECTOR T0, T1, T2;
XMVECTOR N, D;
XMVECTOR OneOverPi;
XMVECTOR Result;
OneOverPi = XMVectorSplatW(g_XMTanEstCoefficients.v);
V1 = XMVectorMultiply(V, OneOverPi);
V1 = XMVectorRound(V1);
V1 = XMVectorNegativeMultiplySubtract(g_XMPi.v, V1, V);
T0 = XMVectorSplatX(g_XMTanEstCoefficients.v);
T1 = XMVectorSplatY(g_XMTanEstCoefficients.v);
T2 = XMVectorSplatZ(g_XMTanEstCoefficients.v);
V2T2 = XMVectorNegativeMultiplySubtract(V1, V1, T2);
V2 = XMVectorMultiply(V1, V1);
V1T0 = XMVectorMultiply(V1, T0);
V1T1 = XMVectorMultiply(V1, T1);
D = XMVectorReciprocalEst(V2T2);
N = XMVectorMultiplyAdd(V2, V1T1, V1T0);
Result = XMVectorMultiply(N, D);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1, V2, V1T0, V1T1, V2T2;
XMVECTOR T0, T1, T2;
XMVECTOR N, D;
XMVECTOR OneOverPi;
XMVECTOR Result;
OneOverPi = XMVectorSplatW(g_XMTanEstCoefficients);
V1 = XMVectorMultiply(V, OneOverPi);
V1 = XMVectorRound(V1);
V1 = XMVectorNegativeMultiplySubtract(g_XMPi, V1, V);
T0 = XMVectorSplatX(g_XMTanEstCoefficients);
T1 = XMVectorSplatY(g_XMTanEstCoefficients);
T2 = XMVectorSplatZ(g_XMTanEstCoefficients);
V2T2 = XMVectorNegativeMultiplySubtract(V1, V1, T2);
V2 = XMVectorMultiply(V1, V1);
V1T0 = XMVectorMultiply(V1, T0);
V1T1 = XMVectorMultiply(V1, T1);
D = XMVectorReciprocalEst(V2T2);
N = XMVectorMultiplyAdd(V2, V1T1, V1T0);
Result = XMVectorMultiply(N, D);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorSinHEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = XMVectorMultiplyAdd(V, Scale.v, g_XMNegativeOne.v);
V2 = XMVectorNegativeMultiplySubtract(V, Scale.v, g_XMNegativeOne.v);
E1 = XMVectorExpEst(V1);
E2 = XMVectorExpEst(V2);
Result = XMVectorSubtract(E1, E2);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = _mm_mul_ps(V,Scale);
V1 = _mm_add_ps(V1,g_XMNegativeOne);
V2 = _mm_mul_ps(V,Scale);
V2 = _mm_sub_ps(g_XMNegativeOne,V2);
E1 = XMVectorExpEst(V1);
E2 = XMVectorExpEst(V2);
Result = _mm_sub_ps(E1, E2);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorCosHEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTOR Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = XMVectorMultiplyAdd(V, Scale, g_XMNegativeOne.v);
V2 = XMVectorNegativeMultiplySubtract(V, Scale, g_XMNegativeOne.v);
E1 = XMVectorExpEst(V1);
E2 = XMVectorExpEst(V2);
Result = XMVectorAdd(E1, E2);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1, V2;
XMVECTOR E1, E2;
XMVECTOR Result;
static CONST XMVECTORF32 Scale = {1.442695040888963f, 1.442695040888963f, 1.442695040888963f, 1.442695040888963f}; // 1.0f / ln(2.0f)
V1 = _mm_mul_ps(V,Scale);
V1 = _mm_add_ps(V1,g_XMNegativeOne);
V2 = _mm_mul_ps(V, Scale);
V2 = _mm_sub_ps(g_XMNegativeOne,V2);
E1 = XMVectorExpEst(V1);
E2 = XMVectorExpEst(V2);
Result = _mm_add_ps(E1, E2);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorTanHEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR E;
XMVECTOR Result;
static CONST XMVECTOR Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
E = XMVectorMultiply(V, Scale);
E = XMVectorExpEst(E);
E = XMVectorMultiplyAdd(E, g_XMOneHalf.v, g_XMOneHalf.v);
E = XMVectorReciprocalEst(E);
Result = XMVectorSubtract(g_XMOne.v, E);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 Scale = {2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f, 2.8853900817779268f}; // 2.0f / ln(2.0f)
XMVECTOR E = _mm_mul_ps(V, Scale);
E = XMVectorExpEst(E);
E = _mm_mul_ps(E,g_XMOneHalf);
E = _mm_add_ps(E,g_XMOneHalf);
E = XMVectorReciprocalEst(E);
E = _mm_sub_ps(g_XMOne, E);
return E;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorASinEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR AbsV, V2, VD, VC0, V2C3;
XMVECTOR C0, C1, C2, C3;
XMVECTOR D, Rsq, SqrtD;
XMVECTOR OnePlusEps;
XMVECTOR Result;
AbsV = XMVectorAbs(V);
OnePlusEps = XMVectorSplatX(g_XMASinEstConstants.v);
C0 = XMVectorSplatX(g_XMASinEstCoefficients.v);
C1 = XMVectorSplatY(g_XMASinEstCoefficients.v);
C2 = XMVectorSplatZ(g_XMASinEstCoefficients.v);
C3 = XMVectorSplatW(g_XMASinEstCoefficients.v);
D = XMVectorSubtract(OnePlusEps, AbsV);
Rsq = XMVectorReciprocalSqrtEst(D);
SqrtD = XMVectorMultiply(D, Rsq);
V2 = XMVectorMultiply(V, AbsV);
V2C3 = XMVectorMultiply(V2, C3);
VD = XMVectorMultiply(D, AbsV);
VC0 = XMVectorMultiply(V, C0);
Result = XMVectorMultiply(V, C1);
Result = XMVectorMultiplyAdd(V2, C2, Result);
Result = XMVectorMultiplyAdd(V2C3, VD, Result);
Result = XMVectorMultiplyAdd(VC0, SqrtD, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Get abs(V)
XMVECTOR vAbsV = _mm_setzero_ps();
vAbsV = _mm_sub_ps(vAbsV,V);
vAbsV = _mm_max_ps(vAbsV,V);
XMVECTOR D = _mm_load_ps1(&g_XMASinEstConstants.f[0]);
D = _mm_sub_ps(D,vAbsV);
// Since this is an estimate, rqsrt is okay
XMVECTOR vConstants = _mm_rsqrt_ps(D);
XMVECTOR SqrtD = _mm_mul_ps(D,vConstants);
// V2 = V^2 retaining sign
XMVECTOR V2 = _mm_mul_ps(V,vAbsV);
D = _mm_mul_ps(D,vAbsV);
XMVECTOR vResult = _mm_load_ps1(&g_XMASinEstCoefficients.f[1]);
vResult = _mm_mul_ps(vResult,V);
vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[2]);
vConstants = _mm_mul_ps(vConstants,V2);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[3]);
vConstants = _mm_mul_ps(vConstants,V2);
vConstants = _mm_mul_ps(vConstants,D);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[0]);
vConstants = _mm_mul_ps(vConstants,V);
vConstants = _mm_mul_ps(vConstants,SqrtD);
vResult = _mm_add_ps(vResult,vConstants);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorACosEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR AbsV, V2, VD, VC0, V2C3;
XMVECTOR C0, C1, C2, C3;
XMVECTOR D, Rsq, SqrtD;
XMVECTOR OnePlusEps, HalfPi;
XMVECTOR Result;
// acos(V) = PI / 2 - asin(V)
AbsV = XMVectorAbs(V);
OnePlusEps = XMVectorSplatX(g_XMASinEstConstants.v);
HalfPi = XMVectorSplatY(g_XMASinEstConstants.v);
C0 = XMVectorSplatX(g_XMASinEstCoefficients.v);
C1 = XMVectorSplatY(g_XMASinEstCoefficients.v);
C2 = XMVectorSplatZ(g_XMASinEstCoefficients.v);
C3 = XMVectorSplatW(g_XMASinEstCoefficients.v);
D = XMVectorSubtract(OnePlusEps, AbsV);
Rsq = XMVectorReciprocalSqrtEst(D);
SqrtD = XMVectorMultiply(D, Rsq);
V2 = XMVectorMultiply(V, AbsV);
V2C3 = XMVectorMultiply(V2, C3);
VD = XMVectorMultiply(D, AbsV);
VC0 = XMVectorMultiply(V, C0);
Result = XMVectorMultiply(V, C1);
Result = XMVectorMultiplyAdd(V2, C2, Result);
Result = XMVectorMultiplyAdd(V2C3, VD, Result);
Result = XMVectorMultiplyAdd(VC0, SqrtD, Result);
Result = XMVectorSubtract(HalfPi, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// acos(V) = PI / 2 - asin(V)
// Get abs(V)
XMVECTOR vAbsV = _mm_setzero_ps();
vAbsV = _mm_sub_ps(vAbsV,V);
vAbsV = _mm_max_ps(vAbsV,V);
// Calc D
XMVECTOR D = _mm_load_ps1(&g_XMASinEstConstants.f[0]);
D = _mm_sub_ps(D,vAbsV);
// SqrtD = sqrt(D-abs(V)) estimated
XMVECTOR vConstants = _mm_rsqrt_ps(D);
XMVECTOR SqrtD = _mm_mul_ps(D,vConstants);
// V2 = V^2 while retaining sign
XMVECTOR V2 = _mm_mul_ps(V, vAbsV);
// Drop vAbsV here. D = (Const-abs(V))*abs(V)
D = _mm_mul_ps(D, vAbsV);
XMVECTOR vResult = _mm_load_ps1(&g_XMASinEstCoefficients.f[1]);
vResult = _mm_mul_ps(vResult,V);
vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[2]);
vConstants = _mm_mul_ps(vConstants,V2);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[3]);
vConstants = _mm_mul_ps(vConstants,V2);
vConstants = _mm_mul_ps(vConstants,D);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMASinEstCoefficients.f[0]);
vConstants = _mm_mul_ps(vConstants,V);
vConstants = _mm_mul_ps(vConstants,SqrtD);
vResult = _mm_add_ps(vResult,vConstants);
vConstants = _mm_load_ps1(&g_XMASinEstConstants.f[1]);
vResult = _mm_sub_ps(vConstants,vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorATanEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR AbsV, V2S2, N, D;
XMVECTOR S0, S1, S2;
XMVECTOR HalfPi;
XMVECTOR Result;
S0 = XMVectorSplatX(g_XMATanEstCoefficients.v);
S1 = XMVectorSplatY(g_XMATanEstCoefficients.v);
S2 = XMVectorSplatZ(g_XMATanEstCoefficients.v);
HalfPi = XMVectorSplatW(g_XMATanEstCoefficients.v);
AbsV = XMVectorAbs(V);
V2S2 = XMVectorMultiplyAdd(V, V, S2);
N = XMVectorMultiplyAdd(AbsV, HalfPi, S0);
D = XMVectorMultiplyAdd(AbsV, S1, V2S2);
N = XMVectorMultiply(N, V);
D = XMVectorReciprocalEst(D);
Result = XMVectorMultiply(N, D);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Get abs(V)
XMVECTOR vAbsV = _mm_setzero_ps();
vAbsV = _mm_sub_ps(vAbsV,V);
vAbsV = _mm_max_ps(vAbsV,V);
XMVECTOR vResult = _mm_load_ps1(&g_XMATanEstCoefficients.f[3]);
vResult = _mm_mul_ps(vResult,vAbsV);
XMVECTOR vConstants = _mm_load_ps1(&g_XMATanEstCoefficients.f[0]);
vResult = _mm_add_ps(vResult,vConstants);
vResult = _mm_mul_ps(vResult,V);
XMVECTOR D = _mm_mul_ps(V,V);
vConstants = _mm_load_ps1(&g_XMATanEstCoefficients.f[2]);
D = _mm_add_ps(D,vConstants);
vConstants = _mm_load_ps1(&g_XMATanEstCoefficients.f[1]);
vConstants = _mm_mul_ps(vConstants,vAbsV);
D = _mm_add_ps(D,vConstants);
vResult = _mm_div_ps(vResult,D);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorATan2Est
(
FXMVECTOR Y,
FXMVECTOR X
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Reciprocal;
XMVECTOR V;
XMVECTOR YSign;
XMVECTOR Pi, PiOverTwo, PiOverFour, ThreePiOverFour;
XMVECTOR YEqualsZero, XEqualsZero, XIsPositive, YEqualsInfinity, XEqualsInfinity;
XMVECTOR ATanResultValid;
XMVECTOR R0, R1, R2, R3, R4, R5;
XMVECTOR Zero;
XMVECTOR Result;
static CONST XMVECTOR ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
Zero = XMVectorZero();
ATanResultValid = XMVectorTrueInt();
Pi = XMVectorSplatX(ATan2Constants);
PiOverTwo = XMVectorSplatY(ATan2Constants);
PiOverFour = XMVectorSplatZ(ATan2Constants);
ThreePiOverFour = XMVectorSplatW(ATan2Constants);
YEqualsZero = XMVectorEqual(Y, Zero);
XEqualsZero = XMVectorEqual(X, Zero);
XIsPositive = XMVectorAndInt(X, g_XMNegativeZero.v);
XIsPositive = XMVectorEqualInt(XIsPositive, Zero);
YEqualsInfinity = XMVectorIsInfinite(Y);
XEqualsInfinity = XMVectorIsInfinite(X);
YSign = XMVectorAndInt(Y, g_XMNegativeZero.v);
Pi = XMVectorOrInt(Pi, YSign);
PiOverTwo = XMVectorOrInt(PiOverTwo, YSign);
PiOverFour = XMVectorOrInt(PiOverFour, YSign);
ThreePiOverFour = XMVectorOrInt(ThreePiOverFour, YSign);
R1 = XMVectorSelect(Pi, YSign, XIsPositive);
R2 = XMVectorSelect(ATanResultValid, PiOverTwo, XEqualsZero);
R3 = XMVectorSelect(R2, R1, YEqualsZero);
R4 = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
R5 = XMVectorSelect(PiOverTwo, R4, XEqualsInfinity);
Result = XMVectorSelect(R3, R5, YEqualsInfinity);
ATanResultValid = XMVectorEqualInt(Result, ATanResultValid);
Reciprocal = XMVectorReciprocalEst(X);
V = XMVectorMultiply(Y, Reciprocal);
R0 = XMVectorATanEst(V);
R1 = XMVectorSelect( Pi, Zero, XIsPositive );
R2 = XMVectorAdd(R0, R1);
Result = XMVectorSelect(Result, R2, ATanResultValid);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static CONST XMVECTORF32 ATan2Constants = {XM_PI, XM_PIDIV2, XM_PIDIV4, XM_PI * 3.0f / 4.0f};
// Mask if Y>0 && Y!=INF
XMVECTOR YEqualsInfinity = XMVectorIsInfinite(Y);
// Get the sign of (Y&0x80000000)
XMVECTOR YSign = _mm_and_ps(Y, g_XMNegativeZero);
// Get the sign bits of X
XMVECTOR XIsPositive = _mm_and_ps(X,g_XMNegativeZero);
// Change them to masks
XIsPositive = XMVectorEqualInt(XIsPositive,g_XMZero);
// Get Pi
XMVECTOR Pi = _mm_load_ps1(&ATan2Constants.f[0]);
// Copy the sign of Y
Pi = _mm_or_ps(Pi,YSign);
XMVECTOR R1 = XMVectorSelect(Pi,YSign,XIsPositive);
// Mask for X==0
XMVECTOR vConstants = _mm_cmpeq_ps(X,g_XMZero);
// Get Pi/2 with with sign of Y
XMVECTOR PiOverTwo = _mm_load_ps1(&ATan2Constants.f[1]);
PiOverTwo = _mm_or_ps(PiOverTwo,YSign);
XMVECTOR R2 = XMVectorSelect(g_XMNegOneMask,PiOverTwo,vConstants);
// Mask for Y==0
vConstants = _mm_cmpeq_ps(Y,g_XMZero);
R2 = XMVectorSelect(R2,R1,vConstants);
// Get Pi/4 with sign of Y
XMVECTOR PiOverFour = _mm_load_ps1(&ATan2Constants.f[2]);
PiOverFour = _mm_or_ps(PiOverFour,YSign);
// Get (Pi*3)/4 with sign of Y
XMVECTOR ThreePiOverFour = _mm_load_ps1(&ATan2Constants.f[3]);
ThreePiOverFour = _mm_or_ps(ThreePiOverFour,YSign);
vConstants = XMVectorSelect(ThreePiOverFour, PiOverFour, XIsPositive);
XMVECTOR XEqualsInfinity = XMVectorIsInfinite(X);
vConstants = XMVectorSelect(PiOverTwo,vConstants,XEqualsInfinity);
XMVECTOR vResult = XMVectorSelect(R2,vConstants,YEqualsInfinity);
vConstants = XMVectorSelect(R1,vResult,YEqualsInfinity);
// At this point, any entry that's zero will get the result
// from XMVectorATan(), otherwise, return the failsafe value
vResult = XMVectorSelect(vResult,vConstants,XEqualsInfinity);
// Any entries not 0xFFFFFFFF, are considered precalculated
XMVECTOR ATanResultValid = XMVectorEqualInt(vResult,g_XMNegOneMask);
// Let's do the ATan2 function
XMVECTOR Reciprocal = _mm_rcp_ps(X);
vConstants = _mm_mul_ps(Y, Reciprocal);
vConstants = XMVectorATanEst(vConstants);
// Discard entries that have been declared void
XMVECTOR R3 = XMVectorSelect( Pi, g_XMZero, XIsPositive );
vConstants = _mm_add_ps( vConstants, R3 );
vResult = XMVectorSelect(vResult,vConstants,ATanResultValid);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorLerp
(
FXMVECTOR V0,
FXMVECTOR V1,
FLOAT t
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Scale;
XMVECTOR Length;
XMVECTOR Result;
// V0 + t * (V1 - V0)
Scale = XMVectorReplicate(t);
Length = XMVectorSubtract(V1, V0);
Result = XMVectorMultiplyAdd(Length, Scale, V0);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR L, S;
XMVECTOR Result;
L = _mm_sub_ps( V1, V0 );
S = _mm_set_ps1( t );
Result = _mm_mul_ps( L, S );
return _mm_add_ps( Result, V0 );
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorLerpV
(
FXMVECTOR V0,
FXMVECTOR V1,
FXMVECTOR T
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Length;
XMVECTOR Result;
// V0 + T * (V1 - V0)
Length = XMVectorSubtract(V1, V0);
Result = XMVectorMultiplyAdd(Length, T, V0);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Length;
XMVECTOR Result;
Length = _mm_sub_ps( V1, V0 );
Result = _mm_mul_ps( Length, T );
return _mm_add_ps( Result, V0 );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorHermite
(
FXMVECTOR Position0,
FXMVECTOR Tangent0,
FXMVECTOR Position1,
CXMVECTOR Tangent1,
FLOAT t
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR P0;
XMVECTOR T0;
XMVECTOR P1;
XMVECTOR T1;
XMVECTOR Result;
FLOAT t2;
FLOAT t3;
// Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
// (t^3 - 2 * t^2 + t) * Tangent0 +
// (-2 * t^3 + 3 * t^2) * Position1 +
// (t^3 - t^2) * Tangent1
t2 = t * t;
t3 = t * t2;
P0 = XMVectorReplicate(2.0f * t3 - 3.0f * t2 + 1.0f);
T0 = XMVectorReplicate(t3 - 2.0f * t2 + t);
P1 = XMVectorReplicate(-2.0f * t3 + 3.0f * t2);
T1 = XMVectorReplicate(t3 - t2);
Result = XMVectorMultiply(P0, Position0);
Result = XMVectorMultiplyAdd(T0, Tangent0, Result);
Result = XMVectorMultiplyAdd(P1, Position1, Result);
Result = XMVectorMultiplyAdd(T1, Tangent1, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
FLOAT t2 = t * t;
FLOAT t3 = t * t2;
XMVECTOR P0 = _mm_set_ps1(2.0f * t3 - 3.0f * t2 + 1.0f);
XMVECTOR T0 = _mm_set_ps1(t3 - 2.0f * t2 + t);
XMVECTOR P1 = _mm_set_ps1(-2.0f * t3 + 3.0f * t2);
XMVECTOR T1 = _mm_set_ps1(t3 - t2);
XMVECTOR vResult = _mm_mul_ps(P0, Position0);
XMVECTOR vTemp = _mm_mul_ps(T0, Tangent0);
vResult = _mm_add_ps(vResult,vTemp);
vTemp = _mm_mul_ps(P1, Position1);
vResult = _mm_add_ps(vResult,vTemp);
vTemp = _mm_mul_ps(T1, Tangent1);
vResult = _mm_add_ps(vResult,vTemp);
return vResult;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorHermiteV
(
FXMVECTOR Position0,
FXMVECTOR Tangent0,
FXMVECTOR Position1,
CXMVECTOR Tangent1,
CXMVECTOR T
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR P0;
XMVECTOR T0;
XMVECTOR P1;
XMVECTOR T1;
XMVECTOR Result;
XMVECTOR T2;
XMVECTOR T3;
// Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
// (t^3 - 2 * t^2 + t) * Tangent0 +
// (-2 * t^3 + 3 * t^2) * Position1 +
// (t^3 - t^2) * Tangent1
T2 = XMVectorMultiply(T, T);
T3 = XMVectorMultiply(T , T2);
P0 = XMVectorReplicate(2.0f * T3.vector4_f32[0] - 3.0f * T2.vector4_f32[0] + 1.0f);
T0 = XMVectorReplicate(T3.vector4_f32[1] - 2.0f * T2.vector4_f32[1] + T.vector4_f32[1]);
P1 = XMVectorReplicate(-2.0f * T3.vector4_f32[2] + 3.0f * T2.vector4_f32[2]);
T1 = XMVectorReplicate(T3.vector4_f32[3] - T2.vector4_f32[3]);
Result = XMVectorMultiply(P0, Position0);
Result = XMVectorMultiplyAdd(T0, Tangent0, Result);
Result = XMVectorMultiplyAdd(P1, Position1, Result);
Result = XMVectorMultiplyAdd(T1, Tangent1, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 CatMulT2 = {-3.0f,-2.0f,3.0f,-1.0f};
static const XMVECTORF32 CatMulT3 = {2.0f,1.0f,-2.0f,1.0f};
// Result = (2 * t^3 - 3 * t^2 + 1) * Position0 +
// (t^3 - 2 * t^2 + t) * Tangent0 +
// (-2 * t^3 + 3 * t^2) * Position1 +
// (t^3 - t^2) * Tangent1
XMVECTOR T2 = _mm_mul_ps(T,T);
XMVECTOR T3 = _mm_mul_ps(T,T2);
// Mul by the constants against t^2
T2 = _mm_mul_ps(T2,CatMulT2);
// Mul by the constants against t^3
T3 = _mm_mul_ps(T3,CatMulT3);
// T3 now has the pre-result.
T3 = _mm_add_ps(T3,T2);
// I need to add t.y only
T2 = _mm_and_ps(T,g_XMMaskY);
T3 = _mm_add_ps(T3,T2);
// Add 1.0f to x
T3 = _mm_add_ps(T3,g_XMIdentityR0);
// Now, I have the constants created
// Mul the x constant to Position0
XMVECTOR vResult = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,Position0);
// Mul the y constant to Tangent0
T2 = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(1,1,1,1));
T2 = _mm_mul_ps(T2,Tangent0);
vResult = _mm_add_ps(vResult,T2);
// Mul the z constant to Position1
T2 = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(2,2,2,2));
T2 = _mm_mul_ps(T2,Position1);
vResult = _mm_add_ps(vResult,T2);
// Mul the w constant to Tangent1
T3 = _mm_shuffle_ps(T3,T3,_MM_SHUFFLE(3,3,3,3));
T3 = _mm_mul_ps(T3,Tangent1);
vResult = _mm_add_ps(vResult,T3);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorCatmullRom
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
CXMVECTOR Position3,
FLOAT t
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR P0;
XMVECTOR P1;
XMVECTOR P2;
XMVECTOR P3;
XMVECTOR Result;
FLOAT t2;
FLOAT t3;
// Result = ((-t^3 + 2 * t^2 - t) * Position0 +
// (3 * t^3 - 5 * t^2 + 2) * Position1 +
// (-3 * t^3 + 4 * t^2 + t) * Position2 +
// (t^3 - t^2) * Position3) * 0.5
t2 = t * t;
t3 = t * t2;
P0 = XMVectorReplicate((-t3 + 2.0f * t2 - t) * 0.5f);
P1 = XMVectorReplicate((3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f);
P2 = XMVectorReplicate((-3.0f * t3 + 4.0f * t2 + t) * 0.5f);
P3 = XMVectorReplicate((t3 - t2) * 0.5f);
Result = XMVectorMultiply(P0, Position0);
Result = XMVectorMultiplyAdd(P1, Position1, Result);
Result = XMVectorMultiplyAdd(P2, Position2, Result);
Result = XMVectorMultiplyAdd(P3, Position3, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
FLOAT t2 = t * t;
FLOAT t3 = t * t2;
XMVECTOR P0 = _mm_set_ps1((-t3 + 2.0f * t2 - t) * 0.5f);
XMVECTOR P1 = _mm_set_ps1((3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f);
XMVECTOR P2 = _mm_set_ps1((-3.0f * t3 + 4.0f * t2 + t) * 0.5f);
XMVECTOR P3 = _mm_set_ps1((t3 - t2) * 0.5f);
P0 = _mm_mul_ps(P0, Position0);
P1 = _mm_mul_ps(P1, Position1);
P2 = _mm_mul_ps(P2, Position2);
P3 = _mm_mul_ps(P3, Position3);
P0 = _mm_add_ps(P0,P1);
P2 = _mm_add_ps(P2,P3);
P0 = _mm_add_ps(P0,P2);
return P0;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorCatmullRomV
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
CXMVECTOR Position3,
CXMVECTOR T
)
{
#if defined(_XM_NO_INTRINSICS_)
float fx = T.vector4_f32[0];
float fy = T.vector4_f32[1];
float fz = T.vector4_f32[2];
float fw = T.vector4_f32[3];
XMVECTOR vResult = {
0.5f*((-fx*fx*fx+2*fx*fx-fx)*Position0.vector4_f32[0]+
(3*fx*fx*fx-5*fx*fx+2)*Position1.vector4_f32[0]+
(-3*fx*fx*fx+4*fx*fx+fx)*Position2.vector4_f32[0]+
(fx*fx*fx-fx*fx)*Position3.vector4_f32[0]),
0.5f*((-fy*fy*fy+2*fy*fy-fy)*Position0.vector4_f32[1]+
(3*fy*fy*fy-5*fy*fy+2)*Position1.vector4_f32[1]+
(-3*fy*fy*fy+4*fy*fy+fy)*Position2.vector4_f32[1]+
(fy*fy*fy-fy*fy)*Position3.vector4_f32[1]),
0.5f*((-fz*fz*fz+2*fz*fz-fz)*Position0.vector4_f32[2]+
(3*fz*fz*fz-5*fz*fz+2)*Position1.vector4_f32[2]+
(-3*fz*fz*fz+4*fz*fz+fz)*Position2.vector4_f32[2]+
(fz*fz*fz-fz*fz)*Position3.vector4_f32[2]),
0.5f*((-fw*fw*fw+2*fw*fw-fw)*Position0.vector4_f32[3]+
(3*fw*fw*fw-5*fw*fw+2)*Position1.vector4_f32[3]+
(-3*fw*fw*fw+4*fw*fw+fw)*Position2.vector4_f32[3]+
(fw*fw*fw-fw*fw)*Position3.vector4_f32[3])
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 Catmul2 = {2.0f,2.0f,2.0f,2.0f};
static const XMVECTORF32 Catmul3 = {3.0f,3.0f,3.0f,3.0f};
static const XMVECTORF32 Catmul4 = {4.0f,4.0f,4.0f,4.0f};
static const XMVECTORF32 Catmul5 = {5.0f,5.0f,5.0f,5.0f};
// Cache T^2 and T^3
XMVECTOR T2 = _mm_mul_ps(T,T);
XMVECTOR T3 = _mm_mul_ps(T,T2);
// Perform the Position0 term
XMVECTOR vResult = _mm_add_ps(T2,T2);
vResult = _mm_sub_ps(vResult,T);
vResult = _mm_sub_ps(vResult,T3);
vResult = _mm_mul_ps(vResult,Position0);
// Perform the Position1 term and add
XMVECTOR vTemp = _mm_mul_ps(T3,Catmul3);
XMVECTOR vTemp2 = _mm_mul_ps(T2,Catmul5);
vTemp = _mm_sub_ps(vTemp,vTemp2);
vTemp = _mm_add_ps(vTemp,Catmul2);
vTemp = _mm_mul_ps(vTemp,Position1);
vResult = _mm_add_ps(vResult,vTemp);
// Perform the Position2 term and add
vTemp = _mm_mul_ps(T2,Catmul4);
vTemp2 = _mm_mul_ps(T3,Catmul3);
vTemp = _mm_sub_ps(vTemp,vTemp2);
vTemp = _mm_add_ps(vTemp,T);
vTemp = _mm_mul_ps(vTemp,Position2);
vResult = _mm_add_ps(vResult,vTemp);
// Position3 is the last term
T3 = _mm_sub_ps(T3,T2);
T3 = _mm_mul_ps(T3,Position3);
vResult = _mm_add_ps(vResult,T3);
// Multiply by 0.5f and exit
vResult = _mm_mul_ps(vResult,g_XMOneHalf);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorBaryCentric
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
FLOAT f,
FLOAT g
)
{
#if defined(_XM_NO_INTRINSICS_)
// Result = Position0 + f * (Position1 - Position0) + g * (Position2 - Position0)
XMVECTOR P10;
XMVECTOR P20;
XMVECTOR ScaleF;
XMVECTOR ScaleG;
XMVECTOR Result;
P10 = XMVectorSubtract(Position1, Position0);
ScaleF = XMVectorReplicate(f);
P20 = XMVectorSubtract(Position2, Position0);
ScaleG = XMVectorReplicate(g);
Result = XMVectorMultiplyAdd(P10, ScaleF, Position0);
Result = XMVectorMultiplyAdd(P20, ScaleG, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR R1 = _mm_sub_ps(Position1,Position0);
XMVECTOR SF = _mm_set_ps1(f);
XMVECTOR R2 = _mm_sub_ps(Position2,Position0);
XMVECTOR SG = _mm_set_ps1(g);
R1 = _mm_mul_ps(R1,SF);
R2 = _mm_mul_ps(R2,SG);
R1 = _mm_add_ps(R1,Position0);
R1 = _mm_add_ps(R1,R2);
return R1;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVectorBaryCentricV
(
FXMVECTOR Position0,
FXMVECTOR Position1,
FXMVECTOR Position2,
CXMVECTOR F,
CXMVECTOR G
)
{
#if defined(_XM_NO_INTRINSICS_)
// Result = Position0 + f * (Position1 - Position0) + g * (Position2 - Position0)
XMVECTOR P10;
XMVECTOR P20;
XMVECTOR Result;
P10 = XMVectorSubtract(Position1, Position0);
P20 = XMVectorSubtract(Position2, Position0);
Result = XMVectorMultiplyAdd(P10, F, Position0);
Result = XMVectorMultiplyAdd(P20, G, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR R1 = _mm_sub_ps(Position1,Position0);
XMVECTOR R2 = _mm_sub_ps(Position2,Position0);
R1 = _mm_mul_ps(R1,F);
R2 = _mm_mul_ps(R2,G);
R1 = _mm_add_ps(R1,Position0);
R1 = _mm_add_ps(R1,R2);
return R1;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
/****************************************************************************
*
* 2D Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2Equal
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
// z and w are don't care
return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector2EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector2EqualR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] == V2.vector4_f32[0]) &&
(V1.vector4_f32[1] == V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) &&
(V1.vector4_f32[1] != V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
// z and w are don't care
int iTest = _mm_movemask_ps(vTemp)&3;
UINT CR = 0;
if (iTest==3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2EqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&3)==3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector2EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector2EqualIntR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_u32[0] == V2.vector4_u32[0]) &&
(V1.vector4_u32[1] == V2.vector4_u32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_u32[0] != V2.vector4_u32[0]) &&
(V1.vector4_u32[1] != V2.vector4_u32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
int iTest = _mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&3;
UINT CR = 0;
if (iTest==3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2NearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT dx, dy;
dx = fabsf(V1.vector4_f32[0]-V2.vector4_f32[0]);
dy = fabsf(V1.vector4_f32[1]-V2.vector4_f32[1]);
return ((dx <= Epsilon.vector4_f32[0]) &&
(dy <= Epsilon.vector4_f32[1]));
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1,V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp,vDelta);
vTemp = _mm_max_ps(vTemp,vDelta);
vTemp = _mm_cmple_ps(vTemp,Epsilon);
// z and w are don't care
return (((_mm_movemask_ps(vTemp)&3)==0x3) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2NotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
// z and w are don't care
return (((_mm_movemask_ps(vTemp)&3)!=3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAnyFalse(XMVector2EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2NotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&3)!=3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAnyFalse(XMVector2EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2Greater
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
// z and w are don't care
return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector2GreaterR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector2GreaterR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] > V2.vector4_f32[0]) &&
(V1.vector4_f32[1] > V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] <= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] <= V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
int iTest = _mm_movemask_ps(vTemp)&3;
UINT CR = 0;
if (iTest==3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2GreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector2GreaterOrEqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector2GreaterOrEqualR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] >= V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) &&
(V1.vector4_f32[1] < V2.vector4_f32[1]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
int iTest = _mm_movemask_ps(vTemp)&3;
UINT CR = 0;
if (iTest == 3)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2Less
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmplt_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector2GreaterR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2LessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmple_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&3)==3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector2GreaterOrEqualR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2InBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
// x and y in bounds? (z and w are don't care)
return (((_mm_movemask_ps(vTemp1)&0x3)==0x3) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllInBounds(XMVector2InBoundsR(V, Bounds));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector2InBoundsR
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]))
{
CR = XM_CRMASK_CR6BOUNDS;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
// x and y in bounds? (z and w are don't care)
return ((_mm_movemask_ps(vTemp1)&0x3)==0x3) ? XM_CRMASK_CR6BOUNDS : 0;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2IsNaN
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISNAN(V.vector4_f32[0]) ||
XMISNAN(V.vector4_f32[1]));
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the exponent
__m128i vTempInf = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMInfinity);
// Mask off the mantissa
__m128i vTempNan = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMQNaNTest);
// Are any of the exponents == 0x7F800000?
vTempInf = _mm_cmpeq_epi32(vTempInf,g_XMInfinity);
// Are any of the mantissa's zero? (SSE2 doesn't have a neq test)
vTempNan = _mm_cmpeq_epi32(vTempNan,g_XMZero);
// Perform a not on the NaN test to be true on NON-zero mantissas
vTempNan = _mm_andnot_si128(vTempNan,vTempInf);
// If x or y are NaN, the signs are true after the merge above
return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTempNan)[0])&3) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector2IsInfinite
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISINF(V.vector4_f32[0]) ||
XMISINF(V.vector4_f32[1]));
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
__m128 vTemp = _mm_and_ps(V,g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
// If x or z are infinity, the signs are true.
return ((_mm_movemask_ps(vTemp)&3) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Dot
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] =
Result.vector4_f32[1] =
Result.vector4_f32[2] =
Result.vector4_f32[3] = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V1,V2);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Cross
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fCross = (V1.vector4_f32[0] * V2.vector4_f32[1]) - (V1.vector4_f32[1] * V2.vector4_f32[0]);
XMVECTOR vResult = {
fCross,
fCross,
fCross,
fCross
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Swap x and y
XMVECTOR vResult = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(0,1,0,1));
// Perform the muls
vResult = _mm_mul_ps(vResult,V1);
// Splat y
XMVECTOR vTemp = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(1,1,1,1));
// Sub the values
vResult = _mm_sub_ss(vResult,vTemp);
// Splat the cross product
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,0,0,0));
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2LengthSq
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return XMVector2Dot(V, V);
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
return vLengthSq;
#else
return XMVector2Dot(V, V);
#endif
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2ReciprocalLengthEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorReciprocalSqrtEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_rsqrt_ss(vLengthSq);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2ReciprocalLength
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorReciprocalSqrt(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_sqrt_ss(vLengthSq);
vLengthSq = _mm_div_ss(g_XMOne,vLengthSq);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2LengthEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorSqrtEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_sqrt_ss(vLengthSq);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Length
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2LengthSq(V);
Result = XMVectorSqrt(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// XMVector2NormalizeEst uses a reciprocal estimate and
// returns QNaN on zero and infinite vectors.
XMFINLINE XMVECTOR XMVector2NormalizeEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector2ReciprocalLength(V);
Result = XMVectorMultiply(V, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has y splatted
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
// x+y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_rsqrt_ss(vLengthSq);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
vLengthSq = _mm_mul_ps(vLengthSq,V);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Normalize
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fLength;
XMVECTOR vResult;
vResult = XMVector2Length( V );
fLength = vResult.vector4_f32[0];
// Prevent divide by zero
if (fLength > 0) {
fLength = 1.0f/fLength;
}
vResult.vector4_f32[0] = V.vector4_f32[0]*fLength;
vResult.vector4_f32[1] = V.vector4_f32[1]*fLength;
vResult.vector4_f32[2] = V.vector4_f32[2]*fLength;
vResult.vector4_f32[3] = V.vector4_f32[3]*fLength;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x and y only
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,1,1,1));
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
// Reciprocal mul to perform the normalization
vResult = _mm_div_ps(V,vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult,vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
vResult = _mm_or_ps(vTemp1,vTemp2);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2ClampLength
(
FXMVECTOR V,
FLOAT LengthMin,
FLOAT LengthMax
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR ClampMax;
XMVECTOR ClampMin;
ClampMax = XMVectorReplicate(LengthMax);
ClampMin = XMVectorReplicate(LengthMin);
return XMVector2ClampLengthV(V, ClampMin, ClampMax);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR ClampMax = _mm_set_ps1(LengthMax);
XMVECTOR ClampMin = _mm_set_ps1(LengthMin);
return XMVector2ClampLengthV(V, ClampMin, ClampMax);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2ClampLengthV
(
FXMVECTOR V,
FXMVECTOR LengthMin,
FXMVECTOR LengthMax
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR ClampLength;
XMVECTOR LengthSq;
XMVECTOR RcpLength;
XMVECTOR Length;
XMVECTOR Normal;
XMVECTOR Zero;
XMVECTOR InfiniteLength;
XMVECTOR ZeroLength;
XMVECTOR Select;
XMVECTOR ControlMax;
XMVECTOR ControlMin;
XMVECTOR Control;
XMVECTOR Result;
XMASSERT((LengthMin.vector4_f32[1] == LengthMin.vector4_f32[0]));
XMASSERT((LengthMax.vector4_f32[1] == LengthMax.vector4_f32[0]));
XMASSERT(XMVector2GreaterOrEqual(LengthMin, XMVectorZero()));
XMASSERT(XMVector2GreaterOrEqual(LengthMax, XMVectorZero()));
XMASSERT(XMVector2GreaterOrEqual(LengthMax, LengthMin));
LengthSq = XMVector2LengthSq(V);
Zero = XMVectorZero();
RcpLength = XMVectorReciprocalSqrt(LengthSq);
InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
ZeroLength = XMVectorEqual(LengthSq, Zero);
Length = XMVectorMultiply(LengthSq, RcpLength);
Normal = XMVectorMultiply(V, RcpLength);
Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
ControlMax = XMVectorGreater(Length, LengthMax);
ControlMin = XMVectorLess(Length, LengthMin);
ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
Result = XMVectorMultiply(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR ClampLength;
XMVECTOR LengthSq;
XMVECTOR RcpLength;
XMVECTOR Length;
XMVECTOR Normal;
XMVECTOR InfiniteLength;
XMVECTOR ZeroLength;
XMVECTOR Select;
XMVECTOR ControlMax;
XMVECTOR ControlMin;
XMVECTOR Control;
XMVECTOR Result;
XMASSERT((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)));
XMASSERT((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)));
XMASSERT(XMVector2GreaterOrEqual(LengthMin, g_XMZero));
XMASSERT(XMVector2GreaterOrEqual(LengthMax, g_XMZero));
XMASSERT(XMVector2GreaterOrEqual(LengthMax, LengthMin));
LengthSq = XMVector2LengthSq(V);
RcpLength = XMVectorReciprocalSqrt(LengthSq);
InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity);
ZeroLength = XMVectorEqual(LengthSq, g_XMZero);
Length = _mm_mul_ps(LengthSq, RcpLength);
Normal = _mm_mul_ps(V, RcpLength);
Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
ControlMax = XMVectorGreater(Length, LengthMax);
ControlMin = XMVectorLess(Length, LengthMin);
ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
Result = _mm_mul_ps(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Reflect
(
FXMVECTOR Incident,
FXMVECTOR Normal
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
Result = XMVector2Dot(Incident, Normal);
Result = XMVectorAdd(Result, Result);
Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
XMVECTOR Result = XMVector2Dot(Incident,Normal);
Result = _mm_add_ps(Result, Result);
Result = _mm_mul_ps(Result, Normal);
Result = _mm_sub_ps(Incident,Result);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Refract
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FLOAT RefractionIndex
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Index;
Index = XMVectorReplicate(RefractionIndex);
return XMVector2RefractV(Incident, Normal, Index);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Index = _mm_set_ps1(RefractionIndex);
return XMVector2RefractV(Incident,Normal,Index);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Return the refraction of a 2D vector
XMFINLINE XMVECTOR XMVector2RefractV
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FXMVECTOR RefractionIndex
)
{
#if defined(_XM_NO_INTRINSICS_)
float IDotN;
float RX,RY;
XMVECTOR vResult;
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
IDotN = (Incident.vector4_f32[0]*Normal.vector4_f32[0])+(Incident.vector4_f32[1]*Normal.vector4_f32[1]);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
RY = 1.0f-(IDotN*IDotN);
RX = 1.0f-(RY*RefractionIndex.vector4_f32[0]*RefractionIndex.vector4_f32[0]);
RY = 1.0f-(RY*RefractionIndex.vector4_f32[1]*RefractionIndex.vector4_f32[1]);
if (RX>=0.0f) {
RX = (RefractionIndex.vector4_f32[0]*Incident.vector4_f32[0])-(Normal.vector4_f32[0]*((RefractionIndex.vector4_f32[0]*IDotN)+sqrtf(RX)));
} else {
RX = 0.0f;
}
if (RY>=0.0f) {
RY = (RefractionIndex.vector4_f32[1]*Incident.vector4_f32[1])-(Normal.vector4_f32[1]*((RefractionIndex.vector4_f32[1]*IDotN)+sqrtf(RY)));
} else {
RY = 0.0f;
}
vResult.vector4_f32[0] = RX;
vResult.vector4_f32[1] = RY;
vResult.vector4_f32[2] = 0.0f;
vResult.vector4_f32[3] = 0.0f;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
// Get the 2D Dot product of Incident-Normal
XMVECTOR IDotN = _mm_mul_ps(Incident,Normal);
XMVECTOR vTemp = _mm_shuffle_ps(IDotN,IDotN,_MM_SHUFFLE(1,1,1,1));
IDotN = _mm_add_ss(IDotN,vTemp);
IDotN = _mm_shuffle_ps(IDotN,IDotN,_MM_SHUFFLE(0,0,0,0));
// vTemp = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
vTemp = _mm_mul_ps(IDotN,IDotN);
vTemp = _mm_sub_ps(g_XMOne,vTemp);
vTemp = _mm_mul_ps(vTemp,RefractionIndex);
vTemp = _mm_mul_ps(vTemp,RefractionIndex);
vTemp = _mm_sub_ps(g_XMOne,vTemp);
// If any terms are <=0, sqrt() will fail, punt to zero
XMVECTOR vMask = _mm_cmpgt_ps(vTemp,g_XMZero);
// R = RefractionIndex * IDotN + sqrt(R)
vTemp = _mm_sqrt_ps(vTemp);
XMVECTOR vResult = _mm_mul_ps(RefractionIndex,IDotN);
vTemp = _mm_add_ps(vTemp,vResult);
// Result = RefractionIndex * Incident - Normal * R
vResult = _mm_mul_ps(RefractionIndex,Incident);
vTemp = _mm_mul_ps(vTemp,Normal);
vResult = _mm_sub_ps(vResult,vTemp);
vResult = _mm_and_ps(vResult,vMask);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Orthogonal
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = -V.vector4_f32[1];
Result.vector4_f32[1] = V.vector4_f32[0];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,2,0,1));
vResult = _mm_mul_ps(vResult,g_XMNegateX);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2AngleBetweenNormalsEst
(
FXMVECTOR N1,
FXMVECTOR N2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
Result = XMVector2Dot(N1, N2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
Result = XMVectorClamp(Result, NegativeOne, One);
Result = XMVectorACosEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XMVector2Dot(N1,N2);
// Clamp to -1.0f to 1.0f
vResult = _mm_max_ps(vResult,g_XMNegativeOne);
vResult = _mm_min_ps(vResult,g_XMOne);;
vResult = XMVectorACosEst(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2AngleBetweenNormals
(
FXMVECTOR N1,
FXMVECTOR N2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
Result = XMVector2Dot(N1, N2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
Result = XMVectorClamp(Result, NegativeOne, One);
Result = XMVectorACos(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XMVector2Dot(N1,N2);
// Clamp to -1.0f to 1.0f
vResult = _mm_max_ps(vResult,g_XMNegativeOne);
vResult = _mm_min_ps(vResult,g_XMOne);;
vResult = XMVectorACos(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2AngleBetweenVectors
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR L1;
XMVECTOR L2;
XMVECTOR Dot;
XMVECTOR CosAngle;
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
L1 = XMVector2ReciprocalLength(V1);
L2 = XMVector2ReciprocalLength(V2);
Dot = XMVector2Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
CosAngle = XMVectorMultiply(Dot, L1);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
CosAngle = XMVectorClamp(CosAngle, NegativeOne, One);
Result = XMVectorACos(CosAngle);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR L1;
XMVECTOR L2;
XMVECTOR Dot;
XMVECTOR CosAngle;
XMVECTOR Result;
L1 = XMVector2ReciprocalLength(V1);
L2 = XMVector2ReciprocalLength(V2);
Dot = XMVector2Dot(V1, V2);
L1 = _mm_mul_ps(L1, L2);
CosAngle = _mm_mul_ps(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne,g_XMOne);
Result = XMVectorACos(CosAngle);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2LinePointDistance
(
FXMVECTOR LinePoint1,
FXMVECTOR LinePoint2,
FXMVECTOR Point
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR PointVector;
XMVECTOR LineVector;
XMVECTOR ReciprocalLengthSq;
XMVECTOR PointProjectionScale;
XMVECTOR DistanceVector;
XMVECTOR Result;
// Given a vector PointVector from LinePoint1 to Point and a vector
// LineVector from LinePoint1 to LinePoint2, the scaled distance
// PointProjectionScale from LinePoint1 to the perpendicular projection
// of PointVector onto the line is defined as:
//
// PointProjectionScale = dot(PointVector, LineVector) / LengthSq(LineVector)
PointVector = XMVectorSubtract(Point, LinePoint1);
LineVector = XMVectorSubtract(LinePoint2, LinePoint1);
ReciprocalLengthSq = XMVector2LengthSq(LineVector);
ReciprocalLengthSq = XMVectorReciprocal(ReciprocalLengthSq);
PointProjectionScale = XMVector2Dot(PointVector, LineVector);
PointProjectionScale = XMVectorMultiply(PointProjectionScale, ReciprocalLengthSq);
DistanceVector = XMVectorMultiply(LineVector, PointProjectionScale);
DistanceVector = XMVectorSubtract(PointVector, DistanceVector);
Result = XMVector2Length(DistanceVector);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR PointVector = _mm_sub_ps(Point,LinePoint1);
XMVECTOR LineVector = _mm_sub_ps(LinePoint2,LinePoint1);
XMVECTOR ReciprocalLengthSq = XMVector2LengthSq(LineVector);
XMVECTOR vResult = XMVector2Dot(PointVector,LineVector);
vResult = _mm_div_ps(vResult,ReciprocalLengthSq);
vResult = _mm_mul_ps(vResult,LineVector);
vResult = _mm_sub_ps(PointVector,vResult);
vResult = XMVector2Length(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2IntersectLine
(
FXMVECTOR Line1Point1,
FXMVECTOR Line1Point2,
FXMVECTOR Line2Point1,
CXMVECTOR Line2Point2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V1;
XMVECTOR V2;
XMVECTOR V3;
XMVECTOR C1;
XMVECTOR C2;
XMVECTOR Result;
CONST XMVECTOR Zero = XMVectorZero();
V1 = XMVectorSubtract(Line1Point2, Line1Point1);
V2 = XMVectorSubtract(Line2Point2, Line2Point1);
V3 = XMVectorSubtract(Line1Point1, Line2Point1);
C1 = XMVector2Cross(V1, V2);
C2 = XMVector2Cross(V2, V3);
if (XMVector2NearEqual(C1, Zero, g_XMEpsilon.v))
{
if (XMVector2NearEqual(C2, Zero, g_XMEpsilon.v))
{
// Coincident
Result = g_XMInfinity.v;
}
else
{
// Parallel
Result = g_XMQNaN.v;
}
}
else
{
// Intersection point = Line1Point1 + V1 * (C2 / C1)
XMVECTOR Scale;
Scale = XMVectorReciprocal(C1);
Scale = XMVectorMultiply(C2, Scale);
Result = XMVectorMultiplyAdd(V1, Scale, Line1Point1);
}
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR V1 = _mm_sub_ps(Line1Point2, Line1Point1);
XMVECTOR V2 = _mm_sub_ps(Line2Point2, Line2Point1);
XMVECTOR V3 = _mm_sub_ps(Line1Point1, Line2Point1);
// Generate the cross products
XMVECTOR C1 = XMVector2Cross(V1, V2);
XMVECTOR C2 = XMVector2Cross(V2, V3);
// If C1 is not close to epsilon, use the calculated value
XMVECTOR vResultMask = _mm_setzero_ps();
vResultMask = _mm_sub_ps(vResultMask,C1);
vResultMask = _mm_max_ps(vResultMask,C1);
// 0xFFFFFFFF if the calculated value is to be used
vResultMask = _mm_cmpgt_ps(vResultMask,g_XMEpsilon);
// If C1 is close to epsilon, which fail type is it? INFINITY or NAN?
XMVECTOR vFailMask = _mm_setzero_ps();
vFailMask = _mm_sub_ps(vFailMask,C2);
vFailMask = _mm_max_ps(vFailMask,C2);
vFailMask = _mm_cmple_ps(vFailMask,g_XMEpsilon);
XMVECTOR vFail = _mm_and_ps(vFailMask,g_XMInfinity);
vFailMask = _mm_andnot_ps(vFailMask,g_XMQNaN);
// vFail is NAN or INF
vFail = _mm_or_ps(vFail,vFailMask);
// Intersection point = Line1Point1 + V1 * (C2 / C1)
XMVECTOR vResult = _mm_div_ps(C2,C1);
vResult = _mm_mul_ps(vResult,V1);
vResult = _mm_add_ps(vResult,Line1Point1);
// Use result, or failure value
vResult = _mm_and_ps(vResult,vResultMask);
vResultMask = _mm_andnot_ps(vResultMask,vFail);
vResult = _mm_or_ps(vResult,vResultMask);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2Transform
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Result;
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,M.r[0]);
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
vTemp = _mm_mul_ps(vTemp,M.r[1]);
vResult = _mm_add_ps(vResult,vTemp);
vResult = _mm_add_ps(vResult,M.r[3]);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT4* XMVector2TransformStream
(
XMFLOAT4* pOutputStream,
UINT OutputStride,
CONST XMFLOAT2* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat2((XMFLOAT2*)pInputVector);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
// Y = XMVectorReplicate(((XMFLOAT2*)pInputVector)->y);
// X = XMVectorReplicate(((XMFLOAT2*)pInputVector)->x);
Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMStoreFloat4((XMFLOAT4*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
UINT i;
const BYTE* pInputVector = (const BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
for (i = 0; i < VectorCount; i++)
{
XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->x);
XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->y);
vResult = _mm_mul_ps(vResult,M.r[1]);
vResult = _mm_add_ps(vResult,M.r[3]);
X = _mm_mul_ps(X,M.r[0]);
vResult = _mm_add_ps(vResult,X);
_mm_storeu_ps(reinterpret_cast<float*>(pOutputVector),vResult);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT4* XMVector2TransformStreamNC
(
XMFLOAT4* pOutputStream,
UINT OutputStride,
CONST XMFLOAT2* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS) || defined(_XM_SSE_INTRINSICS_)
return XMVector2TransformStream( pOutputStream, OutputStride, pInputStream, InputStride, VectorCount, M );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2TransformCoord
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR X;
XMVECTOR Y;
XMVECTOR InverseW;
XMVECTOR Result;
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
InverseW = XMVectorSplatW(Result);
InverseW = XMVectorReciprocal(InverseW);
Result = XMVectorMultiply(Result, InverseW);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,M.r[0]);
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
vTemp = _mm_mul_ps(vTemp,M.r[1]);
vResult = _mm_add_ps(vResult,vTemp);
vResult = _mm_add_ps(vResult,M.r[3]);
vTemp = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
vResult = _mm_div_ps(vResult,vTemp);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT2* XMVector2TransformCoordStream
(
XMFLOAT2* pOutputStream,
UINT OutputStride,
CONST XMFLOAT2* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR InverseW;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat2((XMFLOAT2*)pInputVector);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
// Y = XMVectorReplicate(((XMFLOAT2*)pInputVector)->y);
// X = XMVectorReplicate(((XMFLOAT2*)pInputVector)->x);
Result = XMVectorMultiplyAdd(Y, M.r[1], M.r[3]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
InverseW = XMVectorSplatW(Result);
InverseW = XMVectorReciprocal(InverseW);
Result = XMVectorMultiply(Result, InverseW);
XMStoreFloat2((XMFLOAT2*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
UINT i;
const BYTE *pInputVector = (BYTE*)pInputStream;
BYTE *pOutputVector = (BYTE*)pOutputStream;
for (i = 0; i < VectorCount; i++)
{
XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->x);
XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2*>(pInputVector)->y);
vResult = _mm_mul_ps(vResult,M.r[1]);
vResult = _mm_add_ps(vResult,M.r[3]);
X = _mm_mul_ps(X,M.r[0]);
vResult = _mm_add_ps(vResult,X);
X = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
vResult = _mm_div_ps(vResult,X);
_mm_store_sd(reinterpret_cast<double *>(pOutputVector),reinterpret_cast<__m128d *>(&vResult)[0]);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector2TransformNormal
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Result;
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiply(Y, M.r[1]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,M.r[0]);
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
vTemp = _mm_mul_ps(vTemp,M.r[1]);
vResult = _mm_add_ps(vResult,vTemp);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT2* XMVector2TransformNormalStream
(
XMFLOAT2* pOutputStream,
UINT OutputStride,
CONST XMFLOAT2* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat2((XMFLOAT2*)pInputVector);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
// Y = XMVectorReplicate(((XMFLOAT2*)pInputVector)->y);
// X = XMVectorReplicate(((XMFLOAT2*)pInputVector)->x);
Result = XMVectorMultiply(Y, M.r[1]);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMStoreFloat2((XMFLOAT2*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
UINT i;
const BYTE*pInputVector = (const BYTE*)pInputStream;
BYTE *pOutputVector = (BYTE*)pOutputStream;
for (i = 0; i < VectorCount; i++)
{
XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2 *>(pInputVector)->x);
XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT2 *>(pInputVector)->y);
vResult = _mm_mul_ps(vResult,M.r[1]);
X = _mm_mul_ps(X,M.r[0]);
vResult = _mm_add_ps(vResult,X);
_mm_store_sd(reinterpret_cast<double*>(pOutputVector),reinterpret_cast<const __m128d *>(&vResult)[0]);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
/****************************************************************************
*
* 3D Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3Equal
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1]) && (V1.vector4_f32[2] == V2.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector3EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector3EqualR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] == V2.vector4_f32[0]) &&
(V1.vector4_f32[1] == V2.vector4_f32[1]) &&
(V1.vector4_f32[2] == V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) &&
(V1.vector4_f32[1] != V2.vector4_f32[1]) &&
(V1.vector4_f32[2] != V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
int iTest = _mm_movemask_ps(vTemp)&7;
UINT CR = 0;
if (iTest==7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3EqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1]) && (V1.vector4_u32[2] == V2.vector4_u32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&7)==7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector3EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector3EqualIntR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_u32[0] == V2.vector4_u32[0]) &&
(V1.vector4_u32[1] == V2.vector4_u32[1]) &&
(V1.vector4_u32[2] == V2.vector4_u32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_u32[0] != V2.vector4_u32[0]) &&
(V1.vector4_u32[1] != V2.vector4_u32[1]) &&
(V1.vector4_u32[2] != V2.vector4_u32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
int iTemp = _mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&7;
UINT CR = 0;
if (iTemp==7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTemp)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3NearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT dx, dy, dz;
dx = fabsf(V1.vector4_f32[0]-V2.vector4_f32[0]);
dy = fabsf(V1.vector4_f32[1]-V2.vector4_f32[1]);
dz = fabsf(V1.vector4_f32[2]-V2.vector4_f32[2]);
return (((dx <= Epsilon.vector4_f32[0]) &&
(dy <= Epsilon.vector4_f32[1]) &&
(dz <= Epsilon.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1,V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp,vDelta);
vTemp = _mm_max_ps(vTemp,vDelta);
vTemp = _mm_cmple_ps(vTemp,Epsilon);
// w is don't care
return (((_mm_movemask_ps(vTemp)&7)==0x7) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3NotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1]) || (V1.vector4_f32[2] != V2.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&7)!=7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAnyFalse(XMVector3EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3NotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1]) || (V1.vector4_u32[2] != V2.vector4_u32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
return (((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])&7)!=7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAnyFalse(XMVector3EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3Greater
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1]) && (V1.vector4_f32[2] > V2.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector3GreaterR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector3GreaterR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] > V2.vector4_f32[0]) &&
(V1.vector4_f32[1] > V2.vector4_f32[1]) &&
(V1.vector4_f32[2] > V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] <= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] <= V2.vector4_f32[1]) &&
(V1.vector4_f32[2] <= V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
UINT CR = 0;
int iTest = _mm_movemask_ps(vTemp)&7;
if (iTest==7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3GreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1]) && (V1.vector4_f32[2] >= V2.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector3GreaterOrEqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector3GreaterOrEqualR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] >= V2.vector4_f32[1]) &&
(V1.vector4_f32[2] >= V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) &&
(V1.vector4_f32[1] < V2.vector4_f32[1]) &&
(V1.vector4_f32[2] < V2.vector4_f32[2]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
UINT CR = 0;
int iTest = _mm_movemask_ps(vTemp)&7;
if (iTest==7)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3Less
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1]) && (V1.vector4_f32[2] < V2.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmplt_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector3GreaterR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3LessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1]) && (V1.vector4_f32[2] <= V2.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmple_ps(V1,V2);
return (((_mm_movemask_ps(vTemp)&7)==7) != 0);
#else // _XM_VMX128_INTRINSICS_
return XMComparisonAllTrue(XMVector3GreaterOrEqualR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3InBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
// x,y and z in bounds? (w is don't care)
return (((_mm_movemask_ps(vTemp1)&0x7)==0x7) != 0);
#else
return XMComparisonAllInBounds(XMVector3InBoundsR(V, Bounds));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector3InBoundsR
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]))
{
CR = XM_CRMASK_CR6BOUNDS;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
// x,y and z in bounds? (w is don't care)
return ((_mm_movemask_ps(vTemp1)&0x7)==0x7) ? XM_CRMASK_CR6BOUNDS : 0;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3IsNaN
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISNAN(V.vector4_f32[0]) ||
XMISNAN(V.vector4_f32[1]) ||
XMISNAN(V.vector4_f32[2]));
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the exponent
__m128i vTempInf = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMInfinity);
// Mask off the mantissa
__m128i vTempNan = _mm_and_si128(reinterpret_cast<const __m128i *>(&V)[0],g_XMQNaNTest);
// Are any of the exponents == 0x7F800000?
vTempInf = _mm_cmpeq_epi32(vTempInf,g_XMInfinity);
// Are any of the mantissa's zero? (SSE2 doesn't have a neq test)
vTempNan = _mm_cmpeq_epi32(vTempNan,g_XMZero);
// Perform a not on the NaN test to be true on NON-zero mantissas
vTempNan = _mm_andnot_si128(vTempNan,vTempInf);
// If x, y or z are NaN, the signs are true after the merge above
return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTempNan)[0])&7) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector3IsInfinite
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISINF(V.vector4_f32[0]) ||
XMISINF(V.vector4_f32[1]) ||
XMISINF(V.vector4_f32[2]));
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
__m128 vTemp = _mm_and_ps(V,g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
// If x,y or z are infinity, the signs are true.
return ((_mm_movemask_ps(vTemp)&7) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Dot
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fValue = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1] + V1.vector4_f32[2] * V2.vector4_f32[2];
XMVECTOR vResult = {
fValue,
fValue,
fValue,
fValue
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product
XMVECTOR vDot = _mm_mul_ps(V1,V2);
// x=Dot.vector4_f32[1], y=Dot.vector4_f32[2]
XMVECTOR vTemp = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(2,1,2,1));
// Result.vector4_f32[0] = x+y
vDot = _mm_add_ss(vDot,vTemp);
// x=Dot.vector4_f32[2]
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
// Result.vector4_f32[0] = (x+y)+z
vDot = _mm_add_ss(vDot,vTemp);
// Splat x
return _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(0,0,0,0));
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Cross
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR vResult = {
(V1.vector4_f32[1] * V2.vector4_f32[2]) - (V1.vector4_f32[2] * V2.vector4_f32[1]),
(V1.vector4_f32[2] * V2.vector4_f32[0]) - (V1.vector4_f32[0] * V2.vector4_f32[2]),
(V1.vector4_f32[0] * V2.vector4_f32[1]) - (V1.vector4_f32[1] * V2.vector4_f32[0]),
0.0f
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// y1,z1,x1,w1
XMVECTOR vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(3,0,2,1));
// z2,x2,y2,w2
XMVECTOR vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(3,1,0,2));
// Perform the left operation
XMVECTOR vResult = _mm_mul_ps(vTemp1,vTemp2);
// z1,x1,y1,w1
vTemp1 = _mm_shuffle_ps(vTemp1,vTemp1,_MM_SHUFFLE(3,0,2,1));
// y2,z2,x2,w2
vTemp2 = _mm_shuffle_ps(vTemp2,vTemp2,_MM_SHUFFLE(3,1,0,2));
// Perform the right operation
vTemp1 = _mm_mul_ps(vTemp1,vTemp2);
// Subract the right from left, and return answer
vResult = _mm_sub_ps(vResult,vTemp1);
// Set w to zero
return _mm_and_ps(vResult,g_XMMask3);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3LengthSq
(
FXMVECTOR V
)
{
return XMVector3Dot(V, V);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3ReciprocalLengthEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorReciprocalSqrtEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and y
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,2,1,2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
// y,y,y,y
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
// Splat the length squared
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
// Get the reciprocal
vLengthSq = _mm_rsqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3ReciprocalLength
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorReciprocalSqrt(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product
XMVECTOR vDot = _mm_mul_ps(V,V);
// x=Dot.y, y=Dot.z
XMVECTOR vTemp = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(2,1,2,1));
// Result.x = x+y
vDot = _mm_add_ss(vDot,vTemp);
// x=Dot.z
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
// Result.x = (x+y)+z
vDot = _mm_add_ss(vDot,vTemp);
// Splat x
vDot = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(0,0,0,0));
// Get the reciprocal
vDot = _mm_sqrt_ps(vDot);
// Get the reciprocal
vDot = _mm_div_ps(g_XMOne,vDot);
return vDot;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3LengthEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorSqrtEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and y
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,2,1,2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
// y,y,y,y
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
// Splat the length squared
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Length
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3LengthSq(V);
Result = XMVectorSqrt(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and y
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,2,1,2));
// x+z, y
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
// y,y,y,y
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
// x+z+y,??,??,??
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
// Splat the length squared
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
// Get the length
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// XMVector3NormalizeEst uses a reciprocal estimate and
// returns QNaN on zero and infinite vectors.
XMFINLINE XMVECTOR XMVector3NormalizeEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector3ReciprocalLength(V);
Result = XMVectorMultiply(V, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product
XMVECTOR vDot = _mm_mul_ps(V,V);
// x=Dot.y, y=Dot.z
XMVECTOR vTemp = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(2,1,2,1));
// Result.x = x+y
vDot = _mm_add_ss(vDot,vTemp);
// x=Dot.z
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
// Result.x = (x+y)+z
vDot = _mm_add_ss(vDot,vTemp);
// Splat x
vDot = _mm_shuffle_ps(vDot,vDot,_MM_SHUFFLE(0,0,0,0));
// Get the reciprocal
vDot = _mm_rsqrt_ps(vDot);
// Perform the normalization
vDot = _mm_mul_ps(vDot,V);
return vDot;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Normalize
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fLength;
XMVECTOR vResult;
vResult = XMVector3Length( V );
fLength = vResult.vector4_f32[0];
// Prevent divide by zero
if (fLength > 0) {
fLength = 1.0f/fLength;
}
vResult.vector4_f32[0] = V.vector4_f32[0]*fLength;
vResult.vector4_f32[1] = V.vector4_f32[1]*fLength;
vResult.vector4_f32[2] = V.vector4_f32[2]*fLength;
vResult.vector4_f32[3] = V.vector4_f32[3]*fLength;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y and z only
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,1,2,1));
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vTemp = _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(1,1,1,1));
vLengthSq = _mm_add_ss(vLengthSq,vTemp);
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(0,0,0,0));
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V,vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult,vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
vResult = _mm_or_ps(vTemp1,vTemp2);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3ClampLength
(
FXMVECTOR V,
FLOAT LengthMin,
FLOAT LengthMax
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR ClampMax;
XMVECTOR ClampMin;
ClampMax = XMVectorReplicate(LengthMax);
ClampMin = XMVectorReplicate(LengthMin);
return XMVector3ClampLengthV(V, ClampMin, ClampMax);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR ClampMax = _mm_set_ps1(LengthMax);
XMVECTOR ClampMin = _mm_set_ps1(LengthMin);
return XMVector3ClampLengthV(V,ClampMin,ClampMax);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3ClampLengthV
(
FXMVECTOR V,
FXMVECTOR LengthMin,
FXMVECTOR LengthMax
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR ClampLength;
XMVECTOR LengthSq;
XMVECTOR RcpLength;
XMVECTOR Length;
XMVECTOR Normal;
XMVECTOR Zero;
XMVECTOR InfiniteLength;
XMVECTOR ZeroLength;
XMVECTOR Select;
XMVECTOR ControlMax;
XMVECTOR ControlMin;
XMVECTOR Control;
XMVECTOR Result;
XMASSERT((LengthMin.vector4_f32[1] == LengthMin.vector4_f32[0]) && (LengthMin.vector4_f32[2] == LengthMin.vector4_f32[0]));
XMASSERT((LengthMax.vector4_f32[1] == LengthMax.vector4_f32[0]) && (LengthMax.vector4_f32[2] == LengthMax.vector4_f32[0]));
XMASSERT(XMVector3GreaterOrEqual(LengthMin, XMVectorZero()));
XMASSERT(XMVector3GreaterOrEqual(LengthMax, XMVectorZero()));
XMASSERT(XMVector3GreaterOrEqual(LengthMax, LengthMin));
LengthSq = XMVector3LengthSq(V);
Zero = XMVectorZero();
RcpLength = XMVectorReciprocalSqrt(LengthSq);
InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
ZeroLength = XMVectorEqual(LengthSq, Zero);
Normal = XMVectorMultiply(V, RcpLength);
Length = XMVectorMultiply(LengthSq, RcpLength);
Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
ControlMax = XMVectorGreater(Length, LengthMax);
ControlMin = XMVectorLess(Length, LengthMin);
ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
Result = XMVectorMultiply(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR ClampLength;
XMVECTOR LengthSq;
XMVECTOR RcpLength;
XMVECTOR Length;
XMVECTOR Normal;
XMVECTOR InfiniteLength;
XMVECTOR ZeroLength;
XMVECTOR Select;
XMVECTOR ControlMax;
XMVECTOR ControlMin;
XMVECTOR Control;
XMVECTOR Result;
XMASSERT((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetZ(LengthMin) == XMVectorGetX(LengthMin)));
XMASSERT((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetZ(LengthMax) == XMVectorGetX(LengthMax)));
XMASSERT(XMVector3GreaterOrEqual(LengthMin, g_XMZero));
XMASSERT(XMVector3GreaterOrEqual(LengthMax, g_XMZero));
XMASSERT(XMVector3GreaterOrEqual(LengthMax, LengthMin));
LengthSq = XMVector3LengthSq(V);
RcpLength = XMVectorReciprocalSqrt(LengthSq);
InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity);
ZeroLength = XMVectorEqual(LengthSq,g_XMZero);
Normal = _mm_mul_ps(V, RcpLength);
Length = _mm_mul_ps(LengthSq, RcpLength);
Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
ControlMax = XMVectorGreater(Length, LengthMax);
ControlMin = XMVectorLess(Length, LengthMin);
ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
Result = _mm_mul_ps(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Reflect
(
FXMVECTOR Incident,
FXMVECTOR Normal
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
Result = XMVector3Dot(Incident, Normal);
Result = XMVectorAdd(Result, Result);
Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
XMVECTOR Result = XMVector3Dot(Incident, Normal);
Result = _mm_add_ps(Result, Result);
Result = _mm_mul_ps(Result, Normal);
Result = _mm_sub_ps(Incident,Result);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Refract
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FLOAT RefractionIndex
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Index;
Index = XMVectorReplicate(RefractionIndex);
return XMVector3RefractV(Incident, Normal, Index);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Index = _mm_set_ps1(RefractionIndex);
return XMVector3RefractV(Incident,Normal,Index);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3RefractV
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FXMVECTOR RefractionIndex
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR IDotN;
XMVECTOR R;
CONST XMVECTOR Zero = XMVectorZero();
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
IDotN = XMVector3Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
R = XMVectorNegativeMultiplySubtract(IDotN, IDotN, g_XMOne.v);
R = XMVectorMultiply(R, RefractionIndex);
R = XMVectorNegativeMultiplySubtract(R, RefractionIndex, g_XMOne.v);
if (XMVector4LessOrEqual(R, Zero))
{
// Total internal reflection
return Zero;
}
else
{
XMVECTOR Result;
// R = RefractionIndex * IDotN + sqrt(R)
R = XMVectorSqrt(R);
R = XMVectorMultiplyAdd(RefractionIndex, IDotN, R);
// Result = RefractionIndex * Incident - Normal * R
Result = XMVectorMultiply(RefractionIndex, Incident);
Result = XMVectorNegativeMultiplySubtract(Normal, R, Result);
return Result;
}
#elif defined(_XM_SSE_INTRINSICS_)
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
XMVECTOR IDotN = XMVector3Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
XMVECTOR R = _mm_mul_ps(IDotN, IDotN);
R = _mm_sub_ps(g_XMOne,R);
R = _mm_mul_ps(R, RefractionIndex);
R = _mm_mul_ps(R, RefractionIndex);
R = _mm_sub_ps(g_XMOne,R);
XMVECTOR vResult = _mm_cmple_ps(R,g_XMZero);
if (_mm_movemask_ps(vResult)==0x0f)
{
// Total internal reflection
vResult = g_XMZero;
}
else
{
// R = RefractionIndex * IDotN + sqrt(R)
R = _mm_sqrt_ps(R);
vResult = _mm_mul_ps(RefractionIndex,IDotN);
R = _mm_add_ps(R,vResult);
// Result = RefractionIndex * Incident - Normal * R
vResult = _mm_mul_ps(RefractionIndex, Incident);
R = _mm_mul_ps(R,Normal);
vResult = _mm_sub_ps(vResult,R);
}
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Orthogonal
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR NegativeV;
XMVECTOR Z, YZYY;
XMVECTOR ZIsNegative, YZYYIsNegative;
XMVECTOR S, D;
XMVECTOR R0, R1;
XMVECTOR Select;
XMVECTOR Zero;
XMVECTOR Result;
static CONST XMVECTORU32 Permute1X0X0X0X = {XM_PERMUTE_1X, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X};
static CONST XMVECTORU32 Permute0Y0Z0Y0Y= {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Y};
Zero = XMVectorZero();
Z = XMVectorSplatZ(V);
YZYY = XMVectorPermute(V, V, Permute0Y0Z0Y0Y.v);
NegativeV = XMVectorSubtract(Zero, V);
ZIsNegative = XMVectorLess(Z, Zero);
YZYYIsNegative = XMVectorLess(YZYY, Zero);
S = XMVectorAdd(YZYY, Z);
D = XMVectorSubtract(YZYY, Z);
Select = XMVectorEqualInt(ZIsNegative, YZYYIsNegative);
R0 = XMVectorPermute(NegativeV, S, Permute1X0X0X0X.v);
R1 = XMVectorPermute(V, D, Permute1X0X0X0X.v);
Result = XMVectorSelect(R1, R0, Select);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR NegativeV;
XMVECTOR Z, YZYY;
XMVECTOR ZIsNegative, YZYYIsNegative;
XMVECTOR S, D;
XMVECTOR R0, R1;
XMVECTOR Select;
XMVECTOR Zero;
XMVECTOR Result;
static CONST XMVECTORI32 Permute1X0X0X0X = {XM_PERMUTE_1X, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X};
static CONST XMVECTORI32 Permute0Y0Z0Y0Y= {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Y};
Zero = XMVectorZero();
Z = XMVectorSplatZ(V);
YZYY = XMVectorPermute(V, V, Permute0Y0Z0Y0Y);
NegativeV = _mm_sub_ps(Zero, V);
ZIsNegative = XMVectorLess(Z, Zero);
YZYYIsNegative = XMVectorLess(YZYY, Zero);
S = _mm_add_ps(YZYY, Z);
D = _mm_sub_ps(YZYY, Z);
Select = XMVectorEqualInt(ZIsNegative, YZYYIsNegative);
R0 = XMVectorPermute(NegativeV, S, Permute1X0X0X0X);
R1 = XMVectorPermute(V, D,Permute1X0X0X0X);
Result = XMVectorSelect(R1, R0, Select);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3AngleBetweenNormalsEst
(
FXMVECTOR N1,
FXMVECTOR N2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
XMVECTOR NegativeOne;
XMVECTOR One;
Result = XMVector3Dot(N1, N2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
Result = XMVectorClamp(Result, NegativeOne, One);
Result = XMVectorACosEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XMVector3Dot(N1,N2);
// Clamp to -1.0f to 1.0f
vResult = _mm_max_ps(vResult,g_XMNegativeOne);
vResult = _mm_min_ps(vResult,g_XMOne);
vResult = XMVectorACosEst(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3AngleBetweenNormals
(
FXMVECTOR N1,
FXMVECTOR N2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
XMVECTOR NegativeOne;
XMVECTOR One;
Result = XMVector3Dot(N1, N2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
Result = XMVectorClamp(Result, NegativeOne, One);
Result = XMVectorACos(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XMVector3Dot(N1,N2);
// Clamp to -1.0f to 1.0f
vResult = _mm_max_ps(vResult,g_XMNegativeOne);
vResult = _mm_min_ps(vResult,g_XMOne);
vResult = XMVectorACos(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3AngleBetweenVectors
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR L1;
XMVECTOR L2;
XMVECTOR Dot;
XMVECTOR CosAngle;
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
L1 = XMVector3ReciprocalLength(V1);
L2 = XMVector3ReciprocalLength(V2);
Dot = XMVector3Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
CosAngle = XMVectorMultiply(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, NegativeOne, One);
Result = XMVectorACos(CosAngle);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR L1;
XMVECTOR L2;
XMVECTOR Dot;
XMVECTOR CosAngle;
XMVECTOR Result;
L1 = XMVector3ReciprocalLength(V1);
L2 = XMVector3ReciprocalLength(V2);
Dot = XMVector3Dot(V1, V2);
L1 = _mm_mul_ps(L1, L2);
CosAngle = _mm_mul_ps(Dot, L1);
CosAngle = XMVectorClamp(CosAngle,g_XMNegativeOne,g_XMOne);
Result = XMVectorACos(CosAngle);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3LinePointDistance
(
FXMVECTOR LinePoint1,
FXMVECTOR LinePoint2,
FXMVECTOR Point
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR PointVector;
XMVECTOR LineVector;
XMVECTOR ReciprocalLengthSq;
XMVECTOR PointProjectionScale;
XMVECTOR DistanceVector;
XMVECTOR Result;
// Given a vector PointVector from LinePoint1 to Point and a vector
// LineVector from LinePoint1 to LinePoint2, the scaled distance
// PointProjectionScale from LinePoint1 to the perpendicular projection
// of PointVector onto the line is defined as:
//
// PointProjectionScale = dot(PointVector, LineVector) / LengthSq(LineVector)
PointVector = XMVectorSubtract(Point, LinePoint1);
LineVector = XMVectorSubtract(LinePoint2, LinePoint1);
ReciprocalLengthSq = XMVector3LengthSq(LineVector);
ReciprocalLengthSq = XMVectorReciprocal(ReciprocalLengthSq);
PointProjectionScale = XMVector3Dot(PointVector, LineVector);
PointProjectionScale = XMVectorMultiply(PointProjectionScale, ReciprocalLengthSq);
DistanceVector = XMVectorMultiply(LineVector, PointProjectionScale);
DistanceVector = XMVectorSubtract(PointVector, DistanceVector);
Result = XMVector3Length(DistanceVector);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR PointVector = _mm_sub_ps(Point,LinePoint1);
XMVECTOR LineVector = _mm_sub_ps(LinePoint2,LinePoint1);
XMVECTOR ReciprocalLengthSq = XMVector3LengthSq(LineVector);
XMVECTOR vResult = XMVector3Dot(PointVector,LineVector);
vResult = _mm_div_ps(vResult,ReciprocalLengthSq);
vResult = _mm_mul_ps(vResult,LineVector);
vResult = _mm_sub_ps(PointVector,vResult);
vResult = XMVector3Length(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE VOID XMVector3ComponentsFromNormal
(
XMVECTOR* pParallel,
XMVECTOR* pPerpendicular,
FXMVECTOR V,
FXMVECTOR Normal
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Parallel;
XMVECTOR Scale;
XMASSERT(pParallel);
XMASSERT(pPerpendicular);
Scale = XMVector3Dot(V, Normal);
Parallel = XMVectorMultiply(Normal, Scale);
*pParallel = Parallel;
*pPerpendicular = XMVectorSubtract(V, Parallel);
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pParallel);
XMASSERT(pPerpendicular);
XMVECTOR Scale = XMVector3Dot(V, Normal);
XMVECTOR Parallel = _mm_mul_ps(Normal,Scale);
*pParallel = Parallel;
*pPerpendicular = _mm_sub_ps(V,Parallel);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Transform a vector using a rotation expressed as a unit quaternion
XMFINLINE XMVECTOR XMVector3Rotate
(
FXMVECTOR V,
FXMVECTOR RotationQuaternion
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR A;
XMVECTOR Q;
XMVECTOR Result;
A = XMVectorSelect(g_XMSelect1110.v, V, g_XMSelect1110.v);
Q = XMQuaternionConjugate(RotationQuaternion);
Result = XMQuaternionMultiply(Q, A);
Result = XMQuaternionMultiply(Result, RotationQuaternion);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR A;
XMVECTOR Q;
XMVECTOR Result;
A = _mm_and_ps(V,g_XMMask3);
Q = XMQuaternionConjugate(RotationQuaternion);
Result = XMQuaternionMultiply(Q, A);
Result = XMQuaternionMultiply(Result, RotationQuaternion);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Transform a vector using the inverse of a rotation expressed as a unit quaternion
XMFINLINE XMVECTOR XMVector3InverseRotate
(
FXMVECTOR V,
FXMVECTOR RotationQuaternion
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR A;
XMVECTOR Q;
XMVECTOR Result;
A = XMVectorSelect(g_XMSelect1110.v, V, g_XMSelect1110.v);
Result = XMQuaternionMultiply(RotationQuaternion, A);
Q = XMQuaternionConjugate(RotationQuaternion);
Result = XMQuaternionMultiply(Result, Q);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR A;
XMVECTOR Q;
XMVECTOR Result;
A = _mm_and_ps(V,g_XMMask3);
Result = XMQuaternionMultiply(RotationQuaternion, A);
Q = XMQuaternionConjugate(RotationQuaternion);
Result = XMQuaternionMultiply(Result, Q);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Transform
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR Result;
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,M.r[0]);
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
vTemp = _mm_mul_ps(vTemp,M.r[1]);
vResult = _mm_add_ps(vResult,vTemp);
vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
vTemp = _mm_mul_ps(vTemp,M.r[2]);
vResult = _mm_add_ps(vResult,vTemp);
vResult = _mm_add_ps(vResult,M.r[3]);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT4* XMVector3TransformStream
(
XMFLOAT4* pOutputStream,
UINT OutputStride,
CONST XMFLOAT3* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMStoreFloat4((XMFLOAT4*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
UINT i;
const BYTE* pInputVector = (const BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
for (i = 0; i < VectorCount; i++)
{
XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->x);
XMVECTOR Y = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->y);
XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->z);
vResult = _mm_mul_ps(vResult,M.r[2]);
vResult = _mm_add_ps(vResult,M.r[3]);
Y = _mm_mul_ps(Y,M.r[1]);
vResult = _mm_add_ps(vResult,Y);
X = _mm_mul_ps(X,M.r[0]);
vResult = _mm_add_ps(vResult,X);
_mm_storeu_ps(reinterpret_cast<float *>(pOutputVector),vResult);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT4* XMVector3TransformStreamNC
(
XMFLOAT4* pOutputStream,
UINT OutputStride,
CONST XMFLOAT3* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_) || defined(XM_NO_MISALIGNED_VECTOR_ACCESS) || defined(_XM_SSE_INTRINSICS_)
return XMVector3TransformStream( pOutputStream, OutputStride, pInputStream, InputStride, VectorCount, M );
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3TransformCoord
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR InverseW;
XMVECTOR Result;
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
InverseW = XMVectorSplatW(Result);
InverseW = XMVectorReciprocal(InverseW);
Result = XMVectorMultiply(Result, InverseW);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,M.r[0]);
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
vTemp = _mm_mul_ps(vTemp,M.r[1]);
vResult = _mm_add_ps(vResult,vTemp);
vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
vTemp = _mm_mul_ps(vTemp,M.r[2]);
vResult = _mm_add_ps(vResult,vTemp);
vResult = _mm_add_ps(vResult,M.r[3]);
vTemp = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
vResult = _mm_div_ps(vResult,vTemp);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT3* XMVector3TransformCoordStream
(
XMFLOAT3* pOutputStream,
UINT OutputStride,
CONST XMFLOAT3* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR InverseW;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
// Z = XMVectorReplicate(((XMFLOAT3*)pInputVector)->z);
// Y = XMVectorReplicate(((XMFLOAT3*)pInputVector)->y);
// X = XMVectorReplicate(((XMFLOAT3*)pInputVector)->x);
Result = XMVectorMultiplyAdd(Z, M.r[2], M.r[3]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
InverseW = XMVectorSplatW(Result);
InverseW = XMVectorReciprocal(InverseW);
Result = XMVectorMultiply(Result, InverseW);
XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
UINT i;
const BYTE *pInputVector = (BYTE*)pInputStream;
BYTE *pOutputVector = (BYTE*)pOutputStream;
for (i = 0; i < VectorCount; i++)
{
XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->x);
XMVECTOR Y = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->y);
XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->z);
vResult = _mm_mul_ps(vResult,M.r[2]);
vResult = _mm_add_ps(vResult,M.r[3]);
Y = _mm_mul_ps(Y,M.r[1]);
vResult = _mm_add_ps(vResult,Y);
X = _mm_mul_ps(X,M.r[0]);
vResult = _mm_add_ps(vResult,X);
X = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(3,3,3,3));
vResult = _mm_div_ps(vResult,X);
_mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->x,vResult);
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
_mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->y,vResult);
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
_mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->z,vResult);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3TransformNormal
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR Result;
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
Result = XMVectorMultiply(Z, M.r[2]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
vResult = _mm_mul_ps(vResult,M.r[0]);
XMVECTOR vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
vTemp = _mm_mul_ps(vTemp,M.r[1]);
vResult = _mm_add_ps(vResult,vTemp);
vTemp = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
vTemp = _mm_mul_ps(vTemp,M.r[2]);
vResult = _mm_add_ps(vResult,vTemp);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT3* XMVector3TransformNormalStream
(
XMFLOAT3* pOutputStream,
UINT OutputStride,
CONST XMFLOAT3* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
// Z = XMVectorReplicate(((XMFLOAT3*)pInputVector)->z);
// Y = XMVectorReplicate(((XMFLOAT3*)pInputVector)->y);
// X = XMVectorReplicate(((XMFLOAT3*)pInputVector)->x);
Result = XMVectorMultiply(Z, M.r[2]);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
UINT i;
const BYTE *pInputVector = (BYTE*)pInputStream;
BYTE *pOutputVector = (BYTE*)pOutputStream;
for (i = 0; i < VectorCount; i++)
{
XMVECTOR X = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->x);
XMVECTOR Y = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->y);
XMVECTOR vResult = _mm_load_ps1(&reinterpret_cast<const XMFLOAT3 *>(pInputVector)->z);
vResult = _mm_mul_ps(vResult,M.r[2]);
Y = _mm_mul_ps(Y,M.r[1]);
vResult = _mm_add_ps(vResult,Y);
X = _mm_mul_ps(X,M.r[0]);
vResult = _mm_add_ps(vResult,X);
_mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->x,vResult);
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
_mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->y,vResult);
vResult = _mm_shuffle_ps(vResult,vResult,_MM_SHUFFLE(0,3,2,1));
_mm_store_ss(&reinterpret_cast<XMFLOAT3 *>(pOutputVector)->z,vResult);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMVECTOR XMVector3Project
(
FXMVECTOR V,
FLOAT ViewportX,
FLOAT ViewportY,
FLOAT ViewportWidth,
FLOAT ViewportHeight,
FLOAT ViewportMinZ,
FLOAT ViewportMaxZ,
CXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
)
{
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX Transform;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR Result;
FLOAT HalfViewportWidth = ViewportWidth * 0.5f;
FLOAT HalfViewportHeight = ViewportHeight * 0.5f;
Scale = XMVectorSet(HalfViewportWidth,
-HalfViewportHeight,
ViewportMaxZ - ViewportMinZ,
0.0f);
Offset = XMVectorSet(ViewportX + HalfViewportWidth,
ViewportY + HalfViewportHeight,
ViewportMinZ,
0.0f);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Result = XMVector3TransformCoord(V, Transform);
Result = XMVectorMultiplyAdd(Result, Scale, Offset);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMMATRIX Transform;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR Result;
FLOAT HalfViewportWidth = ViewportWidth * 0.5f;
FLOAT HalfViewportHeight = ViewportHeight * 0.5f;
Scale = XMVectorSet(HalfViewportWidth,
-HalfViewportHeight,
ViewportMaxZ - ViewportMinZ,
0.0f);
Offset = XMVectorSet(ViewportX + HalfViewportWidth,
ViewportY + HalfViewportHeight,
ViewportMinZ,
0.0f);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Result = XMVector3TransformCoord(V, Transform);
Result = _mm_mul_ps(Result,Scale);
Result = _mm_add_ps(Result,Offset);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT3* XMVector3ProjectStream
(
XMFLOAT3* pOutputStream,
UINT OutputStride,
CONST XMFLOAT3* pInputStream,
UINT InputStride,
UINT VectorCount,
FLOAT ViewportX,
FLOAT ViewportY,
FLOAT ViewportWidth,
FLOAT ViewportHeight,
FLOAT ViewportMinZ,
FLOAT ViewportMaxZ,
CXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
)
{
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX Transform;
XMVECTOR V;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR Result;
UINT i;
FLOAT HalfViewportWidth = ViewportWidth * 0.5f;
FLOAT HalfViewportHeight = ViewportHeight * 0.5f;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
Scale = XMVectorSet(HalfViewportWidth,
-HalfViewportHeight,
ViewportMaxZ - ViewportMinZ,
1.0f);
Offset = XMVectorSet(ViewportX + HalfViewportWidth,
ViewportY + HalfViewportHeight,
ViewportMinZ,
0.0f);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Result = XMVector3TransformCoord(V, Transform);
Result = XMVectorMultiplyAdd(Result, Scale, Offset);
XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
XMMATRIX Transform;
XMVECTOR V;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR Result;
UINT i;
FLOAT HalfViewportWidth = ViewportWidth * 0.5f;
FLOAT HalfViewportHeight = ViewportHeight * 0.5f;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
Scale = XMVectorSet(HalfViewportWidth,
-HalfViewportHeight,
ViewportMaxZ - ViewportMinZ,
1.0f);
Offset = XMVectorSet(ViewportX + HalfViewportWidth,
ViewportY + HalfViewportHeight,
ViewportMinZ,
0.0f);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Result = XMVector3TransformCoord(V, Transform);
Result = _mm_mul_ps(Result,Scale);
Result = _mm_add_ps(Result,Offset);
XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector3Unproject
(
FXMVECTOR V,
FLOAT ViewportX,
FLOAT ViewportY,
FLOAT ViewportWidth,
FLOAT ViewportHeight,
FLOAT ViewportMinZ,
FLOAT ViewportMaxZ,
CXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World
)
{
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX Transform;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR Determinant;
XMVECTOR Result;
CONST XMVECTOR D = XMVectorSet(-1.0f, 1.0f, 0.0f, 0.0f);
Scale = XMVectorSet(ViewportWidth * 0.5f,
-ViewportHeight * 0.5f,
ViewportMaxZ - ViewportMinZ,
1.0f);
Scale = XMVectorReciprocal(Scale);
Offset = XMVectorSet(-ViewportX,
-ViewportY,
-ViewportMinZ,
0.0f);
Offset = XMVectorMultiplyAdd(Scale, Offset, D);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(&Determinant, Transform);
Result = XMVectorMultiplyAdd(V, Scale, Offset);
Result = XMVector3TransformCoord(Result, Transform);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMMATRIX Transform;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR Determinant;
XMVECTOR Result;
CONST XMVECTORF32 D = {-1.0f, 1.0f, 0.0f, 0.0f};
Scale = XMVectorSet(ViewportWidth * 0.5f,
-ViewportHeight * 0.5f,
ViewportMaxZ - ViewportMinZ,
1.0f);
Scale = XMVectorReciprocal(Scale);
Offset = XMVectorSet(-ViewportX,
-ViewportY,
-ViewportMinZ,
0.0f);
Offset = _mm_mul_ps(Offset,Scale);
Offset = _mm_add_ps(Offset,D);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(&Determinant, Transform);
Result = _mm_mul_ps(V,Scale);
Result = _mm_add_ps(Result,Offset);
Result = XMVector3TransformCoord(Result, Transform);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT3* XMVector3UnprojectStream
(
XMFLOAT3* pOutputStream,
UINT OutputStride,
CONST XMFLOAT3* pInputStream,
UINT InputStride,
UINT VectorCount,
FLOAT ViewportX,
FLOAT ViewportY,
FLOAT ViewportWidth,
FLOAT ViewportHeight,
FLOAT ViewportMinZ,
FLOAT ViewportMaxZ,
CXMMATRIX Projection,
CXMMATRIX View,
CXMMATRIX World)
{
#if defined(_XM_NO_INTRINSICS_)
XMMATRIX Transform;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR V;
XMVECTOR Determinant;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
CONST XMVECTOR D = XMVectorSet(-1.0f, 1.0f, 0.0f, 0.0f);
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
Scale = XMVectorSet(ViewportWidth * 0.5f,
-ViewportHeight * 0.5f,
ViewportMaxZ - ViewportMinZ,
1.0f);
Scale = XMVectorReciprocal(Scale);
Offset = XMVectorSet(-ViewportX,
-ViewportY,
-ViewportMinZ,
0.0f);
Offset = XMVectorMultiplyAdd(Scale, Offset, D);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(&Determinant, Transform);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Result = XMVectorMultiplyAdd(V, Scale, Offset);
Result = XMVector3TransformCoord(Result, Transform);
XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
XMMATRIX Transform;
XMVECTOR Scale;
XMVECTOR Offset;
XMVECTOR V;
XMVECTOR Determinant;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
CONST XMVECTORF32 D = {-1.0f, 1.0f, 0.0f, 0.0f};
Scale = XMVectorSet(ViewportWidth * 0.5f,
-ViewportHeight * 0.5f,
ViewportMaxZ - ViewportMinZ,
1.0f);
Scale = XMVectorReciprocal(Scale);
Offset = XMVectorSet(-ViewportX,
-ViewportY,
-ViewportMinZ,
0.0f);
Offset = _mm_mul_ps(Offset,Scale);
Offset = _mm_add_ps(Offset,D);
Transform = XMMatrixMultiply(World, View);
Transform = XMMatrixMultiply(Transform, Projection);
Transform = XMMatrixInverse(&Determinant, Transform);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat3((XMFLOAT3*)pInputVector);
Result = XMVectorMultiplyAdd(V, Scale, Offset);
Result = XMVector3TransformCoord(Result, Transform);
XMStoreFloat3((XMFLOAT3*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
/****************************************************************************
*
* 4D Vector
*
****************************************************************************/
//------------------------------------------------------------------------------
// Comparison operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4Equal
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] == V2.vector4_f32[0]) && (V1.vector4_f32[1] == V2.vector4_f32[1]) && (V1.vector4_f32[2] == V2.vector4_f32[2]) && (V1.vector4_f32[3] == V2.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector4EqualR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] == V2.vector4_f32[0]) &&
(V1.vector4_f32[1] == V2.vector4_f32[1]) &&
(V1.vector4_f32[2] == V2.vector4_f32[2]) &&
(V1.vector4_f32[3] == V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] != V2.vector4_f32[0]) &&
(V1.vector4_f32[1] != V2.vector4_f32[1]) &&
(V1.vector4_f32[2] != V2.vector4_f32[2]) &&
(V1.vector4_f32[3] != V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpeq_ps(V1,V2);
int iTest = _mm_movemask_ps(vTemp);
UINT CR = 0;
if (iTest==0xf) // All equal?
{
CR = XM_CRMASK_CR6TRUE;
}
else if (iTest==0) // All not equal?
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4EqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] == V2.vector4_u32[0]) && (V1.vector4_u32[1] == V2.vector4_u32[1]) && (V1.vector4_u32[2] == V2.vector4_u32[2]) && (V1.vector4_u32[3] == V2.vector4_u32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])==0xf) != 0);
#else
return XMComparisonAllTrue(XMVector4EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector4EqualIntR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if (V1.vector4_u32[0] == V2.vector4_u32[0] &&
V1.vector4_u32[1] == V2.vector4_u32[1] &&
V1.vector4_u32[2] == V2.vector4_u32[2] &&
V1.vector4_u32[3] == V2.vector4_u32[3])
{
CR = XM_CRMASK_CR6TRUE;
}
else if (V1.vector4_u32[0] != V2.vector4_u32[0] &&
V1.vector4_u32[1] != V2.vector4_u32[1] &&
V1.vector4_u32[2] != V2.vector4_u32[2] &&
V1.vector4_u32[3] != V2.vector4_u32[3])
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
int iTest = _mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0]);
UINT CR = 0;
if (iTest==0xf) // All equal?
{
CR = XM_CRMASK_CR6TRUE;
}
else if (iTest==0) // All not equal?
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
XMFINLINE BOOL XMVector4NearEqual
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR Epsilon
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT dx, dy, dz, dw;
dx = fabsf(V1.vector4_f32[0]-V2.vector4_f32[0]);
dy = fabsf(V1.vector4_f32[1]-V2.vector4_f32[1]);
dz = fabsf(V1.vector4_f32[2]-V2.vector4_f32[2]);
dw = fabsf(V1.vector4_f32[3]-V2.vector4_f32[3]);
return (((dx <= Epsilon.vector4_f32[0]) &&
(dy <= Epsilon.vector4_f32[1]) &&
(dz <= Epsilon.vector4_f32[2]) &&
(dw <= Epsilon.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Get the difference
XMVECTOR vDelta = _mm_sub_ps(V1,V2);
// Get the absolute value of the difference
XMVECTOR vTemp = _mm_setzero_ps();
vTemp = _mm_sub_ps(vTemp,vDelta);
vTemp = _mm_max_ps(vTemp,vDelta);
vTemp = _mm_cmple_ps(vTemp,Epsilon);
return ((_mm_movemask_ps(vTemp)==0xf) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4NotEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] != V2.vector4_f32[0]) || (V1.vector4_f32[1] != V2.vector4_f32[1]) || (V1.vector4_f32[2] != V2.vector4_f32[2]) || (V1.vector4_f32[3] != V2.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpneq_ps(V1,V2);
return ((_mm_movemask_ps(vTemp)) != 0);
#else
return XMComparisonAnyFalse(XMVector4EqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4NotEqualInt
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_u32[0] != V2.vector4_u32[0]) || (V1.vector4_u32[1] != V2.vector4_u32[1]) || (V1.vector4_u32[2] != V2.vector4_u32[2]) || (V1.vector4_u32[3] != V2.vector4_u32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
__m128i vTemp = _mm_cmpeq_epi32(reinterpret_cast<const __m128i *>(&V1)[0],reinterpret_cast<const __m128i *>(&V2)[0]);
return ((_mm_movemask_ps(reinterpret_cast<const __m128 *>(&vTemp)[0])!=0xF) != 0);
#else
return XMComparisonAnyFalse(XMVector4EqualIntR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4Greater
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] > V2.vector4_f32[0]) && (V1.vector4_f32[1] > V2.vector4_f32[1]) && (V1.vector4_f32[2] > V2.vector4_f32[2]) && (V1.vector4_f32[3] > V2.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector4GreaterR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if (V1.vector4_f32[0] > V2.vector4_f32[0] &&
V1.vector4_f32[1] > V2.vector4_f32[1] &&
V1.vector4_f32[2] > V2.vector4_f32[2] &&
V1.vector4_f32[3] > V2.vector4_f32[3])
{
CR = XM_CRMASK_CR6TRUE;
}
else if (V1.vector4_f32[0] <= V2.vector4_f32[0] &&
V1.vector4_f32[1] <= V2.vector4_f32[1] &&
V1.vector4_f32[2] <= V2.vector4_f32[2] &&
V1.vector4_f32[3] <= V2.vector4_f32[3])
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
UINT CR = 0;
XMVECTOR vTemp = _mm_cmpgt_ps(V1,V2);
int iTest = _mm_movemask_ps(vTemp);
if (iTest==0xf) {
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4GreaterOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] >= V2.vector4_f32[0]) && (V1.vector4_f32[1] >= V2.vector4_f32[1]) && (V1.vector4_f32[2] >= V2.vector4_f32[2]) && (V1.vector4_f32[3] >= V2.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterOrEqualR(V1, V2));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector4GreaterOrEqualR
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V1.vector4_f32[0] >= V2.vector4_f32[0]) &&
(V1.vector4_f32[1] >= V2.vector4_f32[1]) &&
(V1.vector4_f32[2] >= V2.vector4_f32[2]) &&
(V1.vector4_f32[3] >= V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6TRUE;
}
else if ((V1.vector4_f32[0] < V2.vector4_f32[0]) &&
(V1.vector4_f32[1] < V2.vector4_f32[1]) &&
(V1.vector4_f32[2] < V2.vector4_f32[2]) &&
(V1.vector4_f32[3] < V2.vector4_f32[3]))
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
UINT CR = 0;
XMVECTOR vTemp = _mm_cmpge_ps(V1,V2);
int iTest = _mm_movemask_ps(vTemp);
if (iTest==0x0f)
{
CR = XM_CRMASK_CR6TRUE;
}
else if (!iTest)
{
CR = XM_CRMASK_CR6FALSE;
}
return CR;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4Less
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] < V2.vector4_f32[0]) && (V1.vector4_f32[1] < V2.vector4_f32[1]) && (V1.vector4_f32[2] < V2.vector4_f32[2]) && (V1.vector4_f32[3] < V2.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmplt_ps(V1,V2);
return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4LessOrEqual
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V1.vector4_f32[0] <= V2.vector4_f32[0]) && (V1.vector4_f32[1] <= V2.vector4_f32[1]) && (V1.vector4_f32[2] <= V2.vector4_f32[2]) && (V1.vector4_f32[3] <= V2.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp = _mm_cmple_ps(V1,V2);
return ((_mm_movemask_ps(vTemp)==0x0f) != 0);
#else
return XMComparisonAllTrue(XMVector4GreaterOrEqualR(V2, V1));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4InBounds
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
return (((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) &&
(V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3])) != 0);
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
// All in bounds?
return ((_mm_movemask_ps(vTemp1)==0x0f) != 0);
#else
return XMComparisonAllInBounds(XMVector4InBoundsR(V, Bounds));
#endif
}
//------------------------------------------------------------------------------
XMFINLINE UINT XMVector4InBoundsR
(
FXMVECTOR V,
FXMVECTOR Bounds
)
{
#if defined(_XM_NO_INTRINSICS_)
UINT CR = 0;
if ((V.vector4_f32[0] <= Bounds.vector4_f32[0] && V.vector4_f32[0] >= -Bounds.vector4_f32[0]) &&
(V.vector4_f32[1] <= Bounds.vector4_f32[1] && V.vector4_f32[1] >= -Bounds.vector4_f32[1]) &&
(V.vector4_f32[2] <= Bounds.vector4_f32[2] && V.vector4_f32[2] >= -Bounds.vector4_f32[2]) &&
(V.vector4_f32[3] <= Bounds.vector4_f32[3] && V.vector4_f32[3] >= -Bounds.vector4_f32[3]))
{
CR = XM_CRMASK_CR6BOUNDS;
}
return CR;
#elif defined(_XM_SSE_INTRINSICS_)
// Test if less than or equal
XMVECTOR vTemp1 = _mm_cmple_ps(V,Bounds);
// Negate the bounds
XMVECTOR vTemp2 = _mm_mul_ps(Bounds,g_XMNegativeOne);
// Test if greater or equal (Reversed)
vTemp2 = _mm_cmple_ps(vTemp2,V);
// Blend answers
vTemp1 = _mm_and_ps(vTemp1,vTemp2);
// All in bounds?
return (_mm_movemask_ps(vTemp1)==0x0f) ? XM_CRMASK_CR6BOUNDS : 0;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4IsNaN
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISNAN(V.vector4_f32[0]) ||
XMISNAN(V.vector4_f32[1]) ||
XMISNAN(V.vector4_f32[2]) ||
XMISNAN(V.vector4_f32[3]));
#elif defined(_XM_SSE_INTRINSICS_)
// Test against itself. NaN is always not equal
XMVECTOR vTempNan = _mm_cmpneq_ps(V,V);
// If any are NaN, the mask is non-zero
return (_mm_movemask_ps(vTempNan)!=0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE BOOL XMVector4IsInfinite
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
return (XMISINF(V.vector4_f32[0]) ||
XMISINF(V.vector4_f32[1]) ||
XMISINF(V.vector4_f32[2]) ||
XMISINF(V.vector4_f32[3]));
#elif defined(_XM_SSE_INTRINSICS_)
// Mask off the sign bit
XMVECTOR vTemp = _mm_and_ps(V,g_XMAbsMask);
// Compare to infinity
vTemp = _mm_cmpeq_ps(vTemp,g_XMInfinity);
// If any are infinity, the signs are true.
return (_mm_movemask_ps(vTemp) != 0);
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// Computation operations
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Dot
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] =
Result.vector4_f32[1] =
Result.vector4_f32[2] =
Result.vector4_f32[3] = V1.vector4_f32[0] * V2.vector4_f32[0] + V1.vector4_f32[1] * V2.vector4_f32[1] + V1.vector4_f32[2] * V2.vector4_f32[2] + V1.vector4_f32[3] * V2.vector4_f32[3];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vTemp2 = V2;
XMVECTOR vTemp = _mm_mul_ps(V1,vTemp2);
vTemp2 = _mm_shuffle_ps(vTemp2,vTemp,_MM_SHUFFLE(1,0,0,0)); // Copy X to the Z position and Y to the W position
vTemp2 = _mm_add_ps(vTemp2,vTemp); // Add Z = X+Z; W = Y+W;
vTemp = _mm_shuffle_ps(vTemp,vTemp2,_MM_SHUFFLE(0,3,0,0)); // Copy W to the Z position
vTemp = _mm_add_ps(vTemp,vTemp2); // Add Z and W together
return _mm_shuffle_ps(vTemp,vTemp,_MM_SHUFFLE(2,2,2,2)); // Splat Z and return
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Cross
(
FXMVECTOR V1,
FXMVECTOR V2,
FXMVECTOR V3
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = (((V2.vector4_f32[2]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[2]))*V1.vector4_f32[1])-(((V2.vector4_f32[1]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[1]))*V1.vector4_f32[2])+(((V2.vector4_f32[1]*V3.vector4_f32[2])-(V2.vector4_f32[2]*V3.vector4_f32[1]))*V1.vector4_f32[3]);
Result.vector4_f32[1] = (((V2.vector4_f32[3]*V3.vector4_f32[2])-(V2.vector4_f32[2]*V3.vector4_f32[3]))*V1.vector4_f32[0])-(((V2.vector4_f32[3]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[3]))*V1.vector4_f32[2])+(((V2.vector4_f32[2]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[2]))*V1.vector4_f32[3]);
Result.vector4_f32[2] = (((V2.vector4_f32[1]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[1]))*V1.vector4_f32[0])-(((V2.vector4_f32[0]*V3.vector4_f32[3])-(V2.vector4_f32[3]*V3.vector4_f32[0]))*V1.vector4_f32[1])+(((V2.vector4_f32[0]*V3.vector4_f32[1])-(V2.vector4_f32[1]*V3.vector4_f32[0]))*V1.vector4_f32[3]);
Result.vector4_f32[3] = (((V2.vector4_f32[2]*V3.vector4_f32[1])-(V2.vector4_f32[1]*V3.vector4_f32[2]))*V1.vector4_f32[0])-(((V2.vector4_f32[2]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[2]))*V1.vector4_f32[1])+(((V2.vector4_f32[1]*V3.vector4_f32[0])-(V2.vector4_f32[0]*V3.vector4_f32[1]))*V1.vector4_f32[2]);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// V2zwyz * V3wzwy
XMVECTOR vResult = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(2,1,3,2));
XMVECTOR vTemp3 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(1,3,2,3));
vResult = _mm_mul_ps(vResult,vTemp3);
// - V2wzwy * V3zwyz
XMVECTOR vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(1,3,2,3));
vTemp3 = _mm_shuffle_ps(vTemp3,vTemp3,_MM_SHUFFLE(1,3,0,1));
vTemp2 = _mm_mul_ps(vTemp2,vTemp3);
vResult = _mm_sub_ps(vResult,vTemp2);
// term1 * V1yxxx
XMVECTOR vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(0,0,0,1));
vResult = _mm_mul_ps(vResult,vTemp1);
// V2ywxz * V3wxwx
vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(2,0,3,1));
vTemp3 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(0,3,0,3));
vTemp3 = _mm_mul_ps(vTemp3,vTemp2);
// - V2wxwx * V3ywxz
vTemp2 = _mm_shuffle_ps(vTemp2,vTemp2,_MM_SHUFFLE(2,1,2,1));
vTemp1 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(2,0,3,1));
vTemp2 = _mm_mul_ps(vTemp2,vTemp1);
vTemp3 = _mm_sub_ps(vTemp3,vTemp2);
// vResult - temp * V1zzyy
vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(1,1,2,2));
vTemp1 = _mm_mul_ps(vTemp1,vTemp3);
vResult = _mm_sub_ps(vResult,vTemp1);
// V2yzxy * V3zxyx
vTemp2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(1,0,2,1));
vTemp3 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(0,1,0,2));
vTemp3 = _mm_mul_ps(vTemp3,vTemp2);
// - V2zxyx * V3yzxy
vTemp2 = _mm_shuffle_ps(vTemp2,vTemp2,_MM_SHUFFLE(2,0,2,1));
vTemp1 = _mm_shuffle_ps(V3,V3,_MM_SHUFFLE(1,0,2,1));
vTemp1 = _mm_mul_ps(vTemp1,vTemp2);
vTemp3 = _mm_sub_ps(vTemp3,vTemp1);
// vResult + term * V1wwwz
vTemp1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(2,3,3,3));
vTemp3 = _mm_mul_ps(vTemp3,vTemp1);
vResult = _mm_add_ps(vResult,vTemp3);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4LengthSq
(
FXMVECTOR V
)
{
return XMVector4Dot(V, V);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4ReciprocalLengthEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorReciprocalSqrtEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and w
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// Splat the length
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
// Get the reciprocal
vLengthSq = _mm_rsqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4ReciprocalLength
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorReciprocalSqrt(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and w
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// Splat the length
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
// Get the reciprocal
vLengthSq = _mm_sqrt_ps(vLengthSq);
// Accurate!
vLengthSq = _mm_div_ps(g_XMOne,vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4LengthEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorSqrtEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and w
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// Splat the length
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
// Prepare for the division
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Length
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4LengthSq(V);
Result = XMVectorSqrt(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and w
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// Splat the length
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
// Prepare for the division
vLengthSq = _mm_sqrt_ps(vLengthSq);
return vLengthSq;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
// XMVector4NormalizeEst uses a reciprocal estimate and
// returns QNaN on zero and infinite vectors.
XMFINLINE XMVECTOR XMVector4NormalizeEst
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result = XMVector4ReciprocalLength(V);
Result = XMVectorMultiply(V, Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and w
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// Splat the length
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
// Get the reciprocal
XMVECTOR vResult = _mm_rsqrt_ps(vLengthSq);
// Reciprocal mul to perform the normalization
vResult = _mm_mul_ps(vResult,V);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Normalize
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fLength;
XMVECTOR vResult;
vResult = XMVector4Length( V );
fLength = vResult.vector4_f32[0];
// Prevent divide by zero
if (fLength > 0) {
fLength = 1.0f/fLength;
}
vResult.vector4_f32[0] = V.vector4_f32[0]*fLength;
vResult.vector4_f32[1] = V.vector4_f32[1]*fLength;
vResult.vector4_f32[2] = V.vector4_f32[2]*fLength;
vResult.vector4_f32[3] = V.vector4_f32[3]*fLength;
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Perform the dot product on x,y,z and w
XMVECTOR vLengthSq = _mm_mul_ps(V,V);
// vTemp has z and w
XMVECTOR vTemp = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(3,2,3,2));
// x+z, y+w
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// x+z,x+z,x+z,y+w
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(1,0,0,0));
// ??,??,y+w,y+w
vTemp = _mm_shuffle_ps(vTemp,vLengthSq,_MM_SHUFFLE(3,3,0,0));
// ??,??,x+z+y+w,??
vLengthSq = _mm_add_ps(vLengthSq,vTemp);
// Splat the length
vLengthSq = _mm_shuffle_ps(vLengthSq,vLengthSq,_MM_SHUFFLE(2,2,2,2));
// Prepare for the division
XMVECTOR vResult = _mm_sqrt_ps(vLengthSq);
// Create zero with a single instruction
XMVECTOR vZeroMask = _mm_setzero_ps();
// Test for a divide by zero (Must be FP to detect -0.0)
vZeroMask = _mm_cmpneq_ps(vZeroMask,vResult);
// Failsafe on zero (Or epsilon) length planes
// If the length is infinity, set the elements to zero
vLengthSq = _mm_cmpneq_ps(vLengthSq,g_XMInfinity);
// Divide to perform the normalization
vResult = _mm_div_ps(V,vResult);
// Any that are infinity, set to zero
vResult = _mm_and_ps(vResult,vZeroMask);
// Select qnan or result based on infinite length
XMVECTOR vTemp1 = _mm_andnot_ps(vLengthSq,g_XMQNaN);
XMVECTOR vTemp2 = _mm_and_ps(vResult,vLengthSq);
vResult = _mm_or_ps(vTemp1,vTemp2);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4ClampLength
(
FXMVECTOR V,
FLOAT LengthMin,
FLOAT LengthMax
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR ClampMax;
XMVECTOR ClampMin;
ClampMax = XMVectorReplicate(LengthMax);
ClampMin = XMVectorReplicate(LengthMin);
return XMVector4ClampLengthV(V, ClampMin, ClampMax);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR ClampMax = _mm_set_ps1(LengthMax);
XMVECTOR ClampMin = _mm_set_ps1(LengthMin);
return XMVector4ClampLengthV(V, ClampMin, ClampMax);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4ClampLengthV
(
FXMVECTOR V,
FXMVECTOR LengthMin,
FXMVECTOR LengthMax
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR ClampLength;
XMVECTOR LengthSq;
XMVECTOR RcpLength;
XMVECTOR Length;
XMVECTOR Normal;
XMVECTOR Zero;
XMVECTOR InfiniteLength;
XMVECTOR ZeroLength;
XMVECTOR Select;
XMVECTOR ControlMax;
XMVECTOR ControlMin;
XMVECTOR Control;
XMVECTOR Result;
XMASSERT((LengthMin.vector4_f32[1] == LengthMin.vector4_f32[0]) && (LengthMin.vector4_f32[2] == LengthMin.vector4_f32[0]) && (LengthMin.vector4_f32[3] == LengthMin.vector4_f32[0]));
XMASSERT((LengthMax.vector4_f32[1] == LengthMax.vector4_f32[0]) && (LengthMax.vector4_f32[2] == LengthMax.vector4_f32[0]) && (LengthMax.vector4_f32[3] == LengthMax.vector4_f32[0]));
XMASSERT(XMVector4GreaterOrEqual(LengthMin, XMVectorZero()));
XMASSERT(XMVector4GreaterOrEqual(LengthMax, XMVectorZero()));
XMASSERT(XMVector4GreaterOrEqual(LengthMax, LengthMin));
LengthSq = XMVector4LengthSq(V);
Zero = XMVectorZero();
RcpLength = XMVectorReciprocalSqrt(LengthSq);
InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity.v);
ZeroLength = XMVectorEqual(LengthSq, Zero);
Normal = XMVectorMultiply(V, RcpLength);
Length = XMVectorMultiply(LengthSq, RcpLength);
Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
ControlMax = XMVectorGreater(Length, LengthMax);
ControlMin = XMVectorLess(Length, LengthMin);
ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
Result = XMVectorMultiply(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
Control = XMVectorEqualInt(ControlMax, ControlMin);
Result = XMVectorSelect(Result, V, Control);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR ClampLength;
XMVECTOR LengthSq;
XMVECTOR RcpLength;
XMVECTOR Length;
XMVECTOR Normal;
XMVECTOR Zero;
XMVECTOR InfiniteLength;
XMVECTOR ZeroLength;
XMVECTOR Select;
XMVECTOR ControlMax;
XMVECTOR ControlMin;
XMVECTOR Control;
XMVECTOR Result;
XMASSERT((XMVectorGetY(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetZ(LengthMin) == XMVectorGetX(LengthMin)) && (XMVectorGetW(LengthMin) == XMVectorGetX(LengthMin)));
XMASSERT((XMVectorGetY(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetZ(LengthMax) == XMVectorGetX(LengthMax)) && (XMVectorGetW(LengthMax) == XMVectorGetX(LengthMax)));
XMASSERT(XMVector4GreaterOrEqual(LengthMin, g_XMZero));
XMASSERT(XMVector4GreaterOrEqual(LengthMax, g_XMZero));
XMASSERT(XMVector4GreaterOrEqual(LengthMax, LengthMin));
LengthSq = XMVector4LengthSq(V);
Zero = XMVectorZero();
RcpLength = XMVectorReciprocalSqrt(LengthSq);
InfiniteLength = XMVectorEqualInt(LengthSq, g_XMInfinity);
ZeroLength = XMVectorEqual(LengthSq, Zero);
Normal = _mm_mul_ps(V, RcpLength);
Length = _mm_mul_ps(LengthSq, RcpLength);
Select = XMVectorEqualInt(InfiniteLength, ZeroLength);
Length = XMVectorSelect(LengthSq, Length, Select);
Normal = XMVectorSelect(LengthSq, Normal, Select);
ControlMax = XMVectorGreater(Length, LengthMax);
ControlMin = XMVectorLess(Length, LengthMin);
ClampLength = XMVectorSelect(Length, LengthMax, ControlMax);
ClampLength = XMVectorSelect(ClampLength, LengthMin, ControlMin);
Result = _mm_mul_ps(Normal, ClampLength);
// Preserve the original vector (with no precision loss) if the length falls within the given range
Control = XMVectorEqualInt(ControlMax,ControlMin);
Result = XMVectorSelect(Result,V,Control);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Reflect
(
FXMVECTOR Incident,
FXMVECTOR Normal
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
Result = XMVector4Dot(Incident, Normal);
Result = XMVectorAdd(Result, Result);
Result = XMVectorNegativeMultiplySubtract(Result, Normal, Incident);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
// Result = Incident - (2 * dot(Incident, Normal)) * Normal
XMVECTOR Result = XMVector4Dot(Incident,Normal);
Result = _mm_add_ps(Result,Result);
Result = _mm_mul_ps(Result,Normal);
Result = _mm_sub_ps(Incident,Result);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Refract
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FLOAT RefractionIndex
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Index;
Index = XMVectorReplicate(RefractionIndex);
return XMVector4RefractV(Incident, Normal, Index);
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR Index = _mm_set_ps1(RefractionIndex);
return XMVector4RefractV(Incident,Normal,Index);
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4RefractV
(
FXMVECTOR Incident,
FXMVECTOR Normal,
FXMVECTOR RefractionIndex
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR IDotN;
XMVECTOR R;
CONST XMVECTOR Zero = XMVectorZero();
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
IDotN = XMVector4Dot(Incident, Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
R = XMVectorNegativeMultiplySubtract(IDotN, IDotN, g_XMOne.v);
R = XMVectorMultiply(R, RefractionIndex);
R = XMVectorNegativeMultiplySubtract(R, RefractionIndex, g_XMOne.v);
if (XMVector4LessOrEqual(R, Zero))
{
// Total internal reflection
return Zero;
}
else
{
XMVECTOR Result;
// R = RefractionIndex * IDotN + sqrt(R)
R = XMVectorSqrt(R);
R = XMVectorMultiplyAdd(RefractionIndex, IDotN, R);
// Result = RefractionIndex * Incident - Normal * R
Result = XMVectorMultiply(RefractionIndex, Incident);
Result = XMVectorNegativeMultiplySubtract(Normal, R, Result);
return Result;
}
#elif defined(_XM_SSE_INTRINSICS_)
// Result = RefractionIndex * Incident - Normal * (RefractionIndex * dot(Incident, Normal) +
// sqrt(1 - RefractionIndex * RefractionIndex * (1 - dot(Incident, Normal) * dot(Incident, Normal))))
XMVECTOR IDotN = XMVector4Dot(Incident,Normal);
// R = 1.0f - RefractionIndex * RefractionIndex * (1.0f - IDotN * IDotN)
XMVECTOR R = _mm_mul_ps(IDotN,IDotN);
R = _mm_sub_ps(g_XMOne,R);
R = _mm_mul_ps(R, RefractionIndex);
R = _mm_mul_ps(R, RefractionIndex);
R = _mm_sub_ps(g_XMOne,R);
XMVECTOR vResult = _mm_cmple_ps(R,g_XMZero);
if (_mm_movemask_ps(vResult)==0x0f)
{
// Total internal reflection
vResult = g_XMZero;
}
else
{
// R = RefractionIndex * IDotN + sqrt(R)
R = _mm_sqrt_ps(R);
vResult = _mm_mul_ps(RefractionIndex, IDotN);
R = _mm_add_ps(R,vResult);
// Result = RefractionIndex * Incident - Normal * R
vResult = _mm_mul_ps(RefractionIndex, Incident);
R = _mm_mul_ps(R,Normal);
vResult = _mm_sub_ps(vResult,R);
}
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Orthogonal
(
FXMVECTOR V
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR Result;
Result.vector4_f32[0] = V.vector4_f32[2];
Result.vector4_f32[1] = V.vector4_f32[3];
Result.vector4_f32[2] = -V.vector4_f32[0];
Result.vector4_f32[3] = -V.vector4_f32[1];
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
static const XMVECTORF32 FlipZW = {1.0f,1.0f,-1.0f,-1.0f};
XMVECTOR vResult = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,0,3,2));
vResult = _mm_mul_ps(vResult,FlipZW);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4AngleBetweenNormalsEst
(
FXMVECTOR N1,
FXMVECTOR N2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
Result = XMVector4Dot(N1, N2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
Result = XMVectorClamp(Result, NegativeOne, One);
Result = XMVectorACosEst(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XMVector4Dot(N1,N2);
// Clamp to -1.0f to 1.0f
vResult = _mm_max_ps(vResult,g_XMNegativeOne);
vResult = _mm_min_ps(vResult,g_XMOne);;
vResult = XMVectorACosEst(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4AngleBetweenNormals
(
FXMVECTOR N1,
FXMVECTOR N2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
Result = XMVector4Dot(N1, N2);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
Result = XMVectorClamp(Result, NegativeOne, One);
Result = XMVectorACos(Result);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR vResult = XMVector4Dot(N1,N2);
// Clamp to -1.0f to 1.0f
vResult = _mm_max_ps(vResult,g_XMNegativeOne);
vResult = _mm_min_ps(vResult,g_XMOne);;
vResult = XMVectorACos(vResult);
return vResult;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4AngleBetweenVectors
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR L1;
XMVECTOR L2;
XMVECTOR Dot;
XMVECTOR CosAngle;
XMVECTOR NegativeOne;
XMVECTOR One;
XMVECTOR Result;
L1 = XMVector4ReciprocalLength(V1);
L2 = XMVector4ReciprocalLength(V2);
Dot = XMVector4Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
CosAngle = XMVectorMultiply(Dot, L1);
NegativeOne = XMVectorSplatConstant(-1, 0);
One = XMVectorSplatOne();
CosAngle = XMVectorClamp(CosAngle, NegativeOne, One);
Result = XMVectorACos(CosAngle);
return Result;
#elif defined(_XM_SSE_INTRINSICS_)
XMVECTOR L1;
XMVECTOR L2;
XMVECTOR Dot;
XMVECTOR CosAngle;
XMVECTOR Result;
L1 = XMVector4ReciprocalLength(V1);
L2 = XMVector4ReciprocalLength(V2);
Dot = XMVector4Dot(V1, V2);
L1 = _mm_mul_ps(L1,L2);
CosAngle = _mm_mul_ps(Dot,L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne, g_XMOne);
Result = XMVectorACos(CosAngle);
return Result;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR XMVector4Transform
(
FXMVECTOR V,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
FLOAT fX = (M.m[0][0]*V.vector4_f32[0])+(M.m[1][0]*V.vector4_f32[1])+(M.m[2][0]*V.vector4_f32[2])+(M.m[3][0]*V.vector4_f32[3]);
FLOAT fY = (M.m[0][1]*V.vector4_f32[0])+(M.m[1][1]*V.vector4_f32[1])+(M.m[2][1]*V.vector4_f32[2])+(M.m[3][1]*V.vector4_f32[3]);
FLOAT fZ = (M.m[0][2]*V.vector4_f32[0])+(M.m[1][2]*V.vector4_f32[1])+(M.m[2][2]*V.vector4_f32[2])+(M.m[3][2]*V.vector4_f32[3]);
FLOAT fW = (M.m[0][3]*V.vector4_f32[0])+(M.m[1][3]*V.vector4_f32[1])+(M.m[2][3]*V.vector4_f32[2])+(M.m[3][3]*V.vector4_f32[3]);
XMVECTOR vResult = {
fX,
fY,
fZ,
fW
};
return vResult;
#elif defined(_XM_SSE_INTRINSICS_)
// Splat x,y,z and w
XMVECTOR vTempX = _mm_shuffle_ps(V,V,_MM_SHUFFLE(0,0,0,0));
XMVECTOR vTempY = _mm_shuffle_ps(V,V,_MM_SHUFFLE(1,1,1,1));
XMVECTOR vTempZ = _mm_shuffle_ps(V,V,_MM_SHUFFLE(2,2,2,2));
XMVECTOR vTempW = _mm_shuffle_ps(V,V,_MM_SHUFFLE(3,3,3,3));
// Mul by the matrix
vTempX = _mm_mul_ps(vTempX,M.r[0]);
vTempY = _mm_mul_ps(vTempY,M.r[1]);
vTempZ = _mm_mul_ps(vTempZ,M.r[2]);
vTempW = _mm_mul_ps(vTempW,M.r[3]);
// Add them all together
vTempX = _mm_add_ps(vTempX,vTempY);
vTempZ = _mm_add_ps(vTempZ,vTempW);
vTempX = _mm_add_ps(vTempX,vTempZ);
return vTempX;
#else // _XM_VMX128_INTRINSICS_
#endif // _XM_VMX128_INTRINSICS_
}
//------------------------------------------------------------------------------
XMINLINE XMFLOAT4* XMVector4TransformStream
(
XMFLOAT4* pOutputStream,
UINT OutputStride,
CONST XMFLOAT4* pInputStream,
UINT InputStride,
UINT VectorCount,
CXMMATRIX M
)
{
#if defined(_XM_NO_INTRINSICS_)
XMVECTOR V;
XMVECTOR X;
XMVECTOR Y;
XMVECTOR Z;
XMVECTOR W;
XMVECTOR Result;
UINT i;
BYTE* pInputVector = (BYTE*)pInputStream;
BYTE* pOutputVector = (BYTE*)pOutputStream;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
for (i = 0; i < VectorCount; i++)
{
V = XMLoadFloat4((XMFLOAT4*)pInputVector);
W = XMVectorSplatW(V);
Z = XMVectorSplatZ(V);
Y = XMVectorSplatY(V);
X = XMVectorSplatX(V);
// W = XMVectorReplicate(((XMFLOAT4*)pInputVector)->w);
// Z = XMVectorReplicate(((XMFLOAT4*)pInputVector)->z);
// Y = XMVectorReplicate(((XMFLOAT4*)pInputVector)->y);
// X = XMVectorReplicate(((XMFLOAT4*)pInputVector)->x);
Result = XMVectorMultiply(W, M.r[3]);
Result = XMVectorMultiplyAdd(Z, M.r[2], Result);
Result = XMVectorMultiplyAdd(Y, M.r[1], Result);
Result = XMVectorMultiplyAdd(X, M.r[0], Result);
XMStoreFloat4((XMFLOAT4*)pOutputVector, Result);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(_XM_SSE_INTRINSICS_)
UINT i;
XMASSERT(pOutputStream);
XMASSERT(pInputStream);
const BYTE*pInputVector = reinterpret_cast<const BYTE *>(pInputStream);
BYTE* pOutputVector = reinterpret_cast<BYTE *>(pOutputStream);
for (i = 0; i < VectorCount; i++)
{
// Fetch the row and splat it
XMVECTOR vTempx = _mm_loadu_ps(reinterpret_cast<const float *>(pInputVector));
XMVECTOR vTempy = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(1,1,1,1));
XMVECTOR vTempz = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(2,2,2,2));
XMVECTOR vTempw = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(3,3,3,3));
vTempx = _mm_shuffle_ps(vTempx,vTempx,_MM_SHUFFLE(0,0,0,0));
vTempx = _mm_mul_ps(vTempx,M.r[0]);
vTempy = _mm_mul_ps(vTempy,M.r[1]);
vTempz = _mm_mul_ps(vTempz,M.r[2]);
vTempw = _mm_mul_ps(vTempw,M.r[3]);
vTempx = _mm_add_ps(vTempx,vTempy);
vTempw = _mm_add_ps(vTempw,vTempz);
vTempw = _mm_add_ps(vTempw,vTempx);
// Store the transformed vector
_mm_storeu_ps(reinterpret_cast<float *>(pOutputVector),vTempw);
pInputVector += InputStride;
pOutputVector += OutputStride;
}
return pOutputStream;
#elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS)
#endif // _XM_VMX128_INTRINSICS_
}
#ifdef __cplusplus
/****************************************************************************
*
* XMVECTOR operators
*
****************************************************************************/
#ifndef XM_NO_OPERATOR_OVERLOADS
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator+ (FXMVECTOR V)
{
return V;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator- (FXMVECTOR V)
{
return XMVectorNegate(V);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR& operator+=
(
XMVECTOR& V1,
FXMVECTOR V2
)
{
V1 = XMVectorAdd(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR& operator-=
(
XMVECTOR& V1,
FXMVECTOR V2
)
{
V1 = XMVectorSubtract(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR& operator*=
(
XMVECTOR& V1,
FXMVECTOR V2
)
{
V1 = XMVectorMultiply(V1, V2);
return V1;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR& operator/=
(
XMVECTOR& V1,
FXMVECTOR V2
)
{
V1 = XMVectorDivide(V1,V2);
return V1;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR& operator*=
(
XMVECTOR& V,
CONST FLOAT S
)
{
V = XMVectorScale(V, S);
return V;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR& operator/=
(
XMVECTOR& V,
CONST FLOAT S
)
{
V = XMVectorScale(V, 1.0f / S);
return V;
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator+
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
return XMVectorAdd(V1, V2);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator-
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
return XMVectorSubtract(V1, V2);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator*
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
return XMVectorMultiply(V1, V2);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator/
(
FXMVECTOR V1,
FXMVECTOR V2
)
{
return XMVectorDivide(V1,V2);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator*
(
FXMVECTOR V,
CONST FLOAT S
)
{
return XMVectorScale(V, S);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator/
(
FXMVECTOR V,
CONST FLOAT S
)
{
return XMVectorScale(V, 1.0f / S);
}
//------------------------------------------------------------------------------
XMFINLINE XMVECTOR operator*
(
FLOAT S,
FXMVECTOR V
)
{
return XMVectorScale(V, S);
}
#endif // !XM_NO_OPERATOR_OVERLOADS
/****************************************************************************
*
* XMFLOAT2 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMFLOAT2::_XMFLOAT2
(
CONST FLOAT* pArray
)
{
x = pArray[0];
y = pArray[1];
}
//------------------------------------------------------------------------------
XMFINLINE _XMFLOAT2& _XMFLOAT2::operator=
(
CONST _XMFLOAT2& Float2
)
{
x = Float2.x;
y = Float2.y;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE XMFLOAT2A& XMFLOAT2A::operator=
(
CONST XMFLOAT2A& Float2
)
{
x = Float2.x;
y = Float2.y;
return *this;
}
/****************************************************************************
*
* XMHALF2 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMHALF2::_XMHALF2
(
CONST HALF* pArray
)
{
x = pArray[0];
y = pArray[1];
}
//------------------------------------------------------------------------------
XMFINLINE _XMHALF2::_XMHALF2
(
FLOAT _x,
FLOAT _y
)
{
x = XMConvertFloatToHalf(_x);
y = XMConvertFloatToHalf(_y);
}
//------------------------------------------------------------------------------
XMFINLINE _XMHALF2::_XMHALF2
(
CONST FLOAT* pArray
)
{
x = XMConvertFloatToHalf(pArray[0]);
y = XMConvertFloatToHalf(pArray[1]);
}
//------------------------------------------------------------------------------
XMFINLINE _XMHALF2& _XMHALF2::operator=
(
CONST _XMHALF2& Half2
)
{
x = Half2.x;
y = Half2.y;
return *this;
}
/****************************************************************************
*
* XMSHORTN2 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN2::_XMSHORTN2
(
CONST SHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN2::_XMSHORTN2
(
FLOAT _x,
FLOAT _y
)
{
XMStoreShortN2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN2::_XMSHORTN2
(
CONST FLOAT* pArray
)
{
XMStoreShortN2(this, XMLoadFloat2((XMFLOAT2*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN2& _XMSHORTN2::operator=
(
CONST _XMSHORTN2& ShortN2
)
{
x = ShortN2.x;
y = ShortN2.y;
return *this;
}
/****************************************************************************
*
* XMSHORT2 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT2::_XMSHORT2
(
CONST SHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT2::_XMSHORT2
(
FLOAT _x,
FLOAT _y
)
{
XMStoreShort2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT2::_XMSHORT2
(
CONST FLOAT* pArray
)
{
XMStoreShort2(this, XMLoadFloat2((XMFLOAT2*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT2& _XMSHORT2::operator=
(
CONST _XMSHORT2& Short2
)
{
x = Short2.x;
y = Short2.y;
return *this;
}
/****************************************************************************
*
* XMUSHORTN2 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN2::_XMUSHORTN2
(
CONST USHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN2::_XMUSHORTN2
(
FLOAT _x,
FLOAT _y
)
{
XMStoreUShortN2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN2::_XMUSHORTN2
(
CONST FLOAT* pArray
)
{
XMStoreUShortN2(this, XMLoadFloat2((XMFLOAT2*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN2& _XMUSHORTN2::operator=
(
CONST _XMUSHORTN2& UShortN2
)
{
x = UShortN2.x;
y = UShortN2.y;
return *this;
}
/****************************************************************************
*
* XMUSHORT2 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT2::_XMUSHORT2
(
CONST USHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT2::_XMUSHORT2
(
FLOAT _x,
FLOAT _y
)
{
XMStoreUShort2(this, XMVectorSet(_x, _y, 0.0f, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT2::_XMUSHORT2
(
CONST FLOAT* pArray
)
{
XMStoreUShort2(this, XMLoadFloat2((XMFLOAT2*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT2& _XMUSHORT2::operator=
(
CONST _XMUSHORT2& UShort2
)
{
x = UShort2.x;
y = UShort2.y;
return *this;
}
/****************************************************************************
*
* XMFLOAT3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMFLOAT3::_XMFLOAT3
(
CONST FLOAT* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
}
//------------------------------------------------------------------------------
XMFINLINE _XMFLOAT3& _XMFLOAT3::operator=
(
CONST _XMFLOAT3& Float3
)
{
x = Float3.x;
y = Float3.y;
z = Float3.z;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE XMFLOAT3A& XMFLOAT3A::operator=
(
CONST XMFLOAT3A& Float3
)
{
x = Float3.x;
y = Float3.y;
z = Float3.z;
return *this;
}
/****************************************************************************
*
* XMHENDN3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMHENDN3::_XMHENDN3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreHenDN3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMHENDN3::_XMHENDN3
(
CONST FLOAT* pArray
)
{
XMStoreHenDN3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMHENDN3& _XMHENDN3::operator=
(
CONST _XMHENDN3& HenDN3
)
{
v = HenDN3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMHENDN3& _XMHENDN3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMHEND3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMHEND3::_XMHEND3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreHenD3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMHEND3::_XMHEND3
(
CONST FLOAT* pArray
)
{
XMStoreHenD3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMHEND3& _XMHEND3::operator=
(
CONST _XMHEND3& HenD3
)
{
v = HenD3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMHEND3& _XMHEND3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUHENDN3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUHENDN3::_XMUHENDN3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreUHenDN3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUHENDN3::_XMUHENDN3
(
CONST FLOAT* pArray
)
{
XMStoreUHenDN3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUHENDN3& _XMUHENDN3::operator=
(
CONST _XMUHENDN3& UHenDN3
)
{
v = UHenDN3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUHENDN3& _XMUHENDN3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUHEND3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUHEND3::_XMUHEND3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreUHenD3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUHEND3::_XMUHEND3
(
CONST FLOAT* pArray
)
{
XMStoreUHenD3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUHEND3& _XMUHEND3::operator=
(
CONST _XMUHEND3& UHenD3
)
{
v = UHenD3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUHEND3& _XMUHEND3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMDHENN3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMDHENN3::_XMDHENN3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreDHenN3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDHENN3::_XMDHENN3
(
CONST FLOAT* pArray
)
{
XMStoreDHenN3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDHENN3& _XMDHENN3::operator=
(
CONST _XMDHENN3& DHenN3
)
{
v = DHenN3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMDHENN3& _XMDHENN3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMDHEN3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMDHEN3::_XMDHEN3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreDHen3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDHEN3::_XMDHEN3
(
CONST FLOAT* pArray
)
{
XMStoreDHen3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDHEN3& _XMDHEN3::operator=
(
CONST _XMDHEN3& DHen3
)
{
v = DHen3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMDHEN3& _XMDHEN3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUDHENN3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUDHENN3::_XMUDHENN3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreUDHenN3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDHENN3::_XMUDHENN3
(
CONST FLOAT* pArray
)
{
XMStoreUDHenN3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDHENN3& _XMUDHENN3::operator=
(
CONST _XMUDHENN3& UDHenN3
)
{
v = UDHenN3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDHENN3& _XMUDHENN3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUDHEN3 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUDHEN3::_XMUDHEN3
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreUDHen3(this, XMVectorSet(_x, _y, _z, 0.0f));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDHEN3::_XMUDHEN3
(
CONST FLOAT* pArray
)
{
XMStoreUDHen3(this, XMLoadFloat3((XMFLOAT3*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDHEN3& _XMUDHEN3::operator=
(
CONST _XMUDHEN3& UDHen3
)
{
v = UDHen3.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDHEN3& _XMUDHEN3::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMU565 operators
*
****************************************************************************/
XMFINLINE _XMU565::_XMU565
(
CONST CHAR *pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
}
XMFINLINE _XMU565::_XMU565
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreU565(this, XMVectorSet( _x, _y, _z, 0.0f ));
}
XMFINLINE _XMU565::_XMU565
(
CONST FLOAT *pArray
)
{
XMStoreU565(this, XMLoadFloat3((XMFLOAT3*)pArray ));
}
XMFINLINE _XMU565& _XMU565::operator=
(
CONST _XMU565& U565
)
{
v = U565.v;
return *this;
}
XMFINLINE _XMU565& _XMU565::operator=
(
CONST USHORT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMFLOAT3PK operators
*
****************************************************************************/
XMFINLINE _XMFLOAT3PK::_XMFLOAT3PK
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreFloat3PK(this, XMVectorSet( _x, _y, _z, 0.0f ));
}
XMFINLINE _XMFLOAT3PK::_XMFLOAT3PK
(
CONST FLOAT *pArray
)
{
XMStoreFloat3PK(this, XMLoadFloat3((XMFLOAT3*)pArray ));
}
XMFINLINE _XMFLOAT3PK& _XMFLOAT3PK::operator=
(
CONST _XMFLOAT3PK& float3pk
)
{
v = float3pk.v;
return *this;
}
XMFINLINE _XMFLOAT3PK& _XMFLOAT3PK::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMFLOAT3SE operators
*
****************************************************************************/
XMFINLINE _XMFLOAT3SE::_XMFLOAT3SE
(
FLOAT _x,
FLOAT _y,
FLOAT _z
)
{
XMStoreFloat3SE(this, XMVectorSet( _x, _y, _z, 0.0f ));
}
XMFINLINE _XMFLOAT3SE::_XMFLOAT3SE
(
CONST FLOAT *pArray
)
{
XMStoreFloat3SE(this, XMLoadFloat3((XMFLOAT3*)pArray ));
}
XMFINLINE _XMFLOAT3SE& _XMFLOAT3SE::operator=
(
CONST _XMFLOAT3SE& float3se
)
{
v = float3se.v;
return *this;
}
XMFINLINE _XMFLOAT3SE& _XMFLOAT3SE::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMFLOAT4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMFLOAT4::_XMFLOAT4
(
CONST FLOAT* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMFLOAT4& _XMFLOAT4::operator=
(
CONST _XMFLOAT4& Float4
)
{
x = Float4.x;
y = Float4.y;
z = Float4.z;
w = Float4.w;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE XMFLOAT4A& XMFLOAT4A::operator=
(
CONST XMFLOAT4A& Float4
)
{
x = Float4.x;
y = Float4.y;
z = Float4.z;
w = Float4.w;
return *this;
}
/****************************************************************************
*
* XMHALF4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMHALF4::_XMHALF4
(
CONST HALF* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMHALF4::_XMHALF4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
x = XMConvertFloatToHalf(_x);
y = XMConvertFloatToHalf(_y);
z = XMConvertFloatToHalf(_z);
w = XMConvertFloatToHalf(_w);
}
//------------------------------------------------------------------------------
XMFINLINE _XMHALF4::_XMHALF4
(
CONST FLOAT* pArray
)
{
XMConvertFloatToHalfStream(&x, sizeof(HALF), pArray, sizeof(FLOAT), 4);
}
//------------------------------------------------------------------------------
XMFINLINE _XMHALF4& _XMHALF4::operator=
(
CONST _XMHALF4& Half4
)
{
x = Half4.x;
y = Half4.y;
z = Half4.z;
w = Half4.w;
return *this;
}
/****************************************************************************
*
* XMSHORTN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN4::_XMSHORTN4
(
CONST SHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN4::_XMSHORTN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreShortN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN4::_XMSHORTN4
(
CONST FLOAT* pArray
)
{
XMStoreShortN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORTN4& _XMSHORTN4::operator=
(
CONST _XMSHORTN4& ShortN4
)
{
x = ShortN4.x;
y = ShortN4.y;
z = ShortN4.z;
w = ShortN4.w;
return *this;
}
/****************************************************************************
*
* XMSHORT4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT4::_XMSHORT4
(
CONST SHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT4::_XMSHORT4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreShort4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT4::_XMSHORT4
(
CONST FLOAT* pArray
)
{
XMStoreShort4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMSHORT4& _XMSHORT4::operator=
(
CONST _XMSHORT4& Short4
)
{
x = Short4.x;
y = Short4.y;
z = Short4.z;
w = Short4.w;
return *this;
}
/****************************************************************************
*
* XMUSHORTN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN4::_XMUSHORTN4
(
CONST USHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN4::_XMUSHORTN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUShortN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN4::_XMUSHORTN4
(
CONST FLOAT* pArray
)
{
XMStoreUShortN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORTN4& _XMUSHORTN4::operator=
(
CONST _XMUSHORTN4& UShortN4
)
{
x = UShortN4.x;
y = UShortN4.y;
z = UShortN4.z;
w = UShortN4.w;
return *this;
}
/****************************************************************************
*
* XMUSHORT4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT4::_XMUSHORT4
(
CONST USHORT* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT4::_XMUSHORT4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUShort4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT4::_XMUSHORT4
(
CONST FLOAT* pArray
)
{
XMStoreUShort4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUSHORT4& _XMUSHORT4::operator=
(
CONST _XMUSHORT4& UShort4
)
{
x = UShort4.x;
y = UShort4.y;
z = UShort4.z;
w = UShort4.w;
return *this;
}
/****************************************************************************
*
* XMXDECN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMXDECN4::_XMXDECN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreXDecN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXDECN4::_XMXDECN4
(
CONST FLOAT* pArray
)
{
XMStoreXDecN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXDECN4& _XMXDECN4::operator=
(
CONST _XMXDECN4& XDecN4
)
{
v = XDecN4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMXDECN4& _XMXDECN4::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMXDEC4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMXDEC4::_XMXDEC4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreXDec4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXDEC4::_XMXDEC4
(
CONST FLOAT* pArray
)
{
XMStoreXDec4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXDEC4& _XMXDEC4::operator=
(
CONST _XMXDEC4& XDec4
)
{
v = XDec4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMXDEC4& _XMXDEC4::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMDECN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMDECN4::_XMDECN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreDecN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDECN4::_XMDECN4
(
CONST FLOAT* pArray
)
{
XMStoreDecN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDECN4& _XMDECN4::operator=
(
CONST _XMDECN4& DecN4
)
{
v = DecN4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMDECN4& _XMDECN4::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMDEC4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMDEC4::_XMDEC4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreDec4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDEC4::_XMDEC4
(
CONST FLOAT* pArray
)
{
XMStoreDec4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMDEC4& _XMDEC4::operator=
(
CONST _XMDEC4& Dec4
)
{
v = Dec4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMDEC4& _XMDEC4::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUDECN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUDECN4::_XMUDECN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUDecN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDECN4::_XMUDECN4
(
CONST FLOAT* pArray
)
{
XMStoreUDecN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDECN4& _XMUDECN4::operator=
(
CONST _XMUDECN4& UDecN4
)
{
v = UDecN4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDECN4& _XMUDECN4::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUDEC4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUDEC4::_XMUDEC4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUDec4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDEC4::_XMUDEC4
(
CONST FLOAT* pArray
)
{
XMStoreUDec4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDEC4& _XMUDEC4::operator=
(
CONST _XMUDEC4& UDec4
)
{
v = UDec4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUDEC4& _XMUDEC4::operator=
(
CONST UINT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMXICON4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMXICON4::_XMXICON4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreXIcoN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXICON4::_XMXICON4
(
CONST FLOAT* pArray
)
{
XMStoreXIcoN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXICON4& _XMXICON4::operator=
(
CONST _XMXICON4& XIcoN4
)
{
v = XIcoN4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMXICON4& _XMXICON4::operator=
(
CONST UINT64 Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMXICO4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMXICO4::_XMXICO4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreXIco4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXICO4::_XMXICO4
(
CONST FLOAT* pArray
)
{
XMStoreXIco4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMXICO4& _XMXICO4::operator=
(
CONST _XMXICO4& XIco4
)
{
v = XIco4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMXICO4& _XMXICO4::operator=
(
CONST UINT64 Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMICON4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMICON4::_XMICON4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreIcoN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMICON4::_XMICON4
(
CONST FLOAT* pArray
)
{
XMStoreIcoN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMICON4& _XMICON4::operator=
(
CONST _XMICON4& IcoN4
)
{
v = IcoN4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMICON4& _XMICON4::operator=
(
CONST UINT64 Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMICO4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMICO4::_XMICO4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreIco4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMICO4::_XMICO4
(
CONST FLOAT* pArray
)
{
XMStoreIco4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMICO4& _XMICO4::operator=
(
CONST _XMICO4& Ico4
)
{
v = Ico4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMICO4& _XMICO4::operator=
(
CONST UINT64 Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUICON4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUICON4::_XMUICON4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUIcoN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUICON4::_XMUICON4
(
CONST FLOAT* pArray
)
{
XMStoreUIcoN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUICON4& _XMUICON4::operator=
(
CONST _XMUICON4& UIcoN4
)
{
v = UIcoN4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUICON4& _XMUICON4::operator=
(
CONST UINT64 Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMUICO4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUICO4::_XMUICO4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUIco4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUICO4::_XMUICO4
(
CONST FLOAT* pArray
)
{
XMStoreUIco4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUICO4& _XMUICO4::operator=
(
CONST _XMUICO4& UIco4
)
{
v = UIco4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUICO4& _XMUICO4::operator=
(
CONST UINT64 Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMCOLOR4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMCOLOR::_XMCOLOR
(
FLOAT _r,
FLOAT _g,
FLOAT _b,
FLOAT _a
)
{
XMStoreColor(this, XMVectorSet(_r, _g, _b, _a));
}
//------------------------------------------------------------------------------
XMFINLINE _XMCOLOR::_XMCOLOR
(
CONST FLOAT* pArray
)
{
XMStoreColor(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMCOLOR& _XMCOLOR::operator=
(
CONST _XMCOLOR& Color
)
{
c = Color.c;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMCOLOR& _XMCOLOR::operator=
(
CONST UINT Color
)
{
c = Color;
return *this;
}
/****************************************************************************
*
* XMBYTEN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMBYTEN4::_XMBYTEN4
(
CONST CHAR* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMBYTEN4::_XMBYTEN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreByteN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMBYTEN4::_XMBYTEN4
(
CONST FLOAT* pArray
)
{
XMStoreByteN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMBYTEN4& _XMBYTEN4::operator=
(
CONST _XMBYTEN4& ByteN4
)
{
x = ByteN4.x;
y = ByteN4.y;
z = ByteN4.z;
w = ByteN4.w;
return *this;
}
/****************************************************************************
*
* XMBYTE4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMBYTE4::_XMBYTE4
(
CONST CHAR* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMBYTE4::_XMBYTE4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreByte4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMBYTE4::_XMBYTE4
(
CONST FLOAT* pArray
)
{
XMStoreByte4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMBYTE4& _XMBYTE4::operator=
(
CONST _XMBYTE4& Byte4
)
{
x = Byte4.x;
y = Byte4.y;
z = Byte4.z;
w = Byte4.w;
return *this;
}
/****************************************************************************
*
* XMUBYTEN4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTEN4::_XMUBYTEN4
(
CONST BYTE* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTEN4::_XMUBYTEN4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUByteN4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTEN4::_XMUBYTEN4
(
CONST FLOAT* pArray
)
{
XMStoreUByteN4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTEN4& _XMUBYTEN4::operator=
(
CONST _XMUBYTEN4& UByteN4
)
{
x = UByteN4.x;
y = UByteN4.y;
z = UByteN4.z;
w = UByteN4.w;
return *this;
}
/****************************************************************************
*
* XMUBYTE4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTE4::_XMUBYTE4
(
CONST BYTE* pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTE4::_XMUBYTE4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUByte4(this, XMVectorSet(_x, _y, _z, _w));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTE4::_XMUBYTE4
(
CONST FLOAT* pArray
)
{
XMStoreUByte4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUBYTE4& _XMUBYTE4::operator=
(
CONST _XMUBYTE4& UByte4
)
{
x = UByte4.x;
y = UByte4.y;
z = UByte4.z;
w = UByte4.w;
return *this;
}
/****************************************************************************
*
* XMUNIBBLE4 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMUNIBBLE4::_XMUNIBBLE4
(
CONST CHAR *pArray
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = pArray[3];
}
//------------------------------------------------------------------------------
XMFINLINE _XMUNIBBLE4::_XMUNIBBLE4
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
FLOAT _w
)
{
XMStoreUNibble4(this, XMVectorSet( _x, _y, _z, _w ));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUNIBBLE4::_XMUNIBBLE4
(
CONST FLOAT *pArray
)
{
XMStoreUNibble4(this, XMLoadFloat4((XMFLOAT4*)pArray));
}
//------------------------------------------------------------------------------
XMFINLINE _XMUNIBBLE4& _XMUNIBBLE4::operator=
(
CONST _XMUNIBBLE4& UNibble4
)
{
v = UNibble4.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMUNIBBLE4& _XMUNIBBLE4::operator=
(
CONST USHORT Packed
)
{
v = Packed;
return *this;
}
/****************************************************************************
*
* XMU555 operators
*
****************************************************************************/
//------------------------------------------------------------------------------
XMFINLINE _XMU555::_XMU555
(
CONST CHAR *pArray,
BOOL _w
)
{
x = pArray[0];
y = pArray[1];
z = pArray[2];
w = _w;
}
//------------------------------------------------------------------------------
XMFINLINE _XMU555::_XMU555
(
FLOAT _x,
FLOAT _y,
FLOAT _z,
BOOL _w
)
{
XMStoreU555(this, XMVectorSet(_x, _y, _z, ((_w) ? 1.0f : 0.0f) ));
}
//------------------------------------------------------------------------------
XMFINLINE _XMU555::_XMU555
(
CONST FLOAT *pArray,
BOOL _w
)
{
XMVECTOR V = XMLoadFloat3((XMFLOAT3*)pArray);
XMStoreU555(this, XMVectorSetW(V, ((_w) ? 1.0f : 0.0f) ));
}
//------------------------------------------------------------------------------
XMFINLINE _XMU555& _XMU555::operator=
(
CONST _XMU555& U555
)
{
v = U555.v;
return *this;
}
//------------------------------------------------------------------------------
XMFINLINE _XMU555& _XMU555::operator=
(
CONST USHORT Packed
)
{
v = Packed;
return *this;
}
#endif // __cplusplus
#if defined(_XM_NO_INTRINSICS_)
#undef XMISNAN
#undef XMISINF
#endif
#endif // __XNAMATHVECTOR_INL__