230 lines
7.9 KiB
C++
230 lines
7.9 KiB
C++
//----------------------------------------------------------------------------------------------------------
|
|
#define LOAD_NODES_POS( POS, V, IDX ) { \
|
|
fltx4 _pos0 = POS[ IDX[ 0 ] ], _pos1 = POS[ IDX[ 1 ] ], _pos2 = POS[ IDX[ 2 ] ], _pos3 = POS[ IDX[ 3 ] ]; \
|
|
__m128 tmp3, tmp2, tmp1, tmp0; \
|
|
tmp0 = _mm_shuffle_ps( ( _pos0 ), ( _pos1 ), 0x44 ); \
|
|
tmp2 = _mm_shuffle_ps( ( _pos0 ), ( _pos1 ), 0xEE ); \
|
|
tmp1 = _mm_shuffle_ps( ( _pos2 ), ( _pos3 ), 0x44 ); \
|
|
tmp3 = _mm_shuffle_ps( ( _pos2 ), ( _pos3 ), 0xEE ); \
|
|
V.x = _mm_shuffle_ps( tmp0, tmp1, 0x88 ); \
|
|
V.y = _mm_shuffle_ps( tmp0, tmp1, 0xDD ); \
|
|
V.z = _mm_shuffle_ps( tmp2, tmp3, 0x88 ); \
|
|
}
|
|
|
|
#define LOAD_NODES( V, IDX ) { \
|
|
fltx4 _pos0 = pPos[ IDX[ 0 ] ], _pos1 = pPos[ IDX[ 1 ] ], _pos2 = pPos[ IDX[ 2 ] ], _pos3 = pPos[ IDX[ 3 ] ]; \
|
|
__m128 tmp3, tmp2, tmp1, tmp0; \
|
|
tmp0 = _mm_shuffle_ps( ( _pos0 ), ( _pos1 ), 0x44 ); \
|
|
tmp2 = _mm_shuffle_ps( ( _pos0 ), ( _pos1 ), 0xEE ); \
|
|
tmp1 = _mm_shuffle_ps( ( _pos2 ), ( _pos3 ), 0x44 ); \
|
|
tmp3 = _mm_shuffle_ps( ( _pos2 ), ( _pos3 ), 0xEE ); \
|
|
V.x = _mm_shuffle_ps( tmp0, tmp1, 0x88 ); \
|
|
V.y = _mm_shuffle_ps( tmp0, tmp1, 0xDD ); \
|
|
V.z = _mm_shuffle_ps( tmp2, tmp3, 0x88 ); \
|
|
}
|
|
|
|
|
|
#define SAVE_NODES_POS( POS, V, IDX ) { \
|
|
__m128 tmp3, tmp2, tmp1, tmp0; \
|
|
tmp0 = _mm_shuffle_ps( V.x, V.y, 0x44 ); \
|
|
tmp2 = _mm_shuffle_ps( V.x, V.y, 0xEE ); \
|
|
tmp1 = _mm_shuffle_ps( V.z, Four_Zeros, 0x44 ); \
|
|
tmp3 = _mm_shuffle_ps( V.z, Four_Zeros, 0xEE ); \
|
|
POS[ IDX[ 0 ] ] = _mm_shuffle_ps( tmp0, tmp1, 0x88 ); \
|
|
POS[ IDX[ 1 ] ] = _mm_shuffle_ps( tmp0, tmp1, 0xDD ); \
|
|
POS[ IDX[ 2 ] ] = _mm_shuffle_ps( tmp2, tmp3, 0x88 ); \
|
|
POS[ IDX[ 3 ] ] = _mm_shuffle_ps( tmp2, tmp3, 0xDD ); \
|
|
}
|
|
|
|
|
|
|
|
#define SAVE_NODES( V, IDX ) { \
|
|
__m128 tmp3, tmp2, tmp1, tmp0; \
|
|
tmp0 = _mm_shuffle_ps( V.x, V.y, 0x44 ); \
|
|
tmp2 = _mm_shuffle_ps( V.x, V.y, 0xEE ); \
|
|
tmp1 = _mm_shuffle_ps( V.z, Four_Zeros, 0x44 ); \
|
|
tmp3 = _mm_shuffle_ps( V.z, Four_Zeros, 0xEE ); \
|
|
pPos[ IDX[ 0 ] ] = _mm_shuffle_ps( tmp0, tmp1, 0x88 ); \
|
|
pPos[ IDX[ 1 ] ] = _mm_shuffle_ps( tmp0, tmp1, 0xDD ); \
|
|
pPos[ IDX[ 2 ] ] = _mm_shuffle_ps( tmp2, tmp3, 0x88 ); \
|
|
pPos[ IDX[ 3 ] ] = _mm_shuffle_ps( tmp2, tmp3, 0xDD ); \
|
|
}
|
|
|
|
|
|
|
|
|
|
inline void CovMatrix3::InitForWahba( float m, const Vector &x )
|
|
{
|
|
m_vDiag.x = m * ( Sqr( x.y ) + Sqr( x.z ) );
|
|
m_vDiag.y = m * ( Sqr( x.x ) + Sqr( x.z ) );
|
|
m_vDiag.z = m * ( Sqr( x.x ) + Sqr( x.y ) );
|
|
m_flXY = -m * x.x * x.y;
|
|
m_flXZ = -m * x.x * x.z;
|
|
m_flYZ = -m * x.y * x.z;
|
|
}
|
|
|
|
inline void CovMatrix3::Reset()
|
|
{
|
|
m_vDiag = vec3_origin;
|
|
m_flXY = m_flXZ = m_flYZ = 0;
|
|
}
|
|
|
|
inline void CovMatrix3::AddCov( const Vector &d ) // d is supposedly a vector relatively to the mean of the set; i.e. we assume here that we're actually summing up voth d and -d
|
|
{
|
|
m_vDiag.x += Sqr( d.x );
|
|
m_vDiag.y += Sqr( d.y );
|
|
m_vDiag.z += Sqr( d.z );
|
|
m_flXY += d.x * d.y;
|
|
m_flXZ += d.x * d.z;
|
|
m_flYZ += d.y * d.z;
|
|
}
|
|
|
|
|
|
inline void CovMatrix3::AddCov( const Vector &d, float m ) // d is supposedly a vector relatively to the mean of the set; i.e. we assume here that we're actually summing up voth d and -d
|
|
{
|
|
m_vDiag.x += m * Sqr( d.x );
|
|
m_vDiag.y += m * Sqr( d.y );
|
|
m_vDiag.z += m * Sqr( d.z );
|
|
m_flXY += m * d.x * d.y;
|
|
m_flXZ += m * d.x * d.z;
|
|
m_flYZ += m * d.y * d.z;
|
|
}
|
|
|
|
// the element of the sum on the left side of the approximate solution of Wahba's problem (see wahba.nb for details)
|
|
// thi sis essentially Sum[Mi Xi * w * Xi], Mi = weights, "*" means cross product, Xi is a deformed polygon vertex relative to center of mass,
|
|
// 21 flops, with madd
|
|
inline void CovMatrix3::AddForWahba( float m, const Vector &x )
|
|
{
|
|
m_vDiag.x += m * ( Sqr( x.y ) + Sqr( x.z ) );
|
|
m_vDiag.y += m * ( Sqr( x.x ) + Sqr( x.z ) );
|
|
m_vDiag.z += m * ( Sqr( x.x ) + Sqr( x.y ) );
|
|
m_flXY -= m * x.x * x.y;
|
|
m_flXZ -= m * x.x * x.z;
|
|
m_flYZ -= m * x.y * x.z;
|
|
}
|
|
|
|
inline void CovMatrix3::NormalizeEigenvalues( )
|
|
{
|
|
// trace is the sum of eigenvalues; it's not a perfect way , but it's one way
|
|
float flNorm = 1.0f / ( m_vDiag.x + m_vDiag.y + m_vDiag.z );
|
|
m_vDiag *= flNorm;
|
|
m_flXY *= flNorm;
|
|
m_flXZ *= flNorm;
|
|
m_flYZ *= flNorm;
|
|
}
|
|
|
|
inline void CovMatrix3::RegularizeEigenvalues( )
|
|
{
|
|
m_vDiag += Vector( .001f, .001f, .001f );
|
|
NormalizeEigenvalues( );
|
|
m_vDiag += Vector( .1f, .1f, .1f );
|
|
}
|
|
|
|
inline Vector CovMatrix3::operator * ( const Vector &d )
|
|
{
|
|
return Vector(
|
|
m_vDiag.x * d.x + m_flXY * d.y + m_flXZ * d.z,
|
|
m_flXY * d.x + m_vDiag.y * d.y + m_flYZ * d.z,
|
|
m_flXZ * d.x + m_flYZ * d.y + m_vDiag.z * d.z
|
|
);
|
|
}
|
|
|
|
|
|
|
|
inline void FourCovMatrices3::InitForWahba( const fltx4 &m, const FourVectors &x )
|
|
{
|
|
m_vDiag.x = m * ( x.y * x.y + x.z * x.z );
|
|
m_vDiag.y = m * ( x.x * x.x + x.z * x.z );
|
|
m_vDiag.z = m * ( x.x * x.x + x.y * x.y );
|
|
m_flXY = -m * x.x * x.y;
|
|
m_flXZ = -m * x.x * x.z;
|
|
m_flYZ = -m * x.y * x.z;
|
|
}
|
|
|
|
// the element of the sum on the left side of the approximate solution of Wahba's problem (see wahba.nb for details)
|
|
// thi sis essentially Sum[Mi Xi * w * Xi], Mi = weights, "*" means cross product, Xi is a deformed polygon vertex relative to center of mass,
|
|
// 21 flops, with madd
|
|
inline void FourCovMatrices3::AddForWahba( const fltx4 &m, const FourVectors &x )
|
|
{
|
|
m_vDiag.x += m * ( x.y * x.y + x.z * x.z );
|
|
m_vDiag.y += m * ( x.x * x.x + x.z * x.z );
|
|
m_vDiag.z += m * ( x.x * x.x + x.y * x.y );
|
|
m_flXY -= m * x.x * x.y;
|
|
m_flXZ -= m * x.x * x.z;
|
|
m_flYZ -= m * x.y * x.z;
|
|
}
|
|
|
|
inline FourVectors FourCovMatrices3::operator * ( const FourVectors &d )
|
|
{
|
|
return FourVectors(
|
|
m_vDiag.x * d.x + m_flXY * d.y + m_flXZ * d.z,
|
|
m_flXY * d.x + m_vDiag.y * d.y + m_flYZ * d.z,
|
|
m_flXZ * d.x + m_flYZ * d.y + m_vDiag.z * d.z
|
|
);
|
|
}
|
|
|
|
|
|
inline float Perimeter( const FeQuad_t &quad )
|
|
{
|
|
return
|
|
( quad.vShape[ 0 ].AsVector3D( ) - quad.vShape[ 1 ].AsVector3D( ) ).Length( ) +
|
|
( quad.vShape[ 1 ].AsVector3D( ) - quad.vShape[ 2 ].AsVector3D( ) ).Length( ) +
|
|
( quad.vShape[ 2 ].AsVector3D( ) - quad.vShape[ 3 ].AsVector3D( ) ).Length( ) +
|
|
( quad.vShape[ 3 ].AsVector3D( ) - quad.vShape[ 0 ].AsVector3D( ) ).Length( );
|
|
}
|
|
|
|
inline fltx4 Perimeter( const FeSimdQuad_t &quad )
|
|
{
|
|
return
|
|
( quad.vShape[ 0 ] - quad.vShape[ 1 ] ).Length( ) +
|
|
( quad.vShape[ 1 ] - quad.vShape[ 2 ] ).Length( ) +
|
|
( quad.vShape[ 2 ] - quad.vShape[ 3 ] ).Length( ) +
|
|
( quad.vShape[ 3 ] - quad.vShape[ 0 ] ).Length( );
|
|
}
|
|
|
|
|
|
inline float Perimeter( const FeTri_t &tri )
|
|
{
|
|
return fabsf( tri.v1x ) + tri.v2.Length() + sqrtf( tri.v2.y * tri.v2.y + ( tri.v2.x - tri.v1x ) * ( tri.v2.x - tri.v1x ) );
|
|
}
|
|
|
|
inline fltx4 Perimeter( const FeSimdTri_t &tri )
|
|
{
|
|
return AbsSIMD( tri.v1x ) + tri.v2.Length( ) + SqrtSIMD( tri.v2.y * tri.v2.y + ( tri.v2.x - tri.v1x ) * ( tri.v2.x - tri.v1x ) );
|
|
}
|
|
|
|
|
|
FORCEINLINE float CrossProductZ( const Vector2D &v1, const Vector2D &v2 )
|
|
{
|
|
return v1.x * v2.y - v1.y * v2.x;
|
|
}
|
|
|
|
FORCEINLINE float CrossProductZ( const Vector2D &v1, const Vector4D &v2 )
|
|
{
|
|
return v1.x * v2.y - v1.y * v2.x;
|
|
}
|
|
|
|
FORCEINLINE float CrossProductZ( const Vector4D &v1, const Vector2D &v2 )
|
|
{
|
|
return v1.x * v2.y - v1.y * v2.x;
|
|
}
|
|
|
|
FORCEINLINE fltx4 CrossProductZ( const FourVectors &v1, const FourVectors2D &v2 )
|
|
{
|
|
return v1.x * v2.y - v1.y * v2.x;
|
|
}
|
|
|
|
FORCEINLINE float DotProduct( const Vector4D &v1, const Vector2D &v2 )
|
|
{
|
|
return v1.x * v2.x + v1.y * v2.y;
|
|
}
|
|
|
|
|
|
FORCEINLINE FourVectors AndSIMD( const FourVectors &left, const fltx4 &right )
|
|
{
|
|
FourVectors out;
|
|
out.x = AndSIMD( left.x, right );
|
|
out.y = AndSIMD( left.y, right );
|
|
out.z = AndSIMD( left.z, right );
|
|
return out;
|
|
} |