2021-07-24 21:11:47 -07:00

513 lines
22 KiB
Plaintext

//========== Copyright (c) Valve Corporation, All rights reserved. ==========//
#include "common_fog_ps_fxc.h"
// STATIC: "FLASHLIGHT" "0..1"
// STATIC: "LIGHTWARPTEXTURE" "0..1"
// STATIC: "SPHERETEXKILLCOMBO" "0..1" [ps20b]
// STATIC: "SPHERETEXKILLCOMBO" "0..1" [ps30]
// STATIC: "RAYTRACESPHERE" "0..1" [ps20b]
// STATIC: "RAYTRACESPHERE" "0..1" [ps30]
// STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..3" [ps20b] [PC]
// STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..2" [ps30] [PC]
// STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..0" [ps20b] [CONSOLE]
// STATIC: "WORLD_NORMAL" "0..0" [ps20] [PC]
// STATIC: "WORLD_NORMAL" "0..0" [ps20b] [PC]
// STATIC: "WORLD_NORMAL" "0..1" [ps30] [PC]
// STATIC: "WORLD_NORMAL" "0..0" [CONSOLE]
// DYNAMIC: "NUM_LIGHTS" "0..2" [ps20]
// DYNAMIC: "NUM_LIGHTS" "0..4" [ps20b]
// DYNAMIC: "NUM_LIGHTS" "0..4" [ps30]
// DYNAMIC: "FLASHLIGHTSHADOWS" "0..1" [ps20b]
// DYNAMIC: "FLASHLIGHTSHADOWS" "0..1" [ps30]
// DYNAMIC: "UBERLIGHT" "0..1" [ps30] [PC]
// We don't use other lights when doing the flashlight
// SKIP: ( $FLASHLIGHT != 0 ) && ( $NUM_LIGHTS > 0 )
// We don't care about flashlight depth unless the flashlight is on
// SKIP: ( $FLASHLIGHT == 0 ) && ( $FLASHLIGHTSHADOWS == 1 ) [ps20b]
// SKIP: ( $FLASHLIGHT == 0 ) && ( $FLASHLIGHTSHADOWS == 1 ) [ps30]
// SKIP: ( $RAYTRACESPHERE == 0 ) && ( $SPHERETEXKILLCOMBO == 1 ) [ps30]
// SKIP: ( $RAYTRACESPHERE == 0 ) && ( $SPHERETEXKILLCOMBO == 1 ) [ps20b]
// SKIP: ( $WORLD_NORMAL ) && ( $FLASHLIGHTSHADOWS != 0 ) && ( $NUM_LIGHTS != 0 ) [ps30]
// We don't care about uberlight unless the flashlight is on
// SKIP: ( $FLASHLIGHT == 0 ) && ( $UBERLIGHT == 1 ) [ps30]
// Debug 2.0 shader locally
//#ifdef SHADER_MODEL_PS_2_B
//#undef SHADER_MODEL_PS_2_B
//#define SHADER_MODEL_PS_2_0
//#endif
// Includes =======================================================================================
#include "common_flashlight_fxc.h"
#include "shader_constant_register_map.h"
// Texture Samplers ===============================================================================
sampler g_tCorneaSampler : register( s0 );
sampler g_tIrisSampler : register( s1 );
samplerCUBE g_tEyeReflectionCubemapSampler : register( s2 );
sampler g_tEyeAmbientOcclSampler : register( s3 );
sampler g_tLightwarpSampler : register( s4 ); // 1D texture for TF NPR lighting
sampler g_tFlashlightCookieSampler : register( s5 );
sampler g_tFlashlightDepthSampler : register( s6 );
sampler g_tRandomRotationSampler : register( s7 );
sampler g_tAmbientOcclusionSampler : register( s8 );
// Shaders Constants and Globals ==================================================================
const float4 g_vPackedConst0 : register( c0 );
#define g_flDilationFactor g_vPackedConst0.x
#define g_flGlossiness g_vPackedConst0.y
//#define g_fPixelFogType g_vPackedConst0.z
#define g_flCorneaBumpStrength g_vPackedConst0.w
const float3 g_vEyeOrigin : register( c1 );
const float4 g_vIrisProjectionU : register( c2 );
const float4 g_vIrisProjectionV : register( c3 );
const float4 g_vCameraPosition : register( c4 );
const float4 g_cAmbientOcclColor : register( c5 );
const float4 g_vPackedConst6 : register( c6 );
#define g_flEyeballRadius g_vPackedConst6.y //0.51f
//#define g_bRaytraceSphere g_vPackedConst6.z //1.0f
#define g_flParallaxStrength g_vPackedConst6.w //0.25f
// Flashlight constants
const float4 g_vFlashlightAttenuationFactors : register( c7 ); // FarZ in w
#define g_flFarZ g_vFlashlightAttenuationFactors.w
const float3 g_vFlashlightPos : register( c8 );
const float4 g_vShadowTweaks : register( c9 );
const float4 g_AverageAmbient : register( c10 );
#define g_flAverageAmbient g_AverageAmbient.x
const float4 g_FogParams : register( PSREG_FOG_PARAMS );
PixelShaderLightInfo g_sLightInfo[3] : register( PSREG_LIGHT_INFO_ARRAY ); // 2 registers each - 6 registers total
#if UBERLIGHT && defined( SHADER_MODEL_PS_3_0 )
const float3 g_vSmoothEdge0 : register( PSREG_UBERLIGHT_SMOOTH_EDGE_0 ); // ps_3_0 and up (over 32 registers)
const float3 g_vSmoothEdge1 : register( PSREG_UBERLIGHT_SMOOTH_EDGE_1 );
const float3 g_vSmoothOneOverWidth : register( PSREG_UBERLIGHT_SMOOTH_EDGE_OOW );
const float4 g_vShearRound : register( PSREG_UBERLIGHT_SHEAR_ROUND );
const float4 g_aAbB : register( PSREG_UBERLIGHT_AABB );
const float4x4 g_FlashlightWorldToLight : register( PSREG_UBERLIGHT_WORLD_TO_LIGHT );
#endif
// Interpolated values ============================================================================
struct PS_INPUT
{
float4 vAmbientOcclUv_fallbackCorneaUv : TEXCOORD0;
float4 cVertexLight : TEXCOORD1; // w is used for the flashlight pass
float4 vTangentViewVector : TEXCOORD2; // Tangent view vector (Note: w is used for flashlight pass)
float4 vWorldPosition_ProjPosZ : TEXCOORD3;
float3 vWorldNormal : TEXCOORD4; // World-space normal
float3 vWorldTangent : TEXCOORD5; // World-space tangent
float4 vLightFalloffCosine01 : TEXCOORD6; // Light falloff and cosine terms for first two local lights
float4 vLightFalloffCosine23 : TEXCOORD7; // Light falloff and cosine terms for next two local lights
float3 vWorldBinormal : COLOR0; // World-space normal
#ifdef SHADER_MODEL_PS_3_0
float2 vPos : VPOS; // Normalized Screenpos, call ComputeScreenPos() to get useful 2D coordinates
#endif
};
// Ray sphere intersect returns distance along ray to intersection ================================
float IntersectRaySphere ( float3 cameraPos, float3 ray, float3 sphereCenter, float sphereRadius)
{
float3 dst = cameraPos.xyz - sphereCenter.xyz;
float B = dot(dst, ray);
float C = dot(dst, dst) - (sphereRadius * sphereRadius);
float D = B*B - C;
return (D > 0) ? (-B - sqrt(D)) : 0;
}
// Main ===========================================================================================
float4_color_return_type main( PS_INPUT i ) : COLOR
{
// Set bools to compile out code
bool bFlashlight = ( FLASHLIGHT != 0 ) ? true : false;
bool bDoDiffuseWarp = LIGHTWARPTEXTURE ? true : false;
int nNumLights = FLASHLIGHT ? 1 : NUM_LIGHTS; // Flashlight is considered one light, otherwise, use numlights combo
#if !defined( SHADER_MODEL_PS_2_0 )
bool bRayCast = RAYTRACESPHERE ? true : false;
bool bRayCastTexKill = SPHERETEXKILLCOMBO ? true : false;
#endif
float flFlashlightNDotL = i.vTangentViewVector.w;
float4 vFlashlightTexCoord = { 0.0f, 0.0f, 0.0f, 0.0f };
if ( bFlashlight )
{
vFlashlightTexCoord.xyzw = i.cVertexLight.xyzw; // This was hidden in this interpolator
i.cVertexLight.rgba = float4( 0.0f, 0.0f, 0.0f, 0.0f );
}
// Interpolated vectors
float3 vWorldNormal = i.vWorldNormal.xyz;
float3 vWorldTangent = i.vWorldTangent.xyz;
float3 vWorldBinormal = ( i.vWorldBinormal.xyz * 2.0f ) - 1.0f; // normalize( cross( vWorldNormal.xyz, vWorldTangent.xyz ) );
#if ( WORLD_NORMAL )
{
return float4( vWorldNormal, i.vWorldPosition_ProjPosZ.w );
}
#endif
float3 vTangentViewVector = i.vTangentViewVector.xyz;
// World position
float3 vWorldPosition = i.vWorldPosition_ProjPosZ.xyz;
// World view vector to pixel
float3 vWorldViewVector = normalize( vWorldPosition.xyz - g_vCameraPosition.xyz );
//=================//
// TF NPR lighting //
//=================//
if ( bDoDiffuseWarp )
{
// Replace the interpolated vertex light
if ( bFlashlight == true )
{
// Deal with this below in the flashlight section
}
else
{
if ( nNumLights > 0 )
{
float3 cWarpedLight = 2.0f * tex1D( g_tLightwarpSampler, i.vLightFalloffCosine01.z ).rgb;
i.cVertexLight.rgb += i.vLightFalloffCosine01.x * PixelShaderGetLightColor( g_sLightInfo, 0 ) * cWarpedLight.rgb;
}
if ( nNumLights > 1 )
{
float3 cWarpedLight = 2.0f * tex1D( g_tLightwarpSampler, i.vLightFalloffCosine01.w ).rgb;
i.cVertexLight.rgb += i.vLightFalloffCosine01.y * PixelShaderGetLightColor( g_sLightInfo, 1 ) * cWarpedLight.rgb;
}
if ( nNumLights > 2 )
{
float3 cWarpedLight = 2.0f * tex1D( g_tLightwarpSampler, i.vLightFalloffCosine23.z ).rgb;
i.cVertexLight.rgb += i.vLightFalloffCosine23.x * PixelShaderGetLightColor( g_sLightInfo, 2 ) * cWarpedLight.rgb;
}
if ( nNumLights > 3 )
{
float3 cWarpedLight = 2.0f * tex1D( g_tLightwarpSampler, i.vLightFalloffCosine23.w ).rgb;
i.cVertexLight.rgb += i.vLightFalloffCosine23.y * PixelShaderGetLightColor( g_sLightInfo, 3 ) * cWarpedLight.rgb;
}
}
}
//==========================================================================================================//
// Ray cast against sphere representing eyeball to reduce artifacts from non-spherical morphed eye geometry //
//==========================================================================================================//
#if !defined( SHADER_MODEL_PS_2_0 )
if ( bRayCast )
{
float fSphereRayCastDistance = IntersectRaySphere( g_vCameraPosition.xyz, vWorldViewVector.xyz, g_vEyeOrigin.xyz, g_flEyeballRadius );
vWorldPosition.xyz = g_vCameraPosition.xyz + ( vWorldViewVector.xyz * fSphereRayCastDistance );
if (fSphereRayCastDistance == 0)
{
if ( bRayCastTexKill )
clip(-1); // texkill to get a better silhouette
vWorldPosition.xyz = g_vEyeOrigin.xyz + ( vWorldNormal.xyz * g_flEyeballRadius );
}
}
#endif
//=================================//
// Generate sphere and cornea uv's //
//=================================//
#if !defined( SHADER_MODEL_PS_2_0 )
float2 vCorneaUv; // Note: Cornea texture is a cropped version of the iris texture
vCorneaUv.x = dot( g_vIrisProjectionU, float4( vWorldPosition, 1.0f ) );
vCorneaUv.y = dot( g_vIrisProjectionV, float4( vWorldPosition, 1.0f ) );
float2 vSphereUv = ( vCorneaUv.xy * 0.5f ) + 0.25f;
#else // ps_20
float2 vCorneaUv = i.vAmbientOcclUv_fallbackCorneaUv.wz; // Note: Cornea texture is a cropped version of the iris texture
float2 vSphereUv = ( vCorneaUv.xy * 0.5f ) + 0.25f;
#endif
//=================================//
// Hacked parallax mapping on iris //
//=================================//
float fIrisOffset = tex2D( g_tCorneaSampler, vCorneaUv.xy ).b;
#if !defined( SHADER_MODEL_PS_2_0 )
float2 vParallaxVector = ( ( vTangentViewVector.xy * fIrisOffset * g_flParallaxStrength ) / ( 1.0f - vTangentViewVector.z ) ); // Note: 0.25 is a magic number
vParallaxVector.x = -vParallaxVector.x; //Need to flip x...not sure why.
//vParallaxVector.x *= -1.0; //Need to flip x...not sure why.
//vParallaxVector = 0.0f; //Disable parallax for debugging
#else // Disable parallax effect in 2.0 version
float2 vParallaxVector = { 0.0f, 0.0f };
#endif
float2 vIrisUv = vSphereUv.xy - vParallaxVector.xy;
// Note: We fetch from this texture twice right now with different uv's for the color and alpha
float2 vCorneaNoiseUv = vSphereUv.xy + ( vParallaxVector.xy * 0.5 );
float fCorneaNoise = tex2D( g_tIrisSampler, vCorneaNoiseUv.xy ).a;
//===============//
// Cornea normal //
//===============//
// Sample 2D normal from texture
float3 vCorneaTangentNormal = { 0.0, 0.0, 1.0 };
float4 vCorneaSample = tex2D( g_tCorneaSampler, vCorneaUv.xy );
vCorneaTangentNormal.xy = vCorneaSample.rg - 0.5f; // Note: This scales the bump to 50% strength
// Scale strength of normal
vCorneaTangentNormal.xy *= g_flCorneaBumpStrength;
// Add in surface noise and imperfections (NOTE: This should be baked into the normal map!)
vCorneaTangentNormal.xy += fCorneaNoise * 0.1f;
// Normalize tangent vector
#if !defined( SHADER_MODEL_PS_2_0 )
// Since this isn't used later in 2.0, skip the normalize to save shader instructions
vCorneaTangentNormal.xyz = normalize( vCorneaTangentNormal.xyz );
#endif
// Transform into world space
float3 vCorneaWorldNormal = Vec3TangentToWorldNormalized( vCorneaTangentNormal.xyz, vWorldNormal.xyz, vWorldTangent.xyz, vWorldBinormal.xyz );
//============//
// Flashlight //
//============//
float3 vFlashlightVector = { 0.0f, 0.0f, 0.0f };
float3 cFlashlightColorFalloff = { 0.0f, 0.0f, 0.0f };
if ( bFlashlight == true )
{
// Flashlight vector
vFlashlightVector.xyz = normalize( g_vFlashlightPos.xyz - i.vWorldPosition_ProjPosZ.xyz );
// Distance attenuation for flashlight and to fade out shadow over distance
float3 vDelta = g_vFlashlightPos.xyz - i.vWorldPosition_ProjPosZ.xyz;
float flDistSquared = dot( vDelta, vDelta );
float flDist = sqrt( flDistSquared );
float flFlashlightAttenuation = saturate( dot( g_vFlashlightAttenuationFactors.xyz, float3( 1.0f, 1.0f/flDist, 1.0f/flDistSquared ) ) );
float flEndFalloffFactor = RemapValClamped( flDist, g_flFarZ, 0.6f * g_flFarZ, 0.0f, 1.0f ); // Ramp down at end of range
// Flashlight cookie
#if !defined( SHADER_MODEL_PS_2_0 )
float3 vProjCoords = vFlashlightTexCoord.xyz / vFlashlightTexCoord.w;
float3 cFlashlightCookieColor = tex2D( g_tFlashlightCookieSampler, vProjCoords ).rgb;
#else
float3 cFlashlightCookieColor = tex2Dproj( g_tFlashlightCookieSampler, vFlashlightTexCoord.xyzw );
#endif
#if UBERLIGHT && defined( SHADER_MODEL_PS_3_0 )
float4 uberLightPosition = mul( float4( i.vWorldPosition_ProjPosZ.xyz, 1.0f ), g_FlashlightWorldToLight ).yzxw;
cFlashlightCookieColor *= uberlight( uberLightPosition, g_vSmoothEdge0, g_vSmoothEdge1,
g_vSmoothOneOverWidth, g_vShearRound.xy, g_aAbB, g_vShearRound.zw );
#endif
#if !defined( _X360 )
cFlashlightCookieColor *= vFlashlightTexCoord.www > float3(0,0,0); // Catch back projection (PC-only)
#endif
// Shadow depth map
#if FLASHLIGHTSHADOWS && !defined( SHADER_MODEL_PS_2_0 )
float flShadow = DoFlashlightShadow( g_tFlashlightDepthSampler, g_tRandomRotationSampler, vProjCoords, float2(0,0), FLASHLIGHTDEPTHFILTERMODE, g_vShadowTweaks );
float flAttenuated = lerp( flShadow, 1.0f, g_vShadowTweaks.y ); // Blend between fully attenuated and not attenuated
flShadow = saturate( lerp( flAttenuated, flShadow, flFlashlightAttenuation ) ); // Blend between shadow and above, according to light attenuation
cFlashlightCookieColor *= flShadow; // Apply shadow term to cookie color
#endif
// Make sure attenuation falls off to zero in last 40% of range
flFlashlightAttenuation *= RemapValClamped( flDist, g_vFlashlightAttenuationFactors.w, 0.6f * g_vFlashlightAttenuationFactors.w, 0.0f, 1.0f );
// Flashlight color intensity (needs to be multiplied by global flashlight color later)
cFlashlightColorFalloff.rgb = flFlashlightAttenuation * cFlashlightCookieColor.rgb;
// Add this into the interpolated lighting
i.cVertexLight.rgb += cFlashlightColorFalloff.rgb * cFlashlightColor.rgb * flFlashlightNDotL; //TODO: bDoDiffuseWarp in flashlight pass?
}
//==============//
// Dilate pupil //
//==============//
#if !defined( SHADER_MODEL_PS_2_0 )
vIrisUv.xy -= 0.5f; // Center around (0,0)
float fPupilCenterToBorder = saturate( length( vIrisUv.xy ) / 0.2f ); //Note: 0.2 is the uv radius of the iris
float fPupilDilateFactor = g_flDilationFactor; // This value should be between 0-1
vIrisUv.xy *= lerp (1.0f, fPupilCenterToBorder, saturate( fPupilDilateFactor ) * 2.5f - 1.25f );
vIrisUv.xy += 0.5f;
#endif
//============//
// Iris color //
//============//
float4 cIrisColor = tex2D( g_tIrisSampler, vIrisUv.xy );
//==========================//
// Iris lighting highlights //
//==========================//
float3 cIrisLighting = float3( 0.0f, 0.0f, 0.0f );
#if !defined( SHADER_MODEL_PS_2_0 )
// Mask off everything but the iris pixels
float fIrisHighlightMask = tex2D( g_tCorneaSampler, vCorneaUv.xy ).a;
// Generate the normal
float3 vIrisTangentNormal = vCorneaTangentNormal.xyz;
vIrisTangentNormal.xy *= -2.5f; // I'm not normalizing on purpose
for ( int j=0; j < nNumLights; j++ )
{
// World light vector
float3 vWorldLightVector;
if ( ( j == 0 ) && ( bFlashlight == true ) )
vWorldLightVector = vFlashlightVector.xyz;
else
vWorldLightVector = PixelShaderGetLightVector( i.vWorldPosition_ProjPosZ.xyz, g_sLightInfo, j );
// Tangent light vector
float3 vTangentLightVector = Vec3WorldToTangent( vWorldLightVector.xyz, vWorldNormal.xyz, vWorldTangent.xyz, vWorldBinormal.xyz );
// Adjust the tangent light vector to generate the iris lighting
float3 tmpv = -vTangentLightVector.xyz;
tmpv.xy *= -0.5f; //Flatten tangent view
tmpv.z = max( tmpv.z, 0.5f ); //Clamp z of tangent view to help maintain highlight
tmpv.xyz = normalize( tmpv.xyz );
// Core iris lighting math
float fIrisFacing = pow( abs( dot( vIrisTangentNormal.xyz, tmpv.xyz ) ), 6.0f ) * 0.5f; // Yes, 6.0 and 0.5 are magic numbers
// Cone of darkness to darken iris highlights when light falls behind eyeball past a certain point
float flConeOfDarkness = pow( 1.0f - saturate( ( -vTangentLightVector.z - 0.25f ) / 0.75f ), 4.0f );
//float flConeOfDarkness = pow( 1.0f - saturate( ( -dot( vIrisTangentNormal.xyz, vTangentLightVector.xyz ) - 0.15f ) / 0.85f ), 8.0f );
// Tint by iris color and cone of darkness
float3 cIrisLightingTmp = fIrisFacing * fIrisHighlightMask * flConeOfDarkness;
// Attenuate by light color and light falloff
if ( ( j == 0 ) && ( bFlashlight == true ) )
cIrisLightingTmp.rgb *= cFlashlightColorFalloff.rgb * cFlashlightColor.rgb;
else if ( j == 0 )
cIrisLightingTmp.rgb *= i.vLightFalloffCosine01.x * PixelShaderGetLightColor( g_sLightInfo, 0 );
else if ( j == 1 )
cIrisLightingTmp.rgb *= i.vLightFalloffCosine01.y * PixelShaderGetLightColor( g_sLightInfo, 1 );
else if ( j == 2 )
cIrisLightingTmp.rgb *= i.vLightFalloffCosine23.x * PixelShaderGetLightColor( g_sLightInfo, 2 );
else
cIrisLightingTmp.rgb *= i.vLightFalloffCosine23.y * PixelShaderGetLightColor( g_sLightInfo, 3 );
// Sum into final variable
cIrisLighting.rgb += cIrisLightingTmp.rgb;
}
// Add slight view dependent iris lighting based on ambient light intensity to enhance situations with no local lights (0.5f is to help keep it subtle)
cIrisLighting.rgb += saturate( dot( vIrisTangentNormal.xyz, -vTangentViewVector.xyz ) ) * g_flAverageAmbient * fIrisHighlightMask * 0.5f;
#else
// Else, intensify light over cornea to simulate the brightening that happens above
cIrisLighting.rgb += i.cVertexLight.rgb * vCorneaSample.a;
#endif
//===================//
// Ambient occlusion //
//===================//
float3 cAmbientOcclFromTexture = tex2D( g_tEyeAmbientOcclSampler, i.vAmbientOcclUv_fallbackCorneaUv.xy ).rgb;
float3 cAmbientOcclColor = lerp( g_cAmbientOcclColor.rgb, float3(1.0f, 1.0f, 1.0f), cAmbientOcclFromTexture.rgb ); // Color the ambient occlusion
i.cVertexLight.rgb *= cAmbientOcclColor.rgb;
//==========================//
// Reflection from cube map //
//==========================//
float3 vCorneaReflectionVector = reflect ( vWorldViewVector.xyz, vCorneaWorldNormal.xyz );
//float3 cReflection = ENV_MAP_SCALE * texCUBE( g_tEyeReflectionCubemapSampler, vCorneaReflectionVector.xyz ).rgb;
float3 cReflection = g_flGlossiness * texCUBE( g_tEyeReflectionCubemapSampler, vCorneaReflectionVector.xyz ).rgb;
// Hack: Only add in half of the env map for the flashlight pass. This looks reasonable.
if ( bFlashlight )
{
cReflection.rgb *= 0.5f;
}
//===========================//
// Glint specular highlights //
//===========================//
float3 cSpecularHighlights = 0.0f;
if ( bFlashlight )
{
cSpecularHighlights.rgb += pow( saturate( dot( vCorneaReflectionVector.xyz, vFlashlightVector.xyz ) ), 128.0f ) * cFlashlightColorFalloff.rgb * cFlashlightColor.rgb;
}
else // no flashlight
{
if ( nNumLights > 0 )
cSpecularHighlights.rgb += pow( saturate( dot( vCorneaReflectionVector.xyz, PixelShaderGetLightVector( i.vWorldPosition_ProjPosZ.xyz, g_sLightInfo, 0 ) ) ), 128.0f ) * i.vLightFalloffCosine01.x * PixelShaderGetLightColor( g_sLightInfo, 0 );
if ( nNumLights > 1 )
cSpecularHighlights.rgb += pow( saturate( dot( vCorneaReflectionVector.xyz, PixelShaderGetLightVector( i.vWorldPosition_ProjPosZ.xyz, g_sLightInfo, 1 ) ) ), 128.0f ) * i.vLightFalloffCosine01.y * PixelShaderGetLightColor( g_sLightInfo, 1 );
if ( nNumLights > 2 )
cSpecularHighlights.rgb += pow( saturate( dot( vCorneaReflectionVector.xyz, PixelShaderGetLightVector( i.vWorldPosition_ProjPosZ.xyz, g_sLightInfo, 2 ) ) ), 128.0f ) * i.vLightFalloffCosine23.x * PixelShaderGetLightColor( g_sLightInfo, 2 );
if ( nNumLights > 3 )
cSpecularHighlights.rgb += pow( saturate( dot( vCorneaReflectionVector.xyz, PixelShaderGetLightVector( i.vWorldPosition_ProjPosZ.xyz, g_sLightInfo, 3 ) ) ), 128.0f ) * i.vLightFalloffCosine23.y * PixelShaderGetLightColor( g_sLightInfo, 3 );
}
// Screen-space dynamic ambient occlusion on PC
float fAmbientOcclusion = 1.0f;
#if ( !defined( _X360 ) && defined( SHADER_MODEL_PS_3_0 ) )
{
fAmbientOcclusion = lerp( 1.0f, tex2D( g_tAmbientOcclusionSampler, ComputeScreenPos( i.vPos ) ).r, g_cAmbientOcclColor.w );
}
#endif
//===============//
// Combine terms //
//===============//
float4 result;
// Unlit iris, pupil, and sclera color
result.rgb = cIrisColor.rgb;
// Add in slight cornea noise to help define raised cornea layer for close-ups
result.rgb += fCorneaNoise * 0.1f;
// Diffuse light (Vertex lighting + extra iris caustic lighting)
result.rgb *= i.cVertexLight.rgb + cIrisLighting.rgb;
// Environment map
result.rgb += cReflection.rgb * i.cVertexLight.rgb;
// Local light glints
result.rgb += cSpecularHighlights.rgb;
// Attenuate by ambient occlusion
result.rgb *= fAmbientOcclusion;
// Set alpha to 1.0 by default
result.a = 1.0;
float fogFactor = 0.0f;
#if ( !defined( SHADER_MODEL_PS_2_0 ) )
{
fogFactor = CalcPixelFogFactor( PIXELFOGTYPE, g_FogParams, g_vCameraPosition.xyz, i.vWorldPosition_ProjPosZ.xyz, i.vWorldPosition_ProjPosZ.w );
}
#endif
// Always write depth to dest alpha since we are always either opaque or using additive blending (ie. not using alpha to do blending).
bool bWriteDepthToDestAlpha = true;
return FinalOutput( result, fogFactor, PIXELFOGTYPE, TONEMAP_SCALE_LINEAR, bWriteDepthToDestAlpha, i.vWorldPosition_ProjPosZ.w );
}