2021-07-24 21:11:47 -07:00

393 lines
11 KiB
C++

//=========== Copyright © Valve Corporation, All rights reserved. ============//
//
// Purpose: Mesh class UV parameterization operations.
//
//===========================================================================//
#include "mesh.h"
#include "tier1/utlbuffer.h"
Vector4D PlaneFromTriangle( Vector &A, Vector &B, Vector &C )
{
// Calculate normal
Vector vAB = B - A;
Vector vAC = C - A;
Vector vNorm = -CrossProduct( vAC, vAB );
vNorm.NormalizeInPlace();
float d = DotProduct( A, vNorm );
return Vector4D( vNorm.x, vNorm.y, vNorm.z, d );
}
Vector4D CMesh::PlaneFromTriangle( int nTriangle ) const
{
Vector A = *(Vector*)GetVertex( m_pIndices[ nTriangle * 3 ] );
Vector B = *(Vector*)GetVertex( m_pIndices[ nTriangle * 3 + 1 ] );
Vector C = *(Vector*)GetVertex( m_pIndices[ nTriangle * 3 + 2 ] );
return ::PlaneFromTriangle( A, B, C );
}
int AddTriangleToChart( const CMesh &inputMesh, int nTriangle, UVChart_t *pChart, float flThreshold, CUtlVector<bool> &usedTriangles, int* pAdjacency )
{
if ( usedTriangles[ nTriangle ] == true )
return 0;
Vector4D vTriPlane = inputMesh.PlaneFromTriangle( nTriangle );
float flDot = DotProduct( vTriPlane.AsVector3D(), pChart->m_vPlane.AsVector3D() );
if ( flDot < flThreshold )
{
return 0;
}
// Add this triangle to the chart
pChart->m_TriangleList.AddToTail( nTriangle );
usedTriangles[ nTriangle ] = true;
int nAdded = 1;
// Add any adjacent triangles to the chart
for ( int i=0; i<3; ++i )
{
int nAdj = pAdjacency[ nTriangle * 3 + i ];
if ( nAdj != -1)
{
nAdded += AddTriangleToChart( inputMesh, nAdj, pChart, flThreshold, usedTriangles, pAdjacency );
}
}
return nAdded;
}
//--------------------------------------------------------------------------------------
// CreateUniqueUVParameterization
//
// Creates a unique parameterization for the mesh in 0..1 UV space. The mesh is assumed
// to be welded and clean before this is called.
//--------------------------------------------------------------------------------------
bool CreateUniqueUVParameterization( CMesh *pMeshOut, const CMesh &inputMesh, float flThreshold, int nAtlasTextureSizeX, int nAtlasTextureSizeY, float flGutterSize )
{
int nMaxCharts = 10000;
// Generate adjacency
int *pAdjacencyBuffer = new int[ inputMesh.m_nIndexCount ];
if ( !inputMesh.CalculateAdjacency( pAdjacencyBuffer, inputMesh.m_nIndexCount ) )
{
return false;
}
int nPosOffset = inputMesh.FindFirstAttributeOffset( VERTEX_ELEMENT_POSITION );
int nTexOffset = inputMesh.FindFirstAttributeOffset( VERTEX_ELEMENT_TEXCOORD2D_0 );
if ( nTexOffset == -1 )
{
nTexOffset = inputMesh.FindFirstAttributeOffset( VERTEX_ELEMENT_TEXCOORD3D_0 );
}
if ( nTexOffset == -1 || nPosOffset == -1)
{
Warning( "Cannot create UV parameterization without position or texcoords!\n" );
return false;
}
// Now go through the triangles and add them to charts based upon minimum angle between charts
CUtlVector<int> triangleIndices;
CUtlVector<bool> usedTriangles;
CUtlVector<UVChart_t*> chartList;
int nTris = inputMesh.m_nIndexCount / 3;
triangleIndices.EnsureCount( nTris );
usedTriangles.EnsureCount( nTris );
for( int t=0; t<nTris; ++t )
{
triangleIndices[t] = t;
usedTriangles[t] = false;
}
bool *pUsedTriangles = usedTriangles.Base();
int nRemaining = nTris;
while( nRemaining > 0 )
{
// Select a random triangle
int nTriangle = -1;
for( int t=0; t<nTris; ++t )
{
if ( pUsedTriangles[t] == false )
{
nTriangle = t;
break;
}
}
if ( nTriangle > -1 )
{
Vector4D vTriPlane = inputMesh.PlaneFromTriangle( nTriangle );
if ( vTriPlane.AsVector3D().LengthSqr() < 0.9f )
{
// degenerate tri, just get rid of it
pUsedTriangles[ nTriangle ] = true;
nRemaining --;
}
else
{
// create a new chart
UVChart_t *pNewChart = new UVChart_t;
pNewChart->m_vPlane = vTriPlane;
pNewChart->m_vMinUV = Vector2D( FLT_MAX, FLT_MAX );
pNewChart->m_vMaxUV = Vector2D( -FLT_MAX, -FLT_MAX );
int nAdded = AddTriangleToChart( inputMesh, nTriangle, pNewChart, flThreshold, usedTriangles, pAdjacencyBuffer );
if ( nAdded < 1 )
{
Msg( "Error: didn't add any triangles to chart: %d\n", nTriangle );
}
nRemaining -= nAdded;
// Add the chart to the list
chartList.AddToTail( pNewChart );
if ( chartList.Count() > nMaxCharts )
{
nRemaining = 0;
break;
}
}
}
else
{
Assert( nRemaining == 0 );
nRemaining = 0;
}
}
delete []pAdjacencyBuffer;
pAdjacencyBuffer = NULL;
// create a local texture vector
CUtlVector<AtlasChart_t> atlasChartVector;
CMesh tempMesh;
int nTotalChartTriangles = 0;
int nCharts = chartList.Count();
float flTotalArea = 0;
if ( nCharts < nMaxCharts )
{
// Average each chart's plane and create a new texture for each chart
int nCharts = chartList.Count();
atlasChartVector.EnsureCount( nCharts );
for ( int c=0; c<nCharts; ++c )
{
UVChart_t *pChart = chartList[c];
int nTris = pChart->m_TriangleList.Count();
Vector4D vPlane(0,0,0,0);
for ( int p=0; p<nTris; ++p )
{
int iTri = pChart->m_TriangleList[p];
vPlane += inputMesh.PlaneFromTriangle( iTri );
}
nTotalChartTriangles += nTris;
Vector vNorm = vPlane.AsVector3D().Normalized();
pChart->m_vPlane = Vector4D( vNorm.x, vNorm.y, vNorm.z, 0 );
AtlasChart_t AtlasChart;
AtlasChart.m_bAtlased = false;
AtlasChart.m_vAtlasMin.Init( 0, 0 );
AtlasChart.m_vAtlasMax.Init( 0, 0 );
AtlasChart.m_vMaxTextureSize.Init( 0, 0 );
atlasChartVector[ c ] = AtlasChart;
}
// Create a new temporary mesh
tempMesh.AllocateMesh( nTotalChartTriangles * 3, nTotalChartTriangles * 3, inputMesh.m_nVertexStrideFloats, inputMesh.m_pAttributes, inputMesh.m_nAttributeCount );
// loop through all charts and add the vertices and indices to the new mesh
int nNewVertex = 0;
flTotalArea = 0.0f;
for ( int c=0; c<nCharts; ++c )
{
UVChart_t *pChart = chartList[c];
Vector vNorm = pChart->m_vPlane.AsVector3D();
Vector vUp(0,1,0);
if ( DotProduct( vNorm, vUp ) > 0.95f )
vUp = Vector(0,0,1);
Vector vRight = CrossProduct( vNorm, vUp );
vRight.NormalizeInPlace();
vUp = CrossProduct( vRight, vNorm );
vUp.NormalizeInPlace();
pChart->m_nVertexStart = nNewVertex;
// project the vertices onto the chart plane
// and find the min and max plane boundaries
int nTris = pChart->m_TriangleList.Count();
for ( int t=0; t<nTris; ++t )
{
int iTri = pChart->m_TriangleList[t];
for ( int i=0; i<3; ++i )
{
int nIndex = inputMesh.m_pIndices[ iTri * 3 + i ];
float *pVert = (float*)inputMesh.GetVertex( nIndex );
Vector &vPos = *( ( Vector* )( pVert + nPosOffset ) );
Vector2D vTexcoord;
vTexcoord.x = DotProduct( vPos, vRight );
vTexcoord.y = DotProduct( vPos, vUp );
pChart->m_vMinUV.x = MIN( vTexcoord.x, pChart->m_vMinUV.x );
pChart->m_vMinUV.y = MIN( vTexcoord.y, pChart->m_vMinUV.y );
pChart->m_vMaxUV.x = MAX( vTexcoord.x, pChart->m_vMaxUV.x );
pChart->m_vMaxUV.y = MAX( vTexcoord.y, pChart->m_vMaxUV.y );
float *pNewVert = tempMesh.GetVertex( nNewVertex );
// New vertex
CopyVertex( pNewVert, pVert, inputMesh.m_nVertexStrideFloats );
Vector2D *pNewTex = (Vector2D*)( pNewVert + nTexOffset );
*pNewTex = vTexcoord;
// New index
tempMesh.m_pIndices[ nNewVertex ] = nNewVertex;
nNewVertex++;
}
}
pChart->m_nVertexCount = nNewVertex - pChart->m_nVertexStart;
// update size of the texture
AtlasChart_t &chart = atlasChartVector[ c ];
chart.m_vMaxTextureSize.x = pChart->m_vMaxUV.x - pChart->m_vMinUV.x;
chart.m_vMaxTextureSize.y = pChart->m_vMaxUV.y - pChart->m_vMinUV.y;
flTotalArea += chart.m_vMaxTextureSize.x * chart.m_vMaxTextureSize.y;
Vector2D vChartUVDelta = pChart->m_vMaxUV - pChart->m_vMinUV;
// Normalize texture coordinates within the chart plane boundaries
if ( vChartUVDelta.x == 0 || vChartUVDelta.y == 0 )
{
// Zero texcoords if our chart is infintesimally small
for ( int v=pChart->m_nVertexStart; v<pChart->m_nVertexStart + pChart->m_nVertexCount; ++v )
{
float *pNewVert = tempMesh.GetVertex( v );
Vector2D *pNewTex = (Vector2D*)( pNewVert + nTexOffset );
*pNewTex = Vector2D(0,0);
}
}
else
{
for ( int v=pChart->m_nVertexStart; v<pChart->m_nVertexStart + pChart->m_nVertexCount; ++v )
{
float *pNewVert = tempMesh.GetVertex( v );
Vector2D *pNewTex = (Vector2D*)( pNewVert + nTexOffset );
Vector2D vNewTex = ( *pNewTex - pChart->m_vMinUV ) / vChartUVDelta;
*pNewTex = vNewTex;
}
}
}
}
bool bMadeAtlas = false;
if ( nCharts < nMaxCharts )
{
// We made a chart
bMadeAtlas = true;
// Create an atlas
Msg( "Attempting to atlas %d charts\n", nCharts );
int nAtlasSideSize = (int)(sqrtf( flTotalArea ));
int nGrowAmount = MAX( 8, nAtlasSideSize / 64 );
nAtlasSideSize -= nGrowAmount * 2;
PackChartsIntoAtlas( atlasChartVector.Base(), atlasChartVector.Count(), nAtlasSideSize, nAtlasSideSize, nGrowAmount );
Vector2D vTextureSize( nAtlasTextureSizeX, nAtlasTextureSizeY );
Vector2D vGutterOffset( flGutterSize / vTextureSize.x, flGutterSize / vTextureSize.y );
// Update triangle coordinates to fit into this atlas
for ( int c=0; c<nCharts; ++c )
{
UVChart_t *pChart = chartList[ c ];
AtlasChart_t &atlasData = atlasChartVector[ c ];
Vector2D vAtlasMin = ( atlasData.m_vAtlasMin ) + vGutterOffset;
Vector2D vAtlasMax = ( atlasData.m_vAtlasMax ) - vGutterOffset;
Vector2D vDeltaAtlas = vAtlasMax - vAtlasMin;
Vector2D vDeltaBounds(1,1);
Vector2D vAtlasUVSize(0,0);
if ( vDeltaBounds.x != 0.0f && vDeltaBounds.y != 0.0f )
vAtlasUVSize = vDeltaAtlas / vDeltaBounds;
Vector2D vShift = vAtlasMin - Vector2D(0,0) * vAtlasUVSize;
for ( int v=pChart->m_nVertexStart; v<pChart->m_nVertexStart + pChart->m_nVertexCount; ++v )
{
float *pNewVert = tempMesh.GetVertex( v );
Vector2D *pNewTex = (Vector2D*)( pNewVert + nTexOffset );
pNewTex->x = pNewTex->x * vAtlasUVSize.x + vShift.x;
pNewTex->y = pNewTex->y * vAtlasUVSize.y + vShift.y;
}
}
// Clean and weld the mesh
float flEpsilon = 1e-6;
float *pEpsilons = new float[ tempMesh.m_nVertexStrideFloats ];
for ( int e=0; e<tempMesh.m_nVertexStrideFloats; ++e )
{
pEpsilons[ e ] = flEpsilon;
}
WeldVertices( pMeshOut, tempMesh, pEpsilons, tempMesh.m_nVertexStrideFloats );
delete []pEpsilons;
}
else
{
// We didn't make a chart
bMadeAtlas = false;
// Create an atlas
Msg( "Too many charts (%d), creating planar mapping\n", nCharts );
// Create a planar projection
Vector vMinBounds;
Vector vMaxBounds;
inputMesh.CalculateBounds( &vMinBounds, &vMaxBounds );
// BBox delta
Vector vBoundsDelta = vMaxBounds - vMinBounds;
DuplicateMesh( pMeshOut, inputMesh );
// Update UVs based on... shakes magic 8 ball... XZ projection, for now
for ( int v=0; v<pMeshOut->m_nVertexCount; ++v )
{
float *pNewVert = pMeshOut->GetVertex( v );
Vector *pPos = ( Vector* )( pNewVert + nPosOffset );
Vector2D *pNewTex = ( Vector2D* )( pNewVert + nTexOffset );
pNewTex->x = ( pPos->x - vMinBounds.x ) / vBoundsDelta.x;
pNewTex->y = ( pPos->z - vMinBounds.z ) / vBoundsDelta.z;
}
}
// Delete the charts
nCharts = chartList.Count();
for ( int c=0; c<nCharts; ++c )
{
UVChart_t *pChart = chartList[c];
delete pChart;
}
chartList.Purge();
return bMadeAtlas;
}