2021-07-24 21:11:47 -07:00

600 lines
26 KiB
Plaintext

//========== Copyright (c) Valve Corporation, All rights reserved. ==========//
// STATIC: "BACK_SURFACE" "0..1"
// STATIC: "LIGHT_WARP" "0..1"
// STATIC: "FRESNEL_WARP" "0..1"
// STATIC: "HIGH_PRECISION_DEPTH" "0..1"
// STATIC: "INTERIOR_LAYER" "0..1"
// STATIC: "SELF_ILLUM_FRESNEL" "0..1"
// STATIC: "OPACITY_TEXTURE" "0..1"
// STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..3" [ps20b] [PC]
// STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..2" [ps30] [PC]
// STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..0" [ps20b] [XBOX]
// STATIC: "CONTACT_SHADOW" "0..1"
// STATIC: "SELF_ILLUM_PULSE" "0..1"
// STATIC: "VOLUME_TEXTURE" "0..1"
// DYNAMIC: "NUM_LIGHTS" "0..4" [ps20b]
// DYNAMIC: "NUM_LIGHTS" "0..4" [ps30]
// DYNAMIC: "FLASHLIGHT" "0..1"
// DYNAMIC: "FLASHLIGHTSHADOWS" "0..1"
// SKIP: ( $CONTACT_SHADOW == 1 ) && ( $SELF_ILLUM_PULSE == 1 )
// For now, 'BACK_SURFACE' is a dead-simple path (just writes depth into dest alpha), so skip all non-HW-config combos:
// SKIP: ( $BACK_SURFACE == 1 ) && ( $LIGHT_WARP > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $FRESNEL_WARP > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $INTERIOR_LAYER > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $SELF_ILLUM_FRESNEL > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $OPACITY_TEXTURE > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $CONTACT_SHADOW > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $SELF_ILLUM_PULSE > 0 )
// SKIP: ( $BACK_SURFACE == 1 ) && ( $VOLUME_TEXTURE > 0 )
#include "common_ps_fxc.h"
#include "common_vertexlitgeneric_dx9.h"
#include "common_flashlight_fxc.h"
#include "shader_constant_register_map.h"
// SAMPLERS
sampler g_tBase : register( s0 );
sampler g_tBump : register( s1 );
sampler g_tScreen : register( s2 );
sampler g_tSpecMask : register( s3 );
sampler g_tLightWarp : register( s4 );
sampler g_tFresnelWarp : register( s5 );
sampler g_tOpacity : register( s6 );
sampler g_tShadowDepth : register( s7 ); // Flashlight shadow depth map sampler
sampler g_tNormalizeRandRot : register( s8 ); // Normalization / RandomRotation samplers
sampler g_tFlashlightCookie : register( s9 ); // Flashlight cookie
// SHADER CONSTANTS
const float4 g_vMisc : register( c0 );
#define g_flBumpStrength g_vMisc.x
#define g_flDepthScale g_vMisc.y
#define g_flInnerFogStrength g_vMisc.z
#define g_flRefractStrength g_vMisc.w
const float4 g_vTranslucentFresnelParams_InteriorBoost : register( c1 );
#define g_vTranslucentFresnelParams g_vTranslucentFresnelParams_InteriorBoost.xyz
#define g_flInteriorBoost g_vTranslucentFresnelParams_InteriorBoost.w
const float4 g_vMisc2 : register( c3 );
#define g_flRimLightExp g_vMisc2.x
#define g_flRimLightScale g_vMisc2.y
#define g_flSpecScale g_vMisc2.z
#define g_flSpecExp2 g_vMisc2.w
const float4 g_vMisc3 : register( c10 );
#define g_flSpecScale2 g_vMisc3.x
#define g_flFresnelBumpStrength g_vMisc3.y
#define g_flDiffuseScale g_vMisc3.z
#define g_flInteriorLightScale g_vMisc3.w
const float4 g_vEyePos_SpecExp : register( PSREG_EYEPOS_SPEC_EXPONENT );
#define g_vEyePos g_vEyePos_SpecExp.xyz
#define g_flSpecExp g_vEyePos_SpecExp.w
const float4 g_ShaderControls : register( c12 );
#define g_fWriteDepthToAlpha g_ShaderControls.x
const float4 g_vBaseTint_InteriorBackLightScale : register( c19 );
#define g_cBaseTint g_vBaseTint_InteriorBackLightScale.rgb
#define g_flInteriorBackLightScale g_vBaseTint_InteriorBackLightScale.w
const float4 g_vSelfIllumFresnelParams : register( c26 );
#define g_flSelfIllumScale g_vSelfIllumFresnelParams.x
#define g_flSelfIllumBias g_vSelfIllumFresnelParams.y
#define g_flSelfIllumExp g_vSelfIllumFresnelParams.z
#define g_flSelfIllumBrightness g_vSelfIllumFresnelParams.w
// TODO: pass in FOV so that we can account for it properly
#define g_flHalfWindowWidth 1 /* tan(fov/2) */
const float4 g_cSelfIllumTint : register( c27 );
//#define UNUSED g_cSelfIllumTint.w
const float4 g_vInteriorColor_RefractBlur : register( c32 );
#define g_cInteriorColor g_vInteriorColor_RefractBlur.rgb
#define g_flRefractBlur g_vInteriorColor_RefractBlur.w
const float3 cAmbientCube[6] : register( PSREG_AMBIENT_CUBE );
const PixelShaderLightInfo g_sLightInfo[3] : register( PSREG_LIGHT_INFO_ARRAY ); // 2 registers each - 6 registers total
const float4 g_vFlashlightAttenuationFactors_FarZ : register( PSREG_FLASHLIGHT_ATTENUATION );
#define g_vFlashlightAttenuationFactors g_vFlashlightAttenuationFactors_FarZ.xyz
#define g_flFlashlightFarZ g_vFlashlightAttenuationFactors_FarZ.w
const float4 g_vFlashlightPos_RimBoost : register( PSREG_FLASHLIGHT_POSITION_RIM_BOOST );
#define g_vFlashlightPos g_vFlashlightPos_RimBoost.xyz
const float4x4 g_mFlashlightWorldToTexture : register( PSREG_FLASHLIGHT_TO_WORLD_TEXTURE );
const float4 g_vShadowTweaks : register( PSREG_ENVMAP_TINT__SHADOW_TWEAKS );
const float3x3 g_mView : register( c33 );
const float4 g_vMisc4 : register( c36 );
#define g_flLimitFogAtten g_vMisc4.x
#define g_flFogNormalBoost g_vMisc4.y
#define g_flGlowScale g_vMisc4.z
//#define UNUSED g_vMisc4.w
// COMBO-DERIVED CONSTANTS
static const bool bLightWarp = LIGHT_WARP ? true : false;
static const bool bFlashLight = FLASHLIGHT ? true : false;
// How we use vertex colour (TEXCOORD2) varies based on static combos:
#if ( CONTACT_SHADOW == 1 )
#define i_ClosestSurfaceDir i.vClosestSurfaceDir
#define i_PulseColor 0
#define i_VertexAlpha 1
#elif ( SELF_ILLUM_PULSE == 1 )
#define i_ClosestSurfaceDir 0
#define i_PulseColor i.vPulseColor.rgb
#define i_VertexAlpha i.vPulseColor.a
#else
#define i_ClosestSurfaceDir 0
#define i_PulseColor 0
#define i_VertexAlpha 1
#endif
// INPUT STRUCT
struct PS_INPUT
{
float4 vWorldNormal : TEXCOORD0; // w is proj. z coord (for depth stuff)
#if CONTACT_SHADOW == 0
float4 vPulseColor : TEXCOORD1;
#else
float4 vClosestSurfaceDir : TEXCOORD1;
#endif
float4 vWorldPos : TEXCOORD2; // w is proj. w coord
float4 vUV0 : TEXCOORD3;
float4 vUV1 : TEXCOORD4;
float4 vLightAtten : TEXCOORD5;
float3 vLightCube : TEXCOORD6;
};
//==============================================================================================================================================================
float Luminance( const float3 colour )
{
return dot( colour, float3( 0.3, 0.59, 0.11 ) );
}
//==============================================================================================================================================================
float3 ComputeTextureBlendWeights( float3 vWorldNormal )
{
float3 vBlendWeights = max( ( abs( vWorldNormal.xyz ) - 0.2 ) * 7.0, 0.0 );
vBlendWeights /= dot( vBlendWeights, float3(1, 1, 1) ); // normalize
return vBlendWeights;
}
//==============================================================================================================================================================
float4 BlendedTexFetchMAX( sampler s, float2 vUV0, float2 vUV1, float2 vUV2, float3 vBlendWeights )
{
// This 'max' blend is supposed to reduce the 'multiple layers sliding over one another'
// appearance of the blob skin. NOTE: it doesn't preserve texture luminance.
float4 vFetch0 = tex2D( s, vUV0 );
float4 vFetch1 = tex2D( s, vUV1 );
float4 vFetch2 = tex2D( s, vUV2 );
//return vBlendWeights.x * vFetch0 + vBlendWeights.y * vFetch1 + vBlendWeights.z * vFetch2;
return max( vBlendWeights.x * vFetch0, max( vBlendWeights.y * vFetch1, vBlendWeights.z * vFetch2 ) );
}
//==============================================================================================================================================================
float3 BumpedToWorldNormal( float3 vBumpedNormal,
float3 vVertexNormal, // should be normalized
float3 vTangentDir )
{
float3x3 mTanToWorld;
mTanToWorld[2] = vVertexNormal;
mTanToWorld[0] = vTangentDir - dot( vTangentDir, vVertexNormal ) * vVertexNormal;
mTanToWorld[0] = normalize( mTanToWorld[0] );
mTanToWorld[1] = cross( mTanToWorld[0], mTanToWorld[2] );
return normalize( mul( vBumpedNormal, mTanToWorld ) );
}
//==============================================================================================================================================================
void BlendedTexFetchNormal( sampler s, float2 vUV0, float2 vUV1, float2 vUV2, float3 vBlendWeights, float3 vWorldNormal,
// Function outputs:
out float2 vBumpedTSNormal, out float3 vBumpedWorldNormal, out float3 vFresnelWorldNormal )
{
float3 vNormalTS1 = 2.0 * tex2D( g_tBump, vUV0 ) - 1.0;
float3 vNormalTS2 = 2.0 * tex2D( g_tBump, vUV1 ) - 1.0;
float3 vNormalTS3 = 2.0 * tex2D( g_tBump, vUV2 ) - 1.0;
vBumpedTSNormal = vBlendWeights.x * vNormalTS1.xy + vBlendWeights.y * vNormalTS2.xy + vBlendWeights.z * vNormalTS3.xy;
float3 vBumpedNormal1 = BumpedToWorldNormal( vNormalTS1, vWorldNormal, float3( 0, 1, 0 ) );
float3 vBumpedNormal2 = BumpedToWorldNormal( vNormalTS2, vWorldNormal, float3( 1, 0, 0 ) );
float3 vBumpedNormal3 = BumpedToWorldNormal( vNormalTS3, vWorldNormal, float3( 1, 0, 0 ) );
vBumpedWorldNormal = vBlendWeights.x * vBumpedNormal1 + vBlendWeights.y * vBumpedNormal2 + vBlendWeights.z * vBumpedNormal3;
// Apply bump strength in world space (this is cheaper because we have to do it twice, for normal and fresnel bumpstrength)
float3 vBumpStrengthDir = vBumpedWorldNormal - dot( vBumpedWorldNormal, vWorldNormal ) * vWorldNormal;
vFresnelWorldNormal = normalize( vBumpedWorldNormal + ( g_flFresnelBumpStrength - 1.0 ) * vBumpStrengthDir );
vBumpedWorldNormal = normalize( vBumpedWorldNormal + ( g_flBumpStrength - 1.0 ) * vBumpStrengthDir );
}
//==============================================================================================================================================================
void ComputeOpacityAndFresnel( float2 vUV0, float2 vUV1, float2 vUV2, float3 vBlendWeights,
float3 vEyeDir, float3 vWorldNormal, float flVertexAlpha,
// Function outputs:
out float flSkinOpacity, out float flBlobOpacity, out float flFresnel )
{
flSkinOpacity = 1;
#if OPACITY_TEXTURE == 1
flSkinOpacity = BlendedTexFetchMAX( g_tOpacity, vUV0, vUV1, vUV2, vBlendWeights );
#endif
flFresnel = saturate( 1.0 - dot( vEyeDir.xyz, vWorldNormal.xyz ) );
#if FRESNEL_WARP == 1
float fTranslucentFresnel = tex1D( g_tFresnelWarp, flFresnel );
#else
float fTranslucentFresnel = lerp( g_vTranslucentFresnelParams.x, g_vTranslucentFresnelParams.y, pow( flFresnel, g_vTranslucentFresnelParams.z ) );
#endif
// TODO: should decouple fresnel from the opacity map, this kills base texture alpha
flSkinOpacity = max( flSkinOpacity, fTranslucentFresnel );
flBlobOpacity = flVertexAlpha;
}
//==============================================================================================================================================================
float3 BlobAmbientLight( float3 vVertexAmbient, float3 vEyeDir, float3 vWorldNormal, float flFresnel )
{
// Ambient lighting now comes from VS
float3 cAmbient = vVertexAmbient;
// TODO: Replace lambert diffuse with pixelshader-ambient term of full lighting env.
//float3 cAmbient = PixelShaderAmbientLight( vBumpedWorldNormal, cAmbientCube );
//float3 cAmbientSheen = PixelShaderAmbientLight( reflect( -vEyeDir, vBumpedWorldNormal ), cAmbientCube );
//cAmbient = lerp( cAmbient, cAmbientSheen, flFresnel );
return cAmbient;
}
//==============================================================================================================================================================
void BlobDynamicLight( float3 vWorldPos, float3 vEyeDir, float3 vBumpedWorldNormal, float4 vLightAtten, float flFresnel,
// Function outputs:
out float3 cDiffuse, out float3 cSpec, out float3 cSpec2, out float3 cRim )
{
cDiffuse = cSpec = cSpec2 = cRim = 0;
for ( int l = 0; l < NUM_LIGHTS; l++ )
{
cDiffuse.rgb += vLightAtten[l] * PixelShaderGetLightColor( g_sLightInfo, l ) *
DiffuseTerm( true, vBumpedWorldNormal, PixelShaderGetLightVector( vWorldPos, g_sLightInfo, l ),
bLightWarp, g_tLightWarp );
// spec 1
float3 cCurrSpec, cCurrRim;
bool bYesRimLight = true;
SpecularAndRimTerms( vBumpedWorldNormal, PixelShaderGetLightVector( vWorldPos, g_sLightInfo, l ), g_flSpecExp, vEyeDir,
false, g_tBump, 1.0, // dummy spec warp sampler & fresnel
PixelShaderGetLightColor( g_sLightInfo, l ),
bYesRimLight, g_flRimLightExp,
cCurrSpec, cCurrRim );
cSpec += vLightAtten[l] * cCurrSpec;
cRim += vLightAtten[l] * cCurrRim;
// spec 2
float3 cCurrSpec2, cDummy;
bool bNoRimLight = false;
SpecularAndRimTerms( vBumpedWorldNormal, PixelShaderGetLightVector( vWorldPos, g_sLightInfo, l ), g_flSpecExp2, vEyeDir,
false, g_tBump, 1.0, // dummy spec warp sampler & fresnel
PixelShaderGetLightColor( g_sLightInfo, l ),
bNoRimLight, 0,
cCurrSpec2, cDummy );
cSpec2 += vLightAtten[l] * cCurrSpec2;
// FIXME: no rim2 term?
}
cRim *= flFresnel * flFresnel * flFresnel * flFresnel;
}
//==============================================================================================================================================================
void BlobFlashlight( float3 vWorldPos, float3 vEyeDir, float3 vWorldNormal, float2 vScreenPos, float flSpecularExponent,
// Function outputs:
out float3 cOutFlashlightDiffuse, out float3 cOutFlashlightSpec, out float3 cOutFlashlightColor )
{
float3 delta = g_vFlashlightPos - vWorldPos;
float3 vLightVec = normalize( delta );
float distSquared = dot( delta, delta );
float dist = sqrt( distSquared );
// Attenuation for light and to fade out shadow over distance
float fAtten = saturate( dot( g_vFlashlightAttenuationFactors, float3( 1.0f, 1.0f/dist, 1.0f/distSquared ) ) );
float endFalloffFactor = RemapValClamped( dist, g_flFlashlightFarZ, 0.6f * g_flFlashlightFarZ, 0.0f, 1.0f );
// Project into flashlight texture
float4 flashlightSpacePosition = mul( float4( vWorldPos, 1.0f ), g_mFlashlightWorldToTexture ); // TODO: this can be moved to VS
float3 vProjCoords = flashlightSpacePosition.xyz / flashlightSpacePosition.w;
// Flashlight colour
cOutFlashlightColor = tex2D( g_tFlashlightCookie, vProjCoords );
#if defined(SHADER_MODEL_PS_2_0) || defined(SHADER_MODEL_PS_2_B) || defined(SHADER_MODEL_PS_3_0)
cOutFlashlightColor *= cFlashlightColor.xyz;
#endif
cOutFlashlightColor *= endFalloffFactor * fAtten;
// Flashlight shadow
#if (defined(SHADER_MODEL_PS_2_B) || defined(SHADER_MODEL_PS_3_0))
if ( FLASHLIGHTSHADOWS )
{
float flShadow = DoFlashlightShadow( g_tShadowDepth, g_tNormalizeRandRot, vProjCoords, vScreenPos,
FLASHLIGHTDEPTHFILTERMODE, g_vShadowTweaks );
float flAttenuated = lerp( flShadow, 1.0f, g_vShadowTweaks.y ); // Blend between fully attenuated and not attenuated
flShadow = saturate( lerp( flAttenuated, flShadow, fAtten ) ); // Blend between shadow and above, according to light attenuation
cOutFlashlightColor *= flShadow; // Shadow term
}
#endif
// Flashlight diffuse term
cOutFlashlightDiffuse = cOutFlashlightColor * DiffuseTerm( true, vWorldNormal, vLightVec, bLightWarp, g_tLightWarp );
// Flashlight specular term
float3 cDummy;
SpecularAndRimTerms( vWorldNormal, vLightVec, flSpecularExponent, -vEyeDir,
false, g_tBump, 1.0, // dummy spec warp sampler & fresnel
cOutFlashlightColor,
false, g_flRimLightExp,
cOutFlashlightSpec, cDummy );
}
//==============================================================================================================================================================
float4 SampleBackgroundBlurred( float2 vBumpedTSNormal, float3 vWorldNormal, float2 vScreenPos, float flCamDist, float flBlobOpacity )
{
static const float2 vPoissonOffset[8] = { float2( 0.3475f, 0.0042f ), float2( 0.8806f, 0.3430f ),
float2( -0.0041f, -0.6197f ), float2( 0.0472f, 0.4964f ),
float2( -0.3730f, 0.0874f ), float2( -0.9217f, -0.3177f ),
float2( -0.6289f, 0.7388f ), float2( 0.5744f, -0.7741f ) };
// TODO: get framebuffer res from constants
float2 vScreenRes = float2( 1600, 1200 );
float2 g_vInvScreenRes = 1.0 / vScreenRes;
// Project world-space blur radius into screen space.
float flBlurRadius = flBlobOpacity * g_flRefractBlur * ( vScreenRes.x / ( flCamDist * g_flHalfWindowWidth ) );
// Bumped refract
float flRefractStrength = flBlobOpacity * 80.0 * g_flRefractStrength / ( flCamDist * g_flHalfWindowWidth );
float2 vBackgroundUV = flRefractStrength * vBumpedTSNormal + vScreenPos;
/* // This gives the blob a more crystal-bally refractive look, which looks cool up-close, but looks weird when
// it pulls foreground pixels in. It could work well if the innards were rendered into their own texture.
float3 vOffset = mul( g_mView, normalize( -vWorldNormal ) );
float2 vBackgroundUV = 0.07 * vOffset.xy + 0.03 * vBumpedTSNormal + vScreenPos; */
float4 cOut = 0;
for( int i = 0; i < 8; i++ )
{
cOut += 1.0/8.0 * tex2D( g_tScreen, vBackgroundUV + flBlurRadius * g_vInvScreenRes.xy * vPoissonOffset[i] );
}
return cOut;
}
float3 CubeAverage( void )
{
// TODO: Pass this average light color in as a const
float3 cAvgLight = 0.0;
for( int j = 0; j < 6; j++ )
{
cAvgLight += cAmbientCube[j] / 6.0;
}
return cAvgLight;
}
float3 BlobInterior( float3 vWorldNormal, float2 vBumpedTSNormal, float3 vEyeDir,
float2 vScreenPos, float flPixelDepth, float flCamDist, float flBlobOpacity, float3 cFlashlightColor )
{
float3 cInterior = 0;
// Sample the background (and inner blob brain/tentacles)
float4 cBackground = SampleBackgroundBlurred( vBumpedTSNormal, vWorldNormal, vScreenPos, flCamDist, flBlobOpacity );
// Boost bright background pixels
float flLuminance = Luminance( cBackground.rgb );
cBackground.rgb *= 1.0 + g_flInteriorBoost * flLuminance * flLuminance;
// Fake refract-like vector without any total internal reflection crappiness
float3 vRefract = normalize( -( vEyeDir + vWorldNormal ) );
// Interior lighting through ambient cube
float3 cBackLight = PixelShaderAmbientLight( vRefract, cAmbientCube );
float3 cAvgLight = CubeAverage() + ( 0.6 * cFlashlightColor );
cBackLight = max( g_flInteriorLightScale * cAvgLight, g_flInteriorBackLightScale * cBackLight );
cBackLight *= g_cInteriorColor;
// Get eye ray travel distance through blob
float flBackgroundDepth = cBackground.a * g_flDepthScale;
float flDistThroughBlob = flBackgroundDepth - flPixelDepth;
flDistThroughBlob = max( 0.0, flDistThroughBlob );
// Compute the opacity ('fog') of the blob interior volume, based on its thickness
float flFogAtten = pow( 2.0, -flDistThroughBlob * g_flInnerFogStrength ); // exponential falloff
//float flFogAtten = saturate( 0.5 - 0.011 * flDistThroughBlob ); // linear falloff
#if HIGH_PRECISION_DEPTH == 0
// fade to constant interior fogginess as we run against the low-precision destalpha depth limit
flFogAtten = lerp( flFogAtten, g_flLimitFogAtten, saturate( cBackground.a*cBackground.a*cBackground.a ) );
#endif
flFogAtten = lerp( 1.0, flFogAtten, flBlobOpacity );
// Composite the fog interior lighting/fog over the background
cInterior = lerp( cBackLight, cBackground.rgb, flFogAtten );
//float flInScattering = flDistThroughBlob * 0.002;
//cInterior.rgb += flInScattering * i.vLightCube.rgb;
return cInterior;
}
//==============================================================================================================================================================
void BlobSelfIllumFresnel( float3 vFresnelWorldNormal, float3 vEyeDir,
// Function-modified inputs:
inout float3 cDiffuse )
{
float flSelfIllumFresnel = pow( saturate( dot( vEyeDir.xyz, vFresnelWorldNormal.xyz ) ), g_flSelfIllumExp );
flSelfIllumFresnel = ( flSelfIllumFresnel * g_flSelfIllumScale ) + g_flSelfIllumBias;
float3 cSelfIllumComponent = g_cSelfIllumTint * g_flSelfIllumBrightness;
cDiffuse.rgb = lerp( cDiffuse.rgb, cSelfIllumComponent.rgb, saturate( flSelfIllumFresnel ) );
}
//==============================================================================================================================================================
float BlobContactShadow( float3 vWorldNormal, float4 vClosestSurfaceDir )
{
// contact darkening for blob regions that touch a surface
float3 vSurfaceDir = normalize( vClosestSurfaceDir.xyz ) * vClosestSurfaceDir.w;
float flContactShadow = saturate( 0.8 * ( 1.0 - dot( vSurfaceDir, vWorldNormal ) ) + 0.2 );
flContactShadow = lerp ( 0.3, 1.0, flContactShadow * flContactShadow * flContactShadow );
return flContactShadow;
}
//==============================================================================================================================================================
float3 BlobSelfIllumPulse( float3 cPulseColor, float3 cBase, float flSkinOpacity )
{
float flBaseLuminance = length( cBase.rgb );
float flPulseLuminance = length( cPulseColor );
float3 cSelfIllumPulse = sqrt( flSkinOpacity ) * g_flGlowScale * flBaseLuminance * flPulseLuminance * cPulseColor;
return cSelfIllumPulse;
}
//==============================================================================================================================================================
float3 noise( float3 coord )
{
coord.z *= 50.0;
float zfrac = frac( coord.z );
float2 zhash = float2( coord.z, 1 + coord.z );
zhash -= frac( zhash );
zhash = ( zhash * zhash );
zhash -= 31.0 * floor( zhash / 31.0 );
zhash = ( zhash * zhash );
zhash -= 31.0 * floor( zhash / 31.0 );
zhash *= 1.0/31.0;
float3 c0 = tex2D( g_tBase, float4( coord.xy + float2( 0, zhash.x ), 0, 0 ) ).rgb;
float3 c1 = tex2D( g_tBase, float4( coord.xy + float2( 0, zhash.y ), 0, 0 ) ).rgb;
float3 rslt = lerp( c0, c1, zfrac );
return rslt;
}
void PerformVolumeTexturing( float3 vUVW, float3 vWorldNormal,
// Function outputs:
out float3 cOut )
{
// volumetric texturing test code
float fNoiseScale = 0.002;
float fStrengthScale = 1.0;
cOut.rgb = 0;
for ( int k = 0; k < 6; k++ )
{
cOut.rgb += fStrengthScale * noise( fNoiseScale * vUVW ).rgb;
fNoiseScale *= 2.0; fStrengthScale /= 1.8;
}
cOut.rgb /= 2.0;
cOut.rgb *= PixelShaderAmbientLight( vWorldNormal, cAmbientCube );
}
//==============================================================================================================================================================
float4 main( PS_INPUT i ) : COLOR
{
float4 cOut = { 0, 0, 0, 1 };
// Set up misc camera variables
float flPixelDepth = i.vWorldNormal.w;
float2 vScreenPos = i.vUV1.wz / i.vWorldPos.w;
float3 vEyeDir = g_vEyePos.xyz - i.vWorldPos.xyz;
float flCamDist = length( vEyeDir );
vEyeDir /= flCamDist;
// Set up contact shadowing or self-illum values (or neither), based on static combo
float4 vClosestSurfaceDir = i_ClosestSurfaceDir;
float3 cPulseColor = i_PulseColor;
float flVertexAlpha = i_VertexAlpha;
// For now, 'BACK_SURFACE' is a dead-simple path (just writes depth into dest alpha)
#if ( BACK_SURFACE == 1 )
cOut = tex2D( g_tScreen, vScreenPos );
return FinalOutput( cOut, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_LINEAR, g_fWriteDepthToAlpha, flPixelDepth );
#endif
// Blend weights for 3 blended planar projections
float3 vWorldNormal = normalize( i.vWorldNormal.xyz );
float3 vBlendWeights = ComputeTextureBlendWeights( vWorldNormal );
// Base+spec maps
float4 cBase = BlendedTexFetchMAX( g_tBase, i.vUV0.xy, i.vUV0.wz, i.vUV1.xy, vBlendWeights );
float flSpecMask = BlendedTexFetchMAX( g_tSpecMask, i.vUV0.xy, i.vUV0.wz, i.vUV1.xy, vBlendWeights );
// Use base tex alpha channel as a tint mask
cBase.rgb = lerp( cBase.rgb, Luminance( cBase.rgb ) * g_cBaseTint.rgb, cBase.a );
// Normal mapping
float3 vBumpedWorldNormal, vFresnelWorldNormal;
float2 vBumpedTSNormal;
BlendedTexFetchNormal( g_tBump, i.vUV0.xy, i.vUV0.zw, i.vUV1.xy, vBlendWeights, vWorldNormal,
vBumpedTSNormal, vBumpedWorldNormal, vFresnelWorldNormal );
// Opacity and fresnel
float flSkinOpacity, flBlobOpacity, flFresnel;
ComputeOpacityAndFresnel( i.vUV0.xy, i.vUV0.wz, i.vUV1.xy, vBlendWeights, vEyeDir, vFresnelWorldNormal, flVertexAlpha,
flSkinOpacity, flBlobOpacity, flFresnel );
// Ambient light
float3 cAmbient = BlobAmbientLight( i.vLightCube, vEyeDir, vBumpedWorldNormal, flFresnel );
// Dynamic lights
float3 cDiffuse, cSpec, cSpec2, cRim;
BlobDynamicLight( i.vWorldPos.xyz, vEyeDir, vBumpedWorldNormal, i.vLightAtten, flFresnel,
cDiffuse, cSpec, cSpec2, cRim );
// Flashlight
float3 cFlashlightColor = 0;
#if FLASHLIGHT == 1
float3 cFlashlightDiffuse, cFlashlightSpec;
BlobFlashlight( i.vWorldPos.xyz, vEyeDir, vBumpedWorldNormal, vScreenPos, g_flSpecExp2,
cFlashlightDiffuse, cFlashlightSpec, cFlashlightColor );
cDiffuse.rgb += cFlashlightDiffuse;
cSpec2 += cFlashlightSpec;
#endif
// Scale light terms
cDiffuse *= g_flDiffuseScale;
cSpec *= g_flSpecScale;
cSpec2 *= g_flSpecScale2;
cRim *= g_flRimLightScale;
// Compute blob interior/background colour
float3 cInterior = 0;
#if INTERIOR_LAYER == 1
cInterior = BlobInterior( vWorldNormal, vBumpedTSNormal, vEyeDir,
vScreenPos, flPixelDepth, flCamDist, flBlobOpacity, cFlashlightColor );
#endif
// Self-illum
#if SELF_ILLUM_FRESNEL == 1
BlobSelfIllumFresnel( vFresnelWorldNormal, vEyeDir,
cDiffuse );
#endif
#if ( INTERIOR_LAYER == 0 )
// Outer layer only
cOut.rgb = cBase.rgb * ( cAmbient.rgb + cDiffuse.rgb ) + flSpecMask * ( cSpec + cSpec2 ) + cRim;
#else
// Outer layer blended over inner/background colour
cInterior.rgb += flBlobOpacity * flSpecMask * cSpec;
cOut.rgb = cBase.rgb * ( cAmbient.rgb + cDiffuse.rgb ) + flSpecMask * cSpec2 + cRim;
cOut.rgb = lerp( cInterior.rgb, cOut.rgb, flBlobOpacity * flSkinOpacity );
#endif
#if CONTACT_SHADOW == 1
cOut.rgb *= BlobContactShadow( vWorldNormal, vClosestSurfaceDir );
#elif SELF_ILLUM_PULSE == 1
cOut.rgb += BlobSelfIllumPulse( cPulseColor, cBase, flSkinOpacity );
#endif
#if VOLUME_TEXTURE == 1
PerformVolumeTexturing( i.vUV0.xyz, vWorldNormal, cOut.rgb );
#endif
// TODO: Support fog
cOut.a = 1;
return FinalOutput( cOut, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_LINEAR, g_fWriteDepthToAlpha, flPixelDepth );
}