csgo-2018-source/tier0/memdbg.cpp
2021-07-24 21:11:47 -07:00

2813 lines
80 KiB
C++
Raw Permalink Blame History

//===== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: Memory allocation!
//
// $NoKeywords: $
//===========================================================================//
#include "pch_tier0.h"
#if !defined(STEAM) && !defined(NO_MALLOC_OVERRIDE)
//#include <malloc.h>
#include <string.h>
#include "tier0/dbg.h"
#include "tier0/stackstats.h"
#include "tier0/memalloc.h"
#include "tier0/fasttimer.h"
#include "mem_helpers.h"
#ifdef PLATFORM_WINDOWS_PC
#undef WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <crtdbg.h>
#include <errno.h>
#include <io.h>
#endif
#ifdef OSX
#include <malloc/malloc.h>
#include <stdlib.h>
#endif
#include <map>
#include <set>
#include <limits.h>
#include "tier0/threadtools.h"
#ifdef _X360
#include "xbox/xbox_console.h"
#endif
#ifdef _PS3
#include "sys/memory.h"
#include "tls_ps3.h"
#include "ps3/ps3_helpers.h"
#include "memoverride_ps3.h"
#endif
#ifdef USE_LIGHT_MEM_DEBUG
#undef USE_MEM_DEBUG
#endif
#if (!defined( POSIX ) && (defined(_DEBUG) || defined(USE_MEM_DEBUG)))
#pragma message ("USE_MEM_DEBUG is enabled in a release build. Don't check this in!")
#endif
#include "mem_impl_type.h"
#if MEM_IMPL_TYPE_DBG
#if defined(_WIN32) && ( !defined(_X360) && !defined(_WIN64) )
//be sure to disable frame pointer omission for all projects. "vpc /nofpo" when using stack traces
//#define USE_STACK_TRACES
// or:
//#define USE_STACK_TRACES_DETAILED
const size_t STACK_TRACE_LENGTH = 32;
#endif
//prevent stupid bugs from checking one and not the other
#if defined( USE_STACK_TRACES_DETAILED ) && !defined( USE_STACK_TRACES )
#define USE_STACK_TRACES //don't comment me. I'm a safety check
#endif
#if defined( USE_STACK_TRACES )
#define SORT_STACK_TRACE_DESCRIPTION_DUMPS
#endif
#if (defined( USE_STACK_TRACES )) && !(defined( TIER0_FPO_DISABLED ) || defined( _DEBUG ))
#error Stack traces will not work unless FPO is disabled for every function traced through. Rebuild everything with FPO disabled "vpc /nofpo"
#endif
//-----------------------------------------------------------------------------
#ifdef _PS3
MemOverrideRawCrtFunctions_t *g_pMemOverrideRawCrtFns;
#define DebugAlloc (g_pMemOverrideRawCrtFns->pfn_malloc)
#define DebugFree (g_pMemOverrideRawCrtFns->pfn_free)
#elif defined( _X360 )
#define DebugAlloc DmAllocatePool
#define DebugFree DmFreePool
#else
#define DebugAlloc malloc
#define DebugFree free
#endif
#ifdef _WIN32
int g_DefaultHeapFlags = _CrtSetDbgFlag( _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG) | _CRTDBG_ALLOC_MEM_DF );
#else
int g_DefaultHeapFlags = 0;
#endif // win32
#if defined( _MEMTEST )
static char s_szStatsMapName[32];
static char s_szStatsComment[256];
#endif
#pragma optimize( "", off )
//-----------------------------------------------------------------------------
#if defined( USE_STACK_TRACES )
bool GetModuleFromAddress( void *address, char *pResult, int iLength )
{
return GetModuleNameFromAddress( address, pResult, iLength );
}
bool GetCallerModule( char *pDest, int iLength )
{
void *pCaller;
GetCallStack_Fast( &pCaller, 1, 2 );
return ( pCaller != 0 && GetModuleFromAddress( pCaller, pDest, iLength ) );
}
//
// Note: StackDescribe function is non-reentrant:
// Reason: Stack description is stored in a static buffer.
// Solution: Passing caller-allocated buffers would allow the
// function to become reentrant, however the current only client (FindOrCreateFilename)
// is synchronized with a heap mutex, after retrieving stack description the
// heap memory will be allocated to copy the text.
//
char * StackDescribe( void * const *ppAddresses, int nMaxAddresses )
{
static char s_chStackDescription[ 32 * 1024 ];
char *pchBuffer = s_chStackDescription;
#if defined( SORT_STACK_TRACE_DESCRIPTION_DUMPS ) //Assuming StackDescribe is called iteratively on a sorted set of stacks (as in DumpStackStats()). We can save work by skipping unchanged parts at the beginning of the string.
static void *LastCallStack[STACK_TRACE_LENGTH] = { NULL };
static char *pEndPos[STACK_TRACE_LENGTH] = { NULL };
bool bUseExistingString = true;
#else
s_chStackDescription[ 0 ] = 0;
#endif
int k;
for ( k = 0; k < nMaxAddresses; ++ k )
{
if ( !ppAddresses[k] )
break;
#if defined( SORT_STACK_TRACE_DESCRIPTION_DUMPS )
if( bUseExistingString && (k < STACK_TRACE_LENGTH) )
{
if( ppAddresses[k] == LastCallStack[k] )
{
pchBuffer = pEndPos[k];
continue;
}
else
{
//everything from here on is invalidated
bUseExistingString = false;
for( int clearEntries = k; clearEntries < STACK_TRACE_LENGTH; ++clearEntries ) //wipe out unused entries
{
LastCallStack[clearEntries] = NULL;
pEndPos[clearEntries] = NULL;
}
//fall through to existing code
if( k == 0 )
*pchBuffer = '\0';
else
sprintf( pchBuffer, "<--" );
}
}
#endif
{
pchBuffer += strlen( pchBuffer );
char szTemp[MAX_PATH];
szTemp[0] = '\0';
uint32 iLine = 0;
uint32 iLineDisplacement = 0;
uint64 iSymbolDisplacement = 0;
if ( GetFileAndLineFromAddress( ppAddresses[k], szTemp, MAX_PATH, iLine, &iLineDisplacement ) )
{
char const *pchFileName = szTemp + strlen( szTemp );
for ( size_t numSlashesAllowed = 2; pchFileName > szTemp; --pchFileName )
{
if ( *pchFileName == '\\' )
{
if ( numSlashesAllowed-- )
continue;
else
break;
}
}
sprintf( pchBuffer, iLineDisplacement ? "%s:%d+0x%I32X" : "%s:%d", pchFileName, iLine, iLineDisplacement );
}
else if ( GetSymbolNameFromAddress( ppAddresses[k], szTemp, MAX_PATH, &iSymbolDisplacement ) )
{
sprintf( pchBuffer, ( iSymbolDisplacement > 0 && !( iSymbolDisplacement >> 63 ) ) ? "%s+0x%llX" : "%s", szTemp, iSymbolDisplacement );
}
else
{
sprintf( pchBuffer, "#0x%08p", ppAddresses[k] );
}
pchBuffer += strlen( pchBuffer );
sprintf( pchBuffer, "<--" );
#if defined( SORT_STACK_TRACE_DESCRIPTION_DUMPS )
if( k < STACK_TRACE_LENGTH )
{
LastCallStack[k] = ppAddresses[k];
pEndPos[k] = pchBuffer;
}
#endif
}
}
*pchBuffer = 0;
#if defined( SORT_STACK_TRACE_DESCRIPTION_DUMPS )
for( ; k < STACK_TRACE_LENGTH; ++k ) //wipe out unused entries
{
LastCallStack[k] = NULL;
pEndPos[k] = NULL;
}
#endif
return s_chStackDescription;
}
#else
#define GetModuleFromAddress( address, pResult, iLength ) ( ( *pResult = 0 ), 0)
#define GetCallerModule( pDest, iLength ) false
#endif
//-----------------------------------------------------------------------------
// NOTE: This exactly mirrors the dbg header in the MSDEV crt
// eventually when we write our own allocator, we can kill this
struct CrtDbgMemHeader_t
{
unsigned char m_Reserved[8];
const char *m_pFileName;
int m_nLineNumber;
unsigned char m_Reserved2[16];
};
struct Sentinal_t
{
DWORD value[4];
};
Sentinal_t g_HeadSentinelAllocated =
{
0xeee1beef,
0xeee1f00d,
0xbd122969,
0xbeefbeef,
};
Sentinal_t g_HeadSentinelFree =
{
0xdeadbeef,
0xbaadf00d,
0xbd122969,
0xdeadbeef,
};
Sentinal_t g_TailSentinel =
{
0xbaadf00d,
0xbd122969,
0xdeadbeef,
0xbaadf00d,
};
const byte g_FreeFill = 0xdd;
enum DbgMemHeaderBlockType_t
{
BLOCKTYPE_FREE,
BLOCKTYPE_ALLOCATED
};
struct DbgMemHeader_t
#if !defined( _DEBUG ) || defined( _PS3 )
: CrtDbgMemHeader_t
#endif
{
size_t nLogicalSize;
#if defined( USE_STACK_TRACES )
unsigned int nStatIndex;
byte reserved[ 16 - (sizeof(unsigned int) + sizeof( size_t ) ) ]; // MS allocator always returns mem aligned on 16 bytes, which some of our code depends on
#else
byte reserved[16 - sizeof( size_t )]; // MS allocator always returns mem aligned on 16 bytes, which some of our code depends on
#endif
Sentinal_t sentinal;
};
const int g_nRecentFrees = ( IsPC() ) ? 8192 : 512;
DbgMemHeader_t ** GetRecentFrees() { static DbgMemHeader_t **g_pRecentFrees = (DbgMemHeader_t**)
#ifdef _PS3
g_pMemOverrideRawCrtFns->pfn_calloc
#else
calloc
#endif
( g_nRecentFrees, sizeof(DbgMemHeader_t *) );
return g_pRecentFrees; }
uint32 volatile g_iNextFreeSlot;
uint32 volatile g_break_BytesFree = 0xffffffff;
void LMDReportInvalidBlock( DbgMemHeader_t *pHeader, const char *pszMessage )
{
char szMsg[256];
if ( pHeader )
{
sprintf( szMsg, "HEAP IS CORRUPT: %s (block 0x%x, %d bytes)\n", pszMessage, (size_t)( ((byte*) pHeader) + sizeof( DbgMemHeader_t ) ), pHeader->nLogicalSize );
}
else
{
sprintf( szMsg, "HEAP IS CORRUPT: %s\n", pszMessage );
}
Assert( !"HEAP IS CORRUPT!" );
DebuggerBreak();
}
void LMDValidateBlock( DbgMemHeader_t *pHeader, bool bFreeList )
{
if ( memcmp( &pHeader->sentinal, bFreeList ? &g_HeadSentinelFree : &g_HeadSentinelAllocated, sizeof(Sentinal_t) ) != 0 )
{
LMDReportInvalidBlock( pHeader, "Head sentinel corrupt" );
}
if ( memcmp( ((Sentinal_t *)(( ((byte*) pHeader) + sizeof( DbgMemHeader_t ) + pHeader->nLogicalSize ))), &g_TailSentinel, sizeof(Sentinal_t) ) != 0 )
{
LMDReportInvalidBlock( pHeader, "Tail sentinel corrupt" );
}
if ( bFreeList )
{
byte *pCur = (byte *)pHeader + sizeof(DbgMemHeader_t);
byte *pLimit = pCur + pHeader->nLogicalSize;
while ( pCur != pLimit )
{
if ( *pCur++ != g_FreeFill )
{
LMDReportInvalidBlock( pHeader, "Write after free" );
}
}
}
}
//-----------------------------------------------------------------------------
#if defined( _DEBUG ) && !defined( POSIX )
#define GetCrtDbgMemHeader( pMem ) ((CrtDbgMemHeader_t*)((DbgMemHeader_t*)pMem - 1) - 1)
#elif defined( OSX )
DbgMemHeader_t *GetCrtDbgMemHeader( void *pMem );
#else
#define GetCrtDbgMemHeader( pMem ) ((DbgMemHeader_t*)(pMem) - 1)
#endif
#if defined( USE_STACK_TRACES )
#define GetAllocationStatIndex_Internal( pMem ) ( ((DbgMemHeader_t*)pMem - 1)->nStatIndex )
#endif
#ifdef OSX
DbgMemHeader_t *GetCrtDbgMemHeader( void *pMem )
{
size_t msize = malloc_size( pMem );
return (DbgMemHeader_t *)( (char *)pMem + msize - sizeof(DbgMemHeader_t) );
}
#endif
inline void *InternalMalloc( size_t nSize, const char *pFileName, int nLine )
{
#if defined( POSIX ) || defined( _PS3 )
void *pAllocedMem = NULL;
#ifdef OSX
pAllocedMem = malloc_zone_malloc( malloc_default_zone(), nSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pAllocedMem );
#elif defined( _PS3 )
pAllocedMem = (g_pMemOverrideRawCrtFns->pfn_malloc)( nSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pAllocedMem;
*((void**)pInternalMem->m_Reserved2) = pAllocedMem;
#else
pAllocedMem = malloc( nSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pAllocedMem;
#endif
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
pInternalMem->nLogicalSize = nSize;
*((int*)pInternalMem->m_Reserved) = 0xf00df00d;
pInternalMem->sentinal = g_HeadSentinelAllocated;
*( (Sentinal_t *)( ((byte*)pInternalMem) + sizeof( DbgMemHeader_t ) + nSize ) ) = g_TailSentinel;
LMDValidateBlock( pInternalMem, false );
#ifdef OSX
return pAllocedMem;
#else
return pInternalMem + 1;
#endif
#else // WIN32
DbgMemHeader_t *pInternalMem;
#if !defined( _DEBUG )
pInternalMem = (DbgMemHeader_t *)malloc( nSize + sizeof(DbgMemHeader_t) );
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
#else
pInternalMem = (DbgMemHeader_t *)_malloc_dbg( nSize + sizeof(DbgMemHeader_t), _NORMAL_BLOCK, pFileName, nLine );
#endif
pInternalMem->nLogicalSize = nSize;
return pInternalMem + 1;
#endif // WIN32
}
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
inline void *InternalMallocAligned( size_t nSize, size_t align, const char *pFileName, int nLine )
{
#if defined( POSIX ) || defined( _PS3 )
void *pAllocedMem = NULL;
#ifdef OSX
pAllocedMem = malloc_zone_malloc( malloc_default_zone(), nSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pAllocedMem );
#elif defined( _PS3 )
size_t numWastedAlignPages = ( sizeof( DbgMemHeader_t ) / align );
if ( align * numWastedAlignPages < sizeof( DbgMemHeader_t ) )
++ numWastedAlignPages;
size_t nSizeRequired = nSize + numWastedAlignPages*align + sizeof( Sentinal_t );
pAllocedMem = (g_pMemOverrideRawCrtFns->pfn_memalign)( align, nSizeRequired );
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( ((char*)pAllocedMem) + numWastedAlignPages*align );
*((void**)pInternalMem->m_Reserved2) = pAllocedMem;
#else
pAllocedMem = malloc( nSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pAllocedMem;
#endif
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
pInternalMem->nLogicalSize = nSize;
*((int*)pInternalMem->m_Reserved) = 0xf00df00d;
pInternalMem->sentinal = g_HeadSentinelAllocated;
*( (Sentinal_t *)( ((byte*)pInternalMem) + sizeof( DbgMemHeader_t ) + nSize ) ) = g_TailSentinel;
LMDValidateBlock( pInternalMem, false );
#ifdef OSX
return pAllocedMem;
#else
return pInternalMem + 1;
#endif
#else // WIN32
DbgMemHeader_t *pInternalMem;
#if !defined( _DEBUG )
pInternalMem = (DbgMemHeader_t *)malloc( nSize + sizeof(DbgMemHeader_t) );
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
#else
pInternalMem = (DbgMemHeader_t *)_malloc_dbg( nSize + sizeof(DbgMemHeader_t), _NORMAL_BLOCK, pFileName, nLine );
#endif
pInternalMem->nLogicalSize = nSize;
return pInternalMem + 1;
#endif // WIN32
}
#endif
inline void *InternalRealloc( void *pMem, size_t nNewSize, const char *pFileName, int nLine )
{
if ( !pMem )
return InternalMalloc( nNewSize, pFileName, nLine );
#ifdef POSIX
void *pNewAllocedMem = NULL;
#ifdef OSX
pNewAllocedMem = (DbgMemHeader_t *)malloc_zone_realloc( malloc_default_zone(), pMem, nNewSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pNewAllocedMem );
#elif defined( _PS3 )
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
pNewAllocedMem = (DbgMemHeader_t *)(g_pMemOverrideRawCrtFns->pfn_realloc)( *((void**)pInternalMem->m_Reserved2), nNewSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
pInternalMem = (DbgMemHeader_t *)pNewAllocedMem;
*((void**)pInternalMem->m_Reserved2) = pNewAllocedMem;
#else
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
pNewAllocedMem = (DbgMemHeader_t *)realloc( pInternalMem, nNewSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
pInternalMem = (DbgMemHeader_t *)pNewAllocedMem;
#endif
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
pInternalMem->nLogicalSize = static_cast<unsigned int>( nNewSize );
*((int*)pInternalMem->m_Reserved) = 0xf00df00d;
pInternalMem->sentinal = g_HeadSentinelAllocated;
*( (Sentinal_t *)( ((byte*)pInternalMem) + sizeof( DbgMemHeader_t ) + nNewSize ) ) = g_TailSentinel;
LMDValidateBlock( pInternalMem, false );
#ifdef OSX
return pNewAllocedMem;
#else
return pInternalMem + 1;
#endif
#else // WIN32
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pMem - 1;
#if !defined( _DEBUG )
pInternalMem = (DbgMemHeader_t *)realloc( pInternalMem, nNewSize + sizeof(DbgMemHeader_t) );
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
#else
pInternalMem = (DbgMemHeader_t *)_realloc_dbg( pInternalMem, nNewSize + sizeof(DbgMemHeader_t), _NORMAL_BLOCK, pFileName, nLine );
#endif
pInternalMem->nLogicalSize = nNewSize;
return pInternalMem + 1;
#endif // WIN32
}
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
inline void *InternalReallocAligned( void *pMem, size_t nNewSize, size_t align, const char *pFileName, int nLine )
{
if ( !pMem )
return InternalMallocAligned( nNewSize, align, pFileName, nLine );
#ifdef POSIX
void *pNewAllocedMem = NULL;
#ifdef OSX
pNewAllocedMem = (DbgMemHeader_t *)malloc_zone_realloc( malloc_default_zone(), pMem, nNewSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pNewAllocedMem );
#elif defined( _PS3 )
size_t numWastedAlignPages = ( sizeof( DbgMemHeader_t ) / align );
if ( align * numWastedAlignPages < sizeof( DbgMemHeader_t ) )
++ numWastedAlignPages;
size_t nSizeRequired = nNewSize + numWastedAlignPages*align + sizeof( Sentinal_t );
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
pNewAllocedMem = (DbgMemHeader_t *)(g_pMemOverrideRawCrtFns->pfn_reallocalign)( *((void**)pInternalMem->m_Reserved2), nSizeRequired, align );
pInternalMem = GetCrtDbgMemHeader( ((char*)pNewAllocedMem) + numWastedAlignPages*align );
*((void**)pInternalMem->m_Reserved2) = pNewAllocedMem;
#else
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
pNewAllocedMem = (DbgMemHeader_t *)realloc( pInternalMem, nNewSize + sizeof(DbgMemHeader_t) + sizeof( Sentinal_t ) );
pInternalMem = (DbgMemHeader_t *)pNewAllocedMem;
#endif
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
pInternalMem->nLogicalSize = static_cast<unsigned int>( nNewSize );
*((int*)pInternalMem->m_Reserved) = 0xf00df00d;
pInternalMem->sentinal = g_HeadSentinelAllocated;
*( (Sentinal_t *)( ((byte*)pInternalMem) + sizeof( DbgMemHeader_t ) + nNewSize ) ) = g_TailSentinel;
LMDValidateBlock( pInternalMem, false );
#ifdef OSX
return pNewAllocedMem;
#else
return pInternalMem + 1;
#endif
#else // WIN32
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pMem - 1;
#if !defined( _DEBUG )
pInternalMem = (DbgMemHeader_t *)realloc( pInternalMem, nNewSize + sizeof(DbgMemHeader_t) );
pInternalMem->m_pFileName = pFileName;
pInternalMem->m_nLineNumber = nLine;
#else
pInternalMem = (DbgMemHeader_t *)_realloc_dbg( pInternalMem, nNewSize + sizeof(DbgMemHeader_t), _NORMAL_BLOCK, pFileName, nLine );
#endif
pInternalMem->nLogicalSize = nNewSize;
return pInternalMem + 1;
#endif // WIN32
}
#endif
inline void InternalFree( void *pMem )
{
if ( !pMem )
return;
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pMem - 1;
#if defined( POSIX )
// Record it in recent free blocks list
DbgMemHeader_t **pRecentFrees = GetRecentFrees();
uint32 iNextSlot = ThreadInterlockedIncrement( &g_iNextFreeSlot );
iNextSlot %= g_nRecentFrees;
if ( memcmp( &pInternalMem->sentinal, &g_HeadSentinelAllocated, sizeof( Sentinal_t ) ) != 0 )
{
Assert( !"Double Free or Corrupt Block Header!" );
DebuggerBreak();
}
LMDValidateBlock( pInternalMem, false );
if ( g_break_BytesFree == pInternalMem->nLogicalSize )
{
DebuggerBreak();
}
pInternalMem->sentinal = g_HeadSentinelFree;
memset( pMem, g_FreeFill, pInternalMem->nLogicalSize );
DbgMemHeader_t *pToFree = pInternalMem;
if ( pInternalMem->nLogicalSize < 16*1024 )
{
pToFree = pRecentFrees[iNextSlot];
pRecentFrees[iNextSlot] = pInternalMem;
if ( pToFree )
{
LMDValidateBlock( pToFree, true );
}
}
// Validate several last frees
for ( uint32 k = iNextSlot - 1, iteration = 0; iteration < 10; ++ iteration, -- k )
{
if ( DbgMemHeader_t *pLastFree = pRecentFrees[ k % g_nRecentFrees ] )
{
LMDValidateBlock( pLastFree, true );
}
}
if ( !pToFree )
return;
#ifdef OSX
malloc_zone_free( malloc_default_zone(), pToFree );
#elif defined( _PS3 )
(g_pMemOverrideRawCrtFns->pfn_free)( *((void**)pToFree->m_Reserved2) );
#elif LINUX
free( pToFree );
#else
free( pToFree );
#endif
#elif defined( _DEBUG )
_free_dbg( pInternalMem, _NORMAL_BLOCK );
#else
free( pInternalMem );
#endif
}
inline size_t InternalMSize( void *pMem )
{
#if defined( _PS3 )
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
return pInternalMem->nLogicalSize;
#elif defined(POSIX)
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
return pInternalMem->nLogicalSize;
#elif !defined(_DEBUG)
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
return _msize( pInternalMem ) - sizeof(DbgMemHeader_t);
#else
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pMem - 1;
return _msize_dbg( pInternalMem, _NORMAL_BLOCK ) - sizeof(DbgMemHeader_t);
#endif
}
inline size_t InternalLogicalSize( void *pMem )
{
#if defined(POSIX)
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( pMem );
#elif !defined(_DEBUG)
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pMem - 1;
#else
DbgMemHeader_t *pInternalMem = (DbgMemHeader_t *)pMem - 1;
#endif
return pInternalMem->nLogicalSize;
}
#ifndef _DEBUG
#define _CrtDbgReport( nRptType, szFile, nLine, szModule, pMsg ) 0
#endif
//-----------------------------------------------------------------------------
// Custom allocator protects this module from recursing on operator new
template <class T>
class CNoRecurseAllocator
{
public:
// type definitions
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
CNoRecurseAllocator() {}
CNoRecurseAllocator(const CNoRecurseAllocator&) {}
template <class U> CNoRecurseAllocator(const CNoRecurseAllocator<U>&) {}
~CNoRecurseAllocator(){}
// rebind allocator to type U
template <class U > struct rebind { typedef CNoRecurseAllocator<U> other; };
// return address of values
pointer address (reference value) const { return &value; }
const_pointer address (const_reference value) const { return &value;}
size_type max_size() const { return INT_MAX; }
pointer allocate(size_type num, const void* = 0) { return (pointer)DebugAlloc(num * sizeof(T)); }
void deallocate (pointer p, size_type num) { DebugFree(p); }
void construct(pointer p, const T& value) { new((void*)p)T(value); }
void destroy (pointer p) { p->~T(); }
};
template <class T1, class T2>
bool operator==(const CNoRecurseAllocator<T1>&, const CNoRecurseAllocator<T2>&)
{
return true;
}
template <class T1, class T2>
bool operator!=(const CNoRecurseAllocator<T1>&, const CNoRecurseAllocator<T2>&)
{
return false;
}
class CStringLess
{
public:
bool operator()(const char *pszLeft, const char *pszRight ) const
{
return ( V_tier0_stricmp( pszLeft, pszRight ) < 0 );
}
};
//-----------------------------------------------------------------------------
#pragma warning( disable:4074 ) // warning C4074: initializers put in compiler reserved initialization area
#pragma init_seg( compiler )
//-----------------------------------------------------------------------------
// NOTE! This should never be called directly from leaf code
// Just use new,delete,malloc,free etc. They will call into this eventually
//-----------------------------------------------------------------------------
class CDbgMemAlloc : public IMemAlloc
{
public:
CDbgMemAlloc();
virtual ~CDbgMemAlloc();
// Release versions
virtual void *Alloc( size_t nSize );
virtual void *Realloc( void *pMem, size_t nSize );
virtual void Free( void *pMem );
virtual void *Expand_NoLongerSupported( void *pMem, size_t nSize );
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
virtual void *AllocAlign( size_t nSize, size_t align );
virtual void *AllocAlign( size_t nSize, size_t align, const char *pFileName, int nLine );
virtual void *ReallocAlign( void *pMem, size_t nSize, size_t align );
virtual void *ReallocAlign( void *pMem, size_t nSize, size_t align, const char *pFileName, int nLine );
#endif
// Debug versions
virtual void *Alloc( size_t nSize, const char *pFileName, int nLine );
virtual void *Realloc( void *pMem, size_t nSize, const char *pFileName, int nLine );
virtual void Free( void *pMem, const char *pFileName, int nLine );
virtual void *Expand_NoLongerSupported( void *pMem, size_t nSize, const char *pFileName, int nLine );
virtual void *RegionAlloc( int region, size_t nSize ) { return Alloc( nSize ); }
virtual void *RegionAlloc( int region, size_t nSize, const char *pFileName, int nLine ) { return Alloc( nSize, pFileName, nLine ); }
// Returns the size of a particular allocation (NOTE: may be larger than the size requested!)
virtual size_t GetSize( void *pMem );
// Force file + line information for an allocation
virtual void PushAllocDbgInfo( const char *pFileName, int nLine );
virtual void PopAllocDbgInfo();
virtual int32 CrtSetBreakAlloc( int32 lNewBreakAlloc );
virtual int CrtSetReportMode( int nReportType, int nReportMode );
virtual int CrtIsValidHeapPointer( const void *pMem );
virtual int CrtIsValidPointer( const void *pMem, unsigned int size, int access );
virtual int CrtCheckMemory( void );
virtual int CrtSetDbgFlag( int nNewFlag );
virtual void CrtMemCheckpoint( _CrtMemState *pState );
// handles storing allocation info for coroutines
virtual uint32 GetDebugInfoSize();
virtual void SaveDebugInfo( void *pvDebugInfo );
virtual void RestoreDebugInfo( const void *pvDebugInfo );
virtual void InitDebugInfo( void *pvDebugInfo, const char *pchRootFileName, int nLine );
// FIXME: Remove when we have our own allocator
virtual void* CrtSetReportFile( int nRptType, void* hFile );
virtual void* CrtSetReportHook( void* pfnNewHook );
virtual int CrtDbgReport( int nRptType, const char * szFile,
int nLine, const char * szModule, const char * szFormat );
virtual int heapchk();
virtual bool IsDebugHeap() { return true; }
virtual int GetVersion() { return MEMALLOC_VERSION; }
virtual void CompactHeap()
{
#if defined( _X360 ) && defined( _DEBUG )
HeapCompact( GetProcessHeap(), 0 );
#endif
}
virtual void CompactIncremental() {}
virtual void OutOfMemory( size_t nBytesAttempted = 0 ) {}
virtual MemAllocFailHandler_t SetAllocFailHandler( MemAllocFailHandler_t pfnMemAllocFailHandler ) { return NULL; } // debug heap doesn't attempt retries
void SetStatsExtraInfo( const char *pMapName, const char *pComment )
{
#if defined( _MEMTEST )
strncpy( s_szStatsMapName, pMapName, sizeof( s_szStatsMapName ) );
s_szStatsMapName[sizeof( s_szStatsMapName ) - 1] = '\0';
strncpy( s_szStatsComment, pComment, sizeof( s_szStatsComment ) );
s_szStatsComment[sizeof( s_szStatsComment ) - 1] = '\0';
#endif
}
virtual size_t MemoryAllocFailed();
void SetCRTAllocFailed( size_t nMemSize );
enum
{
BYTE_COUNT_16 = 0,
BYTE_COUNT_32,
BYTE_COUNT_128,
BYTE_COUNT_2048,
BYTE_COUNT_GREATER,
NUM_BYTE_COUNT_BUCKETS
};
private:
struct MemInfo_t
{
#if defined( USE_STACK_TRACES )
DECLARE_CALLSTACKSTATSTRUCT();
DECLARE_CALLSTACKSTATSTRUCT_FIELDDESCRIPTION();
#endif
MemInfo_t()
{
memset( this, 0, sizeof(*this) );
}
// Size in bytes
size_t m_nCurrentSize;
size_t m_nPeakSize;
size_t m_nTotalSize;
size_t m_nOverheadSize;
size_t m_nPeakOverheadSize;
// Count in terms of # of allocations
int m_nCurrentCount;
int m_nPeakCount;
int m_nTotalCount;
int m_nSumTargetRange;
int m_nCurTargetRange;
int m_nMaxTargetRange;
// Count in terms of # of allocations of a particular size
int m_pCount[NUM_BYTE_COUNT_BUCKETS];
// Time spent allocating + deallocating (microseconds)
int64 m_nTime;
};
struct MemInfoKey_FileLine_t
{
MemInfoKey_FileLine_t( const char *pFileName, int line ) : m_pFileName(pFileName), m_nLine(line) {}
bool operator<( const MemInfoKey_FileLine_t &key ) const
{
int iret = V_tier0_stricmp( m_pFileName, key.m_pFileName );
if ( iret < 0 )
return true;
if ( iret > 0 )
return false;
return m_nLine < key.m_nLine;
}
const char *m_pFileName;
int m_nLine;
};
// NOTE: Deliberately using STL here because the UTL stuff
// is a client of this library; want to avoid circular dependency
// Maps file name to info
typedef std::map< MemInfoKey_FileLine_t, MemInfo_t, std::less<MemInfoKey_FileLine_t>, CNoRecurseAllocator<std::pair<const MemInfoKey_FileLine_t, MemInfo_t> > > StatMap_FileLine_t;
typedef StatMap_FileLine_t::iterator StatMapIter_FileLine_t;
typedef StatMap_FileLine_t::value_type StatMapEntry_FileLine_t;
typedef std::set<const char *, CStringLess, CNoRecurseAllocator<const char *> > Filenames_t;
// Heap reporting method
typedef void (*HeapReportFunc_t)( char const *pFormat, ... );
private:
// Returns the actual debug info
virtual void GetActualDbgInfo( const char *&pFileName, int &nLine );
// Finds the file in our map
MemInfo_t &FindOrCreateEntry( const char *pFileName, int line );
const char *FindOrCreateFilename( const char *pFileName );
#if defined( USE_STACK_TRACES )
int GetCallStackForIndex( unsigned int index, void **pCallStackOut, int iMaxEntriesOut );
friend int GetAllocationCallStack( void *mem, void **pCallStackOut, int iMaxEntriesOut );
#endif
// Updates stats
virtual void RegisterAllocation( const char *pFileName, int nLine, size_t nLogicalSize, size_t nActualSize, unsigned nTime );
virtual void RegisterDeallocation( const char *pFileName, int nLine, size_t nLogicalSize, size_t nActualSize, unsigned nTime );
#if defined( USE_STACK_TRACES )
void RegisterAllocation( unsigned int nStatIndex, size_t nLogicalSize, size_t nActualSize, unsigned nTime );
void RegisterDeallocation( unsigned int nStatIndex, size_t nLogicalSize, size_t nActualSize, unsigned nTime );
#endif
void RegisterAllocation( MemInfo_t &info, size_t nLogicalSize, size_t nActualSize, unsigned nTime );
void RegisterDeallocation( MemInfo_t &info, size_t nLogicalSize, size_t nActualSize, unsigned nTime );
// Gets the allocation file name
const char *GetAllocatonFileName( void *pMem );
int GetAllocatonLineNumber( void *pMem );
// FIXME: specify a spew output func for dumping stats
// Stat output
void DumpMemInfo( const char *pAllocationName, int line, const MemInfo_t &info );
void DumpFileStats();
#if defined( USE_STACK_TRACES )
void DumpMemInfo( void * const CallStack[STACK_TRACE_LENGTH], const MemInfo_t &info );
void DumpCallStackFlow( char const *pchFileBase );
#endif
virtual void DumpStats();
virtual void DumpStatsFileBase( char const *pchFileBase, DumpStatsFormat_t nFormat = FORMAT_TEXT ) OVERRIDE;
virtual void DumpBlockStats( void *p );
virtual void GlobalMemoryStatus( size_t *pUsedMemory, size_t *pFreeMemory );
virtual size_t ComputeMemoryUsedBy( char const *pchSubStr );
virtual IVirtualMemorySection * AllocateVirtualMemorySection( size_t numMaxBytes )
{
#if defined( _GAMECONSOLE ) || defined( _WIN32 )
extern IVirtualMemorySection * VirtualMemoryManager_AllocateVirtualMemorySection( size_t numMaxBytes );
return VirtualMemoryManager_AllocateVirtualMemorySection( numMaxBytes );
#else
return NULL;
#endif
}
virtual int GetGenericMemoryStats( GenericMemoryStat_t **ppMemoryStats )
{
// TODO: reuse code from GlobalMemoryStatus (though this is only really useful when using CStdMemAlloc...)
return 0;
}
private:
StatMap_FileLine_t m_StatMap_FileLine;
#if defined( USE_STACK_TRACES )
typedef CCallStackStatsGatherer<MemInfo_t, STACK_TRACE_LENGTH, GetCallStack_Fast, CCallStackStatsGatherer_StatMutexPool<128>, CNoRecurseAllocator> CallStackStatsType_t;
CallStackStatsType_t m_CallStackStats;
#endif
MemInfo_t m_GlobalInfo;
CFastTimer m_Timer;
bool m_bInitialized;
Filenames_t m_Filenames;
HeapReportFunc_t m_OutputFunc;
static size_t s_pCountSizes[NUM_BYTE_COUNT_BUCKETS];
static const char *s_pCountHeader[NUM_BYTE_COUNT_BUCKETS];
size_t m_sMemoryAllocFailed;
};
static char const *g_pszUnknown = "unknown";
#if defined( USE_STACK_TRACES )
BEGIN_STATSTRUCTDESCRIPTION( CDbgMemAlloc::MemInfo_t )
WRITE_STATSTRUCT_FIELDDESCRIPTION();
END_STATSTRUCTDESCRIPTION()
BEGIN_STATSTRUCTFIELDDESCRIPTION( CDbgMemAlloc::MemInfo_t )
DEFINE_STATSTRUCTFIELD( m_nCurrentSize, BasicStatStructFieldDesc, ( BSSFT_SIZE_T, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nPeakSize, BasicStatStructFieldDesc, ( BSSFT_SIZE_T, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nTotalSize, BasicStatStructFieldDesc, ( BSSFT_SIZE_T, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nOverheadSize, BasicStatStructFieldDesc, ( BSSFT_SIZE_T, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nPeakOverheadSize, BasicStatStructFieldDesc, ( BSSFT_SIZE_T, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nCurrentCount, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nPeakCount, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nTotalCount, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nSumTargetRange, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nCurTargetRange, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nMaxTargetRange, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD_ARRAYENTRY( m_pCount, BYTE_COUNT_16, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD_ARRAYENTRY( m_pCount, BYTE_COUNT_32, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD_ARRAYENTRY( m_pCount, BYTE_COUNT_128, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD_ARRAYENTRY( m_pCount, BYTE_COUNT_2048, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD_ARRAYENTRY( m_pCount, BYTE_COUNT_GREATER, BasicStatStructFieldDesc, ( BSSFT_INT, BSSFCM_ADD ) )
DEFINE_STATSTRUCTFIELD( m_nTime, BasicStatStructFieldDesc, ( BSSFT_INT64, BSSFCM_ADD ) )
END_STATSTRUCTFIELDDESCRIPTION()
#endif
//-----------------------------------------------------------------------------
const int DBG_INFO_STACK_DEPTH = 32;
struct DbgInfoStack_t
{
const char *m_pFileName;
int m_nLine;
};
#ifdef _PS3
#ifndef _CERT
extern TLSGlobals * ( *g_pfnElfGetTlsGlobals )();
#define IfDbgInfoIsReady() if ( TLSGlobals *IfDbgInfoIsReady_pTlsGlobals = g_pfnElfGetTlsGlobals ? g_pfnElfGetTlsGlobals() : NULL )
#else
#define IfDbgInfoIsReady() if ( TLSGlobals *IfDbgInfoIsReady_pTlsGlobals = GetTLSGlobals() )
#endif
#define g_DbgInfoStack ( ( DbgInfoStack_t *& ) IfDbgInfoIsReady_pTlsGlobals->pMallocDbgInfoStack )
#define g_nDbgInfoStackDepth ( IfDbgInfoIsReady_pTlsGlobals->nMallocDbgInfoStackDepth )
#else
CTHREADLOCALPTR( DbgInfoStack_t) g_DbgInfoStack CONSTRUCT_EARLY;
CTHREADLOCALINT g_nDbgInfoStackDepth CONSTRUCT_EARLY;
#define IfDbgInfoIsReady() if (true)
#endif
#ifdef _PS3
struct CDbgMemAlloc_GetRawCrtMemOverrideFuncs_Early
{
CDbgMemAlloc_GetRawCrtMemOverrideFuncs_Early()
{
malloc_managed_size mms;
mms.current_inuse_size = 0x12345678;
mms.current_system_size = 0x09ABCDEF;
mms.max_system_size = 0;
int iResult = malloc_stats( &mms );
g_pMemOverrideRawCrtFns = reinterpret_cast< MemOverrideRawCrtFunctions_t * >( iResult );
}
}
g_CDbgMemAlloc_GetRawCrtMemOverrideFuncs_Early CONSTRUCT_EARLY;
#endif
//-----------------------------------------------------------------------------
// Singleton...
//-----------------------------------------------------------------------------
static CDbgMemAlloc s_DbgMemAlloc CONSTRUCT_EARLY;
#ifdef _PS3
IMemAlloc *g_pMemAllocInternalPS3 = &s_DbgMemAlloc;
PLATFORM_OVERRIDE_MEM_ALLOC_INTERNAL_PS3_IMPL
#else // !_PS3
#ifndef TIER0_VALIDATE_HEAP
IMemAlloc *g_pMemAlloc CONSTRUCT_EARLY = &s_DbgMemAlloc;
void SetAllocatorObject( IMemAlloc* pAllocator )
{
g_pMemAlloc = pAllocator;
}
#else
IMemAlloc *g_pActualAlloc = &s_DbgMemAlloc;
void SetAllocatorObject( IMemAlloc* pAllocator )
{
g_pActualAlloc = pAllocator;
}
#endif
#endif // _PS3
//-----------------------------------------------------------------------------
CThreadMutex g_DbgMemMutex CONSTRUCT_EARLY;
#define HEAP_LOCK() AUTO_LOCK( g_DbgMemMutex )
//-----------------------------------------------------------------------------
// Byte count buckets
//-----------------------------------------------------------------------------
size_t CDbgMemAlloc::s_pCountSizes[CDbgMemAlloc::NUM_BYTE_COUNT_BUCKETS] =
{
16, 32, 128, 2048, INT_MAX
};
const char *CDbgMemAlloc::s_pCountHeader[CDbgMemAlloc::NUM_BYTE_COUNT_BUCKETS] =
{
"<=16 byte allocations",
"17-32 byte allocations",
"33-128 byte allocations",
"129-2048 byte allocations",
">2048 byte allocations"
};
size_t g_TargetCountRangeMin = 0, g_TargetCountRangeMax = 0;
//-----------------------------------------------------------------------------
// Standard output
//-----------------------------------------------------------------------------
static FILE* s_DbgFile;
static void DefaultHeapReportFunc( char const *pFormat, ... )
{
va_list args;
va_start( args, pFormat );
vfprintf( s_DbgFile, pFormat, args );
va_end( args );
}
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CDbgMemAlloc::CDbgMemAlloc() : m_sMemoryAllocFailed( (size_t)0 )
{
CClockSpeedInit::Init();
m_OutputFunc = DefaultHeapReportFunc;
m_bInitialized = true;
if ( !IsDebug() && !IsX360() )
{
Plat_DebugString( "USE_MEM_DEBUG is enabled in a release build. Don't check this in!\n" );
}
#ifdef _PS3
g_pMemAllocInternalPS3 = &s_DbgMemAlloc;
PLATFORM_OVERRIDE_MEM_ALLOC_INTERNAL_PS3.m_pMemAllocCached = &s_DbgMemAlloc;
malloc_managed_size mms;
mms.current_inuse_size = 0x12345678;
mms.current_system_size = 0x09ABCDEF;
mms.max_system_size = reinterpret_cast< size_t >( this );
int iResult = malloc_stats( &mms );
g_pMemOverrideRawCrtFns = reinterpret_cast< MemOverrideRawCrtFunctions_t * >( iResult );
#elif IsPlatformWindowsPC()
char *pStr = (char*)Plat_GetCommandLineA();
if ( pStr )
{
char tempStr[512];
strncpy( tempStr, pStr, sizeof( tempStr ) - 1 );
tempStr[ sizeof( tempStr ) - 1 ] = 0;
_strupr( tempStr );
CheckWindowsAllocSettings( tempStr );
}
#endif
}
CDbgMemAlloc::~CDbgMemAlloc()
{
Filenames_t::const_iterator iter = m_Filenames.begin();
while(iter != m_Filenames.end())
{
char *pFileName = (char*)(*iter);
free( pFileName );
iter++;
}
m_bInitialized = false;
}
//-----------------------------------------------------------------------------
// Release versions
//-----------------------------------------------------------------------------
void *CDbgMemAlloc::Alloc( size_t nSize )
{
/*
// NOTE: Uncomment this to find unknown allocations
const char *pFileName = g_pszUnknown;
int nLine;
GetActualDbgInfo( pFileName, nLine );
if (pFileName == g_pszUnknown)
{
int x = 3;
}
*/
char szModule[MAX_PATH];
if ( GetCallerModule( szModule, MAX_PATH ) )
{
return Alloc( nSize, szModule, 0 );
}
else
{
return Alloc( nSize, g_pszUnknown, 0 );
}
// return malloc( nSize );
}
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
void *CDbgMemAlloc::AllocAlign( size_t nSize, size_t align )
{
/*
// NOTE: Uncomment this to find unknown allocations
const char *pFileName = g_pszUnknown;
int nLine;
GetActualDbgInfo( pFileName, nLine );
if (pFileName == g_pszUnknown)
{
int x = 3;
}
*/
char szModule[MAX_PATH];
if ( GetCallerModule( szModule, MAX_PATH ) )
{
return AllocAlign( nSize, align, szModule, 0 );
}
else
{
return AllocAlign( nSize, align, g_pszUnknown, 0 );
}
// return malloc( nSize );
}
#endif
void *CDbgMemAlloc::Realloc( void *pMem, size_t nSize )
{
/*
// NOTE: Uncomment this to find unknown allocations
const char *pFileName = g_pszUnknown;
int nLine;
GetActualDbgInfo( pFileName, nLine );
if (pFileName == g_pszUnknown)
{
int x = 3;
}
*/
// FIXME: Should these gather stats?
char szModule[MAX_PATH];
if ( GetCallerModule( szModule, MAX_PATH ) )
{
return Realloc( pMem, nSize, szModule, 0 );
}
else
{
return Realloc( pMem, nSize, g_pszUnknown, 0 );
}
// return realloc( pMem, nSize );
}
void CDbgMemAlloc::Free( void *pMem )
{
// FIXME: Should these gather stats?
Free( pMem, g_pszUnknown, 0 );
// free( pMem );
}
void *CDbgMemAlloc::Expand_NoLongerSupported( void *pMem, size_t nSize )
{
return NULL;
}
//-----------------------------------------------------------------------------
// Force file + line information for an allocation
//-----------------------------------------------------------------------------
void CDbgMemAlloc::PushAllocDbgInfo( const char *pFileName, int nLine )
{
IfDbgInfoIsReady()
{
if ( g_DbgInfoStack == NULL )
{
g_DbgInfoStack = (DbgInfoStack_t *)DebugAlloc( sizeof(DbgInfoStack_t) * DBG_INFO_STACK_DEPTH );
g_nDbgInfoStackDepth = -1;
}
++g_nDbgInfoStackDepth;
Assert( g_nDbgInfoStackDepth < DBG_INFO_STACK_DEPTH );
g_DbgInfoStack[g_nDbgInfoStackDepth].m_pFileName = FindOrCreateFilename( pFileName );
g_DbgInfoStack[g_nDbgInfoStackDepth].m_nLine = nLine;
}
}
void CDbgMemAlloc::PopAllocDbgInfo()
{
IfDbgInfoIsReady()
{
if ( g_DbgInfoStack == NULL )
{
g_DbgInfoStack = (DbgInfoStack_t *)DebugAlloc( sizeof(DbgInfoStack_t) * DBG_INFO_STACK_DEPTH );
g_nDbgInfoStackDepth = -1;
}
--g_nDbgInfoStackDepth;
Assert( g_nDbgInfoStackDepth >= -1 );
}
}
//-----------------------------------------------------------------------------
// handles storing allocation info for coroutines
//-----------------------------------------------------------------------------
uint32 CDbgMemAlloc::GetDebugInfoSize()
{
return sizeof( DbgInfoStack_t ) * DBG_INFO_STACK_DEPTH + sizeof( int32 );
}
void CDbgMemAlloc::SaveDebugInfo( void *pvDebugInfo )
{
IfDbgInfoIsReady()
{
if ( g_DbgInfoStack == NULL )
{
g_DbgInfoStack = (DbgInfoStack_t *)DebugAlloc( sizeof(DbgInfoStack_t) * DBG_INFO_STACK_DEPTH );
g_nDbgInfoStackDepth = -1;
}
int32 *pnStackDepth = (int32*) pvDebugInfo;
*pnStackDepth = g_nDbgInfoStackDepth;
memcpy( pnStackDepth+1, &g_DbgInfoStack[0], sizeof( DbgInfoStack_t ) * DBG_INFO_STACK_DEPTH );
}
}
void CDbgMemAlloc::RestoreDebugInfo( const void *pvDebugInfo )
{
IfDbgInfoIsReady()
{
if ( g_DbgInfoStack == NULL )
{
g_DbgInfoStack = (DbgInfoStack_t *)DebugAlloc( sizeof(DbgInfoStack_t) * DBG_INFO_STACK_DEPTH );
g_nDbgInfoStackDepth = -1;
}
const int32 *pnStackDepth = (const int32*) pvDebugInfo;
g_nDbgInfoStackDepth = *pnStackDepth;
memcpy( &g_DbgInfoStack[0], pnStackDepth+1, sizeof( DbgInfoStack_t ) * DBG_INFO_STACK_DEPTH );
}
}
void CDbgMemAlloc::InitDebugInfo( void *pvDebugInfo, const char *pchRootFileName, int nLine )
{
int32 *pnStackDepth = (int32*) pvDebugInfo;
if( pchRootFileName )
{
*pnStackDepth = 0;
DbgInfoStack_t *pStackRoot = (DbgInfoStack_t *)(pnStackDepth + 1);
pStackRoot->m_pFileName = FindOrCreateFilename( pchRootFileName );
pStackRoot->m_nLine = nLine;
}
else
{
*pnStackDepth = -1;
}
}
//-----------------------------------------------------------------------------
// Returns the actual debug info
//-----------------------------------------------------------------------------
void CDbgMemAlloc::GetActualDbgInfo( const char *&pFileName, int &nLine )
{
#if defined( USE_STACK_TRACES_DETAILED )
return;
#endif
IfDbgInfoIsReady()
{
if ( g_DbgInfoStack == NULL )
{
g_DbgInfoStack = (DbgInfoStack_t *)DebugAlloc( sizeof(DbgInfoStack_t) * DBG_INFO_STACK_DEPTH );
g_nDbgInfoStackDepth = -1;
}
if ( g_nDbgInfoStackDepth >= 0 && g_DbgInfoStack[0].m_pFileName)
{
pFileName = g_DbgInfoStack[0].m_pFileName;
nLine = g_DbgInfoStack[0].m_nLine;
}
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const char *CDbgMemAlloc::FindOrCreateFilename( const char *pFileName )
{
// If we created it for the first time, actually *allocate* the filename memory
HEAP_LOCK();
// This is necessary for shutdown conditions: the file name is stored
// in some piece of memory in a DLL; if that DLL becomes unloaded,
// we'll have a pointer to crap memory
if ( !pFileName )
{
pFileName = g_pszUnknown;
}
#if defined( USE_STACK_TRACES_DETAILED )
{
// Walk the stack to determine what's causing the allocation
void *arrStackAddresses[ 10 ] = { 0 };
int numStackAddrRetrieved = GetCallStack_Fast( arrStackAddresses, 10, 2 ); //Skip this function, and either CDbgMemAlloc::Alloc() or CDbgMemAlloc::Realloc()
char *szStack = StackDescribe( arrStackAddresses, numStackAddrRetrieved );
if ( szStack && *szStack )
{
pFileName = szStack; // Use the stack description for the allocation
}
}
#endif // #if defined( USE_STACK_TRACES_DETAILED )
char *pszFilenameCopy;
Filenames_t::const_iterator iter = m_Filenames.find( pFileName );
if ( iter == m_Filenames.end() )
{
size_t nLen = strlen(pFileName) + 1;
pszFilenameCopy = (char *)DebugAlloc( nLen );
memcpy( pszFilenameCopy, pFileName, nLen );
m_Filenames.insert( pszFilenameCopy );
}
else
{
pszFilenameCopy = (char *)(*iter);
}
return pszFilenameCopy;
}
//-----------------------------------------------------------------------------
// Finds the file in our map
//-----------------------------------------------------------------------------
CDbgMemAlloc::MemInfo_t &CDbgMemAlloc::FindOrCreateEntry( const char *pFileName, int line )
{
// Oh how I love crazy STL. retval.first == the StatMapIter_t in the std::pair
// retval.first->second == the MemInfo_t that's part of the StatMapIter_t
std::pair<StatMapIter_FileLine_t, bool> retval;
retval = m_StatMap_FileLine.insert( StatMapEntry_FileLine_t( MemInfoKey_FileLine_t( pFileName, line ), MemInfo_t() ) );
return retval.first->second;
}
#if defined( USE_STACK_TRACES )
int CDbgMemAlloc::GetCallStackForIndex( unsigned int index, void **pCallStackOut, int iMaxEntriesOut )
{
if( iMaxEntriesOut > STACK_TRACE_LENGTH )
iMaxEntriesOut = STACK_TRACE_LENGTH;
CallStackStatsType_t::StackReference stackRef = m_CallStackStats.GetCallStackForIndex( index );
memcpy( pCallStackOut, stackRef, iMaxEntriesOut * sizeof( void * ) );
for( int i = 0; i != iMaxEntriesOut; ++i )
{
if( pCallStackOut[i] == NULL )
return i;
}
return iMaxEntriesOut;
}
#endif
//-----------------------------------------------------------------------------
// Updates stats
//-----------------------------------------------------------------------------
void CDbgMemAlloc::RegisterAllocation( const char *pFileName, int nLine, size_t nLogicalSize, size_t nActualSize, unsigned nTime )
{
HEAP_LOCK();
RegisterAllocation( m_GlobalInfo, nLogicalSize, nActualSize, nTime );
RegisterAllocation( FindOrCreateEntry( pFileName, nLine ), nLogicalSize, nActualSize, nTime );
}
void CDbgMemAlloc::RegisterDeallocation( const char *pFileName, int nLine, size_t nLogicalSize, size_t nActualSize, unsigned nTime )
{
HEAP_LOCK();
RegisterDeallocation( m_GlobalInfo, nLogicalSize, nActualSize, nTime );
RegisterDeallocation( FindOrCreateEntry( pFileName, nLine ), nLogicalSize, nActualSize, nTime );
}
#if defined( USE_STACK_TRACES )
void CDbgMemAlloc::RegisterAllocation( unsigned int nStatIndex, size_t nLogicalSize, size_t nActualSize, unsigned nTime )
{
HEAP_LOCK();
RegisterAllocation( m_GlobalInfo, nLogicalSize, nActualSize, nTime );
CCallStackStatsGatherer_StructAccessor_AutoLock<MemInfo_t> entryAccessor = m_CallStackStats.GetEntry( nStatIndex );
RegisterAllocation( *entryAccessor.GetStruct(), nLogicalSize, nActualSize, nTime );
}
void CDbgMemAlloc::RegisterDeallocation( unsigned int nStatIndex, size_t nLogicalSize, size_t nActualSize, unsigned nTime )
{
HEAP_LOCK();
RegisterDeallocation( m_GlobalInfo, nLogicalSize, nActualSize, nTime );
CCallStackStatsGatherer_StructAccessor_AutoLock<MemInfo_t> entryAccessor = m_CallStackStats.GetEntry( nStatIndex );
RegisterDeallocation( *entryAccessor.GetStruct(), nLogicalSize, nActualSize, nTime );
}
#endif
void CDbgMemAlloc::RegisterAllocation( MemInfo_t &info, size_t nLogicalSize, size_t nActualSize, unsigned nTime )
{
++info.m_nCurrentCount;
++info.m_nTotalCount;
if (info.m_nCurrentCount > info.m_nPeakCount)
{
info.m_nPeakCount = info.m_nCurrentCount;
}
info.m_nCurrentSize += nLogicalSize;
info.m_nTotalSize += nLogicalSize;
if (info.m_nCurrentSize > info.m_nPeakSize)
{
info.m_nPeakSize = info.m_nCurrentSize;
}
if ( nLogicalSize > g_TargetCountRangeMin && nLogicalSize <= g_TargetCountRangeMax )
{
info.m_nSumTargetRange++;
info.m_nCurTargetRange++;
if ( info.m_nCurTargetRange > info.m_nMaxTargetRange )
{
info.m_nMaxTargetRange = info.m_nCurTargetRange;
}
}
for (int i = 0; i < NUM_BYTE_COUNT_BUCKETS; ++i)
{
if (nLogicalSize <= s_pCountSizes[i])
{
++info.m_pCount[i];
break;
}
}
Assert( info.m_nPeakCount >= info.m_nCurrentCount );
Assert( info.m_nPeakSize >= info.m_nCurrentSize );
info.m_nOverheadSize += (nActualSize - nLogicalSize);
if (info.m_nOverheadSize > info.m_nPeakOverheadSize)
{
info.m_nPeakOverheadSize = info.m_nOverheadSize;
}
info.m_nTime += nTime;
}
void CDbgMemAlloc::RegisterDeallocation( MemInfo_t &info, size_t nLogicalSize, size_t nActualSize, unsigned nTime )
{
--info.m_nCurrentCount;
info.m_nCurrentSize -= nLogicalSize;
for (int i = 0; i < NUM_BYTE_COUNT_BUCKETS; ++i)
{
if (nLogicalSize <= s_pCountSizes[i])
{
--info.m_pCount[i];
break;
}
}
if ( nLogicalSize > g_TargetCountRangeMin && nLogicalSize <= g_TargetCountRangeMax )
{
info.m_nCurTargetRange--;
}
Assert( info.m_nPeakCount >= info.m_nCurrentCount );
Assert( info.m_nPeakSize >= info.m_nCurrentSize );
Assert( info.m_nCurrentCount >= 0 );
Assert( info.m_nCurrentSize >= 0 );
info.m_nOverheadSize -= (nActualSize - nLogicalSize);
info.m_nTime += nTime;
}
//-----------------------------------------------------------------------------
// Gets the allocation file name
//-----------------------------------------------------------------------------
const char *CDbgMemAlloc::GetAllocatonFileName( void *pMem )
{
if (!pMem)
return "";
CrtDbgMemHeader_t *pHeader = GetCrtDbgMemHeader( pMem );
if ( pHeader->m_pFileName )
return pHeader->m_pFileName;
else
return g_pszUnknown;
}
//-----------------------------------------------------------------------------
// Gets the allocation file name
//-----------------------------------------------------------------------------
int CDbgMemAlloc::GetAllocatonLineNumber( void *pMem )
{
if ( !pMem )
return 0;
CrtDbgMemHeader_t *pHeader = GetCrtDbgMemHeader( pMem );
return pHeader->m_nLineNumber;
}
//-----------------------------------------------------------------------------
// Debug versions of the main allocation methods
//-----------------------------------------------------------------------------
void *CDbgMemAlloc::Alloc( size_t nSize, const char *pFileName, int nLine )
{
HEAP_LOCK();
#if defined( USE_STACK_TRACES )
unsigned int iStatEntryIndex = m_CallStackStats.GetEntryIndex( CCallStackStorage( m_CallStackStats.StackFunction, 1 ) );
#endif
if ( !m_bInitialized )
{
void *pRetval = InternalMalloc( nSize, pFileName, nLine );
#if defined( USE_STACK_TRACES )
if( pRetval )
{
GetAllocationStatIndex_Internal( pRetval ) = iStatEntryIndex;
}
#endif
return pRetval;
}
if ( pFileName != g_pszUnknown )
pFileName = FindOrCreateFilename( pFileName );
GetActualDbgInfo( pFileName, nLine );
/*
if ( strcmp( pFileName, "class CUtlVector<int,class CUtlMemory<int> >" ) == 0)
{
GetActualDbgInfo( pFileName, nLine );
}
*/
m_Timer.Start();
void *pMem = InternalMalloc( nSize, pFileName, nLine );
m_Timer.End();
#if defined( USE_STACK_TRACES )
if( pMem )
{
GetAllocationStatIndex_Internal( pMem ) = iStatEntryIndex;
}
#endif
ApplyMemoryInitializations( pMem, nSize );
#if defined( USE_STACK_TRACES )
RegisterAllocation( GetAllocationStatIndex_Internal( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#else
RegisterAllocation( GetAllocatonFileName( pMem ), GetAllocatonLineNumber( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#endif
if ( !pMem )
{
SetCRTAllocFailed( nSize );
}
return pMem;
}
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
void *CDbgMemAlloc::AllocAlign( size_t nSize, size_t align, const char *pFileName, int nLine )
{
HEAP_LOCK();
#if defined( USE_STACK_TRACES )
unsigned int iStatEntryIndex = m_CallStackStats.GetEntryIndexForCurrentCallStack( 1 );
#endif
if ( !m_bInitialized )
{
void *pRetval = InternalMalloc( nSize, pFileName, nLine );
#if defined( USE_STACK_TRACES )
if( pRetval )
{
GetAllocationStatIndex_Internal( pRetval ) = iStatEntryIndex;
}
#endif
return pRetval;
}
if ( pFileName != g_pszUnknown )
pFileName = FindOrCreateFilename( pFileName );
GetActualDbgInfo( pFileName, nLine );
/*
if ( strcmp( pFileName, "class CUtlVector<int,class CUtlMemory<int> >" ) == 0)
{
GetActualDbgInfo( pFileName, nLine );
}
*/
m_Timer.Start();
void *pMem = InternalMallocAligned( nSize, align, pFileName, nLine );
m_Timer.End();
#if defined( USE_STACK_TRACES )
if( pMem )
{
GetAllocationStatIndex_Internal( pMem ) = iStatEntryIndex;
}
#endif
ApplyMemoryInitializations( pMem, nSize );
#if defined( USE_STACK_TRACES )
RegisterAllocation( GetAllocationStatIndex_Internal( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#else
RegisterAllocation( GetAllocatonFileName( pMem ), GetAllocatonLineNumber( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#endif
if ( !pMem )
{
SetCRTAllocFailed( nSize );
}
return pMem;
}
#endif
void *CDbgMemAlloc::Realloc( void *pMem, size_t nSize, const char *pFileName, int nLine )
{
HEAP_LOCK();
pFileName = FindOrCreateFilename( pFileName );
#if defined( USE_STACK_TRACES )
unsigned int iStatEntryIndex = m_CallStackStats.GetEntryIndex( CCallStackStorage( m_CallStackStats.StackFunction, 1 ) );
#endif
if ( !m_bInitialized )
{
pMem = InternalRealloc( pMem, nSize, pFileName, nLine );
#if defined( USE_STACK_TRACES )
if( pMem )
{
GetAllocationStatIndex_Internal( pMem ) = iStatEntryIndex;
}
#endif
return pMem;
}
if ( pMem != 0 )
{
#if defined( USE_STACK_TRACES )
RegisterDeallocation( GetAllocationStatIndex_Internal( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), 0 );
#else
RegisterDeallocation( GetAllocatonFileName( pMem ), GetAllocatonLineNumber( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), 0 );
#endif
}
GetActualDbgInfo( pFileName, nLine );
m_Timer.Start();
pMem = InternalRealloc( pMem, nSize, pFileName, nLine );
m_Timer.End();
#if defined( USE_STACK_TRACES )
if( pMem )
{
GetAllocationStatIndex_Internal( pMem ) = iStatEntryIndex;
}
#endif
#if defined( USE_STACK_TRACES )
RegisterAllocation( GetAllocationStatIndex_Internal( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#else
RegisterAllocation( GetAllocatonFileName( pMem ), GetAllocatonLineNumber( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#endif
if ( !pMem )
{
SetCRTAllocFailed( nSize );
}
return pMem;
}
#ifdef MEMALLOC_SUPPORTS_ALIGNED_ALLOCATIONS
void *CDbgMemAlloc::ReallocAlign( void *pMem, size_t nSize, size_t align )
{
/*
// NOTE: Uncomment this to find unknown allocations
const char *pFileName = g_pszUnknown;
int nLine;
GetActualDbgInfo( pFileName, nLine );
if (pFileName == g_pszUnknown)
{
int x = 3;
}
*/
char szModule[MAX_PATH];
if ( GetCallerModule( szModule, MAX_PATH ) )
{
return ReallocAlign( pMem, nSize, align, szModule, 0 );
}
else
{
return ReallocAlign( pMem, nSize, align, g_pszUnknown, 0 );
}
// return malloc( nSize );
}
void *CDbgMemAlloc::ReallocAlign( void *pMem, size_t nSize, size_t align, const char *pFileName, int nLine )
{
HEAP_LOCK();
pFileName = FindOrCreateFilename( pFileName );
#if defined( USE_STACK_TRACES )
unsigned int iStatEntryIndex = m_CallStackStats.GetEntryIndexForCurrentCallStack( 1 );
#endif
if ( !m_bInitialized )
{
pMem = InternalReallocAligned( pMem, nSize, align, pFileName, nLine );
#if defined( USE_STACK_TRACES )
if( pMem )
{
GetAllocationStatIndex_Internal( pMem ) = iStatEntryIndex;
}
#endif
return pMem;
}
if ( pMem != 0 )
{
#if defined( USE_STACK_TRACES )
RegisterDeallocation( GetAllocationStatIndex_Internal( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), 0 );
#else
RegisterDeallocation( GetAllocatonFileName( pMem ), GetAllocatonLineNumber( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), 0 );
#endif
}
GetActualDbgInfo( pFileName, nLine );
m_Timer.Start();
pMem = InternalReallocAligned( pMem, nSize, align, pFileName, nLine );
m_Timer.End();
#if defined( USE_STACK_TRACES )
if( pMem )
{
GetAllocationStatIndex_Internal( pMem ) = iStatEntryIndex;
}
#endif
#if defined( USE_STACK_TRACES )
RegisterAllocation( GetAllocationStatIndex_Internal( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#else
RegisterAllocation( GetAllocatonFileName( pMem ), GetAllocatonLineNumber( pMem ), InternalLogicalSize( pMem ), InternalMSize( pMem ), m_Timer.GetDuration().GetMicroseconds() );
#endif
if ( !pMem )
{
SetCRTAllocFailed( nSize );
}
return pMem;
}
#endif
void CDbgMemAlloc::Free( void *pMem, const char * /*pFileName*/, int nLine )
{
if ( !pMem )
return;
HEAP_LOCK();
if ( !m_bInitialized )
{
InternalFree( pMem );
return;
}
size_t nOldLogicalSize = InternalLogicalSize( pMem );
size_t nOldSize = InternalMSize( pMem );
#if defined( USE_STACK_TRACES )
unsigned int oldStatIndex = GetAllocationStatIndex_Internal( pMem );
#else
const char *pOldFileName = GetAllocatonFileName( pMem );
int oldLine = GetAllocatonLineNumber( pMem );
#endif
m_Timer.Start();
InternalFree( pMem );
m_Timer.End();
#if defined( USE_STACK_TRACES )
RegisterDeallocation( oldStatIndex, nOldLogicalSize, nOldSize, m_Timer.GetDuration().GetMicroseconds() );
#else
RegisterDeallocation( pOldFileName, oldLine, nOldLogicalSize, nOldSize, m_Timer.GetDuration().GetMicroseconds() );
#endif
}
void *CDbgMemAlloc::Expand_NoLongerSupported( void *pMem, size_t nSize, const char *pFileName, int nLine )
{
return NULL;
}
//-----------------------------------------------------------------------------
// Returns the size of a particular allocation (NOTE: may be larger than the size requested!)
//-----------------------------------------------------------------------------
size_t CDbgMemAlloc::GetSize( void *pMem )
{
HEAP_LOCK();
if ( !pMem )
return m_GlobalInfo.m_nCurrentSize;
return InternalMSize( pMem );
}
//-----------------------------------------------------------------------------
// FIXME: Remove when we make our own heap! Crt stuff we're currently using
//-----------------------------------------------------------------------------
int32 CDbgMemAlloc::CrtSetBreakAlloc( int32 lNewBreakAlloc )
{
#ifdef POSIX
return 0;
#else
return _CrtSetBreakAlloc( lNewBreakAlloc );
#endif
}
int CDbgMemAlloc::CrtSetReportMode( int nReportType, int nReportMode )
{
#ifdef POSIX
return 0;
#else
return _CrtSetReportMode( nReportType, nReportMode );
#endif
}
int CDbgMemAlloc::CrtIsValidHeapPointer( const void *pMem )
{
#ifdef POSIX
return 0;
#else
return _CrtIsValidHeapPointer( pMem );
#endif
}
int CDbgMemAlloc::CrtIsValidPointer( const void *pMem, unsigned int size, int access )
{
#ifdef POSIX
return 0;
#else
return _CrtIsValidPointer( pMem, size, access );
#endif
}
#define DBGMEM_CHECKMEMORY 1
int CDbgMemAlloc::CrtCheckMemory( void )
{
#if !defined( DBGMEM_CHECKMEMORY ) || defined( POSIX )
return 1;
#elif defined( _WIN32 )
if ( !_CrtCheckMemory())
{
Msg( "Memory check failed!\n" );
return 0;
}
return 1;
#else
return 1;
#endif
}
int CDbgMemAlloc::CrtSetDbgFlag( int nNewFlag )
{
#ifdef POSIX
return 0;
#else
return _CrtSetDbgFlag( nNewFlag );
#endif
}
void CDbgMemAlloc::CrtMemCheckpoint( _CrtMemState *pState )
{
#ifndef POSIX
_CrtMemCheckpoint( pState );
#endif
}
// FIXME: Remove when we have our own allocator
void* CDbgMemAlloc::CrtSetReportFile( int nRptType, void* hFile )
{
#ifdef POSIX
return 0;
#else
return (void*)_CrtSetReportFile( nRptType, (_HFILE)hFile );
#endif
}
void* CDbgMemAlloc::CrtSetReportHook( void* pfnNewHook )
{
#ifdef POSIX
return 0;
#else
return (void*)_CrtSetReportHook( (_CRT_REPORT_HOOK)pfnNewHook );
#endif
}
int CDbgMemAlloc::CrtDbgReport( int nRptType, const char * szFile,
int nLine, const char * szModule, const char * pMsg )
{
#ifdef POSIX
return 0;
#else
return _CrtDbgReport( nRptType, szFile, nLine, szModule, pMsg );
#endif
}
int CDbgMemAlloc::heapchk()
{
#ifdef POSIX
return 0;
#else
if ( CrtCheckMemory() )
return _HEAPOK;
else
return _HEAPBADPTR;
#endif
}
void CDbgMemAlloc::DumpBlockStats( void *p )
{
DbgMemHeader_t *pBlock = (DbgMemHeader_t *)p - 1;
if ( !CrtIsValidHeapPointer( pBlock ) )
{
Msg( "0x%p is not valid heap pointer\n", p );
return;
}
const char *pFileName = GetAllocatonFileName( p );
int line = GetAllocatonLineNumber( p );
Msg( "0x%p allocated by %s line %d, %d bytes\n", p, pFileName, line, GetSize( p ) );
}
//-----------------------------------------------------------------------------
// Stat output
//-----------------------------------------------------------------------------
void CDbgMemAlloc::DumpMemInfo( const char *pAllocationName, int line, const MemInfo_t &info )
{
m_OutputFunc("%s, line %i\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%d\t%d\t%d\t%d\t%d\t%d\t%d",
pAllocationName,
line,
info.m_nCurrentSize / 1024.0f,
info.m_nPeakSize / 1024.0f,
info.m_nTotalSize / 1024.0f,
info.m_nOverheadSize / 1024.0f,
info.m_nPeakOverheadSize / 1024.0f,
(int)(info.m_nTime / 1000),
info.m_nCurrentCount,
info.m_nPeakCount,
info.m_nTotalCount,
info.m_nSumTargetRange,
info.m_nCurTargetRange,
info.m_nMaxTargetRange
);
for (int i = 0; i < NUM_BYTE_COUNT_BUCKETS; ++i)
{
m_OutputFunc( "\t%d", info.m_pCount[i] );
}
m_OutputFunc("\n");
}
//-----------------------------------------------------------------------------
// Stat output
//-----------------------------------------------------------------------------
size_t CDbgMemAlloc::ComputeMemoryUsedBy( char const *pchSubStr)
{
size_t total = 0;
StatMapIter_FileLine_t iter = m_StatMap_FileLine.begin();
while(iter != m_StatMap_FileLine.end())
{
if(!pchSubStr || strstr(iter->first.m_pFileName,pchSubStr))
{
total += iter->second.m_nCurrentSize;
}
iter++;
}
return total;
}
void CDbgMemAlloc::DumpFileStats()
{
StatMapIter_FileLine_t iter = m_StatMap_FileLine.begin();
while(iter != m_StatMap_FileLine.end())
{
DumpMemInfo( iter->first.m_pFileName, iter->first.m_nLine, iter->second );
iter++;
}
}
void CDbgMemAlloc::DumpStatsFileBase( char const *pchFileBase, DumpStatsFormat_t nFormat )
{
char szFileName[MAX_PATH];
static int s_FileCount = 0;
if (m_OutputFunc == DefaultHeapReportFunc)
{
char *pPath = "";
#ifdef _X360
pPath = "D:\\";
#elif defined( _PS3 )
pPath = "/app_home/";
#endif
// [mhansen] Give out a unique filename for mem dumps
#if defined( _MEMTEST )
char szXboxName[32];
strcpy( szXboxName, "memdump" );
#if defined( _PS3 )
_snprintf( szFileName, sizeof( szFileName ), "%s%s_%d.txt", pPath, s_szStatsMapName, s_FileCount );
#else
DWORD numChars = sizeof( szXboxName );
DmGetXboxName( szXboxName, &numChars );
char *pXboxName = strstr( szXboxName, "_360" );
if ( pXboxName )
{
*pXboxName = '\0';
}
SYSTEMTIME systemTime;
GetLocalTime( &systemTime );
_snprintf( szFileName, sizeof( szFileName ), "%s%s_%2.2d%2.2d_%2.2d%2.2d%2.2d_%d.txt", pPath, s_szStatsMapName, systemTime.wMonth, systemTime.wDay, systemTime.wHour, systemTime.wMinute, systemTime.wSecond, s_FileCount );
#endif
#else // _MEMTEST
#if defined( _WIN32 ) && !defined( _X360 )
bool fileExists = true;
while (fileExists)
{
_snprintf( szFileName, sizeof( szFileName ), "%s%s%d.txt", pPath, pchFileBase, s_FileCount );
szFileName[ ARRAYSIZE(szFileName) - 1 ] = 0;
if (_access_s(szFileName, 0) == ENOENT)
{
fileExists = false;
}
else
{
++s_FileCount;
}
}
#else // _WIN32
_snprintf( szFileName, sizeof( szFileName ), "%s%s%d.txt", pPath, pchFileBase, s_FileCount );
#endif // _WIN32
#endif // _MEMTEST
szFileName[ ARRAYSIZE(szFileName) - 1 ] = 0;
++s_FileCount;
s_DbgFile = fopen(szFileName, "wt");
if (!s_DbgFile)
return;
}
{
HEAP_LOCK();
m_OutputFunc("Allocation type\tCurrent Size(k)\tPeak Size(k)\tTotal Allocations(k)\tOverhead Size(k)\tPeak Overhead Size(k)\tTime(ms)\tCurrent Count\tPeak Count\tTotal Count\tTNum\tTCur\tTMax");
for (int i = 0; i < NUM_BYTE_COUNT_BUCKETS; ++i)
{
m_OutputFunc( "\t%s", s_pCountHeader[i] );
}
m_OutputFunc("\n");
MemInfo_t totals = m_GlobalInfo;
#ifdef _PS3
{
// Add a line for system heap stats
static malloc_managed_size mms;
(g_pMemOverrideRawCrtFns->pfn_malloc_stats)( &mms );
MemInfo_t info;
info.m_nCurrentSize = mms.current_inuse_size;
info.m_nPeakSize = mms.max_system_size;
info.m_nOverheadSize = mms.current_system_size - mms.current_inuse_size;
DumpMemInfo( "||PS3 malloc_stats||", 0, info );
// Add a line for PRXs
char prxFilename[256];
sys_prx_id_t prxIDs[256];
sys_prx_segment_info_t prxSegments[32];
sys_prx_get_module_list_t prxList = { sizeof( sys_prx_get_module_list_t ), ARRAYSIZE( prxIDs ), 0, prxIDs, NULL };
sys_prx_get_module_list( 0, &prxList );
Assert( prxList.count < ARRAYSIZE( prxIDs ) );
memset( &info, 0, sizeof( info ) );
for ( int i = 0; i < prxList.count; i++ )
{
sys_prx_module_info_t prxInfo;
prxInfo.size = sizeof( sys_prx_module_info_t );
prxInfo.filename = prxFilename;
prxInfo.filename_size = sizeof( prxFilename );
prxInfo.segments = prxSegments;
prxInfo.segments_num = ARRAYSIZE( prxSegments );
sys_prx_get_module_info( prxList.idlist[i], 0, &prxInfo );
Assert( prxInfo.segments_num < ARRAYSIZE( prxSegments ) );
for ( int j = 0; j < prxInfo.segments_num; j++ )
{
info.m_nCurrentSize += prxInfo.segments[j].memsz;
}
}
DumpMemInfo( "PS3 PRXs", 0, info );
// Add PRX sizes to our global tracked total:
totals.m_nCurrentSize += info.m_nCurrentSize;
}
#endif // _PS3
// The total of all memory usage we know about:
DumpMemInfo( "||Totals||", 0, totals );
if ( IsGameConsole() )
{
// Add a line showing total system memory usage from the OS (if this is more than
// "||Totals||", then there is unknown memory usage that we need to track down):
size_t usedMemory, freeMemory;
GlobalMemoryStatus( &usedMemory, &freeMemory );
MemInfo_t info;
info.m_nCurrentSize = usedMemory;
DumpMemInfo( "||Used Memory||", 0, info );
}
#ifdef _MEMTEST
{
// Add lines for GPU allocations
int nGPUMemSize, nGPUMemFree, nTextureSize, nRTSize, nVBSize, nIBSize, nUnknown;
if ( 7 == sscanf( s_szStatsComment, "%d %d %d %d %d %d %d", &nGPUMemSize, &nGPUMemFree, &nTextureSize, &nRTSize, &nVBSize, &nIBSize, &nUnknown ) )
{
int nTotalUsed = nTextureSize + nRTSize + nVBSize + nIBSize + nUnknown;
int nOverhead = ( nGPUMemSize - nTotalUsed ) - nGPUMemFree;
m_OutputFunc( "||PS3 RSX: total used||, line 0\t%.1f\n", nTotalUsed / 1024.0f );
m_OutputFunc( "PS3 RSX: textures, line 0\t%.1f\n", nTextureSize / 1024.0f );
m_OutputFunc( "PS3 RSX: render targets, line 0\t%.1f\n", nRTSize / 1024.0f );
m_OutputFunc( "PS3 RSX: vertex buffers, line 0\t%.1f\n", nVBSize / 1024.0f );
m_OutputFunc( "PS3 RSX: index buffers, line 0\t%.1f\n", nIBSize / 1024.0f );
m_OutputFunc( "PS3 RSX: unknown, line 0\t%.1f\n", nUnknown / 1024.0f );
m_OutputFunc( "PS3 RSX: overhead, line 0\t%.1f\n", nOverhead / 1024.0f );
}
}
#endif
//m_OutputFunc("File/Line Based\n");
DumpFileStats();
}
if (m_OutputFunc == DefaultHeapReportFunc)
{
fclose(s_DbgFile);
#if defined( _X360 )
XBX_rMemDump( szFileName );
#endif
}
}
void CDbgMemAlloc::GlobalMemoryStatus( size_t *pUsedMemory, size_t *pFreeMemory )
{
if ( !pUsedMemory || !pFreeMemory )
return;
#if defined ( _X360 )
// GlobalMemoryStatus tells us how much physical memory is free
MEMORYSTATUS stat;
::GlobalMemoryStatus( &stat );
*pFreeMemory = stat.dwAvailPhys;
// Used is total minus free (discount the 32MB system reservation)
*pUsedMemory = ( stat.dwTotalPhys - 32*1024*1024 ) - *pFreeMemory;
#elif defined( _PS3 )
// need to factor in how much empty space there is in the heap
// (since it NEVER returns pages back to the OS after hitting a high-watermark)
static malloc_managed_size mms;
(g_pMemOverrideRawCrtFns->pfn_malloc_stats)( &mms );
int heapFree = mms.current_system_size - mms.current_inuse_size;
Assert( heapFree >= 0 );
// sys_memory_get_user_memory_size tells us how much PPU memory is used/free
static sys_memory_info stat;
sys_memory_get_user_memory_size( &stat );
*pFreeMemory = stat.available_user_memory;
*pFreeMemory += heapFree;
*pUsedMemory = stat.total_user_memory - *pFreeMemory;
// 213MB are available in retail mode, so adjust free mem to reflect that even if we're in devkit mode
const size_t RETAIL_SIZE = 213*1024*1024;
if ( stat.total_user_memory > RETAIL_SIZE )
*pFreeMemory -= stat.total_user_memory - RETAIL_SIZE;
#else
// no data
*pFreeMemory = 0;
*pUsedMemory = 0;
#endif
}
#ifdef USE_STACK_TRACES
void CDbgMemAlloc::DumpCallStackFlow( char const *pchFileBase )
{
HEAP_LOCK();
char szFileName[MAX_PATH];
static int s_FileCount = 0;
char *pPath = "";
if ( IsX360() )
{
pPath = "D:\\";
}
#if defined( _MEMTEST ) && defined( _WIN32 )
char szXboxName[32];
strcpy( szXboxName, "xbox" );
DWORD numChars = sizeof( szXboxName );
DmGetXboxName( szXboxName, &numChars );
char *pXboxName = strstr( szXboxName, "_360" );
if ( pXboxName )
{
*pXboxName = '\0';
}
SYSTEMTIME systemTime;
GetLocalTime( &systemTime );
_snprintf( szFileName, sizeof( szFileName ), "%s%s_%2.2d%2.2d_%2.2d%2.2d%2.2d_%d.csf", pPath, s_szStatsMapName, systemTime.wMonth, systemTime.wDay, systemTime.wHour, systemTime.wMinute, systemTime.wSecond, s_FileCount );
#else
_snprintf( szFileName, sizeof( szFileName ), "%s%s%d.vcsf", pPath, pchFileBase, s_FileCount );
#endif
++s_FileCount;
m_CallStackStats.DumpToFile( szFileName, false );
}
#endif
//-----------------------------------------------------------------------------
// Stat output
//-----------------------------------------------------------------------------
void CDbgMemAlloc::DumpStats()
{
DumpStatsFileBase( "memstats" );
#ifdef USE_STACK_TRACES
DumpCallStackFlow( "memflow" );
#endif
}
void CDbgMemAlloc::SetCRTAllocFailed( size_t nSize )
{
m_sMemoryAllocFailed = nSize;
DebuggerBreakIfDebugging();
char buffer[256];
_snprintf( buffer, sizeof( buffer ), "***** OUT OF MEMORY! attempted allocation size: %u ****\n", nSize );
buffer[ ARRAYSIZE(buffer) - 1] = 0;
#if defined( _PS3 ) && defined( _DEBUG )
DebuggerBreak();
#endif // _PS3
#ifdef _X360
XBX_OutputDebugString( buffer );
if ( !Plat_IsInDebugSession() )
{
XBX_CrashDump( true );
#if defined( _DEMO )
XLaunchNewImage( XLAUNCH_KEYWORD_DEFAULT_APP, 0 );
#else
XLaunchNewImage( "default.xex", 0 );
#endif
}
#elif defined(_WIN32 )
OutputDebugString( buffer );
if ( !Plat_IsInDebugSession() )
{
AssertFatalMsg( false, buffer );
abort();
}
#else
printf( "%s\n", buffer );
if ( !Plat_IsInDebugSession() )
{
AssertFatalMsg( false, buffer );
exit( 0 );
}
#endif
}
size_t CDbgMemAlloc::MemoryAllocFailed()
{
return m_sMemoryAllocFailed;
}
#ifdef LINUX
//
// Under linux we can ask GLIBC to override malloc for us
// Base on code from Ryan, http://hg.icculus.org/icculus/mallocmonitor/file/29c4b0d049f7/monitor_client/malloc_hook_glibc.c
//
//
static void *glibc_malloc_hook = NULL;
static void *glibc_realloc_hook = NULL;
static void *glibc_memalign_hook = NULL;
static void *glibc_free_hook = NULL;
/* convenience functions for setting the hooks... */
static inline void save_glibc_hooks(void);
static inline void set_glibc_hooks(void);
static inline void set_override_hooks(void);
CThreadMutex g_HookMutex;
/*
* Our overriding hooks...they call through to the original C runtime
* implementations and report to the monitoring daemon.
*/
static void *override_malloc_hook(size_t s, const void *caller)
{
void *retval;
AUTO_LOCK( g_HookMutex );
set_glibc_hooks(); /* put glibc back in control. */
retval = InternalMalloc( s, NULL, 0 );
save_glibc_hooks(); /* update in case glibc changed them. */
set_override_hooks(); /* only restore hooks if daemon is listening */
return(retval);
} /* override_malloc_hook */
static void *override_realloc_hook(void *ptr, size_t s, const void *caller)
{
void *retval;
AUTO_LOCK( g_HookMutex );
set_glibc_hooks(); /* put glibc back in control. */
retval = InternalRealloc(ptr, s, NULL, 0); /* call glibc version. */
save_glibc_hooks(); /* update in case glibc changed them. */
set_override_hooks(); /* only restore hooks if daemon is listening */
return(retval);
} /* override_realloc_hook */
static void *override_memalign_hook(size_t a, size_t s, const void *caller)
{
void *retval;
AUTO_LOCK( g_HookMutex );
set_glibc_hooks(); /* put glibc back in control. */
retval = memalign(a, s); /* call glibc version. */
save_glibc_hooks(); /* update in case glibc changed them. */
set_override_hooks(); /* only restore hooks if daemon is listening */
return(retval);
} /* override_memalign_hook */
static void override_free_hook(void *ptr, const void *caller)
{
AUTO_LOCK( g_HookMutex );
set_glibc_hooks(); /* put glibc back in control. */
InternalFree(ptr); /* call glibc version. */
save_glibc_hooks(); /* update in case glibc changed them. */
set_override_hooks(); /* only restore hooks if daemon is listening */
} /* override_free_hook */
/*
* Convenience functions for swapping the hooks around...
*/
/*
* Save a copy of the original allocation hooks, so we can call into them
* from our overriding functions. It's possible that glibc might change
* these hooks under various conditions (so the manual's examples seem
* to suggest), so we update them whenever we finish calling into the
* the originals.
*/
static inline void save_glibc_hooks(void)
{
glibc_malloc_hook = (void *)__malloc_hook;
glibc_realloc_hook = (void *)__realloc_hook;
glibc_memalign_hook = (void *)__memalign_hook;
glibc_free_hook = (void *)__free_hook;
} /* save_glibc_hooks */
/*
* Restore the hooks to the glibc versions. This is needed since, say,
* their realloc() might call malloc() or free() under the hood, etc, so
* it's safer to let them have complete control over the subsystem, which
* also makes our logging saner, too.
*/
static inline void set_glibc_hooks(void)
{
__malloc_hook = (void* (*)(size_t, const void*))glibc_malloc_hook;
__realloc_hook = (void* (*)(void*, size_t, const void*))glibc_realloc_hook;
__memalign_hook = (void* (*)(size_t, size_t, const void*))glibc_memalign_hook;
__free_hook = (void (*)(void*, const void*))glibc_free_hook;
} /* set_glibc_hooks */
/*
* Put our hooks back in place. This should be done after the original
* glibc version has been called and we've finished any logging (which
* may call glibc functions, too). This sets us up for the next calls from
* the application.
*/
static inline void set_override_hooks(void)
{
__malloc_hook = override_malloc_hook;
__realloc_hook = override_realloc_hook;
__memalign_hook = override_memalign_hook;
__free_hook = override_free_hook;
} /* set_override_hooks */
/*
* The Hook Of All Hooks...how we get in there in the first place.
*/
/*
* glibc will call this when the malloc subsystem is initializing, giving
* us a chance to install hooks that override the functions.
*/
static void override_init_hook(void)
{
AUTO_LOCK( g_HookMutex );
/* install our hooks. Will connect to daemon on first malloc, etc. */
save_glibc_hooks();
set_override_hooks();
} /* override_init_hook */
/*
* __malloc_initialize_hook is apparently a "weak variable", so you can
* define and assign it here even though it's in glibc, too. This lets
* us hook into malloc as soon as the runtime initializes, and before
* main() is called. Basically, this whole trick depends on this.
*/
void (*__malloc_initialize_hook)(void) __attribute__((visibility("default")))= override_init_hook;
#elif defined( OSX )
//
// pointers to the osx versions of these functions
static void *osx_malloc_hook = NULL;
static void *osx_realloc_hook = NULL;
static void *osx_free_hook = NULL;
// convenience functions for setting the hooks...
static inline void save_osx_hooks(void);
static inline void set_osx_hooks(void);
static inline void set_override_hooks(void);
CThreadMutex g_HookMutex;
//
// Our overriding hooks...they call through to the original C runtime
// implementations and report to the monitoring daemon.
//
static void *override_malloc_hook(struct _malloc_zone_t *zone, size_t s)
{
void *retval;
set_osx_hooks();
retval = InternalMalloc( s, NULL, 0 );
set_override_hooks();
return(retval);
}
static void *override_realloc_hook(struct _malloc_zone_t *zone, void *ptr, size_t s)
{
void *retval;
set_osx_hooks();
retval = InternalRealloc(ptr, s, NULL, 0);
set_override_hooks();
return(retval);
}
static void override_free_hook(struct _malloc_zone_t *zone, void *ptr)
{
// sometime they pass in a null pointer from higher level calls, just ignore it
if ( !ptr )
return;
set_osx_hooks();
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( ptr );
if ( *((int*)pInternalMem->m_Reserved) == 0xf00df00d )
{
InternalFree( ptr );
}
set_override_hooks();
}
/*
These are func's we could optionally override right now on OSX but don't need to
static size_t override_size_hook(struct _malloc_zone_t *zone, const void *ptr)
{
set_osx_hooks();
DbgMemHeader_t *pInternalMem = GetCrtDbgMemHeader( (void *)ptr );
set_override_hooks();
if ( *((int*)pInternalMem->m_Reserved) == 0xf00df00d )
{
return pInternalMem->nLogicalSize;
}
return 0;
}
static void *override_calloc_hook(struct _malloc_zone_t *zone, size_t num_items, size_t size )
{
void *ans = override_malloc_hook( zone, num_items*size );
if ( !ans )
return 0;
memset( ans, 0x0, num_items*size );
return ans;
}
static void *override_valloc_hook(struct _malloc_zone_t *zone, size_t size )
{
return override_calloc_hook( zone, 1, size );
}
static void override_destroy_hook(struct _malloc_zone_t *zone)
{
}
*/
//
// Save a copy of the original allocation hooks, so we can call into them
// from our overriding functions. It's possible that osx might change
// these hooks under various conditions (so the manual's examples seem
// to suggest), so we update them whenever we finish calling into the
// the originals.
//
static inline void save_osx_hooks(void)
{
malloc_zone_t *malloc_zone = malloc_default_zone();
osx_malloc_hook = (void *)malloc_zone->malloc;
osx_realloc_hook = (void *)malloc_zone->realloc;
osx_free_hook = (void *)malloc_zone->free;
// These are func's we could optionally override right now on OSX but don't need to
// osx_size_hook = (void *)malloc_zone->size;
// osx_calloc_hook = (void *)malloc_zone->calloc;
// osx_valloc_hook = (void *)malloc_zone->valloc;
// osx_destroy_hook = (void *)malloc_zone->destroy;
}
//
// Restore the hooks to the osx versions. This is needed since, say,
// their realloc() might call malloc() or free() under the hood, etc, so
// it's safer to let them have complete control over the subsystem, which
// also makes our logging saner, too.
//
static inline void set_osx_hooks(void)
{
malloc_zone_t *malloc_zone = malloc_default_zone();
malloc_zone->malloc = (void* (*)(_malloc_zone_t*, size_t))osx_malloc_hook;
malloc_zone->realloc = (void* (*)(_malloc_zone_t*, void*, size_t))osx_realloc_hook;
malloc_zone->free = (void (*)(_malloc_zone_t*, void*))osx_free_hook;
// These are func's we could optionally override right now on OSX but don't need to
//malloc_zone->size = (size_t (*)(_malloc_zone_t*, const void *))osx_size_hook;
//malloc_zone->calloc = (void* (*)(_malloc_zone_t*, size_t, size_t))osx_calloc_hook;
//malloc_zone->valloc = (void* (*)(_malloc_zone_t*, size_t))osx_valloc_hook;
//malloc_zone->destroy = (void (*)(_malloc_zone_t*))osx_destroy_hook;
}
/*
* Put our hooks back in place. This should be done after the original
* osx version has been called and we've finished any logging (which
* may call osx functions, too). This sets us up for the next calls from
* the application.
*/
static inline void set_override_hooks(void)
{
malloc_zone_t *malloc_zone = malloc_default_zone();
malloc_zone->malloc = override_malloc_hook;
malloc_zone->realloc = override_realloc_hook;
malloc_zone->free = override_free_hook;
// These are func's we could optionally override right now on OSX but don't need to
//malloc_zone->size = override_size_hook;
//malloc_zone->calloc = override_calloc_hook;
// malloc_zone->valloc = override_valloc_hook;
//malloc_zone->destroy = override_destroy_hook;
}
//
// The Hook Of All Hooks...how we get in there in the first place.
//
// osx will call this when the malloc subsystem is initializing, giving
// us a chance to install hooks that override the functions.
//
void __attribute__ ((constructor)) mem_init(void)
{
AUTO_LOCK( g_HookMutex );
save_osx_hooks();
set_override_hooks();
}
void *operator new( size_t nSize, int nBlockUse, const char *pFileName, int nLine )
{
set_osx_hooks();
void *pMem = g_pMemAlloc->Alloc(nSize, pFileName, nLine);
set_override_hooks();
return pMem;
}
void *operator new[] ( size_t nSize, int nBlockUse, const char *pFileName, int nLine )
{
set_osx_hooks();
void *pMem = g_pMemAlloc->Alloc(nSize, pFileName, nLine);
set_override_hooks();
return pMem;
}
#endif // OSX
int GetAllocationCallStack( void *mem, void **pCallStackOut, int iMaxEntriesOut )
{
#if defined( USE_MEM_DEBUG ) && (defined( USE_STACK_TRACES ))
return s_DbgMemAlloc.GetCallStackForIndex( GetAllocationStatIndex_Internal( mem ), pCallStackOut, iMaxEntriesOut );
#else
return 0;
#endif
}
#endif // MEM_IMPL_TYPE_DBG
#endif // !defined(STEAM) && !defined(NO_MALLOC_OVERRIDE)