csgo-2018-source/public/tier1/utlmap.h
2021-07-24 21:11:47 -07:00

296 lines
7.6 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLMAP_H
#define UTLMAP_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/dbg.h"
#include "utlrbtree.h"
//-----------------------------------------------------------------------------
//
// Purpose: An associative container. Pretty much identical to std::map.
//
//-----------------------------------------------------------------------------
// This is a useful macro to iterate from start to end in order in a map
#define FOR_EACH_MAP( mapName, iteratorName ) \
for ( int iteratorName = (mapName).FirstInorder(); (mapName).IsUtlMap && iteratorName != (mapName).InvalidIndex(); iteratorName = (mapName).NextInorder( iteratorName ) )
// faster iteration, but in an unspecified order
#define FOR_EACH_MAP_FAST( mapName, iteratorName ) \
for ( int iteratorName = 0; (mapName).IsUtlMap && iteratorName < (mapName).MaxElement(); ++iteratorName ) if ( !(mapName).IsValidIndex( iteratorName ) ) continue; else
struct base_utlmap_t
{
public:
// This enum exists so that FOR_EACH_MAP and FOR_EACH_MAP_FAST cannot accidentally
// be used on a type that is not a CUtlMap. If the code compiles then all is well.
// The check for IsUtlMap being true should be free.
// Using an enum rather than a static const bool ensures that this trick works even
// with optimizations disabled on gcc.
enum { IsUtlMap = true };
};
template <typename K, typename T, typename I = unsigned short, typename LessFunc_t = bool (*)( const K &, const K & )>
class CUtlMap : public base_utlmap_t
{
public:
typedef K KeyType_t;
typedef T ElemType_t;
typedef I IndexType_t;
// constructor, destructor
// Left at growSize = 0, the memory will first allocate 1 element and double in size
// at each increment.
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
CUtlMap( int growSize = 0, int initSize = 0, const LessFunc_t &lessfunc = 0 )
: m_Tree( growSize, initSize, CKeyLess( lessfunc ) )
{
}
CUtlMap( LessFunc_t lessfunc )
: m_Tree( CKeyLess( lessfunc ) )
{
}
void EnsureCapacity( int num ) { m_Tree.EnsureCapacity( num ); }
// gets particular elements
ElemType_t & Element( IndexType_t i ) { return m_Tree.Element( i ).elem; }
const ElemType_t & Element( IndexType_t i ) const { return m_Tree.Element( i ).elem; }
ElemType_t & operator[]( IndexType_t i ) { return m_Tree.Element( i ).elem; }
const ElemType_t & operator[]( IndexType_t i ) const { return m_Tree.Element( i ).elem; }
KeyType_t & Key( IndexType_t i ) { return m_Tree.Element( i ).key; }
const KeyType_t & Key( IndexType_t i ) const { return m_Tree.Element( i ).key; }
// Num elements
unsigned int Count() const { return m_Tree.Count(); }
// Max "size" of the vector
IndexType_t MaxElement() const { return m_Tree.MaxElement(); }
// Checks if a node is valid and in the map
bool IsValidIndex( IndexType_t i ) const { return m_Tree.IsValidIndex( i ); }
// Checks if the map as a whole is valid
bool IsValid() const { return m_Tree.IsValid(); }
// Invalid index
static IndexType_t InvalidIndex() { return CTree::InvalidIndex(); }
// Sets the less func
void SetLessFunc( LessFunc_t func )
{
m_Tree.SetLessFunc( CKeyLess( func ) );
}
// Insert method (inserts in order)
IndexType_t Insert( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.Insert( node );
}
IndexType_t Insert( const KeyType_t &key )
{
Node_t node;
node.key = key;
return m_Tree.Insert( node );
}
// API to macth src2 for Panormama
// Note in src2 straight Insert() calls will assert on duplicates
// Chosing not to take that change until discussed further
IndexType_t InsertWithDupes( const KeyType_t &key, const ElemType_t &insert )
{
Node_t node;
node.key = key;
node.elem = insert;
return m_Tree.Insert( node );
}
IndexType_t InsertWithDupes( const KeyType_t &key )
{
Node_t node;
node.key = key;
return m_Tree.Insert( node );
}
bool HasElement( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.HasElement( dummyNode );
}
// Find method
IndexType_t Find( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.Find( dummyNode );
}
// FindFirst method
// This finds the first inorder occurrence of key
IndexType_t FindFirst( const KeyType_t &key ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.FindFirst( dummyNode );
}
const ElemType_t &FindElement( const KeyType_t &key, const ElemType_t &defaultValue ) const
{
IndexType_t i = Find( key );
if ( i == InvalidIndex() )
return defaultValue;
return Element( i );
}
// First element >= key
IndexType_t FindClosest( const KeyType_t &key, CompareOperands_t eFindCriteria ) const
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.FindClosest( dummyNode, eFindCriteria );
}
// Remove methods
void RemoveAt( IndexType_t i ) { m_Tree.RemoveAt( i ); }
bool Remove( const KeyType_t &key )
{
Node_t dummyNode;
dummyNode.key = key;
return m_Tree.Remove( dummyNode );
}
void RemoveAll( ) { m_Tree.RemoveAll(); }
void Purge( ) { m_Tree.Purge(); }
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements();
// Iteration
IndexType_t FirstInorder() const { return m_Tree.FirstInorder(); }
IndexType_t NextInorder( IndexType_t i ) const { return m_Tree.NextInorder( i ); }
IndexType_t PrevInorder( IndexType_t i ) const { return m_Tree.PrevInorder( i ); }
IndexType_t LastInorder() const { return m_Tree.LastInorder(); }
// API Matching src2 for Panorama
IndexType_t NextInorderSameKey( IndexType_t i ) const
{
IndexType_t iNext = NextInorder( i );
if ( !IsValidIndex( iNext ) )
return InvalidIndex();
if ( Key( iNext ) != Key( i ) )
return InvalidIndex();
return iNext;
}
// If you change the search key, this can be used to reinsert the
// element into the map.
void Reinsert( const KeyType_t &key, IndexType_t i )
{
m_Tree[i].key = key;
m_Tree.Reinsert(i);
}
IndexType_t InsertOrReplace( const KeyType_t &key, const ElemType_t &insert )
{
IndexType_t i = Find( key );
if ( i != InvalidIndex() )
{
Element( i ) = insert;
return i;
}
return Insert( key, insert );
}
void Swap( CUtlMap< K, T, I > &that )
{
m_Tree.Swap( that.m_Tree );
}
struct Node_t
{
Node_t()
{
}
Node_t( const Node_t &from )
: key( from.key ),
elem( from.elem )
{
}
KeyType_t key;
ElemType_t elem;
};
class CKeyLess
{
public:
CKeyLess( const LessFunc_t& lessFunc ) : m_LessFunc(lessFunc) {}
bool operator!() const
{
return !m_LessFunc;
}
bool operator()( const Node_t &left, const Node_t &right ) const
{
return m_LessFunc( left.key, right.key );
}
LessFunc_t m_LessFunc;
};
typedef CUtlRBTree<Node_t, I, CKeyLess> CTree;
CTree *AccessTree() { return &m_Tree; }
protected:
CTree m_Tree;
};
//-----------------------------------------------------------------------------
// Purges the list and calls delete on each element in it.
template< typename K, typename T, typename I, typename LessFunc_t >
inline void CUtlMap<K, T, I, LessFunc_t>::PurgeAndDeleteElements()
{
for ( I i = 0; i < MaxElement(); ++i )
{
if ( !IsValidIndex( i ) )
continue;
delete Element( i );
}
Purge();
}
#endif // UTLMAP_H