csgo-2018-source/public/mathlib/disjoint_set_forest.h
2021-07-24 21:11:47 -07:00

140 lines
3.8 KiB
C++

//========= Copyright © Valve Corporation, All rights reserved. ============//
#ifndef MATHLIB_DISJOINT_SET_FOREST_HDR
#define MATHLIB_DISJOINT_SET_FOREST_HDR
#include "tier1/utlvector.h"
/// An excellent overview of the concept is here:
/// http://en.wikipedia.org/wiki/Disjoint-set_data_structure this algorithm is with path
/// compression and ranking implemented, so it's essentially amortized const-time operations to
/// find node's island representative element or union two lists. ( the "essentially" means
/// amortized complexity is Ackermann function, which is like 5 for the largest number in any kind
/// of software development )
class CDisjointSetForest
{
public:
CDisjointSetForest( int nCount );
//void Flatten();
int Find( int nNode );
void Union( int nNodeA, int nNodeB );
void EnsureExists( int nNode );
int GetNodeCount()const { return m_Nodes.Count(); }
protected:
struct Node_t
{
int nRank, nParent;
};
CUtlVector< Node_t > m_Nodes;
};
inline CDisjointSetForest::CDisjointSetForest( int nCount )
{
m_Nodes.SetCount( nCount );
for( int i = 0;i < nCount; ++i )
{
m_Nodes[i].nRank = 0;
m_Nodes[i].nParent = i;
}
}
inline void CDisjointSetForest::EnsureExists( int nNode )
{
int nOldCount = m_Nodes.Count();
if ( nNode >= nOldCount )
{
m_Nodes.SetCountNonDestructively( nNode + 1 );
for ( int n = nOldCount; n <= nNode; ++n )
{
m_Nodes[ n ].nRank = 0;
m_Nodes[ n ].nParent = n;
}
}
}
/// Find the representative element for the node in graph representative element is the same for
/// all connected nodes(vertices) in the graph, and it's one of the nodes in the connected set this
/// implementation is without recursion to be more cache friendly; recursive implementation would
/// be clearer, but this is simple enough
inline int CDisjointSetForest::Find( int nStartNode )
{
int nTopParent;
for( int nNode = nStartNode; nTopParent = m_Nodes[nNode].nParent, nNode != nTopParent ; )
{
nNode = nTopParent;
}
// found the top parent, now compress the path to achieve that amazing amortized acceleration
int nParent;
for( int nNode = nStartNode; nParent = m_Nodes[nNode].nParent, nNode != nParent ; )
{
m_Nodes[nNode].nParent = nTopParent;
nNode = nParent;
}
Assert( nParent == nTopParent );
return nTopParent;
}
/// Connect the two (potentially disjoint) sets
inline void CDisjointSetForest::Union( int nNodeA, int nNodeB )
{
int nRootA = Find( nNodeA );
int nRootB = Find( nNodeB );
if ( m_Nodes[nRootA].nRank > m_Nodes[nRootB].nRank )
{
m_Nodes[nRootB].nParent = nRootA; // note: no change in rank! we're balanced!
}
else
if ( m_Nodes[nRootA].nRank < m_Nodes[nRootB].nRank )
{
m_Nodes[nRootA].nParent = nRootB; // note: no change in rank! we're balanced!
}
else
if ( nRootA != nRootB ) // Unless A and B are already in same set, merge them
{
m_Nodes[nRootB].nParent = nRootA;
m_Nodes[nRootA].nRank = m_Nodes[nRootA].nRank + 1;
}
}
/// Given the graph implementing GetParent(), find the indices of all children of the given tip of
/// the subtree
template <typename Graph_t, class BitVec_t>
inline void ComputeSubtree( const Graph_t *pGraph, int nSubtreeTipBone, BitVec_t *pSubtree )
{
int nBoneCount = pSubtree->GetNumBits();
Assert( nSubtreeTipBone >= 0 && nSubtreeTipBone < nBoneCount );
CDisjointSetForest find( nBoneCount );
for( int nBone = 0; nBone < nBoneCount; ++nBone )
{
if( nBone != nSubtreeTipBone ) // Important: severe the link between the subtree tip bone and the rest of the tree to find the disjoint subtree
{
int nParent = pGraph->GetParent( nBone );
if( nParent >= 0 && nParent < nBoneCount )
{
find.Union( nBone, nParent );
}
}
}
int nIsland = find.Find( nSubtreeTipBone );
for( int nBone = 0; nBone < nBoneCount; ++nBone )
{
if( find.Find( nBone ) == nIsland )
{
pSubtree->Set( nBone );
}
}
}
#endif //MATHLIB_DISJOINT_SET_FOREST_HDR