csgo-2018-source/particles/builtin_particle_ops.cpp
2021-07-24 21:11:47 -07:00

9636 lines
320 KiB
C++

//===== Copyright (c) 1996-2006, Valve Corporation, All rights reserved. ======//
//
// Purpose: particle system code
//
//===========================================================================//
#include "tier0/platform.h"
#include "particles/particles.h"
#include "filesystem.h"
#include "tier2/tier2.h"
#include "tier2/fileutils.h"
#include "tier2/renderutils.h"
#include "tier1/UtlStringMap.h"
#include "tier1/strtools.h"
#include "studio.h"
#include "bspflags.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#if MEASURE_PARTICLE_PERF
#if VPROF_LEVEL > 0
#define START_OP float flOpStartTime = Plat_FloatTime(); VPROF_ENTER_SCOPE(pOp->GetDefinition()->GetName())
#else
#define START_OP float flOpStartTime = Plat_FloatTime();
#endif
#if VPROF_LEVEL > 0
#define END_OP if ( 1 ) { \
float flETime = Plat_FloatTime() - flOpStartTime; \
IParticleOperatorDefinition *pDef = (IParticleOperatorDefinition *) pOp->GetDefinition(); \
pDef->RecordExecutionTime( flETime ); \
} \
VPROF_EXIT_SCOPE()
#else
#define END_OP if ( 1 ) { \
float flETime = Plat_FloatTime() - flOpStartTime; \
IParticleOperatorDefinition *pDef = (IParticleOperatorDefinition *) pOp->GetDefinition(); \
pDef->RecordExecutionTime( flETime ); \
}
#endif
#else
#define START_OP
#define END_OP
#endif
//-----------------------------------------------------------------------------
// Standard movement operator
//-----------------------------------------------------------------------------
class C_OP_BasicMovement : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_BasicMovement );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_Gravity;
float m_fDrag;
int m_nMaxConstraintPasses;
};
DEFINE_PARTICLE_OPERATOR( C_OP_BasicMovement, "Movement Basic", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_BasicMovement )
DMXELEMENT_UNPACK_FIELD( "gravity", "0 0 0", Vector, m_Gravity )
DMXELEMENT_UNPACK_FIELD( "drag", "0", float, m_fDrag )
DMXELEMENT_UNPACK_FIELD( "max constraint passes", "3", int, m_nMaxConstraintPasses )
END_PARTICLE_OPERATOR_UNPACK( C_OP_BasicMovement )
#define MAXIMUM_NUMBER_OF_CONSTRAINTS 100
//#define CHECKALL 1
#ifdef NDEBUG
#define CHECKSYSTEM( p ) 0
#else
#ifdef CHECKALL
static void CHECKSYSTEM( CParticleCollection *pParticles )
{
// Assert( pParticles->m_nActiveParticles <= pParticles->m_pDef->m_nMaxParticles );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
const float *xyz_prev = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Assert( IsFinite( xyz[0] ) );
Assert( IsFinite( xyz[4] ) );
Assert( IsFinite( xyz[8] ) );
Assert( IsFinite( xyz_prev[0] ) );
Assert( IsFinite( xyz_prev[4] ) );
Assert( IsFinite( xyz_prev[8] ) );
}
}
#else
#define CHECKSYSTEM( p ) 0
#endif
#endif
void C_OP_BasicMovement::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator prev_xyz( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
C4VAttributeWriteIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
// fltx4 adj_dt = ReplicateX4( (1.0-m_fDrag) * ( pParticles->m_flDt / pParticles->m_flPreviousDt ) );
fltx4 adj_dt = ReplicateX4( ( pParticles->m_flDt / pParticles->m_flPreviousDt ) * ExponentialDecay( ( 1.0f - fpmax(0.0, m_fDrag)), (1.0f / 30.0f), pParticles->m_flDt ) );
size_t nForceStride=0;
Vector acc = m_Gravity;
fltx4 accFactorX = ReplicateX4( acc.x );
fltx4 accFactorY = ReplicateX4( acc.y );
fltx4 accFactorZ = ReplicateX4( acc.z );
int nAccumulators = pParticles->m_pDef->m_ForceGenerators.Count();
FourVectors PerParticleForceAccumulator[MAX_PARTICLES_IN_A_SYSTEM / 4]; // xbox fixme - memory
FourVectors *pAccOut = PerParticleForceAccumulator;
if (nAccumulators)
{
// we do have per particle force accumulators
nForceStride = 1;
int nblocks = pParticles->m_nPaddedActiveParticles;
for(int i=0;i<nblocks;i++)
{
pAccOut->x = accFactorX;
pAccOut->y = accFactorY;
pAccOut->z = accFactorZ;
pAccOut++;
}
// now, call all force accumulators
for(int i=0;i < nAccumulators ; i++ )
{
float flStrength;
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_ForceGenerators[i];
if ( pParticles->CheckIfOperatorShouldRun( pOp, &flStrength ))
{
START_OP;
pParticles->m_pDef->m_ForceGenerators[i]->AddForces(
PerParticleForceAccumulator,
pParticles,
nblocks,
flStrength,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nForceGeneratorsCtxOffsets[i] );
END_OP;
}
}
}
else
{
pAccOut->x = accFactorX;
pAccOut->y = accFactorY;
pAccOut->z = accFactorZ;
// we just have gravity
}
CHECKSYSTEM( pParticles );
fltx4 DtSquared = ReplicateX4( pParticles->m_flDt * pParticles->m_flDt );
int ctr = pParticles->m_nPaddedActiveParticles;
FourVectors *pAccIn = PerParticleForceAccumulator;
do
{
fltx4 accFactorX = MulSIMD( pAccIn->x, DtSquared );
fltx4 accFactorY = MulSIMD( pAccIn->y, DtSquared );
fltx4 accFactorZ = MulSIMD( pAccIn->z, DtSquared );
// we will write prev xyz, and swap prev and cur at the end
prev_xyz->x = AddSIMD( xyz->x,
AddSIMD( accFactorX, MulSIMD( adj_dt, SubSIMD( xyz->x, prev_xyz->x ) ) ) );
prev_xyz->y = AddSIMD( xyz->y,
AddSIMD( accFactorY, MulSIMD( adj_dt, SubSIMD( xyz->y, prev_xyz->y ) ) ) );
prev_xyz->z = AddSIMD( xyz->z,
AddSIMD( accFactorZ, MulSIMD( adj_dt, SubSIMD( xyz->z, prev_xyz->z ) ) ) );
CHECKSYSTEM( pParticles );
++prev_xyz;
++xyz;
pAccIn += nForceStride;
} while (--ctr);
CHECKSYSTEM( pParticles );
pParticles->SwapPosAndPrevPos();
// now, enforce constraints
int nConstraints = pParticles->m_pDef->m_Constraints.Count();
if ( nConstraints && pParticles->m_nPaddedActiveParticles )
{
bool bConstraintSatisfied[ MAXIMUM_NUMBER_OF_CONSTRAINTS ];
bool bFinalConstraint[ MAXIMUM_NUMBER_OF_CONSTRAINTS ];
for(int i=0;i<nConstraints; i++)
{
bFinalConstraint[i] = pParticles->m_pDef->m_Constraints[i]->IsFinalConstaint();
bConstraintSatisfied[i] = false;
pParticles->m_pDef->m_Constraints[i]->SetupConstraintPerFrameData(
pParticles, pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i] );
}
// constraints get to see their own per psystem per op random #s
for(int p=0; p < m_nMaxConstraintPasses ; p++ )
{
// int nSaveOffset=pParticles->m_nOperatorRandomSampleOffset;
for(int i=0;i<nConstraints; i++)
{
// pParticles->m_nOperatorRandomSampleOffset += 23;
if ( ! bConstraintSatisfied[i] )
{
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_Constraints[i];
bConstraintSatisfied[i] = true;
float flStrength;
if ( ( !bFinalConstraint[i] ) && ( pParticles->CheckIfOperatorShouldRun( pOp, &flStrength ) ) )
{
START_OP;
bool bDidSomething = pOp->EnforceConstraint(
0, pParticles->m_nPaddedActiveParticles, pParticles,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i],
pParticles->m_nActiveParticles );
END_OP;
CHECKSYSTEM( pParticles );
if ( bDidSomething )
{
// other constraints now not satisfied, maybe
for( int j=0; j<nConstraints; j++)
{
if ( i != j )
{
bConstraintSatisfied[ j ] = false;
}
}
}
}
}
}
// pParticles->m_nOperatorRandomSampleOffset = nSaveOffset;
}
// now, run final constraints
for(int i=0;i<nConstraints; i++)
{
CParticleOperatorInstance *pOp = pParticles->m_pDef->m_Constraints[i];
float flStrength;
if ( ( bFinalConstraint[i] ) &&
( pParticles->CheckIfOperatorShouldRun( pOp, &flStrength ) ) )
{
START_OP;
pOp->EnforceConstraint(
0, pParticles->m_nPaddedActiveParticles, pParticles,
pParticles->m_pOperatorContextData +
pParticles->m_pDef->m_nConstraintsCtxOffsets[i],
pParticles->m_nActiveParticles );
END_OP;
CHECKSYSTEM( pParticles );
}
}
}
CHECKSYSTEM( pParticles );
}
//-----------------------------------------------------------------------------
// Fade and kill operator
//-----------------------------------------------------------------------------
class C_OP_FadeAndKill : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeAndKill );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK | FILTER_COLOR_AND_OPACITY_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef );
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flStartFadeInTime;
float m_flEndFadeInTime;
float m_flStartFadeOutTime;
float m_flEndFadeOutTime;
float m_flStartAlpha;
float m_flEndAlpha;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeAndKill, "Alpha Fade and Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKill )
DMXELEMENT_UNPACK_FIELD( "start_alpha","1", float, m_flStartAlpha )
DMXELEMENT_UNPACK_FIELD( "end_alpha","0", float, m_flEndAlpha )
DMXELEMENT_UNPACK_FIELD( "start_fade_in_time","0", float, m_flStartFadeInTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_in_time","0.5", float, m_flEndFadeInTime )
DMXELEMENT_UNPACK_FIELD( "start_fade_out_time","0.5", float, m_flStartFadeOutTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_out_time","1", float, m_flEndFadeOutTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKill )
void C_OP_FadeAndKill::InitParams( CParticleSystemDefinition *pDef )
{
// Cache off and validate values
if ( m_flEndFadeInTime < m_flStartFadeInTime )
{
m_flEndFadeInTime = m_flStartFadeInTime;
}
if ( m_flEndFadeOutTime < m_flStartFadeOutTime )
{
m_flEndFadeOutTime = m_flStartFadeOutTime;
}
if ( m_flStartFadeOutTime < m_flStartFadeInTime )
{
V_swap( m_flStartFadeInTime, m_flStartFadeOutTime );
}
if ( m_flEndFadeOutTime < m_flEndFadeInTime )
{
V_swap( m_flEndFadeInTime, m_flEndFadeOutTime );
}
}
void C_OP_FadeAndKill::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
fltx4 fl4StartFadeInTime = ReplicateX4( m_flStartFadeInTime );
fltx4 fl4StartFadeOutTime = ReplicateX4( m_flStartFadeOutTime );
fltx4 fl4EndFadeInTime = ReplicateX4( m_flEndFadeInTime );
fltx4 fl4EndFadeOutTime = ReplicateX4( m_flEndFadeOutTime );
fltx4 fl4EndAlpha = ReplicateX4( m_flEndAlpha );
fltx4 fl4StartAlpha = ReplicateX4( m_flStartAlpha );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
fltx4 fl4FadeInDuration = ReplicateX4( m_flEndFadeInTime - m_flStartFadeInTime );
fltx4 fl4OOFadeInDuration = ReciprocalEstSIMD( fl4FadeInDuration );
fltx4 fl4FadeOutDuration = ReplicateX4( m_flEndFadeOutTime - m_flStartFadeOutTime );
fltx4 fl4OOFadeOutDuration = ReciprocalEstSIMD( fl4FadeOutDuration );
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4Age = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4ParticleLifeTime = *pLifeDuration;
bi32x4 fl4KillMask = CmpGeSIMD( fl4Age, *pLifeDuration ); // takes care of lifeduration = 0 div 0
fl4Age = MulSIMD( fl4Age, ReciprocalEstSIMD( fl4ParticleLifeTime ) ); // age 0..1
bi32x4 fl4FadingInMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeInTime, fl4Age ), CmpGtSIMD(fl4EndFadeInTime, fl4Age ) ) );
bi32x4 fl4FadingOutMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeOutTime, fl4Age ), CmpGtSIMD(fl4EndFadeOutTime, fl4Age ) ) );
if ( IsAnyTrue( fl4FadingInMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4StartAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeInTime, fl4FadeInDuration, fl4OOFadeInDuration,
fl4Goal, SubSIMD( *pInitialAlpha, fl4Goal ) );
*pAlpha = MaskedAssign( fl4FadingInMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyTrue( fl4FadingOutMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4EndAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeOutTime, fl4FadeOutDuration, fl4OOFadeOutDuration,
*pInitialAlpha, SubSIMD( fl4Goal, *pInitialAlpha ) );
*pAlpha = MaskedAssign( fl4FadingOutMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyTrue( fl4KillMask ) )
{
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
}
}
//-----------------------------------------------------------------------------
// Fade and kill operator for tracers.
//
// Before killing a particle, this operator will interpolate the last
// frame's data so that the particle reaches its end point before
// disappearing.
//-----------------------------------------------------------------------------
class C_OP_FadeAndKillForTracers : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeAndKillForTracers );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_TRAIL_LENGTH_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_TRAIL_LENGTH_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK | FILTER_COLOR_AND_OPACITY_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef );
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flStartFadeInTime;
float m_flEndFadeInTime;
float m_flStartFadeOutTime;
float m_flEndFadeOutTime;
float m_flStartAlpha;
float m_flEndAlpha;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeAndKillForTracers, "Alpha Fade and Decay for Tracers", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKillForTracers )
DMXELEMENT_UNPACK_FIELD( "start_alpha","1", float, m_flStartAlpha )
DMXELEMENT_UNPACK_FIELD( "end_alpha","0", float, m_flEndAlpha )
DMXELEMENT_UNPACK_FIELD( "start_fade_in_time","0", float, m_flStartFadeInTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_in_time","0.5", float, m_flEndFadeInTime )
DMXELEMENT_UNPACK_FIELD( "start_fade_out_time","0.5", float, m_flStartFadeOutTime )
DMXELEMENT_UNPACK_FIELD( "end_fade_out_time","1", float, m_flEndFadeOutTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeAndKillForTracers )
void C_OP_FadeAndKillForTracers::InitParams( CParticleSystemDefinition *pDef )
{
// Cache off and validate values
if ( m_flEndFadeInTime < m_flStartFadeInTime )
{
m_flEndFadeInTime = m_flStartFadeInTime;
}
if ( m_flEndFadeOutTime < m_flStartFadeOutTime )
{
m_flEndFadeOutTime = m_flStartFadeOutTime;
}
if ( m_flStartFadeOutTime < m_flStartFadeInTime )
{
V_swap( m_flStartFadeInTime, m_flStartFadeOutTime );
}
if ( m_flEndFadeOutTime < m_flEndFadeInTime )
{
V_swap( m_flEndFadeInTime, m_flEndFadeOutTime );
}
}
void C_OP_FadeAndKillForTracers::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
fltx4 fl4StartFadeInTime = ReplicateX4( m_flStartFadeInTime );
fltx4 fl4StartFadeOutTime = ReplicateX4( m_flStartFadeOutTime );
fltx4 fl4EndFadeInTime = ReplicateX4( m_flEndFadeInTime );
fltx4 fl4EndFadeOutTime = ReplicateX4( m_flEndFadeOutTime );
fltx4 fl4EndAlpha = ReplicateX4( m_flEndAlpha );
fltx4 fl4StartAlpha = ReplicateX4( m_flStartAlpha );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
fltx4 fl4FadeInDuration = ReplicateX4( m_flEndFadeInTime - m_flStartFadeInTime );
fltx4 fl4OOFadeInDuration = ReciprocalEstSIMD( fl4FadeInDuration );
fltx4 fl4FadeOutDuration = ReplicateX4( m_flEndFadeOutTime - m_flStartFadeOutTime );
fltx4 fl4OOFadeOutDuration = ReciprocalEstSIMD( fl4FadeOutDuration );
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4Age = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4ParticleLifeTime = *pLifeDuration;
bi32x4 fl4KillMask = CmpGeSIMD( fl4Age, *pLifeDuration ); // takes care of lifeduration = 0 div 0
fl4Age = MulSIMD( fl4Age, ReciprocalEstSIMD( fl4ParticleLifeTime ) ); // age 0..1
bi32x4 fl4FadingInMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeInTime, fl4Age ), CmpGtSIMD(fl4EndFadeInTime, fl4Age ) ) );
bi32x4 fl4FadingOutMask = AndNotSIMD( fl4KillMask,
AndSIMD(
CmpLeSIMD( fl4StartFadeOutTime, fl4Age ), CmpGtSIMD(fl4EndFadeOutTime, fl4Age ) ) );
if ( IsAnyTrue( fl4FadingInMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4StartAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeInTime, fl4FadeInDuration, fl4OOFadeInDuration,
fl4Goal, SubSIMD( *pInitialAlpha, fl4Goal ) );
*pAlpha = MaskedAssign( fl4FadingInMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyTrue( fl4FadingOutMask ) )
{
fltx4 fl4Goal = MulSIMD( *pInitialAlpha, fl4EndAlpha );
fltx4 fl4NewAlpha = SimpleSplineRemapValWithDeltasClamped( fl4Age, fl4StartFadeOutTime, fl4FadeOutDuration, fl4OOFadeOutDuration,
*pInitialAlpha, SubSIMD( fl4Goal, *pInitialAlpha ) );
*pAlpha = MaskedAssign( fl4FadingOutMask, fl4NewAlpha, *pAlpha );
}
if ( IsAnyTrue( fl4KillMask ) )
{
fltx4 fl4PreviousTime = ReplicateX4( pParticles->m_flCurTime - pParticles->m_flDt );
fltx4 fl4PreviousAge = SubSIMD( fl4PreviousTime, *pCreationTime );
bi32x4 fl4PreviousKillMask = CmpGeSIMD( fl4PreviousAge, *pLifeDuration );
fltx4 fl4PartialDT = SubSIMD( *pLifeDuration, fl4PreviousAge );
int nMask = TestSignSIMD( fl4KillMask );
int nPreviousMask = TestSignSIMD( fl4PreviousKillMask );
int nKillMask = nMask & nPreviousMask;
bi32x4 fl4UpdateMask = AndSIMD( CmpLtSIMD( fl4PreviousAge, fl4ParticleLifeTime ), fl4KillMask );
C4VAttributeIterator pPosition( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeIterator pPreviousPosition( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
fltx4 fl4FractionalTime = DivSIMD( fl4PartialDT, ReplicateX4( pParticles->m_flDt ) );
FourVectors fvPosition = *pPosition;
FourVectors fvPreviousPosition = *pPreviousPosition;
FourVectors fvInterpolatedPosition = Madd( fvPosition - fvPreviousPosition, fl4FractionalTime, fvPreviousPosition );
CM128AttributeIterator pTrailLength( PARTICLE_ATTRIBUTE_TRAIL_LENGTH, pParticles );
fltx4 fl4OldTrailLength = *pTrailLength;
fltx4 fl4TrailLength = MulSIMD( fl4FractionalTime, fl4OldTrailLength );
C4VAttributeWriteIterator pWritePosition( PARTICLE_ATTRIBUTE_XYZ, pParticles );
CM128AttributeWriteIterator pWriteTrailLength( PARTICLE_ATTRIBUTE_TRAIL_LENGTH, pParticles );
fvInterpolatedPosition = MaskedAssign( fl4UpdateMask, fvInterpolatedPosition, fvPosition );
fl4TrailLength = MaskedAssign( fl4UpdateMask, fl4TrailLength, fl4OldTrailLength );
*pWritePosition = fvInterpolatedPosition;
*pWriteTrailLength = fl4TrailLength;
if ( nKillMask & 1 )
pParticles->KillParticle( i );
if ( nKillMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nKillMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nKillMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
}
}
//-----------------------------------------------------------------------------
// Fade In Operator
//-----------------------------------------------------------------------------
class C_OP_FadeIn : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeIn );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
template<bool bRandom> FORCEINLINE void OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
template<bool bRandom, bool bProportional> FORCEINLINE void OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flFadeInTimeMin;
float m_flFadeInTimeMax;
float m_flFadeInTimeExp;
bool m_bProportional;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeIn, "Alpha Fade In Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeIn )
DMXELEMENT_UNPACK_FIELD( "fade in time min",".25", float, m_flFadeInTimeMin )
DMXELEMENT_UNPACK_FIELD( "fade in time max",".25", float, m_flFadeInTimeMax )
DMXELEMENT_UNPACK_FIELD( "fade in time exponent","1", float, m_flFadeInTimeExp )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1","1", bool, m_bProportional )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeIn )
template<bool bRandom, bool bProportional> FORCEINLINE void C_OP_FadeIn::OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
C4IAttributeIterator pParticleID( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
fltx4 fl4FadeTimeMin = ReplicateX4( m_flFadeInTimeMin );
int nSSEFixedExponent;
fltx4 fl4FadeTimeWidth;
CM128AttributeIterator pLifeDuration;
if ( bRandom )
{
fl4FadeTimeWidth = ReplicateX4( m_flFadeInTimeMax - m_flFadeInTimeMin );
nSSEFixedExponent = m_flFadeInTimeExp * 4.0;
}
if ( bProportional )
{
pLifeDuration.Init( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
}
do
{
// Find particle age
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4FadeInTime;
if ( bRandom )
{
fl4FadeInTime= Pow_FixedPoint_Exponent_SIMD(
pParticles->RandomFloat( *pParticleID, nRandomOffset ),
nSSEFixedExponent);
fl4FadeInTime = AddSIMD( fl4FadeTimeMin, MulSIMD( fl4FadeTimeWidth, fl4FadeInTime ) );
}
else
{
fl4FadeInTime = fl4FadeTimeMin;
}
if ( bProportional )
{
// change particle age to a percentage of longevity
fl4LifeTime =
MaxSIMD( Four_Zeros,
MinSIMD( Four_Ones,
MulSIMD( fl4LifeTime, ReciprocalEstSIMD( *pLifeDuration ) ) ) );
++pLifeDuration;
}
bi32x4 fl4ApplyMask = CmpGtSIMD( fl4FadeInTime, fl4LifeTime );
if ( IsAnyTrue( fl4ApplyMask ) )
{
// Fading in
fltx4 fl4NewAlpha =
SimpleSplineRemapValWithDeltasClamped(
fl4LifeTime, Four_Zeros,
fl4FadeInTime, ReciprocalEstSIMD( fl4FadeInTime ),
Four_Zeros, *pInitialAlpha );
*( pAlpha ) = MaskedAssign( fl4ApplyMask, fl4NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pInitialAlpha;
++pAlpha;
++pParticleID;
} while( --nCtr );
}
template<bool bRandom> FORCEINLINE void C_OP_FadeIn::OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_bProportional )
{
OperateInternal<bRandom, true>( pParticles, flStrength, pContext );
}
else
{
OperateInternal<bRandom, false>( pParticles, flStrength, pContext );
}
}
void C_OP_FadeIn::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_flFadeInTimeMin != m_flFadeInTimeMax )
{
OperateInternal<true>( pParticles, flStrength, pContext );
}
else
{
OperateInternal<false>( pParticles, flStrength, pContext );
}
}
//-----------------------------------------------------------------------------
// Fade Out Operator
//-----------------------------------------------------------------------------
class C_OP_FadeOut : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeOut );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
template<bool bRandomize, bool bProportional, bool bApplyBias> void OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
template<bool bRandomize> void OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
template<bool bRandomize, bool bProportional> void OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
void InitParams( CParticleSystemDefinition *pDef );
float m_flFadeOutTimeMin;
float m_flFadeOutTimeMax;
float m_flFadeOutTimeExp;
float m_flFadeBias;
fltx4 m_fl4BiasParam;
bool m_bProportional;
bool m_bEaseInAndOut;
bool m_bRandomize;
typedef void ( C_OP_FadeOut::*OPERATE_FUNCTION )( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
OPERATE_FUNCTION m_pOpFunction;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeOut, "Alpha Fade Out Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOut )
DMXELEMENT_UNPACK_FIELD( "fade out time min",".25", float, m_flFadeOutTimeMin )
DMXELEMENT_UNPACK_FIELD( "fade out time max",".25", float, m_flFadeOutTimeMax )
DMXELEMENT_UNPACK_FIELD( "fade out time exponent","1", float, m_flFadeOutTimeExp )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1","1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "ease in and out","1", bool, m_bEaseInAndOut )
DMXELEMENT_UNPACK_FIELD( "fade bias", "0.5", float, m_flFadeBias )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOut )
template<bool bRandomize, bool bProportional, bool bApplyBias> void C_OP_FadeOut::OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
int nRandomOffset;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
int nSSEFixedExponent;
fltx4 FadeTimeMin = ReplicateX4( m_flFadeOutTimeMin );
fltx4 FadeTimeWidth;
fltx4 fl4FadeOutTime;
C4IAttributeIterator pParticleID;
if ( bRandomize )
{
FadeTimeWidth = ReplicateX4( m_flFadeOutTimeMax - m_flFadeOutTimeMin );
nSSEFixedExponent = m_flFadeOutTimeExp*4.0;
nRandomOffset = pParticles->OperatorRandomSampleOffset();
pParticleID.Init( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
}
else
{
if ( bProportional )
{
FadeTimeMin = SubSIMD( Four_Ones, FadeTimeMin );
}
}
do
{
if ( bRandomize )
{
fl4FadeOutTime = Pow_FixedPoint_Exponent_SIMD(
pParticles->RandomFloat( *pParticleID, nRandomOffset ),
nSSEFixedExponent );
fl4FadeOutTime = AddSIMD( FadeTimeMin, MulSIMD( FadeTimeWidth, fl4FadeOutTime ) );
if ( bProportional )
{
fl4FadeOutTime = SubSIMD( Four_Ones, fl4FadeOutTime );
}
}
else
{
fl4FadeOutTime = FadeTimeMin;
}
fltx4 fl4Lifespan;
// Find our life percentage
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4LifeDuration = *pLifeDuration;
if ( bProportional )
{
fl4LifeTime = MulSIMD( fl4LifeTime, ReciprocalEstSIMD( fl4LifeDuration ) );
fl4Lifespan = SubSIMD ( Four_Ones, fl4FadeOutTime );
}
else
{
fl4FadeOutTime = SubSIMD( fl4LifeDuration, fl4FadeOutTime );
fl4Lifespan = SubSIMD( fl4LifeDuration, fl4FadeOutTime ) ;
}
bi32x4 ApplyMask = CmpLtSIMD( fl4FadeOutTime, fl4LifeTime );
if ( IsAnyTrue( ApplyMask ) )
{
// Fading out
fltx4 NewAlpha;
if ( m_bEaseInAndOut )
{
NewAlpha = SimpleSplineRemapValWithDeltasClamped(
fl4LifeTime, fl4FadeOutTime,
fl4Lifespan, ReciprocalEstSIMD( fl4Lifespan ),
*pInitialAlpha, SubSIMD ( Four_Zeros, *pInitialAlpha ) );
NewAlpha = MaxSIMD( Four_Zeros, NewAlpha );
}
else
{
fltx4 fl4Frac = MulSIMD( SubSIMD( fl4LifeTime, fl4FadeOutTime ), ReciprocalEstSIMD( fl4Lifespan ) );
fl4Frac = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, fl4Frac ) );
if ( bApplyBias )
{
fl4Frac = BiasSIMD( fl4Frac, m_fl4BiasParam );
}
fl4Frac = SubSIMD( Four_Ones, fl4Frac );
NewAlpha = MulSIMD( *pInitialAlpha, fl4Frac );
}
*( pAlpha ) = MaskedAssign( ApplyMask, NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
if ( bRandomize )
{
++pParticleID;
}
} while( --nCtr );
}
template<bool bRandomize, bool bProportional> void C_OP_FadeOut::OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_flFadeBias == 0.5 )
{
OperateInternal<bRandomize, bProportional, false>( pParticles, flStrength, pContext );
}
else
{
OperateInternal<bRandomize, bProportional, true>( pParticles, flStrength, pContext );
}
}
template<bool bRandomize> void C_OP_FadeOut::OperateInternal( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_bProportional )
{
OperateInternal< bRandomize, false>( pParticles, flStrength, pContext );
}
else
{
OperateInternal< bRandomize, false>( pParticles, flStrength, pContext );
}
}
void C_OP_FadeOut::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
( this->*m_pOpFunction )( pParticles, flStrength, pContext );
}
void C_OP_FadeOut::InitParams( CParticleSystemDefinition *pDef )
{
float flBias = ( m_flFadeBias != 0.0f ) ? m_flFadeBias : 0.5f;
m_fl4BiasParam = PreCalcBiasParameter( ReplicateX4( flBias ) );
m_bRandomize = ( m_flFadeOutTimeMin != m_flFadeOutTimeMax );
if ( m_bRandomize && ( m_flFadeOutTimeMin == 0.0f ) )
{
m_flFadeOutTimeMin = m_flFadeOutTimeMax = FLT_EPSILON;
}
// determine function ptr
static OPERATE_FUNCTION s_pDispatchTable[8] = {
&C_OP_FadeOut::OperateInternal< false, false, false >,
&C_OP_FadeOut::OperateInternal< false, false, true >,
&C_OP_FadeOut::OperateInternal< false, true, false >,
&C_OP_FadeOut::OperateInternal< false, true, true >,
&C_OP_FadeOut::OperateInternal< true, false, false >,
&C_OP_FadeOut::OperateInternal< true, false, true >,
&C_OP_FadeOut::OperateInternal< true, true, false >,
&C_OP_FadeOut::OperateInternal< true, true, true > };
int nIndex =
1 * ( ( m_flFadeBias == 0.5 ) ? 1 : 0 ) +
2 * ( m_bProportional ? 1 : 0 ) +
4 * ( m_bRandomize ? 1 : 0 );
m_pOpFunction = s_pDispatchTable[nIndex];
}
//-----------------------------------------------------------------------------
// Fade In Operator - fast version
//-----------------------------------------------------------------------------
class C_OP_FadeInSimple : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeInSimple );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK ;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flFadeInTime;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeInSimple, "Alpha Fade In Simple", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeInSimple )
DMXELEMENT_UNPACK_FIELD( "proportional fade in time",".25", float, m_flFadeInTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeInSimple )
void C_OP_FadeInSimple::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
fltx4 CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
fltx4 fl4FadeInTime = ReplicateX4( m_flFadeInTime );
do
{
// Find our life percentage
fltx4 fl4LifeTime = SubSIMD( CurTime, *pCreationTime );
fl4LifeTime = MaxSIMD( Four_Zeros, MinSIMD( Four_Ones,
MulSIMD( fl4LifeTime, ReciprocalEstSIMD( *pLifeDuration ) ) ) );
bi32x4 ApplyMask = CmpGtSIMD( fl4FadeInTime, fl4LifeTime );
if ( IsAnyTrue( ApplyMask ) )
{
// Fading in
fltx4 NewAlpha =
SimpleSplineRemapValWithDeltasClamped(
fl4LifeTime, Four_Zeros,
fl4FadeInTime, ReciprocalEstSIMD( fl4FadeInTime ),
Four_Zeros, *pInitialAlpha );
*( pAlpha ) = MaskedAssign( ApplyMask, NewAlpha, *( pAlpha ) );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Fade Out Operator - fast version
//-----------------------------------------------------------------------------
class C_OP_FadeOutSimple : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_FadeOut );
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK ;
}
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flFadeOutTime;
};
DEFINE_PARTICLE_OPERATOR( C_OP_FadeOutSimple, "Alpha Fade Out Simple", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOutSimple )
DMXELEMENT_UNPACK_FIELD( "proportional fade out time",".25", float, m_flFadeOutTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_FadeOutSimple )
void C_OP_FadeOutSimple::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128InitialAttributeIterator pInitialAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeWriteIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
fltx4 fl4FadeOutTime= ReplicateX4( 1.0f - m_flFadeOutTime );
fltx4 fl4Fadespan = ReplicateX4( m_flFadeOutTime );
do
{
// Find our life percentage
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4LifeDuration = *pLifeDuration;
fl4LifeTime = MulSIMD( fl4LifeTime, ReciprocalEstSIMD( fl4LifeDuration ) );
bi32x4 ApplyMask = CmpLtSIMD( fl4FadeOutTime, fl4LifeTime );
if ( IsAnyTrue( ApplyMask ) )
{
// Fading out
fltx4 NewAlpha;
fltx4 fl4Frac = MulSIMD( SubSIMD( fl4LifeTime, fl4FadeOutTime ), ReciprocalEstSIMD( fl4Fadespan ) );
fl4Frac = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, fl4Frac ) );
fl4Frac = SimpleSpline( fl4Frac );
fl4Frac = SubSIMD( Four_Ones, fl4Frac );
NewAlpha = MulSIMD( *pInitialAlpha, fl4Frac );
*pAlpha = MaskedAssign( ApplyMask, MinSIMD( NewAlpha, *pAlpha), *pAlpha );
}
++pCreationTime;
++pLifeDuration;
++pInitialAlpha;
++pAlpha;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Clamp Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_ClampScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_ClampScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_ClampScalar, "Clamp Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ClampScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ClampScalar )
void C_OP_ClampScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = clamp( *pOutput, m_flOutputMin, m_flOutputMax );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// Clamp Vector Operator
//-----------------------------------------------------------------------------
class C_OP_ClampVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_ClampVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
Vector m_vecOutputMin;
Vector m_vecOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_ClampVector, "Clamp Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ClampVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0 0 0", Vector, m_vecOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1 1 1", Vector, m_vecOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ClampVector )
void C_OP_ClampVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
Vector vecOutput, vecOrg;
SetVectorFromAttribute( vecOutput, pOutput);
vecOrg = vecOutput;
vecOutput.x = clamp( vecOutput.x, m_vecOutputMin.x, m_vecOutputMax.x );
vecOutput.y = clamp( vecOutput.y, m_vecOutputMin.y, m_vecOutputMax.y );
vecOutput.z = clamp( vecOutput.z, m_vecOutputMin.z, m_vecOutputMax.z );
vecOutput = VectorLerp( vecOrg, vecOutput, flStrength );
SetVectorAttribute( pOutput, vecOutput );
}
}
//-----------------------------------------------------------------------------
// Oscillating Scalar operator
// performs an oscillation operation on any scalar (fade, radius, etc.)
//-----------------------------------------------------------------------------
class C_OP_OscillateScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_RateMin;
float m_RateMax;
float m_FrequencyMin;
float m_FrequencyMax;
int m_nField;
bool m_bProportional, m_bProportionalOp;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateScalar, "Oscillate Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "7", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate min", "0", float, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "oscillation rate max", "0", float, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency min", "1", float, m_FrequencyMin )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency max", "1", float, m_FrequencyMax )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1", "1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalar )
void C_OP_OscillateScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
CM128AttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4OscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4CosFactorProp = fl4CosFactorMultiplier;
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4FrequencyMin = ReplicateX4( m_FrequencyMin );
fltx4 fl4FrequencyWidth = ReplicateX4( m_FrequencyMax - m_FrequencyMin );
fltx4 fl4RateMin = ReplicateX4( m_RateMin );
fltx4 fl4RateWidth = ReplicateX4( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4Frequency = pParticles->RandomFloat( *pParticleId, nRandomOffset );
fl4Frequency = AddSIMD( fl4FrequencyMin, MulSIMD( fl4FrequencyWidth, fl4Frequency ) );
fltx4 fl4Rate= pParticles->RandomFloat( *pParticleId, nRandomOffset + 1);
fl4Rate = AddSIMD( fl4RateMin, MulSIMD( fl4RateWidth, fl4Rate ) );
fltx4 fl4Cos;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fl4Cos = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fl4LifeTime, fl4Frequency )), fl4CosFactorAdd );
}
else
{
fl4Cos = MulSIMD( fl4CosFactor, fl4Frequency );
}
fltx4 fl4OscMultiplier = MulSIMD( fl4Rate, fl4ScaleFactor);
fl4OscVal = AddSIMD ( *pOscField, MulSIMD ( fl4OscMultiplier, SinEst01SIMD( fl4Cos ) ) );
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nField ) )
{
*pOscField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4OscVal, Four_Ones), Four_Zeros ), *pOscField );
}
else
{
*pOscField = MaskedAssign( fl4GoodMask, fl4OscVal, *pOscField );
}
}
++pCreationTime;
++pLifeDuration;
++pOscField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Oscillating Scalar Simple operator
// performs an oscillation operation on any scalar (fade, radius, etc.)
// Simple version is fast but has few options
//-----------------------------------------------------------------------------
class C_OP_OscillateScalarSimple : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateScalarSimple );
float m_Rate;
float m_Frequency;
int m_nField;
float m_flOscMult;
float m_flOscAdd;
fltx4 m_fl4MinCmp, m_fl4MaxCmp;
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Set values to clamp against at init rather than branching inside the per-particle loop
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_Ones;
}
else if ( ATTRIBUTES_WHICH_ARE_SIZE & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_FLT_MAX;
}
else
{
m_fl4MinCmp = Four_Negative_FLT_MAX;
m_fl4MaxCmp = Four_FLT_MAX;
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateScalarSimple, "Oscillate Scalar Simple", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalarSimple )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "7", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate", "0", float, m_Rate )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency", "1", float, m_Frequency )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateScalarSimple )
void C_OP_OscillateScalarSimple::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4OscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4Frequency = ReplicateX4( m_Frequency );
fltx4 fl4Rate= ReplicateX4( m_Rate );
fltx4 fl4OscMultiplier = MulSIMD( fl4Rate, fl4ScaleFactor);
fltx4 fl4Cos = MulSIMD( fl4CosFactor, fl4Frequency );
int nCtr = pParticles->m_nPaddedActiveParticles;
fltx4 fl4OscillateAmt = MulSIMD( fl4OscMultiplier, SinEst01SIMD( fl4Cos ) );
do
{
fl4OscVal = AddSIMD ( *pOscField, fl4OscillateAmt );
*pOscField = MaxSIMD( MinSIMD( fl4OscVal, m_fl4MaxCmp), m_fl4MinCmp );
++pOscField;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Oscillating Vector operator
// performs an oscillation operation on any vector (location, tint)
//-----------------------------------------------------------------------------
class C_OP_OscillateVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_RateMin;
Vector m_RateMax;
Vector m_FrequencyMin;
Vector m_FrequencyMax;
int m_nField;
bool m_bProportional, m_bProportionalOp;
bool m_bAccelerator;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateVector, "Oscillate Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "0", int, m_nField, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate min", "0 0 0", Vector, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "oscillation rate max", "0 0 0", Vector, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency min", "1 1 1", Vector, m_FrequencyMin )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency max", "1 1 1", Vector, m_FrequencyMax )
DMXELEMENT_UNPACK_FIELD( "proportional 0/1", "1", bool, m_bProportional )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVector )
void C_OP_OscillateVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
C4VAttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
FourVectors fvOscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
fltx4 fl4CosFactorProp = fl4CosFactorMultiplier;
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
FourVectors fvFrequencyMin;
fvFrequencyMin.DuplicateVector( m_FrequencyMin );
FourVectors fvFrequencyWidth;
fvFrequencyWidth.DuplicateVector( m_FrequencyMax - m_FrequencyMin );
FourVectors fvRateMin;
fvRateMin.DuplicateVector( m_RateMin );
FourVectors fvRateWidth;
fvRateWidth.DuplicateVector( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
FourVectors fvFrequency;
fvFrequency.x = pParticles->RandomFloat( *pParticleId, nRandomOffset + 8 );
fvFrequency.y = pParticles->RandomFloat( *pParticleId, nRandomOffset + 12 );
fvFrequency.z = pParticles->RandomFloat( *pParticleId, nRandomOffset + 15 );
fvFrequency.VProduct( fvFrequencyWidth );
fvFrequency += fvFrequencyMin;
FourVectors fvRate;
fvRate.x = pParticles->RandomFloat( *pParticleId, nRandomOffset + 3);
fvRate.y = pParticles->RandomFloat( *pParticleId, nRandomOffset + 7);
fvRate.z = pParticles->RandomFloat( *pParticleId, nRandomOffset + 9);
//fvRate = AddSIMD( fvRateMin, MulSIMD( fvRateWidth, fvRate ) );
fvRate.VProduct( fvRateWidth );
fvRate += fvRateMin;
FourVectors fvCos;
if ( m_bProportional )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fvCos.x = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.x, fl4LifeTime )), fl4CosFactorAdd );
fvCos.y = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.y, fl4LifeTime )), fl4CosFactorAdd );
fvCos.z = AddSIMD( MulSIMD( fl4CosFactorProp, MulSIMD( fvFrequency.z, fl4LifeTime )), fl4CosFactorAdd );
}
else
{
//fvCos = MulSIMD( fl4CosFactor, fvFrequency );
fvCos.x = MulSIMD( fvFrequency.x, fl4CosFactor );
fvCos.y = MulSIMD( fvFrequency.y, fl4CosFactor );
fvCos.z = MulSIMD( fvFrequency.z, fl4CosFactor );
}
FourVectors fvOscMultiplier;
fvOscMultiplier.x = MulSIMD( fvRate.x, fl4ScaleFactor);
fvOscMultiplier.y = MulSIMD( fvRate.y, fl4ScaleFactor);
fvOscMultiplier.z = MulSIMD( fvRate.z, fl4ScaleFactor);
FourVectors fvOutput = *pOscField;
fvOscVal.x = AddSIMD ( fvOutput.x, MulSIMD ( fvOscMultiplier.x, SinEst01SIMD( fvCos.x ) ) );
fvOscVal.y = AddSIMD ( fvOutput.y, MulSIMD ( fvOscMultiplier.y, SinEst01SIMD( fvCos.y ) ) );
fvOscVal.z = AddSIMD ( fvOutput.z, MulSIMD ( fvOscMultiplier.z, SinEst01SIMD( fvCos.z ) ) );
if ( m_nField == 6)
{
pOscField->x = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.x, Four_Ones), Four_Zeros ), fvOutput.x );
pOscField->y = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.y, Four_Ones), Four_Zeros ), fvOutput.y );
pOscField->z = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fvOscVal.z, Four_Ones), Four_Zeros ), fvOutput.z );
}
else
{
pOscField->x = MaskedAssign( fl4GoodMask, fvOscVal.x, fvOutput.x );
pOscField->y = MaskedAssign( fl4GoodMask, fvOscVal.y, fvOutput.y );
pOscField->z = MaskedAssign( fl4GoodMask, fvOscVal.z, fvOutput.z );
}
}
++pCreationTime;
++pLifeDuration;
++pOscField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Oscillating Vector Simple operator
// performs an oscillation operation on any vector (location, tint)
// Simple version eliminates a bunch of options for speed
//-----------------------------------------------------------------------------
class C_OP_OscillateVectorSimple : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OscillateVectorSimple );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_NOT_SPECIAL_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Vector m_Rate;
Vector m_Frequency;
int m_nField;
float m_flOscMult;
float m_flOscAdd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OscillateVectorSimple, "Oscillate Vector Simple", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVectorSimple )
DMXELEMENT_UNPACK_FIELD_USERDATA( "oscillation field", "0", int, m_nField, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "oscillation rate", "0 0 0", Vector, m_Rate )
DMXELEMENT_UNPACK_FIELD( "oscillation frequency", "1 1 1", Vector, m_Frequency )
DMXELEMENT_UNPACK_FIELD( "oscillation multiplier", "2", float, m_flOscMult )
DMXELEMENT_UNPACK_FIELD( "oscillation start phase", ".5", float, m_flOscAdd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OscillateVectorSimple )
void C_OP_OscillateVectorSimple::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pOscField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
FourVectors fvOscVal;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4CosFactorMultiplier = ReplicateX4( m_flOscMult );
fltx4 fl4CosFactorAdd = ReplicateX4( m_flOscAdd );
fltx4 fl4CosFactor = AddSIMD( MulSIMD( fl4CosFactorMultiplier, fl4CurTime ), fl4CosFactorAdd );
FourVectors fvFrequency;
fvFrequency.DuplicateVector( m_Frequency );
FourVectors fvRate;
fvRate.DuplicateVector( m_Rate );
FourVectors fvCos;
fvCos.x = MulSIMD( fvFrequency.x, fl4CosFactor );
fvCos.y = MulSIMD( fvFrequency.y, fl4CosFactor );
fvCos.z = MulSIMD( fvFrequency.z, fl4CosFactor );
FourVectors fvOscMultiplier;
fvOscMultiplier.x = MulSIMD( fvRate.x, fl4ScaleFactor);
fvOscMultiplier.y = MulSIMD( fvRate.y, fl4ScaleFactor);
fvOscMultiplier.z = MulSIMD( fvRate.z, fl4ScaleFactor);
int nCtr = pParticles->m_nPaddedActiveParticles;
FourVectors fvOscillateAmt;
fvOscillateAmt.x = MulSIMD ( fvOscMultiplier.x, SinEst01SIMD( fvCos.x ) );
fvOscillateAmt.y = MulSIMD ( fvOscMultiplier.y, SinEst01SIMD( fvCos.y ) );
fvOscillateAmt.z = MulSIMD ( fvOscMultiplier.z, SinEst01SIMD( fvCos.z ) );
if ( ATTRIBUTES_WHICH_ARE_COLOR_AND_OPACITY & ( 1 << m_nField ))
{
do
{
FourVectors fvOscVal = *pOscField;
fvOscVal += fvOscillateAmt;
pOscField->x = MaxSIMD( MinSIMD( fvOscVal.x, Four_Ones), Four_Zeros );
pOscField->y = MaxSIMD( MinSIMD( fvOscVal.y, Four_Ones), Four_Zeros );
pOscField->z = MaxSIMD( MinSIMD( fvOscVal.z, Four_Ones), Four_Zeros );
++pOscField;
} while (--nCtr );
}
else
{
do
{
*pOscField += fvOscillateAmt;
++pOscField;
} while (--nCtr );
}
};
//-----------------------------------------------------------------------------
// Difference Between Previous Particle Operator
//-----------------------------------------------------------------------------
class C_OP_DifferencePreviousParticle : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DifferencePreviousParticle );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nFieldInput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldInput;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
bool m_bScaleInitialRange;
bool m_bActiveRange;
bool m_bSetPreviousParticle;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DifferencePreviousParticle, "Remap Difference of Sequential Particle Vector to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DifferencePreviousParticle )
DMXELEMENT_UNPACK_FIELD( "difference minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "difference maximum","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "input field", "0", int, m_nFieldInput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "only active within specified difference","0", bool, m_bActiveRange )
DMXELEMENT_UNPACK_FIELD( "also set ouput to previous particle","0", bool, m_bSetPreviousParticle )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DifferencePreviousParticle )
void C_OP_DifferencePreviousParticle::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecPreviousVal = vec3_invalid;
int nPreviousParticleNumber = 0;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pInput = pParticles->GetFloatAttributePtr(m_nFieldInput, i );
if ( vecPreviousVal != vec3_invalid )
{
Vector vecPosition2 = Vector(pInput[0], pInput[4], pInput[8]);
float flDistance = vecPreviousVal.DistTo( vecPosition2 );
if ( m_bActiveRange && ( flDistance < m_flInputMin || flDistance > m_flInputMax ) )
{
continue;
}
float flOutput = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, flMin, flMax );
float flOutput2 = flOutput;
if ( m_bScaleInitialRange )
{
const float *pInitialOutput = pParticles->GetFloatAttributePtr( m_nFieldOutput, i );
flOutput = *pInitialOutput * flOutput;
}
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float *pOutput2 = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, nPreviousParticleNumber );
*pOutput = flOutput;
if ( m_bSetPreviousParticle )
*pOutput2 *= flOutput2;
}
SetVectorFromAttribute( vecPreviousVal, pInput );
nPreviousParticleNumber = i;
}
}
//-----------------------------------------------------------------------------
// Remap Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nFieldInput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldInput;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapScalar, "Remap Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapScalar )
DMXELEMENT_UNPACK_FIELD_USERDATA( "input field", "7", int, m_nFieldInput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapScalar )
void C_OP_RemapScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pInput = pParticles->GetFloatAttributePtr( m_nFieldInput, i );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( *pInput, m_flInputMin, m_flInputMax, flMin, flMax );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// Lerp Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_LerpScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LerpScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flOutput;
float m_flStartTime;
float m_flEndTime;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LerpScalar, "Lerp Initial Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LerpScalar )
DMXELEMENT_UNPACK_FIELD( "start time","0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "end time","1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "value to lerp to","1", float, m_flOutput )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LerpScalar )
void C_OP_LerpScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pCt = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
const float *pLifespan = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
float flAge = ( pParticles->m_flCurTime - *pCt ) / ( *pLifespan + FLT_EPSILON );
if ( flAge < m_flStartTime || flAge > m_flEndTime )
continue;
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( flAge, m_flStartTime, m_flEndTime, *pInput, m_flOutput );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
struct LerpEndcapContext_t
{
float m_flEndCapStartTime;
};
//-----------------------------------------------------------------------------
// Lerp EndCap Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_LerpEndCapScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LerpEndCapScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
LerpEndcapContext_t *pCtx=reinterpret_cast<LerpEndcapContext_t *>( pContext );
pCtx->m_flEndCapStartTime = -FLT_MAX;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( LerpEndcapContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flOutput;
float m_flLerpTime;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LerpEndCapScalar, "Lerp EndCap Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LerpEndCapScalar )
DMXELEMENT_UNPACK_FIELD( "lerp time","1", float, m_flLerpTime )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "value to lerp to","1", float, m_flOutput )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LerpEndCapScalar )
void C_OP_LerpEndCapScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
LerpEndcapContext_t *pCtx=reinterpret_cast<LerpEndcapContext_t *>( pContext );
if ( pParticles->m_bInEndCap)
{
if ( pCtx->m_flEndCapStartTime < 0.0f )
{
// Mark when we went into our EndCap
pCtx->m_flEndCapStartTime = pParticles->m_flCurTime;
// Set our "initial" value to our current value at the point of entering endcap so we can lerp against something meaningful
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pInput = pParticles->GetInitialFloatAttributePtrForWrite( m_nFieldOutput, i );
const float *pOutput = pParticles->GetFloatAttributePtr( m_nFieldOutput, i );
*pInput = *pOutput;
}
}
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float flAge = ( pParticles->m_flCurTime - pCtx->m_flEndCapStartTime ) / ( m_flLerpTime + FLT_EPSILON );
if ( flAge > 1.0f )
continue;
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( flAge, 0.0f, 1.0f, *pInput, m_flOutput );
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
}
//-----------------------------------------------------------------------------
// Lerp EndCap Vector Operator
//-----------------------------------------------------------------------------
class C_OP_LerpEndCapVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LerpEndCapVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
LerpEndcapContext_t *pCtx=reinterpret_cast<LerpEndcapContext_t *>( pContext );
pCtx->m_flEndCapStartTime = -FLT_MAX;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( LerpEndcapContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
Vector m_vecOutput;
float m_flLerpTime;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LerpEndCapVector, "Lerp EndCap Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LerpEndCapVector )
DMXELEMENT_UNPACK_FIELD( "lerp time","1", float, m_flLerpTime )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "value to lerp to","0 0 0", Vector, m_vecOutput )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LerpEndCapVector )
void C_OP_LerpEndCapVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
LerpEndcapContext_t *pCtx=reinterpret_cast<LerpEndcapContext_t *>( pContext );
if ( pParticles->m_bInEndCap)
{
if ( pCtx->m_flEndCapStartTime < 0.0f )
{
// Mark when we went into our EndCap
pCtx->m_flEndCapStartTime = pParticles->m_flCurTime;
// Set our "initial" value to our current value at the point of entering endcap so we can lerp against something meaningful
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pInput = pParticles->GetInitialFloatAttributePtrForWrite( m_nFieldOutput, i );
const float *pOutput = pParticles->GetFloatAttributePtr( m_nFieldOutput, i );
*pInput = *pOutput;
}
}
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float flAge = ( pParticles->m_flCurTime - pCtx->m_flEndCapStartTime ) / ( m_flLerpTime + FLT_EPSILON );
if ( flAge > 1.0f )
continue;
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
flAge *= flStrength;
Vector vecStart;
SetVectorFromAttribute( vecStart, pInput );
VectorLerp( vecStart, m_vecOutput, flAge, vecStart );
SetVectorAttribute( pOutput, vecStart );
}
}
}
//-----------------------------------------------------------------------------
// Lerp Vector Operator
//-----------------------------------------------------------------------------
class C_OP_LerpVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LerpVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
Vector m_vecOutput;
float m_flStartTime;
float m_flEndTime;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LerpVector, "Lerp Initial Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LerpVector )
DMXELEMENT_UNPACK_FIELD( "start time","0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "end time","1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "value to lerp to","0 0 0", Vector, m_vecOutput )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LerpVector )
void C_OP_LerpVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pCt = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
const float *pLifespan = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
float flAge = ( pParticles->m_flCurTime - *pCt ) / ( *pLifespan + FLT_EPSILON );
if ( flAge < m_flStartTime || flAge > m_flEndTime )
continue;
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flPercent = RemapValClamped( flAge, m_flStartTime, m_flEndTime, 0.0, 1.0 );
flPercent *= flStrength;
Vector vecStart;
SetVectorFromAttribute( vecStart, pInput );
VectorLerp( vecStart, m_vecOutput, flPercent, vecStart );
SetVectorAttribute( pOutput, vecStart );
}
}
//-----------------------------------------------------------------------------
// Remap Speed Operator
//-----------------------------------------------------------------------------
class C_OP_RemapSpeed : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapSpeed );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_flInputMin = MAX(MIN_PARTICLE_SPEED, m_flInputMin);
m_flInputMax = MAX(MIN_PARTICLE_SPEED, m_flInputMax);
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapSpeed, "Remap Speed to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapSpeed )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapSpeed );
void C_OP_RemapSpeed::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
fltx4 flMin = ReplicateX4( m_flOutputMin );
fltx4 flMax = ReplicateX4( m_flOutputMax );
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = ReplicateX4( clamp(m_flOutputMin, 0.0f, 1.0f ) );
flMax = ReplicateX4( clamp(m_flOutputMax, 0.0f, 1.0f ) );
}
fltx4 fl4Dt = ReplicateX4( pParticles->m_flDt );
fltx4 fl4InputMin = ReplicateX4( m_flInputMin );
fltx4 fl4InputMax = ReplicateX4( m_flInputMax );
fltx4 fl4Strength = ReplicateX4( flStrength );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
CM128AttributeWriteIterator pOutput (m_nFieldOutput, pParticles);
CM128InitialAttributeIterator pInitialOutput ( m_nFieldOutput, pParticles );
for ( int i = 0; i < pParticles->m_nPaddedActiveParticles; i++ )
{
fltx4 fl4Speed = DivSIMD ( (*pXYZ - *pPrevXYZ).length(), fl4Dt );
fltx4 fl4Output = RemapValClampedSIMD( fl4Speed, fl4InputMin, fl4InputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
fl4Output = MulSIMD( *pInitialOutput, fl4Output );
}
if ( m_bScaleCurrent )
{
fl4Output = MulSIMD( *pOutput, fl4Output );
}
*pOutput = LerpSIMD( fl4Strength, *pOutput, fl4Output );
++pXYZ;
++pPrevXYZ;
++pOutput;
++pInitialOutput;
}
}
//-----------------------------------------------------------------------------
// Remap Speed to CP Operator
//-----------------------------------------------------------------------------
class C_OP_RemapSpeedtoCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapSpeedtoCP );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nInControlPointNumber ) | ( 1ULL << m_nOutControlPointNumber );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Safety for bogus input->output feedback loop
if ( m_nInControlPointNumber == m_nOutControlPointNumber )
m_nOutControlPointNumber = -1;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nInControlPointNumber;
int m_nOutControlPointNumber;
int m_nField;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapSpeedtoCP, "Remap CP Speed to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapSpeedtoCP )
DMXELEMENT_UNPACK_FIELD( "input control point", "0", int, m_nInControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "output control point", "-1", int, m_nOutControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "Output field 0-2 X/Y/Z","0", int, m_nField )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapSpeedtoCP );
void C_OP_RemapSpeedtoCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_nOutControlPointNumber >= 0 )
{
Vector vecPrevPos;
pParticles->GetControlPointAtPrevTime( m_nInControlPointNumber, &vecPrevPos );
Vector vecDelta;
vecDelta = pParticles->GetControlPointAtCurrentTime( m_nInControlPointNumber ) - vecPrevPos;
float flSpeed = vecDelta.Length() / pParticles->m_flPreviousDt;
float flOutput = RemapValClamped( flSpeed, m_flInputMin, m_flInputMax, m_flOutputMin, m_flOutputMax );
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nOutControlPointNumber );
vecControlPoint[m_nField] = flOutput;
pParticles->SetControlPoint( m_nOutControlPointNumber, vecControlPoint );
}
}
//-----------------------------------------------------------------------------
// Remap Speed to CP Operator
//-----------------------------------------------------------------------------
class C_OP_RemapModelVolumetoCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapModelVolumetoCP );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nInControlPointNumber ) | ( 1ULL << m_nOutControlPointNumber );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Safety for bogus input->output feedback loop
if ( m_nInControlPointNumber == m_nOutControlPointNumber )
m_nOutControlPointNumber = -1;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nInControlPointNumber;
int m_nOutControlPointNumber;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapModelVolumetoCP, "Remap Model Volume to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapModelVolumetoCP )
DMXELEMENT_UNPACK_FIELD( "input control point", "0", int, m_nInControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "input volume minimum in cubic units","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input volume maximum in cubic units","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "output control point", "-1", int, m_nOutControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapModelVolumetoCP );
void C_OP_RemapModelVolumetoCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_nOutControlPointNumber >= 0 )
{
Vector vecMax, vecMin;
g_pParticleSystemMgr->Query()->GetControllingObjectOBBox( pParticles, m_nInControlPointNumber, vecMin, vecMax );
Vector vecVolume = vecMax - vecMin;
float flVolume = vecVolume.x * vecVolume.y * vecVolume.z;
flVolume = pow( flVolume, 0.33333333f );
float flOutput = RemapValClamped( flVolume, m_flInputMin, m_flInputMax, m_flOutputMin, m_flOutputMax );
pParticles->SetControlPoint( m_nOutControlPointNumber, Vector( flOutput, 0, 0 ));
}
}
//-----------------------------------------------------------------------------
// Remap Speed to CP Operator
//-----------------------------------------------------------------------------
class C_OP_RemapBoundingVolumetoCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapBoundingVolumetoCP );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nOutControlPointNumber;
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nOutControlPointNumber;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapBoundingVolumetoCP, "Remap Particle BBox Volume to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapBoundingVolumetoCP )
DMXELEMENT_UNPACK_FIELD( "input volume minimum in cubic units","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input volume maximum in cubic units","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "output control point", "-1", int, m_nOutControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapBoundingVolumetoCP );
void C_OP_RemapBoundingVolumetoCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_nOutControlPointNumber >= 0 )
{
Vector vecMax, vecMin;
pParticles->GetBounds( &vecMin, &vecMax );
Vector vecVolume = vecMax - vecMin;
float flVolume = vecVolume.x * vecVolume.y * vecVolume.z;
flVolume = pow( flVolume, 0.33333333f );
float flOutput = RemapValClamped( flVolume, m_flInputMin, m_flInputMax, m_flOutputMin, m_flOutputMax );
pParticles->SetControlPoint( m_nOutControlPointNumber, Vector( flOutput, 0, 0 ));
}
}
//-----------------------------------------------------------------------------
// Remap Field Average to CP Operator
//-----------------------------------------------------------------------------
class C_OP_RemapAverageScalarValuetoCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapAverageScalarValuetoCP );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nOutControlPointNumber;
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nOutControlPointNumber;
int m_nField;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapAverageScalarValuetoCP, "Remap Average Scalar Value to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapAverageScalarValuetoCP )
DMXELEMENT_UNPACK_FIELD_USERDATA( "Scalar field", "3", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "input volume minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input volume maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "output control point", "1", int, m_nOutControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapAverageScalarValuetoCP );
void C_OP_RemapAverageScalarValuetoCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flAvgValue = 0.0f;
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *Field = pParticles->GetFloatAttributePtr( m_nField, i );
flAvgValue += *Field;
}
flAvgValue = ( flAvgValue / pParticles->m_nActiveParticles );
float flOutput = RemapValClamped( flAvgValue, m_flInputMin, m_flInputMax, m_flOutputMin, m_flOutputMax );
pParticles->SetControlPoint( m_nOutControlPointNumber, Vector( flOutput, 0, 0 ));
}
//-----------------------------------------------------------------------------
// Ramp Scalar Linear - changes a scalar value at a set rate
//-----------------------------------------------------------------------------
class C_OP_RampScalarLinear : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RampScalarLinear );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK
| PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_bUsesStartEnd = !( m_flStartTime_min == 0 && m_flStartTime_max == 0 && m_flEndTime_min == 1 && m_flEndTime_max == 1 && m_bProportionalOp );
// Set values to clamp against at init rather than branching inside the per-particle loop
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_Ones;
}
else if ( ATTRIBUTES_WHICH_ARE_SIZE & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_FLT_MAX;
}
else
{
m_fl4MinCmp = Four_Negative_FLT_MAX;
m_fl4MaxCmp = Four_FLT_MAX;
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_RateMin;
float m_RateMax;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
fltx4 m_fl4MinCmp;
fltx4 m_fl4MaxCmp;
int m_nField;
bool m_bProportionalOp;
bool m_bUsesStartEnd;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RampScalarLinear, "Ramp Scalar Linear Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarLinear )
DMXELEMENT_UNPACK_FIELD_USERDATA( "ramp field", "3", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "ramp rate min", "0", float, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "ramp rate max", "0", float, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarLinear )
void C_OP_RampScalarLinear::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
CM128AttributeWriteIterator pRampField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4RateMin = ReplicateX4( m_RateMin );
fltx4 fl4RateWidth = ReplicateX4( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
if ( m_bUsesStartEnd )
{
fltx4 fl4LifeTime;
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
}
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4Rate = AddSIMD( fl4RateMin, MulSIMD( fl4RateWidth, pParticles->RandomFloat( *pParticleId, nRandomOffset ) ) );
fltx4 fl4RampVal = AddSIMD ( *pRampField, MulSIMD( fl4Rate, fl4ScaleFactor) );
*pRampField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4RampVal, m_fl4MaxCmp), m_fl4MinCmp ), *pRampField );
}
++pCreationTime;
++pLifeDuration;
++pRampField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Ramp Scalar Spline - ease in/out a scalar value over a curve with definable bias
//-----------------------------------------------------------------------------
class C_OP_RampScalarSpline : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RampScalarSpline );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK
| PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Set values to clamp against at init rather than branching inside the per-particle loop
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_Ones;
}
else if ( ATTRIBUTES_WHICH_ARE_SIZE & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_FLT_MAX;
}
else
{
m_fl4MinCmp = Four_Negative_FLT_MAX;
m_fl4MaxCmp = Four_FLT_MAX;
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_RateMin;
float m_RateMax;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flBias;
fltx4 m_fl4MinCmp;
fltx4 m_fl4MaxCmp;
int m_nField;
bool m_bProportionalOp;
bool m_bEaseOut;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RampScalarSpline, "Ramp Scalar Spline Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarSpline )
DMXELEMENT_UNPACK_FIELD_USERDATA( "ramp field", "3", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "ramp rate min", "0", float, m_RateMin )
DMXELEMENT_UNPACK_FIELD( "ramp rate max", "0", float, m_RateMax )
DMXELEMENT_UNPACK_FIELD( "start time min", "0", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start time max", "0", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "end time min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end time max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "start/end proportional", "1", bool, m_bProportionalOp )
DMXELEMENT_UNPACK_FIELD( "ease out", "0", bool, m_bEaseOut )
DMXELEMENT_UNPACK_FIELD( "bias", ".5", float, m_flBias )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarSpline )
void C_OP_RampScalarSpline::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4IAttributeIterator pParticleId ( PARTICLE_ATTRIBUTE_PARTICLE_ID, pParticles );
CM128AttributeWriteIterator pRampField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4StartTimeMin = ReplicateX4( m_flStartTime_min );
fltx4 fl4StartTimeWidth = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4EndTimeMin = ReplicateX4( m_flEndTime_min );
fltx4 fl4EndTimeWidth = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4RateMin = ReplicateX4( m_RateMin );
fltx4 fl4RateWidth = ReplicateX4( m_RateMax - m_RateMin );
int nCtr = pParticles->m_nPaddedActiveParticles;
fltx4 fl4Bias = PreCalcBiasParameter ( ReplicateX4( m_flBias ) ) ;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
fltx4 fl4StartTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 11);
fl4StartTime = AddSIMD( fl4StartTimeMin, MulSIMD( fl4StartTimeWidth, fl4StartTime ) );
fltx4 fl4EndTime= pParticles->RandomFloat( *pParticleId, nRandomOffset + 12);
fl4EndTime = AddSIMD( fl4EndTimeMin, MulSIMD( fl4EndTimeWidth, fl4EndTime ) );
if ( m_bProportionalOp )
{
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
}
else
{
fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
}
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4Rate = AddSIMD( fl4RateMin, MulSIMD( fl4RateWidth, pParticles->RandomFloat( *pParticleId, nRandomOffset ) ) );
fltx4 ooInRange = DivSIMD( Four_Ones, AddSIMD (Four_Epsilons, SubSIMD( fl4EndTime, fl4StartTime ) ) );
fltx4 fl4Spline = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), ooInRange );
fl4Spline = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, fl4Spline ) );
if ( m_bEaseOut )
{
bi32x4 fl4EaseOutMask = CmpGtSIMD( fl4Spline, Four_PointFives );
fl4Spline = MaskedAssign( fl4EaseOutMask, SubSIMD( Four_Ones, fl4Spline), fl4Spline );
fl4Spline = MulSIMD( Four_Twos, fl4Spline );
}
fl4Spline = BiasSIMD( fl4Spline, fl4Bias );
fltx4 fl4RampVal = AddSIMD ( *pRampField, MulSIMD( fl4Rate, MulSIMD( fl4Spline, fl4ScaleFactor ) ) );
*pRampField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4RampVal, m_fl4MaxCmp), m_fl4MinCmp ), *pRampField );
}
++pCreationTime;
++pLifeDuration;
++pRampField;
++pParticleId;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Ramp Scalar Linear Simple - linear ramp of scalar value - fast version
//-----------------------------------------------------------------------------
class C_OP_RampScalarLinearSimple : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RampScalarLinearSimple );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Set values to clamp against at init rather than branching inside the per-particle loop
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_Ones;
}
else if ( ATTRIBUTES_WHICH_ARE_SIZE & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_FLT_MAX;
}
else
{
m_fl4MinCmp = Four_Negative_FLT_MAX;
m_fl4MaxCmp = Four_FLT_MAX;
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_Rate;
float m_flStartTime;
float m_flEndTime;
fltx4 m_fl4MinCmp;
fltx4 m_fl4MaxCmp;
int m_nField;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RampScalarLinearSimple, "Ramp Scalar Linear Simple", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarLinearSimple )
DMXELEMENT_UNPACK_FIELD_USERDATA( "ramp field", "3", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "ramp rate", "0", float, m_Rate )
DMXELEMENT_UNPACK_FIELD( "start time", "0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "end time", "1", float, m_flEndTime )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarLinearSimple )
void C_OP_RampScalarLinearSimple::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128AttributeWriteIterator pRampField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4StartTime = ReplicateX4( m_flStartTime );
fltx4 fl4EndTime = ReplicateX4( m_flEndTime );
fltx4 fl4Rate = ReplicateX4( m_Rate );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4RampVal = AddSIMD ( *pRampField, MulSIMD( fl4Rate, fl4ScaleFactor ) );
*pRampField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4RampVal, m_fl4MaxCmp), m_fl4MinCmp ), *pRampField );
}
++pCreationTime;
++pLifeDuration;
++pRampField;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// Ramp Scalar Spline Simple - ease in/out a scalar value - fast version
//-----------------------------------------------------------------------------
class C_OP_RampScalarSplineSimple : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RampScalarSplineSimple );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nField;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
// Set values to clamp against at init rather than branching inside the per-particle loop
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_Ones;
}
else if ( ATTRIBUTES_WHICH_ARE_SIZE & ( 1 << m_nField ) )
{
m_fl4MinCmp = Four_Zeros;
m_fl4MaxCmp = Four_FLT_MAX;
}
else
{
m_fl4MinCmp = Four_Negative_FLT_MAX;
m_fl4MaxCmp = Four_FLT_MAX;
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_Rate;
float m_flStartTime;
float m_flEndTime;
fltx4 m_fl4MinCmp;
fltx4 m_fl4MaxCmp;
int m_nField;
bool m_bEaseOut;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RampScalarSplineSimple, "Ramp Scalar Spline Simple", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarSplineSimple )
DMXELEMENT_UNPACK_FIELD_USERDATA( "ramp field", "3", int, m_nField, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "ramp rate", "0", float, m_Rate )
DMXELEMENT_UNPACK_FIELD( "start time", "0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "end time", "1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD( "ease out", "0", bool, m_bEaseOut )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RampScalarSplineSimple )
void C_OP_RampScalarSplineSimple::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128AttributeWriteIterator pRampField ( m_nField, pParticles) ;
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4ScaleFactor = ReplicateX4( flStrength * pParticles->m_flDt );
fltx4 fl4StartTime = ReplicateX4( m_flStartTime );
fltx4 fl4EndTime = ReplicateX4( m_flEndTime );
fltx4 fl4Rate = ReplicateX4( m_Rate );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime;
fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 ooInRange = DivSIMD( Four_Ones, AddSIMD (Four_Epsilons, SubSIMD( fl4EndTime, fl4StartTime ) ) );
fltx4 fl4Spline = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), ooInRange );
fl4Spline = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, fl4Spline ) );
if ( m_bEaseOut )
{
bi32x4 fl4EaseOutMask = CmpGtSIMD( fl4Spline, Four_PointFives );
fl4Spline = MaskedAssign( fl4EaseOutMask, SubSIMD( Four_Ones, fl4Spline), fl4Spline );
fl4Spline = MulSIMD( Four_Twos, fl4Spline );
}
fl4Spline = SimpleSpline( fl4Spline );
fltx4 fl4RampVal = AddSIMD ( *pRampField, MulSIMD( fl4Rate, MulSIMD( fl4Spline, fl4ScaleFactor ) ) );
*pRampField = MaskedAssign( fl4GoodMask,
MaxSIMD( MinSIMD( fl4RampVal, m_fl4MaxCmp), m_fl4MinCmp ), *pRampField );
}
++pCreationTime;
++pLifeDuration;
++pRampField;
} while (--nCtr );
};
//-----------------------------------------------------------------------------
// noise Operator
//-----------------------------------------------------------------------------
class C_OP_Noise : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_Noise );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flOutputMin;
float m_flOutputMax;
fltx4 m_fl4NoiseScale;
bool m_bAdditive;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Noise, "Noise Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Noise )
DMXELEMENT_UNPACK_FLTX4( "noise coordinate scale", "0.1", m_fl4NoiseScale)
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "additive","0", bool, m_bAdditive )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Noise );
void C_OP_Noise::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeWriteIterator pAttr( m_nFieldOutput, pParticles );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
fltx4 CoordScale=m_fl4NoiseScale;
float fMin = m_flOutputMin;
float fMax = m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_ANGLES & (1 << m_nFieldOutput ) )
{
fMin *= ( M_PI / 180.0f );
fMax *= ( M_PI / 180.0f );
}
// calculate coefficients. noise retuns -1..1
fltx4 ValueScale=ReplicateX4( 0.5*(fMax-fMin ) );
fltx4 ValueBase=ReplicateX4( fMin + 0.5*( fMax - fMin ) );
int nActive = pParticles->m_nPaddedActiveParticles;
if ( m_bAdditive )
{
ValueBase = MulSIMD( ValueBase, ReplicateX4( pParticles->m_flDt ) );
ValueScale = MulSIMD( ValueScale, ReplicateX4( pParticles->m_flDt ) );
do
{
FourVectors Coord = *pXYZ;
Coord *= CoordScale;
*( pAttr )=AddSIMD( *( pAttr ), AddSIMD( ValueBase, MulSIMD( ValueScale, NoiseSIMD( Coord ) ) ) );
++pAttr;
++pXYZ;
} while( --nActive );
}
else
{
do
{
FourVectors Coord = *pXYZ;
Coord *= CoordScale;
*( pAttr )=AddSIMD( ValueBase, MulSIMD( ValueScale, NoiseSIMD( Coord ) ) );
++pAttr;
++pXYZ;
} while( --nActive );
}
}
//-----------------------------------------------------------------------------
// vector noise Operator
//-----------------------------------------------------------------------------
class C_OP_VectorNoise : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_VectorNoise );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
Vector m_vecOutputMin;
Vector m_vecOutputMax;
fltx4 m_fl4NoiseScale;
bool m_bAdditive;
};
DEFINE_PARTICLE_OPERATOR( C_OP_VectorNoise, "Noise Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_VectorNoise )
DMXELEMENT_UNPACK_FLTX4( "noise coordinate scale", "0.1", m_fl4NoiseScale)
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "6", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0 0 0", Vector, m_vecOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1 1 1", Vector, m_vecOutputMax )
DMXELEMENT_UNPACK_FIELD( "additive", "0", bool, m_bAdditive)
END_PARTICLE_OPERATOR_UNPACK( C_OP_VectorNoise );
void C_OP_VectorNoise::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pAttr( m_nFieldOutput, pParticles );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
fltx4 CoordScale = m_fl4NoiseScale;
// calculate coefficients. noise retuns -1..1
fltx4 ValueScaleX = ReplicateX4( 0.5*(m_vecOutputMax.x-m_vecOutputMin.x ) );
fltx4 ValueBaseX = ReplicateX4(m_vecOutputMin.x+0.5*( m_vecOutputMax.x-m_vecOutputMin.x ) );
fltx4 ValueScaleY = ReplicateX4( 0.5*(m_vecOutputMax.y-m_vecOutputMin.y ) );
fltx4 ValueBaseY = ReplicateX4(m_vecOutputMin.y+0.5*( m_vecOutputMax.y-m_vecOutputMin.y ) );
fltx4 ValueScaleZ = ReplicateX4( 0.5*(m_vecOutputMax.z-m_vecOutputMin.z ) );
fltx4 ValueBaseZ = ReplicateX4(m_vecOutputMin.z+0.5*( m_vecOutputMax.z-m_vecOutputMin.z ) );
FourVectors ofs_y;
ofs_y.DuplicateVector( Vector( 100000.5, 300000.25, 9000000.75 ) );
FourVectors ofs_z;
ofs_z.DuplicateVector( Vector( 110000.25, 310000.75, 9100000.5 ) );
int nActive = pParticles->m_nActiveParticles;
if ( m_bAdditive )
{
fltx4 fl4_dt = ReplicateX4( pParticles->m_flDt );
for( int i=0; i < nActive; i+=4 )
{
FourVectors Coord = *pXYZ;
Coord *= CoordScale;
pAttr->x=AddSIMD( pAttr->x, MulSIMD( fl4_dt, AddSIMD( ValueBaseX, MulSIMD( ValueScaleX, NoiseSIMD( Coord ) ) ) ) );
Coord += ofs_y;
pAttr->y=AddSIMD( pAttr->y, MulSIMD( fl4_dt, AddSIMD( ValueBaseY, MulSIMD( ValueScaleY, NoiseSIMD( Coord ) ) ) ) );
Coord += ofs_z;
pAttr->z=AddSIMD( pAttr->z, MulSIMD( fl4_dt, AddSIMD( ValueBaseZ, MulSIMD( ValueScaleZ, NoiseSIMD( Coord ) ) ) ) );
++pAttr;
++pXYZ;
}
}
else
{
for( int i=0; i < nActive; i+=4 )
{
FourVectors Coord = *pXYZ;
Coord *= CoordScale;
pAttr->x=AddSIMD( ValueBaseX, MulSIMD( ValueScaleX, NoiseSIMD( Coord ) ) );
Coord += ofs_y;
pAttr->y=AddSIMD( ValueBaseY, MulSIMD( ValueScaleY, NoiseSIMD( Coord ) ) );
Coord += ofs_z;
pAttr->z=AddSIMD( ValueBaseZ, MulSIMD( ValueScaleZ, NoiseSIMD( Coord ) ) );
++pAttr;
++pXYZ;
}
}
}
//-----------------------------------------------------------------------------
// Decay Operator (Lifespan limiter - kills dead particles)
//-----------------------------------------------------------------------------
class C_OP_Decay : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_Decay );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Decay, "Lifespan Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Decay )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Decay )
void C_OP_Decay::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
for ( int i = 0; i < nLimit; i+= 4 )
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4KillMask = CmpLeSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4Age = SubSIMD( fl4CurTime, *pCreationTime );
//test for low framerate problems
//fltx4 fl4Dt = ReplicateX4( pParticles->m_flDt );
//fl4Age = AddSIMD( fl4Age, fl4Dt );
//endtest
fl4KillMask = OrSIMD( fl4KillMask, CmpGeSIMD( fl4Age, fl4LifeDuration ) );
if ( IsAnyTrue( fl4KillMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pCreationTime;
++pLifeDuration;
}
}
//-----------------------------------------------------------------------------
// Lifespan Minimum Velocity Decay Operator (kills particles if they cease moving)
//-----------------------------------------------------------------------------
class C_OP_VelocityDecay : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_VelocityDecay );
float m_flMinVelocity;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_flMinVelocity = MAX( MIN_PARTICLE_SPEED, m_flMinVelocity );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_VelocityDecay, "Lifespan Minimum Velocity Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityDecay )
DMXELEMENT_UNPACK_FIELD( "minimum velocity","1", float, m_flMinVelocity )
END_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityDecay )
void C_OP_VelocityDecay::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
fltx4 fl4MinVelocity = ReplicateX4( m_flMinVelocity );
fltx4 fl4Dt = ReplicateX4( pParticles->m_flDt );
fl4Dt = ReciprocalEstSIMD( fl4Dt );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
for ( int i = 0; i < nLimit; i+= 4 )
{
bi32x4 fl4KillMask = CmpLeSIMD( MulSIMD ( (*pXYZ - *pPrevXYZ).length(), fl4Dt ), fl4MinVelocity );
if ( IsAnyTrue( fl4KillMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pXYZ;
++pPrevXYZ;
}
}
//-----------------------------------------------------------------------------
// Lifespan Minimum Alpha Decay Operator (kills particles if they cross alpha boundary)
//-----------------------------------------------------------------------------
class C_OP_AlphaDecay : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_AlphaDecay );
float m_flMinAlpha;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_ALPHA_MASK | PARTICLE_ATTRIBUTE_ALPHA2_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_flMinAlpha = MAX( 0, m_flMinAlpha );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_AlphaDecay, "Lifespan Minimum Alpha Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_AlphaDecay )
DMXELEMENT_UNPACK_FIELD( "minimum alpha","0", float, m_flMinAlpha )
END_PARTICLE_OPERATOR_UNPACK( C_OP_AlphaDecay )
void C_OP_AlphaDecay::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
fltx4 fl4MinAlpha = ReplicateX4( m_flMinAlpha + FLT_EPSILON );
CM128AttributeIterator pAlpha( PARTICLE_ATTRIBUTE_ALPHA, pParticles );
CM128AttributeIterator pAlpha2( PARTICLE_ATTRIBUTE_ALPHA2, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
for ( int i = 0; i < nLimit; i+= 4 )
{
bi32x4 fl4KillMask = CmpLeSIMD( MulSIMD( *pAlpha, *pAlpha2 ), fl4MinAlpha );
if ( IsAnyTrue( fl4KillMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pAlpha;
++pAlpha2;
}
}
//-----------------------------------------------------------------------------
// Lifespan Minimum Radius Decay Operator (kills particles if they cross radius boundary)
//-----------------------------------------------------------------------------
class C_OP_RadiusDecay : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RadiusDecay );
float m_flMinRadius;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_RADIUS_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RadiusDecay, "Lifespan Minimum Radius Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RadiusDecay )
DMXELEMENT_UNPACK_FIELD( "minimum radius","1", float, m_flMinRadius )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RadiusDecay )
void C_OP_RadiusDecay::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
fltx4 fl4MinRadius = ReplicateX4( m_flMinRadius );
CM128AttributeIterator pRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
for ( int i = 0; i < nLimit; i+= 4 )
{
bi32x4 fl4KillMask = CmpLeSIMD( *pRadius, fl4MinRadius );
if ( IsAnyTrue( fl4KillMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4KillMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pRadius;
}
}
//-----------------------------------------------------------------------------
// Decay Maintain Count Operator (Kills particles if they go beyond specified number)
//-----------------------------------------------------------------------------
class C_OP_DecayMaintainCount : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DecayMaintainCount );
struct C_OP_MaintainCountContext_t
{
int m_nPendingDecay;
};
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_nScaleControlPoint = clamp( m_nScaleControlPoint, -1, MAX_PARTICLE_CONTROL_POINTS );
m_nScaleControlPointField = clamp( m_nScaleControlPointField, 0, 2 );
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( C_OP_MaintainCountContext_t );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_MaintainCountContext_t *pCtx=reinterpret_cast<C_OP_MaintainCountContext_t *>( pContext );
pCtx->m_nPendingDecay = 0;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nParticlesToMaintain;
int m_nScaleControlPoint;
int m_nScaleControlPointField;
float m_flDecayDelay;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DecayMaintainCount, "Lifespan Maintain Count Decay", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DecayMaintainCount )
DMXELEMENT_UNPACK_FIELD( "count to maintain", "100", int, m_nParticlesToMaintain )
DMXELEMENT_UNPACK_FIELD( "decay delay", "0", float, m_flDecayDelay )
DMXELEMENT_UNPACK_FIELD( "maintain count scale control point", "-1", int, m_nScaleControlPoint )
DMXELEMENT_UNPACK_FIELD( "maintain count scale control point field", "0", int, m_nScaleControlPointField )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DecayMaintainCount )
void C_OP_DecayMaintainCount::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C_OP_MaintainCountContext_t *pCtx=reinterpret_cast<C_OP_MaintainCountContext_t *>( pContext );
int nActualParticlesToMaintain = m_nParticlesToMaintain;
if ( ( m_nScaleControlPoint >= 0 ) )
{
nActualParticlesToMaintain = MIN( pParticles->m_pDef->m_nMaxParticles, m_nParticlesToMaintain * pParticles->GetControlPointAtCurrentTime(m_nScaleControlPoint)[m_nScaleControlPointField] );
}
int nParticleKillQueue = 0;
if ( pParticles->m_nActiveParticles > nActualParticlesToMaintain )
{
nParticleKillQueue = pParticles->m_nActiveParticles - nActualParticlesToMaintain;
nParticleKillQueue -= pCtx->m_nPendingDecay;
}
//else
//{
// pCtx->m_nPendingDecay = 0;
//}
const float *pCreationTime;
float *pLifeDuration;
float flLifeTime;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
pLifeDuration = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
flLifeTime = pParticles->m_flCurTime - *pCreationTime;
if ( flLifeTime > *pLifeDuration )
{
pParticles->KillParticle( i );
nParticleKillQueue--;
pCtx->m_nPendingDecay = MAX( 0, pCtx->m_nPendingDecay - 1 );
}
else if ( nParticleKillQueue > 0 && ( *pLifeDuration > pParticles->m_flCurTime + m_flDecayDelay ) )
{
*pLifeDuration = pParticles->m_flCurTime + m_flDecayDelay - *pCreationTime;
nParticleKillQueue--;
pCtx->m_nPendingDecay++;
}
}
}
//-----------------------------------------------------------------------------
// Random Cull Operator - Randomly culls particles before their lifespan
//-----------------------------------------------------------------------------
class C_OP_Cull : public CParticleOperatorInstance
{
float m_flCullPerc;
float m_flCullStart;
float m_flCullEnd;
float m_flCullExp;
DECLARE_PARTICLE_OPERATOR( C_OP_Cull );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Cull, "Cull Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Cull )
DMXELEMENT_UNPACK_FIELD( "Cull Start Time", "0", float, m_flCullStart )
DMXELEMENT_UNPACK_FIELD( "Cull End Time", "1", float, m_flCullEnd )
DMXELEMENT_UNPACK_FIELD( "Cull Time Exponent", "1", float, m_flCullExp )
DMXELEMENT_UNPACK_FIELD( "Cull Percentage", "0.5", float, m_flCullPerc )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Cull )
void C_OP_Cull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
const float *pCreationTime;
const float *pLifeDuration;
float flLifeTime;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
pLifeDuration = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
float flCullRank = pParticles->RandomFloat( 0.0f, 1.0f);
float flCullTime = pParticles->RandomFloatExp( m_flCullStart, m_flCullEnd, m_flCullExp );
if ( flCullRank > ( m_flCullPerc * flStrength ) )
{
continue;
}
// Find our life percentage
flLifeTime = clamp( ( pParticles->m_flCurTime - *pCreationTime ) / ( *pLifeDuration ), 0.0f, 1.0f );
if ( flLifeTime >= m_flCullStart && flLifeTime <= m_flCullEnd && flLifeTime >= flCullTime )
{
pParticles->KillParticle( i );
}
}
}
//-----------------------------------------------------------------------------
// generic spin operator
//-----------------------------------------------------------------------------
class CGeneralSpin : public CParticleOperatorInstance
{
protected:
virtual int GetAttributeToSpin( void ) const =0;
uint32 GetWrittenAttributes( void ) const
{
if ( m_nSpinRateDegrees != 0.0 )
return (1 << GetAttributeToSpin() );
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef )
{
m_fSpinRateRadians = (float) m_nSpinRateDegrees * ( M_PI / 180.0f );
m_fSpinRateMinRadians = (float) m_nSpinRateMinDegrees * ( M_PI / 180.0f );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nSpinRateDegrees;
int m_nSpinRateMinDegrees;
float m_fSpinRateRadians;
float m_fSpinRateStopTime;
float m_fSpinRateMinRadians;
};
void CGeneralSpin::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float fCurSpinRate = m_fSpinRateRadians * flStrength;
if ( fCurSpinRate == 0.0 )
return;
bool bIsInterpolating = pParticles->IsUsingInterpolatedRendering();
float dt = pParticles->m_flDt;
float drot = dt * fabs( fCurSpinRate * 2.0f * M_PI );
if ( m_fSpinRateStopTime == 0.0f )
{
drot = fmod( drot, (float)(2.0f * M_PI) );
}
if ( fCurSpinRate < 0.0f )
{
drot = -drot;
}
fltx4 Rot_Add = ReplicateX4( drot );
fltx4 Pi_2 = ReplicateX4( 2.0*M_PI );
fltx4 nPi_2 = ReplicateX4( -2.0*M_PI );
// FIXME: This is wrong
fltx4 minSpeedRadians = ReplicateX4( dt * fabs( m_fSpinRateMinRadians * 2.0f * M_PI ) );
fltx4 now = pParticles->m_fl4CurTime;
fltx4 SpinRateStopTime = ReplicateX4( m_fSpinRateStopTime );
CM128AttributeIterator pCreationTimeStamp( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128AttributeWriteIterator pRot( GetAttributeToSpin(), pParticles );
int nActive = pParticles->m_nActiveParticles;
for( int i=0; i < nActive; i+=4 )
{
// HACK: Rather than redo this, I'm simply remapping the stop time into the percentage of lifetime, rather than seconds
fltx4 LifeSpan = *pLifeDuration;
fltx4 SpinFadePerc = Four_Zeros;
fltx4 OOSpinFadeRate = Four_Zeros;
if ( m_fSpinRateStopTime )
{
SpinFadePerc = MulSIMD( LifeSpan, SpinRateStopTime );
OOSpinFadeRate = DivSIMD( Four_Ones, SpinFadePerc );
}
fltx4 Age = SubSIMD( now, *pCreationTimeStamp );
fltx4 RScale = MaxSIMD( Four_Zeros,
SubSIMD( Four_Ones, MulSIMD( Age, OOSpinFadeRate ) ) );
// Cap the rotation at a minimum speed
fltx4 deltaRot = MulSIMD( Rot_Add, RScale );
bi32x4 Tooslow = CmpLeSIMD( deltaRot, minSpeedRadians );
deltaRot = OrSIMD( AndSIMD( Tooslow, minSpeedRadians ), AndNotSIMD( Tooslow, deltaRot ) );
fltx4 NewRot = AddSIMD( *pRot, deltaRot );
if ( ! bIsInterpolating )
{
// if we are interpolating, wrapping the angle around will cause interpolation errors.
// I don't think we actually need to wrap, but I'll only avoid it when interpolation
// (not a default) is on for safety's sake.
//now, cap at +/- 2*pi
bi32x4 Toobig = CmpGeSIMD( NewRot, Pi_2 );
bi32x4 Toosmall = CmpLeSIMD( NewRot, nPi_2 );
NewRot = OrSIMD( AndSIMD( Toobig, SubSIMD( NewRot, Pi_2 ) ),
AndNotSIMD( Toobig, NewRot ) );
NewRot = OrSIMD( AndSIMD( Toosmall, AddSIMD( NewRot, Pi_2 ) ),
AndNotSIMD( Toosmall, NewRot ) );
}
*( pRot )= NewRot;
++pRot;
++pCreationTimeStamp;
++pLifeDuration;
}
}
//-----------------------------------------------------------------------------
// generic spin operator, version 2. Uses rotation_speed
//-----------------------------------------------------------------------------
class CSpinUpdateBase : public CParticleOperatorInstance
{
protected:
virtual int GetAttributeToSpin( void ) const =0;
virtual int GetSpinSpeedAttribute( void ) const =0;
uint32 GetWrittenAttributes( void ) const
{
return (1 << GetAttributeToSpin() );
}
uint32 GetReadAttributes( void ) const
{
return ( 1 << GetAttributeToSpin() ) | ( 1 << GetSpinSpeedAttribute() ) |
PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_ROTATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
void CSpinUpdateBase::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
CM128AttributeIterator pCreationTimeStamp( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pRotationSpeed( GetSpinSpeedAttribute(), pParticles );
CM128AttributeWriteIterator pRot( GetAttributeToSpin(), pParticles );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4Dt = ReplicateX4( pParticles->m_flDt );
fltx4 fl4ScaleFactor = ReplicateX4( flStrength );
int nActive = pParticles->m_nActiveParticles;
for( int i=0; i < nActive; i += 4 )
{
fltx4 fl4SimTime = MinSIMD( fl4Dt, SubSIMD( fl4CurTime, *pCreationTimeStamp ) );
fl4SimTime = MulSIMD( fl4SimTime, fl4ScaleFactor );
*pRot = MaddSIMD( fl4SimTime, *pRotationSpeed, *pRot );
++pRot;
++pRotationSpeed;
++pCreationTimeStamp;
}
}
class C_OP_Spin : public CGeneralSpin
{
DECLARE_PARTICLE_OPERATOR( C_OP_Spin );
int GetAttributeToSpin( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION;
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_Spin, "Rotation Spin Roll", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Spin )
DMXELEMENT_UNPACK_FIELD( "spin_rate_degrees", "0", int, m_nSpinRateDegrees )
DMXELEMENT_UNPACK_FIELD( "spin_stop_time", "0", float, m_fSpinRateStopTime )
DMXELEMENT_UNPACK_FIELD( "spin_rate_min", "0", int, m_nSpinRateMinDegrees )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Spin )
class C_OP_SpinUpdate : public CSpinUpdateBase
{
DECLARE_PARTICLE_OPERATOR( C_OP_SpinUpdate );
virtual int GetAttributeToSpin( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION;
}
virtual int GetSpinSpeedAttribute( void ) const
{
return PARTICLE_ATTRIBUTE_ROTATION_SPEED;
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_SpinUpdate, "Rotation Basic", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SpinUpdate )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SpinUpdate )
class C_OP_SpinYaw : public CGeneralSpin
{
DECLARE_PARTICLE_OPERATOR( C_OP_SpinYaw );
int GetAttributeToSpin( void ) const
{
return PARTICLE_ATTRIBUTE_YAW;
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_SpinYaw, "Rotation Spin Yaw", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SpinYaw )
DMXELEMENT_UNPACK_FIELD( "yaw_rate_degrees", "0", int, m_nSpinRateDegrees )
DMXELEMENT_UNPACK_FIELD( "yaw_stop_time", "0", float, m_fSpinRateStopTime )
DMXELEMENT_UNPACK_FIELD( "yaw_rate_min", "0", int, m_nSpinRateMinDegrees )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SpinYaw )
//-----------------------------------------------------------------------------
// Size changing operator
//-----------------------------------------------------------------------------
class C_OP_InterpolateRadius : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_InterpolateRadius );
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_RADIUS_MASK;
}
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_RADIUS_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
void InitParams( CParticleSystemDefinition *pDef )
{
m_flBias = ( m_flBias != 0.0f ) ? m_flBias : 0.5f;
m_fl4BiasParam = PreCalcBiasParameter( ReplicateX4( m_flBias ) );
}
float m_flStartTime;
float m_flEndTime;
float m_flStartScale;
float m_flEndScale;
bool m_bEaseInAndOut;
float m_flBias;
fltx4 m_fl4BiasParam;
};
DEFINE_PARTICLE_OPERATOR( C_OP_InterpolateRadius, "Radius Scale", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_InterpolateRadius )
DMXELEMENT_UNPACK_FIELD( "start_time", "0", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "end_time", "1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD( "radius_start_scale", "1", float, m_flStartScale )
DMXELEMENT_UNPACK_FIELD( "radius_end_scale", "1", float, m_flEndScale )
DMXELEMENT_UNPACK_FIELD( "ease_in_and_out", "0", bool, m_bEaseInAndOut )
DMXELEMENT_UNPACK_FIELD( "scale_bias", "0.5", float, m_flBias )
END_PARTICLE_OPERATOR_UNPACK( C_OP_InterpolateRadius )
void C_OP_InterpolateRadius::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_flEndTime <= m_flStartTime )
return;
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
CM128AttributeWriteIterator pRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles );
CM128InitialAttributeIterator pInitialRadius( PARTICLE_ATTRIBUTE_RADIUS, pParticles );
fltx4 fl4StartTime = ReplicateX4( m_flStartTime );
fltx4 fl4EndTime = ReplicateX4( m_flEndTime );
fltx4 fl4OOTimeWidth = ReciprocalSIMD( SubSIMD( fl4EndTime, fl4StartTime ) );
fltx4 fl4ScaleWidth = ReplicateX4( m_flEndScale - m_flStartScale );
fltx4 fl4StartScale = ReplicateX4( m_flStartScale );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
int nCtr = pParticles->m_nPaddedActiveParticles;
if ( m_bEaseInAndOut )
{
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4FadeWindow = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), fl4OOTimeWidth );
fl4FadeWindow = AddSIMD( fl4StartScale, MulSIMD( SimpleSpline( fl4FadeWindow ), fl4ScaleWidth ) );
// !!speed!! - can anyone really tell the diff between spline and lerp here?
*pRadius = MaskedAssign(
fl4GoodMask, MulSIMD( *pInitialRadius, fl4FadeWindow ), *pRadius );
}
++pCreationTime;
++pLifeDuration;
++pRadius;
++pInitialRadius;
} while (--nCtr );
}
else
{
if ( m_flBias == 0.5f ) // no bias case
{
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4FadeWindow = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), fl4OOTimeWidth );
fl4FadeWindow = AddSIMD( fl4StartScale, MulSIMD( fl4FadeWindow, fl4ScaleWidth ) );
*pRadius = MaskedAssign( fl4GoodMask, MulSIMD( *pInitialRadius, fl4FadeWindow ), *pRadius );
}
++pCreationTime;
++pLifeDuration;
++pRadius;
++pInitialRadius;
} while (--nCtr );
}
else
{
// use rational approximation to bias
do
{
fltx4 fl4LifeDuration = *pLifeDuration;
bi32x4 fl4GoodMask = CmpGtSIMD( fl4LifeDuration, Four_Zeros );
fltx4 fl4LifeTime = MulSIMD( SubSIMD( fl4CurTime, *pCreationTime ), ReciprocalEstSIMD( fl4LifeDuration ) ); // maybe need accurate div here?
fl4GoodMask = AndSIMD( fl4GoodMask, CmpGeSIMD( fl4LifeTime, fl4StartTime ) );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLtSIMD( fl4LifeTime, fl4EndTime ) );
if ( IsAnyTrue( fl4GoodMask ) )
{
fltx4 fl4FadeWindow = MulSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), fl4OOTimeWidth );
fl4FadeWindow = AddSIMD( fl4StartScale, MulSIMD( BiasSIMD( fl4FadeWindow, m_fl4BiasParam ), fl4ScaleWidth ) );
*pRadius = MaskedAssign(
fl4GoodMask,
MulSIMD( *pInitialRadius, fl4FadeWindow ), *pRadius );
}
++pCreationTime;
++pLifeDuration;
++pRadius;
++pInitialRadius;
} while (--nCtr );
}
}
}
//-----------------------------------------------------------------------------
// Color Fade
//-----------------------------------------------------------------------------
class C_OP_ColorInterpolate : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_ColorInterpolate );
uint32 GetReadInitialAttributes( void ) const
{
return (1 << m_nFieldOutput );
}
uint32 GetWrittenAttributes( void ) const
{
return (1 << m_nFieldOutput );
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK;
}
virtual void InitParams( CParticleSystemDefinition *pDef )
{
m_flColorFade[0] = m_ColorFade[0] / 255.0f;
m_flColorFade[1] = m_ColorFade[1] / 255.0f;
m_flColorFade[2] = m_ColorFade[2] / 255.0f;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
Color m_ColorFade;
float m_flColorFade[3];
float m_flFadeStartTime;
float m_flFadeEndTime;
int m_nFieldOutput;
bool m_bEaseInOut;
};
void C_OP_ColorInterpolate::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pColor( m_nFieldOutput, pParticles );
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
C4VInitialAttributeIterator pInitialColor( m_nFieldOutput, pParticles );
if ( m_flFadeEndTime == m_flFadeStartTime )
return;
fltx4 ooInRange = ReplicateX4( 1.0 / ( m_flFadeEndTime - m_flFadeStartTime ) );
fltx4 curTime = pParticles->m_fl4CurTime;
fltx4 lowRange = ReplicateX4( m_flFadeStartTime );
fltx4 targetR = ReplicateX4( m_flColorFade[0] );
fltx4 targetG = ReplicateX4( m_flColorFade[1] );
fltx4 targetB = ReplicateX4( m_flColorFade[2] );
int nCtr = pParticles->m_nPaddedActiveParticles;
if ( m_bEaseInOut )
{
do
{
bi32x4 goodMask = CmpGtSIMD( *pLifeDuration, Four_Zeros );
if ( IsAnyTrue( goodMask ) )
{
fltx4 flLifeTime = DivSIMD( SubSIMD( curTime, *pCreationTime ), *pLifeDuration );
fltx4 T = MulSIMD( SubSIMD( flLifeTime, lowRange ), ooInRange );
T = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, T ) );
T = SimpleSpline( T );
pColor->x = MaskedAssign( goodMask, AddSIMD( pInitialColor->x, MulSIMD( T, SubSIMD( targetR, pInitialColor->x ) ) ), pColor->x );
pColor->y = MaskedAssign( goodMask, AddSIMD( pInitialColor->y, MulSIMD( T, SubSIMD( targetG, pInitialColor->y ) ) ), pColor->y );
pColor->z = MaskedAssign( goodMask, AddSIMD( pInitialColor->z, MulSIMD( T, SubSIMD( targetB, pInitialColor->z ) ) ), pColor->z );
}
++pColor;
++pCreationTime;
++pLifeDuration;
++pInitialColor;
} while( --nCtr );
}
else
{
do
{
bi32x4 goodMask = CmpGtSIMD( *pLifeDuration, Four_Zeros );
if ( IsAnyTrue( goodMask ) )
{
fltx4 flLifeTime = DivSIMD( SubSIMD( curTime, *pCreationTime ), *pLifeDuration );
fltx4 T = MulSIMD( SubSIMD( flLifeTime, lowRange ), ooInRange );
T = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, T ) );
pColor->x = MaskedAssign( goodMask, AddSIMD( pInitialColor->x, MulSIMD( T, SubSIMD( targetR, pInitialColor->x ) ) ), pColor->x );
pColor->y = MaskedAssign( goodMask, AddSIMD( pInitialColor->y, MulSIMD( T, SubSIMD( targetG, pInitialColor->y ) ) ), pColor->y );
pColor->z = MaskedAssign( goodMask, AddSIMD( pInitialColor->z, MulSIMD( T, SubSIMD( targetB, pInitialColor->z ) ) ), pColor->z );
}
++pColor;
++pCreationTime;
++pLifeDuration;
++pInitialColor;
} while( --nCtr );
}
}
DEFINE_PARTICLE_OPERATOR( C_OP_ColorInterpolate, "Color Fade", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ColorInterpolate )
DMXELEMENT_UNPACK_FIELD( "color_fade", "255 255 255 255", Color, m_ColorFade )
DMXELEMENT_UNPACK_FIELD( "fade_start_time", "0", float, m_flFadeStartTime )
DMXELEMENT_UNPACK_FIELD( "fade_end_time", "1", float, m_flFadeEndTime )
DMXELEMENT_UNPACK_FIELD( "ease_in_and_out", "1", bool, m_bEaseInOut )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "6", int, m_nFieldOutput, "intchoice particlefield_vector" )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ColorInterpolate )
//-----------------------------------------------------------------------------
// Position Lock to Control Point
// Locks all particles to the specified control point
// Useful for making particles move with their emitter and so forth
//-----------------------------------------------------------------------------
class C_OP_PositionLock : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_PositionLock );
struct C_OP_PositionLockContext_t
{
Vector m_vPrevPosition;
matrix3x4_t m_matPrevTransform;
};
int m_nControlPointNumber;
Vector m_vPrevPosition;
float m_flStartTime_min;
float m_flStartTime_max;
float m_flStartTime_exp;
float m_flEndTime_min;
float m_flEndTime_max;
float m_flEndTime_exp;
float m_flRange;
bool m_bLockRot;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nControlPointNumber;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nControlPointNumber = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( C_OP_PositionLockContext_t );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_PositionLockContext_t *pCtx=reinterpret_cast<C_OP_PositionLockContext_t *>( pContext );
pCtx->m_vPrevPosition = vec3_origin;
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &pCtx->m_matPrevTransform );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PositionLock , "Movement Lock to Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PositionLock )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "start_fadeout_min", "1", float, m_flStartTime_min )
DMXELEMENT_UNPACK_FIELD( "start_fadeout_max", "1", float, m_flStartTime_max )
DMXELEMENT_UNPACK_FIELD( "start_fadeout_exponent", "1", float, m_flStartTime_exp )
DMXELEMENT_UNPACK_FIELD( "end_fadeout_min", "1", float, m_flEndTime_min )
DMXELEMENT_UNPACK_FIELD( "end_fadeout_max", "1", float, m_flEndTime_max )
DMXELEMENT_UNPACK_FIELD( "end_fadeout_exponent", "1", float, m_flEndTime_exp )
DMXELEMENT_UNPACK_FIELD( "distance fade range", "0", float, m_flRange )
DMXELEMENT_UNPACK_FIELD( "lock rotation", "0", bool, m_bLockRot )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PositionLock )
#ifdef OLD_NON_SSE_POSLOCK_FOR_TESTING
void C_OP_PositionLock::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nControlPointNumber );
// At initialization, set prevposition to the control point to prevent random placements/velocities
C_OP_PositionLockContext_t *pCtx=reinterpret_cast<C_OP_PositionLockContext_t *>( pContext );
if ( pCtx->m_vPrevPosition == Vector (0, 0, 0) )
{
pCtx->m_vPrevPosition = vecControlPoint;
}
// Control point movement delta
int nRandomOffset = pParticles->OperatorRandomSampleOffset();
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
Vector vecPrevCPPos = pCtx->m_vPrevPosition;
const float *pCreationTime;
const float *pLifeDuration;
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
pLifeDuration = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
float flLifeTime = *pLifeDuration != 0.0f ? clamp( ( pParticles->m_flCurTime - *pCreationTime ) / ( *pLifeDuration ), 0.0f, 1.0f ) : 0.0f;
if ( *pCreationTime >= ( pParticles->m_flCurTime - pParticles->m_flDt ) )
{
pParticles->GetControlPointAtTime( m_nControlPointNumber, *pCreationTime, &vecPrevCPPos );
}
Vector vDelta = vecControlPoint - vecPrevCPPos;
vDelta *= flStrength;
// clamp activity to start/end time
int nParticleId = *pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_PARTICLE_ID, i );
float flStartTime = pParticles->RandomFloatExp( nParticleId + nRandomOffset + 9, m_flStartTime_min, m_flStartTime_max, m_flStartTime_exp );
float flEndTime = pParticles->RandomFloatExp( nParticleId + nRandomOffset + 10, m_flEndTime_min, m_flEndTime_max, m_flEndTime_exp );
// bias attachedness by fadeout
float flLockScale = SimpleSplineRemapValClamped( flLifeTime, flStartTime, flEndTime, 1.0f, 0.0f );
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecParticlePosition, vecParticlePosition_prev ;
SetVectorFromAttribute( vecParticlePosition, xyz );
SetVectorFromAttribute( vecParticlePosition_prev, xyz_prev );
float flDampenAmount = 1;
if ( m_flRange != 0 )
{
Vector ofs;
ofs = (vecParticlePosition + ( vDelta * flLockScale ) ) - vecControlPoint;
float flDistance = ofs.Length();
flDampenAmount = SimpleSplineRemapValClamped( flDistance, 0, m_flRange, 1.0f, 0.0f );
flDampenAmount = Bias( flDampenAmount, .2 );
}
Vector vParticleDelta = vDelta * flLockScale * flDampenAmount;
vecParticlePosition += vParticleDelta;
vecParticlePosition_prev += vParticleDelta;
SetVectorAttribute( xyz, vecParticlePosition );
SetVectorAttribute( xyz_prev, vecParticlePosition_prev );
}
// Store off the control point position for the next delta computation
pCtx->m_vPrevPosition = vecControlPoint;
};
#else
void C_OP_PositionLock::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nControlPointNumber );
matrix3x4_t matCurrentTransform;
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &matCurrentTransform );
// At initialization, set prevposition to the control point to prevent random placements/velocities
C_OP_PositionLockContext_t *pCtx=reinterpret_cast<C_OP_PositionLockContext_t *>( pContext );
if ( pCtx->m_vPrevPosition == Vector (0, 0, 0) )
{
pCtx->m_vPrevPosition = vecControlPoint;
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &pCtx->m_matPrevTransform );
}
else
{
if ( ( !m_bLockRot && pCtx->m_vPrevPosition == vecControlPoint ) || ( m_bLockRot && MatricesAreEqual ( matCurrentTransform, pCtx->m_matPrevTransform ) ))
return;
}
Vector vDelta;
matrix3x4_t matTransformLock;
if ( m_bLockRot )
{
matrix3x4_t matPrev;
MatrixInvert( pCtx->m_matPrevTransform, matPrev );
MatrixMultiply( matCurrentTransform, matPrev, matTransformLock);
}
int nContext = GetSIMDRandContext();
// Control point movement delta - not full transform
vDelta = vecControlPoint - pCtx->m_vPrevPosition;
vDelta *= flStrength;
FourVectors v4Delta;
v4Delta.DuplicateVector( vDelta );
FourVectors v4ControlPoint;
v4ControlPoint.DuplicateVector( vecControlPoint );
C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
fltx4 fl4_Dt = ReplicateX4( pParticles->m_flDt );
int nCtr = pParticles->m_nPaddedActiveParticles;
bool bUseRange = ( m_flRange != 0.0 );
fltx4 fl4OORange = Four_Ones;
if ( bUseRange )
fl4OORange = ReplicateX4( 1.0 / m_flRange );
fltx4 fl4BiasParm = PreCalcBiasParameter( ReplicateX4( 0.2 ) );
if ( m_flStartTime_min >= 1.0 ) // always locked on
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
do
{
fltx4 fl4ParticleAge = SubSIMD( pParticles->m_fl4CurTime, *pCreationTime);
fltx4 fl4CreationFrameBias = MinSIMD( fl4ParticleAge, fl4_Dt );
fl4CreationFrameBias = MulSIMD( DivSIMD( Four_Ones, fl4_Dt ), fl4CreationFrameBias );
FourVectors v4ScaledDelta = v4Delta;
v4ScaledDelta *= fl4CreationFrameBias;
fltx4 fl4LockStrength = ReplicateX4( flStrength );
// ok, some of these particles should be moved
if ( bUseRange )
{
FourVectors ofs = *pXYZ;
ofs += v4ScaledDelta;
ofs -= v4ControlPoint;
fltx4 fl4Dist = ofs.length();
fl4Dist = BiasSIMD( MinSIMD( Four_Ones, MulSIMD( fl4Dist, fl4OORange ) ), fl4BiasParm );
v4ScaledDelta *= SubSIMD( Four_Ones, fl4Dist );
fl4LockStrength = SubSIMD( Four_Ones, MulSIMD ( fl4Dist, fl4LockStrength ) );
}
if ( m_bLockRot )
{
fl4LockStrength = MulSIMD( fl4LockStrength, fl4CreationFrameBias );
FourVectors fvCurPos = *pXYZ;
FourVectors fvPrevPos = *pPrevXYZ;
fvCurPos.TransformBy( matTransformLock );
fvPrevPos.TransformBy( matTransformLock );
fvCurPos -= *pXYZ;
fvCurPos *= fl4LockStrength;
fvPrevPos -= *pPrevXYZ;
fvPrevPos *= fl4LockStrength;
*(pXYZ) += fvCurPos;
*(pPrevXYZ) += fvPrevPos;
}
else
{
*(pXYZ) += v4ScaledDelta;
*(pPrevXYZ) += v4ScaledDelta;
}
++pCreationTime;
++pXYZ;
++pPrevXYZ;
} while ( --nCtr );
}
else
{
CM128AttributeIterator pCreationTime( PARTICLE_ATTRIBUTE_CREATION_TIME, pParticles );
CM128AttributeIterator pLifeDuration( PARTICLE_ATTRIBUTE_LIFE_DURATION, pParticles );
fltx4 fl4CurTime = pParticles->m_fl4CurTime;
fltx4 fl4StartRange = ReplicateX4( m_flStartTime_max - m_flStartTime_min );
fltx4 fl4StartBias = ReplicateX4( m_flStartTime_min );
fltx4 fl4EndRange = ReplicateX4( m_flEndTime_max - m_flEndTime_min );
fltx4 fl4EndBias = ReplicateX4( m_flEndTime_min );
int nSSEStartExponent = m_flStartTime_exp * 4.0;
int nSSEEndExponent = m_flEndTime_exp * 4.0;
do
{
fltx4 fl4LifeTime = SubSIMD( fl4CurTime, *pCreationTime );
fltx4 fl4CreationFrameBias = MinSIMD( fl4LifeTime, fl4_Dt );
fl4CreationFrameBias = MulSIMD( DivSIMD( Four_Ones, fl4_Dt ), fl4CreationFrameBias );
FourVectors v4ScaledDelta = v4Delta;
v4ScaledDelta *= fl4CreationFrameBias;
fl4LifeTime = MaxSIMD( Four_Zeros, MinSIMD( Four_Ones,
MulSIMD( fl4LifeTime, ReciprocalEstSIMD( *pLifeDuration ) ) ) );
fltx4 fl4StartTime = Pow_FixedPoint_Exponent_SIMD( RandSIMD( nContext ), nSSEStartExponent );
fl4StartTime = AddSIMD( fl4StartBias, MulSIMD( fl4StartTime, fl4StartRange ) );
fltx4 fl4EndTime = Pow_FixedPoint_Exponent_SIMD( RandSIMD( nContext ), nSSEEndExponent );
fl4EndTime = AddSIMD( fl4EndBias, MulSIMD( fl4EndTime, fl4EndRange ) );
// now, determine "lockedness"
fltx4 fl4LockScale = DivSIMD( SubSIMD( fl4LifeTime, fl4StartTime ), SubSIMD( fl4EndTime, fl4StartTime ) );
fl4LockScale = SubSIMD( Four_Ones, MaxSIMD( Four_Zeros, MinSIMD( Four_Ones, fl4LockScale ) ) );
if ( IsAnyTrue( CmpGtSIMD( fl4LockScale, Four_Zeros ) ) )
{
//fl4LockScale = MulSIMD( fl4LockScale, fl4CreationFrameBias );
v4ScaledDelta *= fl4LockScale;
fltx4 fl4LockStrength = fl4LockScale ;
// ok, some of these particles should be moved
if ( bUseRange )
{
FourVectors ofs = *pXYZ;
ofs += v4ScaledDelta;
ofs -= v4ControlPoint;
fltx4 fl4Dist = ofs.length();
fl4Dist = BiasSIMD( MinSIMD( Four_Ones, MulSIMD( fl4Dist, fl4OORange ) ), fl4BiasParm );
v4ScaledDelta *= SubSIMD( Four_Ones, fl4Dist );
fl4LockStrength = SubSIMD( Four_Ones, MulSIMD ( fl4Dist, fl4LockStrength ) );
}
if ( m_bLockRot )
{
fl4LockStrength = MulSIMD( fl4LockStrength, fl4CreationFrameBias );
FourVectors fvCurPos = *pXYZ;
FourVectors fvPrevPos = *pPrevXYZ;
fvCurPos.TransformBy( matTransformLock );
fvPrevPos.TransformBy( matTransformLock );
fvCurPos -= *pXYZ;
fvCurPos *= fl4LockStrength;
fvPrevPos -= *pPrevXYZ;
fvPrevPos *= fl4LockStrength;
*(pXYZ) += fvCurPos;
*(pPrevXYZ) += fvPrevPos;
}
else
{
*(pXYZ) += v4ScaledDelta;
*(pPrevXYZ) += v4ScaledDelta;
}
}
++pCreationTime;
++pLifeDuration;
++pXYZ;
++pPrevXYZ;
} while ( --nCtr );
}
// Store off the control point position for the next delta computation
pCtx->m_vPrevPosition = vecControlPoint;
pCtx->m_matPrevTransform = matCurrentTransform;
ReleaseSIMDRandContext( nContext );
};
#endif
//-----------------------------------------------------------------------------
// Controlpoint Light
// Determines particle color/fakes lighting using the influence of control
// points
//-----------------------------------------------------------------------------
class C_OP_ControlpointLight : public CParticleOperatorInstance
{
float m_flScale;
LightDesc_t m_LightNode1, m_LightNode2, m_LightNode3, m_LightNode4;
int m_nControlPoint1, m_nControlPoint2, m_nControlPoint3, m_nControlPoint4;
Vector m_vecCPOffset1, m_vecCPOffset2, m_vecCPOffset3, m_vecCPOffset4;
float m_LightFiftyDist1, m_LightZeroDist1, m_LightFiftyDist2, m_LightZeroDist2,
m_LightFiftyDist3, m_LightZeroDist3, m_LightFiftyDist4, m_LightZeroDist4;
Color m_LightColor1, m_LightColor2, m_LightColor3, m_LightColor4;
bool m_bLightType1, m_bLightType2, m_bLightType3, m_bLightType4, m_bLightDynamic1,
m_bLightDynamic2, m_bLightDynamic3, m_bLightDynamic4, m_bUseNormal, m_bUseHLambert,
m_bLightActive1, m_bLightActive2, m_bLightActive3, m_bLightActive4,
m_bClampLowerRange, m_bClampUpperRange;
DECLARE_PARTICLE_OPERATOR( C_OP_ControlpointLight );
uint32 GetReadInitialAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_TINT_RGB_MASK;
}
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_TINT_RGB_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPoint1 ) | ( 1ULL << m_nControlPoint2 ) |
( 1ULL << m_nControlPoint3 ) | ( 1ULL << m_nControlPoint4 );
}
virtual void InitParams( CParticleSystemDefinition *pDef )
{
m_LightNode1.m_Color[0] = m_LightColor1[0] / 255.0f;
m_LightNode1.m_Color[1] = m_LightColor1[1] / 255.0f;
m_LightNode1.m_Color[2] = m_LightColor1[2] / 255.0f;
m_LightNode2.m_Color[0] = m_LightColor2[0] / 255.0f;
m_LightNode2.m_Color[1] = m_LightColor2[1] / 255.0f;
m_LightNode2.m_Color[2] = m_LightColor2[2] / 255.0f;
m_LightNode3.m_Color[0] = m_LightColor3[0] / 255.0f;
m_LightNode3.m_Color[1] = m_LightColor3[1] / 255.0f;
m_LightNode3.m_Color[2] = m_LightColor3[2] / 255.0f;
m_LightNode4.m_Color[0] = m_LightColor4[0] / 255.0f;
m_LightNode4.m_Color[1] = m_LightColor4[1] / 255.0f;
m_LightNode4.m_Color[2] = m_LightColor4[2] / 255.0f;
m_LightNode1.m_Range = 0;
m_LightNode2.m_Range = 0;
m_LightNode3.m_Range = 0;
m_LightNode4.m_Range = 0;
m_LightNode1.m_Falloff=5.0;
m_LightNode2.m_Falloff=5.0;
m_LightNode3.m_Falloff=5.0;
m_LightNode4.m_Falloff=5.0;
m_LightNode1.m_Attenuation0 = 0;
m_LightNode1.m_Attenuation1 = 0;
m_LightNode1.m_Attenuation2 = 1;
m_LightNode2.m_Attenuation0 = 0;
m_LightNode2.m_Attenuation1 = 0;
m_LightNode2.m_Attenuation2 = 1;
m_LightNode3.m_Attenuation0 = 0;
m_LightNode3.m_Attenuation1 = 0;
m_LightNode3.m_Attenuation2 = 1;
m_LightNode4.m_Attenuation0 = 0;
m_LightNode4.m_Attenuation1 = 0;
m_LightNode4.m_Attenuation2 = 1;
if ( !m_bLightType1 )
{
m_LightNode1.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode1.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightType2 )
{
m_LightNode2.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode2.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightType3 )
{
m_LightNode3.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode3.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightType4 )
{
m_LightNode4.m_Type = MATERIAL_LIGHT_POINT;
}
else
{
m_LightNode4.m_Type = MATERIAL_LIGHT_SPOT;
}
if ( !m_bLightDynamic1 && ( m_LightColor1 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive1 = true;
}
else
{
m_bLightActive1 = false;
}
if ( !m_bLightDynamic2 && ( m_LightColor2 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive2 = true;
}
else
{
m_bLightActive2 = false;
}
if ( !m_bLightDynamic3 && ( m_LightColor3 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive3 = true;
}
else
{
m_bLightActive3 = false;
}
if ( !m_bLightDynamic4 && ( m_LightColor4 != Color( 0, 0, 0, 255 ) ) )
{
m_bLightActive4 = true;
}
else
{
m_bLightActive4 = false;
}
m_LightNode1.SetupNewStyleAttenuation ( m_LightFiftyDist1, m_LightZeroDist1 );
m_LightNode2.SetupNewStyleAttenuation ( m_LightFiftyDist2, m_LightZeroDist2 );
m_LightNode3.SetupNewStyleAttenuation ( m_LightFiftyDist3, m_LightZeroDist3 );
m_LightNode4.SetupNewStyleAttenuation ( m_LightFiftyDist4, m_LightZeroDist4 );
}
void Render( CParticleCollection *pParticles ) const;
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_ControlpointLight, "Color Light from Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ControlpointLight )
DMXELEMENT_UNPACK_FIELD( "Light 1 Control Point", "0", int, m_nControlPoint1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Control Point Offset", "0 0 0", Vector, m_vecCPOffset1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Type 0=Point 1=Spot", "0", bool, m_bLightType1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Color", "0 0 0 255", Color, m_LightColor1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Dynamic Light", "0", bool, m_bLightDynamic1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Direction", "0 0 0", Vector, m_LightNode1.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 1 50% Distance", "100", float, m_LightFiftyDist1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 0% Distance", "200", float, m_LightZeroDist1 )
DMXELEMENT_UNPACK_FIELD( "Light 1 Spot Inner Cone", "30.0", float, m_LightNode1.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 1 Spot Outer Cone", "45.0", float, m_LightNode1.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Light 2 Control Point", "0", int, m_nControlPoint2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Control Point Offset", "0 0 0", Vector, m_vecCPOffset2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Type 0=Point 1=Spot", "0", bool, m_bLightType2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Color", "0 0 0 255", Color, m_LightColor2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Dynamic Light", "0", bool, m_bLightDynamic2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Direction", "0 0 0", Vector, m_LightNode2.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 2 50% Distance", "100", float, m_LightFiftyDist2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 0% Distance", "200", float, m_LightZeroDist2 )
DMXELEMENT_UNPACK_FIELD( "Light 2 Spot Inner Cone", "30.0", float, m_LightNode2.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 2 Spot Outer Cone", "45.0", float, m_LightNode2.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Light 3 Control Point", "0", int, m_nControlPoint3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Control Point Offset", "0 0 0", Vector, m_vecCPOffset3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Type 0=Point 1=Spot", "0", bool, m_bLightType3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Color", "0 0 0 255", Color, m_LightColor3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Dynamic Light", "0", bool, m_bLightDynamic3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Direction", "0 0 0", Vector, m_LightNode3.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 3 50% Distance", "100", float, m_LightFiftyDist3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 0% Distance", "200", float, m_LightZeroDist3 )
DMXELEMENT_UNPACK_FIELD( "Light 3 Spot Inner Cone", "30.0", float, m_LightNode3.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 3 Spot Outer Cone", "45.0", float, m_LightNode3.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Light 4 Control Point", "0", int, m_nControlPoint4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Control Point Offset", "0 0 0", Vector, m_vecCPOffset4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Type 0=Point 1=Spot", "0", bool, m_bLightType4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Color", "0 0 0 255", Color, m_LightColor4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Dynamic Light", "0", bool, m_bLightDynamic4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Direction", "0 0 0", Vector, m_LightNode4.m_Direction )
DMXELEMENT_UNPACK_FIELD( "Light 4 50% Distance", "100", float, m_LightFiftyDist4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 0% Distance", "200", float, m_LightZeroDist4 )
DMXELEMENT_UNPACK_FIELD( "Light 4 Spot Inner Cone", "30.0", float, m_LightNode4.m_Theta )
DMXELEMENT_UNPACK_FIELD( "Light 4 Spot Outer Cone", "45.0", float, m_LightNode4.m_Phi )
DMXELEMENT_UNPACK_FIELD( "Initial Color Bias", "0.0", float, m_flScale )
DMXELEMENT_UNPACK_FIELD( "Clamp Minimum Light Value to Initial Color", "0", bool, m_bClampLowerRange )
DMXELEMENT_UNPACK_FIELD( "Clamp Maximum Light Value to Initial Color", "0", bool, m_bClampUpperRange )
DMXELEMENT_UNPACK_FIELD( "Compute Normals From Control Points", "0", bool, m_bUseNormal )
DMXELEMENT_UNPACK_FIELD( "Half-Lambert Normals", "1", bool, m_bUseHLambert )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ControlpointLight )
void C_OP_ControlpointLight::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
//Set up location of each light - this needs to be done every time as the CP's can move
Vector vecLocation1, vecLocation2, vecLocation3, vecLocation4;
vecLocation1 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint1 );
vecLocation2 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint2 );
vecLocation3 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint3 );
vecLocation4 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint4 );
LightDesc_t LightNode1 = m_LightNode1;
LightDesc_t LightNode2 = m_LightNode2;
LightDesc_t LightNode3 = m_LightNode3;
LightDesc_t LightNode4 = m_LightNode3;
// Apply any offsets
LightNode1.m_Position = vecLocation1 + m_vecCPOffset1;
LightNode2.m_Position = vecLocation2 + m_vecCPOffset2;
LightNode3.m_Position = vecLocation3 + m_vecCPOffset3;
LightNode4.m_Position = vecLocation4 + m_vecCPOffset4;
C4VAttributeIterator pInitialColor( PARTICLE_ATTRIBUTE_TINT_RGB, pParticles );
C4VAttributeWriteIterator pColor( PARTICLE_ATTRIBUTE_TINT_RGB, pParticles );
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
// Set up lighting conditions and attenuation
if ( m_bLightDynamic1 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode1.m_Position, lc );
LightNode1.m_Color[0] = lc[0] / 255.0f;
LightNode1.m_Color[1] = lc[1] / 255.0f;
LightNode1.m_Color[2] = lc[2] / 255.0f;
}
if ( m_bLightDynamic2 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode2.m_Position, lc );
LightNode2.m_Color[0] = lc[0] / 255.0f;
LightNode2.m_Color[1] = lc[1] / 255.0f;
LightNode2.m_Color[2] = lc[2] / 255.0f;
}
if ( m_bLightDynamic3 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode3.m_Position, lc );
LightNode3.m_Color[0] = lc[0] / 255.0f;
LightNode3.m_Color[1] = lc[1] / 255.0f;
LightNode3.m_Color[2] = lc[2] / 255.0f;
}
if ( m_bLightDynamic4 )
{
// Get the color and luminosity at this position
Color lc;
g_pParticleSystemMgr->Query()->GetLightingAtPoint( LightNode4.m_Position, lc );
LightNode4.m_Color[0] = lc[0] / 255.0f;
LightNode4.m_Color[1] = lc[1] / 255.0f;
LightNode4.m_Color[2] = lc[2] / 255.0f;
}
LightNode1.RecalculateDerivedValues();
LightNode2.RecalculateDerivedValues();
LightNode3.RecalculateDerivedValues();
LightNode4.RecalculateDerivedValues();
FourVectors vScale;
vScale.DuplicateVector( Vector(m_flScale, m_flScale, m_flScale) );
if ( m_bUseNormal )
{
FourVectors vCPPosition1, vCPPosition2, vCPPosition3, vCPPosition4;
//vCPPosition1.DuplicateVector( LightNode1.m_Position );
vCPPosition1.DuplicateVector( vecLocation1 );
vCPPosition2.DuplicateVector( vecLocation2 );
vCPPosition3.DuplicateVector( vecLocation3 );
vCPPosition4.DuplicateVector( vecLocation4 );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors vLighting = vScale;
vLighting *= *pInitialColor;
FourVectors vNormal = *pXYZ;
vNormal -= vCPPosition1;
vNormal.VectorNormalizeFast();
LightNode1.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
vNormal = *pXYZ;
vNormal -= vCPPosition2;
vNormal.VectorNormalizeFast();
LightNode2.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
vNormal = *pXYZ;
vNormal -= vCPPosition3;
vNormal.VectorNormalizeFast();
LightNode3.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
vNormal = *pXYZ;
vNormal -= vCPPosition4;
vNormal.VectorNormalizeFast();
LightNode4.ComputeLightAtPoints( *pXYZ, vNormal, vLighting, m_bUseHLambert );
if ( m_bClampLowerRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MaxSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MaxSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MaxSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MaxSIMD( vLighting.x, Four_Zeros );
vLighting.y = MaxSIMD( vLighting.y, Four_Zeros );
vLighting.z = MaxSIMD( vLighting.z, Four_Zeros );
}
if ( m_bClampUpperRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MinSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MinSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MinSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MinSIMD( vLighting.x, Four_Ones );
vLighting.y = MinSIMD( vLighting.y, Four_Ones );
vLighting.z = MinSIMD( vLighting.z, Four_Ones );
}
*pColor = vLighting;
++pColor;
++pXYZ;
++pInitialColor;
} while (--nCtr);
}
else
{
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors vLighting = vScale;
vLighting *= *pInitialColor;
LightNode1.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
LightNode2.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
LightNode3.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
LightNode4.ComputeNonincidenceLightAtPoints( *pXYZ, vLighting );
if ( m_bClampLowerRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MaxSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MaxSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MaxSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MaxSIMD( vLighting.x, Four_Zeros );
vLighting.y = MaxSIMD( vLighting.y, Four_Zeros );
vLighting.z = MaxSIMD( vLighting.z, Four_Zeros );
}
if ( m_bClampUpperRange )
{
FourVectors vInitialClamp = *pInitialColor;
vLighting.x = MinSIMD( vLighting.x, vInitialClamp.x );
vLighting.y = MinSIMD( vLighting.y, vInitialClamp.y );
vLighting.z = MinSIMD( vLighting.z, vInitialClamp.z );
}
else
{
vLighting.x = MinSIMD( vLighting.x, Four_Ones );
vLighting.y = MinSIMD( vLighting.y, Four_Ones );
vLighting.z = MinSIMD( vLighting.z, Four_Ones );
}
*pColor = vLighting;
++pColor;
++pXYZ;
++pInitialColor;
} while (--nCtr);
}
};
//-----------------------------------------------------------------------------
// Render visualization
//-----------------------------------------------------------------------------
void C_OP_ControlpointLight::Render( CParticleCollection *pParticles ) const
{
Vector vecOrigin1 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint1 );
vecOrigin1 += m_vecCPOffset1;
Vector vecOrigin2 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint2 );
vecOrigin2 += m_vecCPOffset2;
Vector vecOrigin3 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint3 );
vecOrigin3 += m_vecCPOffset3;
Vector vecOrigin4 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint4 );
vecOrigin4 += m_vecCPOffset4;
Color LightColor1Outer;
LightColor1Outer[0] = m_LightColor1[0] / 2.0f;
LightColor1Outer[1] = m_LightColor1[1] / 2.0f;
LightColor1Outer[2] = m_LightColor1[2] / 2.0f;
LightColor1Outer[3] = 255;
Color LightColor2Outer;
LightColor2Outer[0] = m_LightColor2[0] / 2.0f;
LightColor2Outer[1] = m_LightColor2[1] / 2.0f;
LightColor2Outer[2] = m_LightColor2[2] / 2.0f;
LightColor2Outer[3] = 255;
Color LightColor3Outer;
LightColor3Outer[0] = m_LightColor3[0] / 2.0f;
LightColor3Outer[1] = m_LightColor3[1] / 2.0f;
LightColor3Outer[2] = m_LightColor3[2] / 2.0f;
LightColor3Outer[3] = 255;
Color LightColor4Outer;
LightColor4Outer[0] = m_LightColor4[0] / 2.0f;
LightColor4Outer[1] = m_LightColor4[1] / 2.0f;
LightColor4Outer[2] = m_LightColor4[2] / 2.0f;
LightColor4Outer[3] = 255;
if ( m_bLightActive1 )
{
RenderWireframeSphere( vecOrigin1, m_LightFiftyDist1, 16, 8, m_LightColor1, false );
RenderWireframeSphere( vecOrigin1, m_LightZeroDist1, 16, 8, LightColor1Outer, false );
}
if ( m_bLightActive2 )
{
RenderWireframeSphere( vecOrigin2, m_LightFiftyDist2, 16, 8, m_LightColor2, false );
RenderWireframeSphere( vecOrigin2, m_LightZeroDist2, 16, 8, LightColor2Outer, false );
}
if ( m_bLightActive3 )
{
RenderWireframeSphere( vecOrigin3, m_LightFiftyDist3, 16, 8, m_LightColor3, false );
RenderWireframeSphere( vecOrigin3, m_LightZeroDist3, 16, 8, LightColor3Outer, false );
}
if ( m_bLightActive4 )
{
RenderWireframeSphere( vecOrigin4, m_LightFiftyDist4, 16, 8, m_LightColor4, false );
RenderWireframeSphere( vecOrigin4, m_LightZeroDist4, 16, 8, LightColor4Outer, false );
}
}
// set child controlpoints - copy the positions of our particles to the control points of a child
class C_OP_SetChildControlPoints : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetChildControlPoints );
int m_nChildGroupID;
int m_nFirstControlPoint;
int m_nNumControlPoints;
int m_nFirstSourcePoint;
bool m_bSetOrientation;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_POSITION_AND_VELOCITY_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetChildControlPoints, "Set child control points from particle positions", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetChildControlPoints )
DMXELEMENT_UNPACK_FIELD( "Group ID to affect", "0", int, m_nChildGroupID )
DMXELEMENT_UNPACK_FIELD( "First control point to set", "0", int, m_nFirstControlPoint )
DMXELEMENT_UNPACK_FIELD( "# of control points to set", "1", int, m_nNumControlPoints )
DMXELEMENT_UNPACK_FIELD( "first particle to copy", "0", int, m_nFirstSourcePoint )
DMXELEMENT_UNPACK_FIELD( "set orientation", "0", bool, m_bSetOrientation )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetChildControlPoints )
void C_OP_SetChildControlPoints::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
int nFirst=MAX(0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nFirstControlPoint ) );
int nToSet=MIN( pParticles->m_nActiveParticles-m_nFirstSourcePoint, m_nNumControlPoints );
nToSet=MIN( nToSet, MAX_PARTICLE_CONTROL_POINTS-nFirst );
if ( nToSet )
{
for( CParticleCollection *pChild = pParticles->m_Children.m_pHead; pChild; pChild = pChild->m_pNext )
{
if ( pChild->GetGroupID() == m_nChildGroupID )
{
for( int p=0; p < nToSet; p++ )
{
const float *pXYZ = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_XYZ, p + m_nFirstSourcePoint );
Vector cPnt( pXYZ[0], pXYZ[4], pXYZ[8] );
pChild->SetControlPoint( p+nFirst, cPnt );
if ( m_bSetOrientation )
{
const float *pXYZ_Prev = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_PREV_XYZ, p + m_nFirstSourcePoint );
Vector vecXYZ, vecXYZPrev;
SetVectorFromAttribute( vecXYZ, pXYZ );
SetVectorFromAttribute( vecXYZPrev, pXYZ_Prev );
Vector vecFwd = vecXYZ - vecXYZPrev;
vecFwd.NormalizeInPlace();
Vector vecRight, vecUp;
VectorVectors( vecFwd, vecRight, vecUp );
pChild->SetControlPointOrientation( p+nFirst, vecFwd, vecRight, vecUp );
}
}
}
}
}
}
// set controlpoints - copy the positions of our particles to the control points of self
class C_OP_SetControlPointsToParticle : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointsToParticle );
int m_nChildGroupID;
int m_nFirstControlPoint;
int m_nNumControlPoints;
int m_nFirstSourcePoint;
bool m_bSetOrientation;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_POSITION_AND_VELOCITY_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointsToParticle, "Set control points from particle positions", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointsToParticle )
DMXELEMENT_UNPACK_FIELD( "First control point to set", "0", int, m_nFirstControlPoint )
DMXELEMENT_UNPACK_FIELD( "# of control points to set", "1", int, m_nNumControlPoints )
DMXELEMENT_UNPACK_FIELD( "first particle to copy", "0", int, m_nFirstSourcePoint )
DMXELEMENT_UNPACK_FIELD( "set orientation", "0", bool, m_bSetOrientation )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointsToParticle )
void C_OP_SetControlPointsToParticle::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
int nFirst=MAX(0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nFirstControlPoint ) );
int nToSet=MIN( pParticles->m_nActiveParticles-m_nFirstSourcePoint, m_nNumControlPoints );
nToSet=MIN( nToSet, MAX_PARTICLE_CONTROL_POINTS-nFirst );
if ( nToSet )
{
for( int p=0; p < nToSet; p++ )
{
const float *pXYZ = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_XYZ, p + m_nFirstSourcePoint );
Vector cPnt( pXYZ[0], pXYZ[4], pXYZ[8] );
pParticles->SetControlPoint( p+nFirst, cPnt );
if ( m_bSetOrientation )
{
const float *pXYZ_Prev = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_PREV_XYZ, p + m_nFirstSourcePoint );
Vector vecXYZ, vecXYZPrev;
SetVectorFromAttribute( vecXYZ, pXYZ );
SetVectorFromAttribute( vecXYZPrev, pXYZ_Prev );
Vector vecFwd = vecXYZ - vecXYZPrev;
vecFwd.NormalizeInPlace();
Vector vecRight, vecUp;
VectorVectors( vecFwd, vecRight, vecUp );
pParticles->SetControlPointOrientation( p+nFirst, vecFwd, vecRight, vecUp );
}
}
}
}
// set per child controlpoint - copy the positions of each particles to a single control point of a single child
class C_OP_SetPerChildControlPoint : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetPerChildControlPoint );
int m_nChildGroupID;
int m_nFirstControlPoint;
int m_nNumControlPoints;
int m_nFirstSourcePoint;
int m_nSkip;
bool m_bSetOrientation;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_PARTICLE_ID;
}
uint32 GetFilter( void ) const
{
return FILTER_POSITION_AND_VELOCITY_MASK;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetPerChildControlPoint, "Set per child control point from particle positions", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetPerChildControlPoint )
DMXELEMENT_UNPACK_FIELD( "Group ID to affect", "0", int, m_nChildGroupID )
DMXELEMENT_UNPACK_FIELD( "control point to set", "0", int, m_nFirstControlPoint )
DMXELEMENT_UNPACK_FIELD( "# of children to set", "1", int, m_nNumControlPoints )
DMXELEMENT_UNPACK_FIELD( "first particle to copy", "0", int, m_nFirstSourcePoint )
DMXELEMENT_UNPACK_FIELD( "set orientation", "0", bool, m_bSetOrientation )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetPerChildControlPoint )
void C_OP_SetPerChildControlPoint::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
int nToSet=MIN ( m_nNumControlPoints, MIN( pParticles->m_nActiveParticles-m_nFirstSourcePoint, pParticles->m_Children.Count() ) );
if ( nToSet )
{
int nCurrentPoint = m_nFirstSourcePoint;
for( CParticleCollection *pChild = pParticles->m_Children.m_pHead; pChild; pChild = pChild->m_pNext )
{
if ( pChild->GetGroupID() == m_nChildGroupID && nToSet )
{
const float *pXYZ = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_XYZ, nCurrentPoint );
Vector cPnt( pXYZ[0], pXYZ[4], pXYZ[8] );
pChild->SetControlPoint( m_nFirstControlPoint, cPnt );
if ( m_bSetOrientation )
{
const float *pXYZ_Prev = pParticles->GetFloatAttributePtr(
PARTICLE_ATTRIBUTE_PREV_XYZ, nCurrentPoint );
Vector vecXYZ, vecXYZPrev;
SetVectorFromAttribute( vecXYZ, pXYZ );
SetVectorFromAttribute( vecXYZPrev, pXYZ_Prev );
Vector vecFwd = vecXYZ - vecXYZPrev;
vecFwd.NormalizeInPlace();
Vector vecRight, vecUp;
VectorVectors( vecFwd, vecRight, vecUp );
pChild->SetControlPointOrientation( m_nFirstControlPoint, vecFwd, vecRight, vecUp );
}
nToSet--;
nCurrentPoint++;
}
}
}
}
//-----------------------------------------------------------------------------
// Set Control Point Positions
//-----------------------------------------------------------------------------
class C_OP_SetControlPointPositions : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointPositions );
bool m_bUseWorldLocation;
int m_nCP1, m_nCP1Parent;
int m_nCP2, m_nCP2Parent;
int m_nCP3, m_nCP3Parent;
int m_nCP4, m_nCP4Parent;
Vector m_vecCP1Pos, m_vecCP2Pos, m_vecCP3Pos, m_vecCP4Pos;
int m_nHeadLocation;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
virtual uint64 GetReadControlPointMask() const
{
int nRet = 0;
// these accesses are actually writes but we need them to end up in the mask
nRet |= ( 1ll << m_nCP1 ) | ( 1ll << m_nCP2 ) | ( 1ll << m_nCP3 ) | ( 1ll << m_nCP4 );
if ( m_bUseWorldLocation )
return nRet;
else
return nRet | ( 1ll << m_nHeadLocation );
}
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointPositions, "Set Control Point Positions", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointPositions )
DMXELEMENT_UNPACK_FIELD( "First Control Point Number", "1", int, m_nCP1 )
DMXELEMENT_UNPACK_FIELD( "First Control Point Parent", "0", int, m_nCP1Parent )
DMXELEMENT_UNPACK_FIELD( "First Control Point Location", "128 0 0", Vector, m_vecCP1Pos )
DMXELEMENT_UNPACK_FIELD( "Second Control Point Number", "2", int, m_nCP2 )
DMXELEMENT_UNPACK_FIELD( "Second Control Point Parent", "0", int, m_nCP2Parent )
DMXELEMENT_UNPACK_FIELD( "Second Control Point Location", "0 128 0", Vector, m_vecCP2Pos )
DMXELEMENT_UNPACK_FIELD( "Third Control Point Number", "3", int, m_nCP3 )
DMXELEMENT_UNPACK_FIELD( "Third Control Point Parent", "0", int, m_nCP3Parent )
DMXELEMENT_UNPACK_FIELD( "Third Control Point Location", "-128 0 0", Vector, m_vecCP3Pos )
DMXELEMENT_UNPACK_FIELD( "Fourth Control Point Number", "4", int, m_nCP4 )
DMXELEMENT_UNPACK_FIELD( "Fourth Control Point Parent", "0", int, m_nCP4Parent )
DMXELEMENT_UNPACK_FIELD( "Fourth Control Point Location", "0 -128 0", Vector, m_vecCP4Pos )
DMXELEMENT_UNPACK_FIELD( "Set positions in world space", "0", bool, m_bUseWorldLocation )
DMXELEMENT_UNPACK_FIELD( "Control Point to offset positions from", "0", int, m_nHeadLocation )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointPositions )
void C_OP_SetControlPointPositions::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( !m_bUseWorldLocation )
{
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nHeadLocation );
matrix3x4_t mat;
pParticles->GetControlPointTransformAtTime( m_nHeadLocation, pParticles->m_flCurTime, &mat );
Vector vecTransformLocal = vec3_origin;
VectorTransform( m_vecCP1Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP1, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP1, m_nCP1Parent );
VectorTransform( m_vecCP2Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP2, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP2, m_nCP2Parent );
VectorTransform( m_vecCP3Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP3, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP3, m_nCP3Parent );
VectorTransform( m_vecCP4Pos, mat, vecTransformLocal );
pParticles->SetControlPoint( m_nCP4, vecTransformLocal );
pParticles->SetControlPointParent( m_nCP4, m_nCP4Parent );
}
else
{
pParticles->SetControlPoint( m_nCP1, m_vecCP1Pos );
pParticles->SetControlPointParent( m_nCP1, m_nCP1Parent );
pParticles->SetControlPoint( m_nCP2, m_vecCP2Pos );
pParticles->SetControlPointParent( m_nCP2, m_nCP2Parent );
pParticles->SetControlPoint( m_nCP3, m_vecCP3Pos );
pParticles->SetControlPointParent( m_nCP3, m_nCP3Parent );
pParticles->SetControlPoint( m_nCP4, m_vecCP4Pos );
pParticles->SetControlPointParent( m_nCP4, m_nCP4Parent );
}
}
//-----------------------------------------------------------------------------
// Dampen Movement Relative to Control Point
// The closer a particle is the the assigned control point, the less
// it can move
//-----------------------------------------------------------------------------
class C_OP_DampenToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DampenToCP );
int m_nControlPointNumber;
float m_flRange, m_flScale;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK |
PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPointNumber );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nControlPointNumber = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DampenToCP , "Movement Dampen Relative to Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DampenToCP )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "falloff range", "100", float, m_flRange )
DMXELEMENT_UNPACK_FIELD( "dampen scale", "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DampenToCP )
void C_OP_DampenToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_flRange <= 0.0f )
return;
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nControlPointNumber );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecParticlePosition, vecParticlePosition_prev, vParticleDelta ;
SetVectorFromAttribute( vecParticlePosition, xyz );
SetVectorFromAttribute( vecParticlePosition_prev, xyz_prev );
Vector ofs;
ofs = vecParticlePosition - vecControlPoint;
float flDistance = ofs.Length();
float flDampenAmount;
if ( flDistance > m_flRange )
{
continue;
}
else
{
flDampenAmount = flDistance / m_flRange;
flDampenAmount = pow( flDampenAmount, m_flScale);
}
vParticleDelta = vecParticlePosition - vecParticlePosition_prev;
Vector vParticleDampened = vParticleDelta * flDampenAmount;
vecParticlePosition = vecParticlePosition_prev + vParticleDampened;
Vector vecParticlePositionOrg;
SetVectorFromAttribute( vecParticlePositionOrg, xyz );
VectorLerp (vecParticlePositionOrg, vecParticlePosition, flStrength, vecParticlePosition );
SetVectorAttribute( xyz, vecParticlePosition );
}
};
//-----------------------------------------------------------------------------
// Distance Between CP Operator
//-----------------------------------------------------------------------------
class C_OP_DistanceBetweenCPs : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DistanceBetweenCPs );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
m_nStartCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
int m_nStartCP;
int m_nEndCP;
int m_nCollisionGroupNumber;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
float m_flMaxTraceLength;
float m_flLOSScale;
char m_CollisionGroupName[128];
bool m_bLOS;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DistanceBetweenCPs, "Remap Distance Between Two Control Points to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceBetweenCPs )
DMXELEMENT_UNPACK_FIELD( "distance minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "distance maximum","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "starting control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ending control point","1", int, m_nEndCP )
DMXELEMENT_UNPACK_FIELD( "ensure line of sight","0", bool, m_bLOS )
DMXELEMENT_UNPACK_FIELD_STRING( "LOS collision group", "NONE", m_CollisionGroupName )
DMXELEMENT_UNPACK_FIELD( "Maximum Trace Length", "-1", float, m_flMaxTraceLength )
DMXELEMENT_UNPACK_FIELD( "LOS Failure Scalar", "0", float, m_flLOSScale )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceBetweenCPs )
void C_OP_DistanceBetweenCPs::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
Vector vecControlPoint2 = pParticles->GetControlPointAtCurrentTime( m_nEndCP );
Vector vecDelta = vecControlPoint1 - vecControlPoint2;
float flDistance = vecDelta.Length();
if ( m_bLOS )
{
Vector vecEndPoint = vecControlPoint2;
if ( m_flMaxTraceLength != -1.0f && m_flMaxTraceLength < flDistance )
{
VectorNormalize(vecEndPoint);
vecEndPoint *= m_flMaxTraceLength;
vecEndPoint += vecControlPoint1;
}
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecControlPoint1, vecEndPoint, MASK_OPAQUE_AND_NPCS, NULL, m_nCollisionGroupNumber, &tr );
if (tr.fraction != 1.0f)
{
flDistance *= tr.fraction * m_flLOSScale;
}
}
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float flOutput = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, flMin, flMax );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
if ( m_bScaleInitialRange )
{
const float *pInitialOutput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
flOutput = *pInitialOutput * flOutput;
}
if ( m_bScaleCurrent )
{
flOutput *= *pOutput;
}
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// Distance Between CP to CP Operator
//-----------------------------------------------------------------------------
class C_OP_DistanceBetweenCPsToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DistanceBetweenCPsToCP );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP ) | ( 1ULL << m_nOutputCP );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
m_nStartCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
m_nOutputCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nOutputCP ) );
m_nOutputCPField = MAX( 0, MIN( 2, m_nOutputCPField ) );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nStartCP;
int m_nEndCP;
int m_nOutputCP;
int m_nOutputCPField;
int m_nCollisionGroupNumber;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
float m_flMaxTraceLength;
float m_flLOSScale;
bool m_bLOS;
char m_CollisionGroupName[128];
};
DEFINE_PARTICLE_OPERATOR( C_OP_DistanceBetweenCPsToCP, "Remap Distance Between Two Control Points to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceBetweenCPsToCP )
DMXELEMENT_UNPACK_FIELD( "distance minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "distance maximum","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "output control point", "2", int, m_nOutputCP )
DMXELEMENT_UNPACK_FIELD( "output control point field", "0", int, m_nOutputCPField )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "starting control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ending control point","1", int, m_nEndCP )
DMXELEMENT_UNPACK_FIELD( "ensure line of sight","0", bool, m_bLOS )
DMXELEMENT_UNPACK_FIELD_STRING( "LOS collision group", "NONE", m_CollisionGroupName )
DMXELEMENT_UNPACK_FIELD( "Maximum Trace Length", "-1", float, m_flMaxTraceLength )
DMXELEMENT_UNPACK_FIELD( "LOS Failure Scale", "0", float, m_flLOSScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceBetweenCPsToCP )
void C_OP_DistanceBetweenCPsToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
Vector vecControlPoint2 = pParticles->GetControlPointAtCurrentTime( m_nEndCP );
Vector vecDelta = vecControlPoint1 - vecControlPoint2;
float flDistance = vecDelta.Length();
if ( m_bLOS )
{
Vector vecEndPoint = vecControlPoint2;
if ( m_flMaxTraceLength != -1.0f && m_flMaxTraceLength < flDistance )
{
VectorNormalize(vecEndPoint);
vecEndPoint *= m_flMaxTraceLength;
vecEndPoint += vecControlPoint1;
}
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecControlPoint1, vecEndPoint, MASK_OPAQUE_AND_NPCS, NULL, m_nCollisionGroupNumber, &tr );
if (tr.fraction != 1.0f)
{
flDistance *= tr.fraction * m_flLOSScale;
}
}
flDistance = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, m_flOutputMin, m_flOutputMax );
Vector vecControlPointOutput = pParticles->GetControlPointAtCurrentTime( m_nOutputCP );
vecControlPointOutput[m_nOutputCPField] = flDistance;
pParticles->SetControlPoint( m_nOutputCP, vecControlPointOutput );
}
//-----------------------------------------------------------------------------
// Percentage Between CP to Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_PercentageBetweenCPs : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_PercentageBetweenCPs );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nStartCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
m_flOutputMin = clamp(m_flOutputMin, 0.0f, 1.0f );
m_flOutputMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
int m_nStartCP;
int m_nEndCP;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
bool m_bActiveRange;
bool m_bRadialCheck;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PercentageBetweenCPs, "Remap Percentage Between Two Control Points to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PercentageBetweenCPs )
DMXELEMENT_UNPACK_FIELD( "percentage minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "percentage maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "starting control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ending control point","1", int, m_nEndCP )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
DMXELEMENT_UNPACK_FIELD( "only active within input range","0", bool, m_bActiveRange )
DMXELEMENT_UNPACK_FIELD( "treat distance between points as radius","1", bool, m_bRadialCheck )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PercentageBetweenCPs )
void C_OP_PercentageBetweenCPs::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
Vector vecControlPoint2 = pParticles->GetControlPointAtCurrentTime( m_nEndCP );
C4VAttributeIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
CM128AttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
CM128InitialAttributeIterator pInitialValue( m_nFieldOutput, pParticles) ;
FourVectors fvControlPoint1;
FourVectors fvControlpoint2;
fvControlPoint1.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nStartCP ) );
fvControlpoint2.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nEndCP ) );
FourVectors fvDelta = fvControlPoint1 - fvControlpoint2;
fltx4 fl4Distance = fvDelta.length();
fltx4 fl4InputMin = ReplicateX4( m_flInputMin );
fltx4 fl4InputMax = ReplicateX4( m_flInputMax );
fltx4 fl4OutputMin = ReplicateX4( m_flOutputMin );
fltx4 fl4OutputMax = ReplicateX4( m_flOutputMax );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4Perc;
fltx4 fl4ParticleDistance;
if ( m_bRadialCheck )
{
FourVectors fvParticleDelta;
fvParticleDelta.DuplicateVector( vecControlPoint1 );
fvParticleDelta -= *xyz;
fl4ParticleDistance = AddSIMD ( fvParticleDelta.length(), Four_Epsilons );
fl4Perc = DivSIMD( Four_Ones, DivSIMD( fl4Distance, fl4ParticleDistance ));
}
else
{
FourVectors fvClosestPoint;
xyz->CalcClosestPointOnLineSIMD( *xyz, fvControlPoint1, fvControlpoint2, fvClosestPoint, &fl4Perc );
}
fltx4 fl4Output = RemapValClampedSIMD( fl4Perc, fl4InputMin, fl4InputMax, fl4OutputMin, fl4OutputMax );
if ( m_bScaleInitialRange )
{
fl4Output = MulSIMD( fl4Output, *pInitialValue );
}
if ( m_bScaleCurrent )
{
fl4Output = MulSIMD( fl4Output, *pOutField );
}
if ( m_bActiveRange )
{
bi32x4 fl4GoodMask = CmpGeSIMD( fl4Perc, fl4InputMin );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLeSIMD( fl4Perc, fl4InputMax ) );
*pOutField = MaskedAssign( fl4GoodMask, fl4Output, *pOutField );
}
else
{
*pOutField = fl4Output;
}
++pOutField;
++xyz;
++pInitialValue;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Percentage Between CP to Vector Operator
//-----------------------------------------------------------------------------
class C_OP_PercentageBetweenCPsVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_PercentageBetweenCPsVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nStartCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
Vector m_vecOutputMin;
Vector m_vecOutputMax;
int m_nStartCP;
int m_nEndCP;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
bool m_bActiveRange;
bool m_bRadialCheck;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PercentageBetweenCPsVector, "Remap Percentage Between Two Control Points to Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PercentageBetweenCPsVector )
DMXELEMENT_UNPACK_FIELD( "percentage minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "percentage maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "6", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0 0 0", Vector, m_vecOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1 1 1", Vector, m_vecOutputMax )
DMXELEMENT_UNPACK_FIELD( "starting control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ending control point","1", int, m_nEndCP )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
DMXELEMENT_UNPACK_FIELD( "only active within input range","0", bool, m_bActiveRange )
DMXELEMENT_UNPACK_FIELD( "treat distance between points as radius","1", bool, m_bRadialCheck )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PercentageBetweenCPsVector )
void C_OP_PercentageBetweenCPsVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
Vector vecControlPoint2 = pParticles->GetControlPointAtCurrentTime( m_nEndCP );
C4VAttributeIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
C4VInitialAttributeIterator pInitialValue( m_nFieldOutput, pParticles) ;
FourVectors fvControlPoint1;
FourVectors fvControlpoint2;
fvControlPoint1.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nStartCP ) );
fvControlpoint2.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nEndCP ) );
FourVectors fvDelta = fvControlPoint1 - fvControlpoint2;
fltx4 fl4Distance = fvDelta.length();
fltx4 fl4InputMin = ReplicateX4( m_flInputMin );
fltx4 fl4InputMax = ReplicateX4( m_flInputMax );
FourVectors fvOutputMin;
FourVectors fvOutputMax;
fvOutputMin.DuplicateVector( m_vecOutputMin );
fvOutputMax.DuplicateVector( m_vecOutputMax );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
fltx4 fl4Perc;
fltx4 fl4ParticleDistance;
if ( m_bRadialCheck )
{
FourVectors fvParticleDelta;
fvParticleDelta.DuplicateVector( vecControlPoint1 );
fvParticleDelta -= *xyz;
fl4ParticleDistance = AddSIMD ( fvParticleDelta.length(), Four_Epsilons );
fl4Perc = DivSIMD( Four_Ones, DivSIMD( fl4Distance, fl4ParticleDistance ));
}
else
{
FourVectors fvClosestPoint;
xyz->CalcClosestPointOnLineSIMD( *xyz, fvControlPoint1, fvControlpoint2, fvClosestPoint, &fl4Perc );
}
FourVectors fvOutput;
fvOutput.x = RemapValClampedSIMD( fl4Perc, fl4InputMin, fl4InputMax, fvOutputMin.x, fvOutputMax.x );
fvOutput.y = RemapValClampedSIMD( fl4Perc, fl4InputMin, fl4InputMax, fvOutputMin.y, fvOutputMax.y );
fvOutput.z = RemapValClampedSIMD( fl4Perc, fl4InputMin, fl4InputMax, fvOutputMin.z, fvOutputMax.z );
if ( m_bScaleInitialRange )
{
fvOutput *= *pInitialValue;
}
if ( m_bScaleCurrent )
{
fvOutput *= *pOutField;
}
if ( m_bActiveRange )
{
bi32x4 fl4GoodMask = CmpGeSIMD( fl4Perc, fl4InputMin );
fl4GoodMask = AndSIMD( fl4GoodMask, CmpLeSIMD( fl4Perc, fl4InputMax ) );
*pOutField = MaskedAssign( fl4GoodMask, fvOutput, *pOutField );
}
else
{
*pOutField = fvOutput;
}
++pOutField;
++xyz;
++pInitialValue;
} while( --nCtr );
}
//-----------------------------------------------------------------------------
// Distance to CP Operator
//-----------------------------------------------------------------------------
class C_OP_DistanceToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_DistanceToCP );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
m_nStartCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
int m_nStartCP;
bool m_bLOS;
char m_CollisionGroupName[128];
int m_nCollisionGroupNumber;
float m_flMaxTraceLength;
float m_flLOSScale;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
bool m_bActiveRange;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DistanceToCP, "Remap Distance to Control Point to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceToCP )
DMXELEMENT_UNPACK_FIELD( "distance minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "distance maximum","128", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ensure line of sight","0", bool, m_bLOS )
DMXELEMENT_UNPACK_FIELD_STRING( "LOS collision group", "NONE", m_CollisionGroupName )
DMXELEMENT_UNPACK_FIELD( "Maximum Trace Length", "-1", float, m_flMaxTraceLength )
DMXELEMENT_UNPACK_FIELD( "LOS Failure Scalar", "0", float, m_flLOSScale )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
DMXELEMENT_UNPACK_FIELD( "only active within specified distance","0", bool, m_bActiveRange )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceToCP )
void C_OP_DistanceToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
Vector vecPosition2;
const float *pXYZ = pParticles->GetFloatAttributePtr(PARTICLE_ATTRIBUTE_XYZ, i );
vecPosition2 = Vector(pXYZ[0], pXYZ[4], pXYZ[8]);
Vector vecDelta = vecControlPoint1 - vecPosition2;
float flDistance = vecDelta.Length();
if ( m_bActiveRange && ( flDistance < m_flInputMin || flDistance > m_flInputMax ) )
{
continue;
}
if ( m_bLOS )
{
Vector vecEndPoint = vecPosition2;
if ( m_flMaxTraceLength != -1.0f && m_flMaxTraceLength < flDistance )
{
VectorNormalize(vecEndPoint);
vecEndPoint *= m_flMaxTraceLength;
vecEndPoint += vecControlPoint1;
}
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecControlPoint1, vecEndPoint, MASK_OPAQUE_AND_NPCS, NULL , m_nCollisionGroupNumber, &tr );
if (tr.fraction != 1.0f)
{
flDistance *= tr.fraction * m_flLOSScale;
}
}
float flOutput = RemapValClamped( flDistance, m_flInputMin, m_flInputMax, flMin, flMax );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
if ( m_bScaleInitialRange )
{
const float *pInitialOutput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
flOutput *= *pInitialOutput;
}
if ( m_bScaleCurrent )
{
flOutput *= *pOutput;
}
*pOutput = Lerp (flStrength, *pOutput, flOutput);
}
}
//-----------------------------------------------------------------------------
// Assign CP to Player
//-----------------------------------------------------------------------------
class C_OP_SetControlPointToPlayer : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointToPlayer );
int m_nCP1;
Vector m_vecCP1Pos;
bool m_bOrientToEyes;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCP1 = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nCP1 ) );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointToPlayer, "Set Control Point To Player", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToPlayer )
DMXELEMENT_UNPACK_FIELD( "Control Point Number", "1", int, m_nCP1 )
DMXELEMENT_UNPACK_FIELD( "Control Point Offset", "0 0 0", Vector, m_vecCP1Pos )
DMXELEMENT_UNPACK_FIELD( "Use Eye Orientation", "0", bool, m_bOrientToEyes )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToPlayer )
void C_OP_SetControlPointToPlayer::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecClientPos =g_pParticleSystemMgr->Query()->GetLocalPlayerPos();
pParticles->SetControlPoint( m_nCP1, m_vecCP1Pos + vecClientPos );
Vector vecForward;
Vector vecRight;
Vector vecUp;
g_pParticleSystemMgr->Query()->GetLocalPlayerEyeVectors( &vecForward, &vecRight, &vecUp );
if ( !m_bOrientToEyes )
{
if ( fabs( vecForward.z - 1.0f ) > 1e-3 )
{
vecForward.z = 0;
VectorNormalize( vecForward );
vecUp.Init( 0, 0, 1 );
vecRight.Init( vecForward.y, -vecForward.x, 0.0f );
}
}
pParticles->SetControlPointOrientation( m_nCP1, vecForward, vecRight, vecUp );
}
class C_OP_MoveToHitbox : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MoveToHitbox );
int m_nControlPointNumber;
int m_nControlPointNumberOverride;
float m_flLifeTimeLerpStart;
float m_flLifeTimeLerpEnd;
char m_HitboxSetName[128];
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
int ret= PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK |
PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK | PARTICLE_ATTRIBUTE_HITBOX_INDEX_MASK;
ret |= PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
return ret;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPointNumber );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nControlPointNumber = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MoveToHitbox , "Movement Lerp to Hitbox", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MoveToHitbox )
DMXELEMENT_UNPACK_FIELD( "control point number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "lifetime lerp start", "0", float, m_flLifeTimeLerpStart )
DMXELEMENT_UNPACK_FIELD( "lifetime lerp end", "1", float, m_flLifeTimeLerpEnd )
DMXELEMENT_UNPACK_FIELD_STRING( "hitbox set", "effects", m_HitboxSetName )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MoveToHitbox )
void C_OP_MoveToHitbox::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
pParticles->UpdateHitBoxInfo( m_nControlPointNumber, m_HitboxSetName );
if ( pParticles->ControlPointHitBox( m_nControlPointNumber ).CurAndPrevValid() )
{
float flAgeThreshold = m_flLifeTimeLerpEnd;
if ( flAgeThreshold <= 0.0 )
flAgeThreshold = 1.0e20;
float flIScale = 0.0;
if ( m_flLifeTimeLerpEnd > m_flLifeTimeLerpStart )
flIScale = 1.0/( m_flLifeTimeLerpEnd - m_flLifeTimeLerpStart );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pPrevXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
const float *pUVW = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ, i );
const int nBoxIndex = *pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_INDEX, i );
float const *pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
float flAge = pParticles->m_flCurTime -*pCreationTime;
if ( flAge < flAgeThreshold )
{
if (
( nBoxIndex < pParticles->ControlPointHitBox( m_nControlPointNumber ).m_nNumHitBoxes ) &&
( nBoxIndex < pParticles->ControlPointHitBox( m_nControlPointNumber ).m_nNumPrevHitBoxes ) &&
( nBoxIndex >= 0 )
)
{
Vector vecParticlePosition;
ModelHitBoxInfo_t const &hb = pParticles->ControlPointHitBox( m_nControlPointNumber ).m_pHitBoxes[ nBoxIndex ];
vecParticlePosition.x = Lerp( pUVW[0], hb.m_vecBoxMins.x, hb.m_vecBoxMaxes.x );
vecParticlePosition.y = Lerp( pUVW[4], hb.m_vecBoxMins.y, hb.m_vecBoxMaxes.y );
vecParticlePosition.z = Lerp( pUVW[8], hb.m_vecBoxMins.z, hb.m_vecBoxMaxes.z );
Vector vecWorldPosition;
VectorTransform( vecParticlePosition, hb.m_Transform, vecWorldPosition );
if ( flAge > m_flLifeTimeLerpStart )
{
float flT = flStrength * ( ( ( flAge - m_flLifeTimeLerpStart ) * flIScale ) );
Vector vecDestPosition;
Vector xyz;
SetVectorFromAttribute( xyz, pXYZ );
VectorLerp( xyz, vecWorldPosition, flT, vecDestPosition );
SetVectorAttribute( pXYZ, vecDestPosition );
Vector prevxyz;
SetVectorFromAttribute( prevxyz, pPrevXYZ );
VectorLerp( prevxyz, vecWorldPosition, flT, vecDestPosition );
SetVectorAttribute( pPrevXYZ, vecDestPosition );
}
}
}
}
}
};
class C_OP_LockToBone : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LockToBone );
int m_nControlPointNumber;
float m_flLifeTimeFadeStart;
float m_flLifeTimeFadeEnd;
char m_HitboxSetName[128];
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
int ret= PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK |
PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK | PARTICLE_ATTRIBUTE_HITBOX_INDEX_MASK;
ret |= PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
return ret;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPointNumber );
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nControlPointNumber = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LockToBone , "Movement Lock to Bone", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LockToBone )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "lifetime fade start", "0", float, m_flLifeTimeFadeStart )
DMXELEMENT_UNPACK_FIELD( "lifetime fade end", "0", float, m_flLifeTimeFadeEnd )
DMXELEMENT_UNPACK_FIELD_STRING( "hitbox set", "effects", m_HitboxSetName )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LockToBone )
void C_OP_LockToBone::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
pParticles->UpdateHitBoxInfo( m_nControlPointNumber, m_HitboxSetName );
if ( pParticles->ControlPointHitBox( m_nControlPointNumber ).CurAndPrevValid() )
{
float flAgeThreshold = m_flLifeTimeFadeEnd;
if ( flAgeThreshold <= 0.0 )
flAgeThreshold = 1.0e20;
float flIScale = 0.0;
if ( m_flLifeTimeFadeEnd > m_flLifeTimeFadeStart )
flIScale = 1.0/( m_flLifeTimeFadeEnd - m_flLifeTimeFadeStart );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pPrevXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
const float *pUVW = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ, i );
const int nBoxIndex = *pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_INDEX, i );
float const *pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
float flAge = pParticles->m_flCurTime -*pCreationTime;
float flCreationFrameBias = MIN( flAge, pParticles->m_flDt );
flCreationFrameBias *= ( 1 / pParticles->m_flDt );
if ( flAge < flAgeThreshold )
{
if (
( nBoxIndex < pParticles->ControlPointHitBox( m_nControlPointNumber ).m_nNumHitBoxes ) &&
( nBoxIndex < pParticles->ControlPointHitBox( m_nControlPointNumber ).m_nNumPrevHitBoxes ) &&
( nBoxIndex >= 0 )
)
{
Vector vecParticlePosition;
ModelHitBoxInfo_t const &hb = pParticles->ControlPointHitBox( m_nControlPointNumber ).m_pHitBoxes[ nBoxIndex ];
vecParticlePosition.x = Lerp( pUVW[0], hb.m_vecBoxMins.x, hb.m_vecBoxMaxes.x );
vecParticlePosition.y = Lerp( pUVW[4], hb.m_vecBoxMins.y, hb.m_vecBoxMaxes.y );
vecParticlePosition.z = Lerp( pUVW[8], hb.m_vecBoxMins.z, hb.m_vecBoxMaxes.z );
Vector vecWorldPosition;
VectorTransform( vecParticlePosition, hb.m_Transform, vecWorldPosition );
Vector vecPrevParticlePosition;
ModelHitBoxInfo_t phb = pParticles->ControlPointHitBox( m_nControlPointNumber ).m_pPrevBoxes[ nBoxIndex ];
vecPrevParticlePosition.x = Lerp( pUVW[0], phb.m_vecBoxMins.x, phb.m_vecBoxMaxes.x );
vecPrevParticlePosition.y = Lerp( pUVW[4], phb.m_vecBoxMins.y, phb.m_vecBoxMaxes.y );
vecPrevParticlePosition.z = Lerp( pUVW[8], phb.m_vecBoxMins.z, phb.m_vecBoxMaxes.z );
Vector vecPrevWorldPosition;
VectorTransform( vecPrevParticlePosition, phb.m_Transform, vecPrevWorldPosition );
Vector Delta = ( vecWorldPosition-vecPrevWorldPosition ) * flCreationFrameBias;
if ( flAge > m_flLifeTimeFadeStart )
Delta *= flStrength * ( 1.0- ( ( flAge - m_flLifeTimeFadeStart ) * flIScale ) );
Vector xyz;
SetVectorFromAttribute( xyz, pXYZ );
xyz += Delta;
SetVectorAttribute( pXYZ, xyz );
Vector prevxyz;
SetVectorFromAttribute( prevxyz, pPrevXYZ );
prevxyz += Delta;
SetVectorAttribute( pPrevXYZ, prevxyz );
}
}
}
}
};
//-----------------------------------------------------------------------------
// Sets control point to a specified point based on cp's
// percentage distance between two points
//-----------------------------------------------------------------------------
class C_OP_CPOffsetToPercentageBetweenCPs : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_CPOffsetToPercentageBetweenCPs );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetReadInitialAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nStartCP ) | ( 1ULL << m_nEndCP ) | ( 1ULL << m_nOffsetCP ) | ( 1ULL << m_nOuputCP ) ;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nStartCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nStartCP ) );
m_nEndCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nEndCP ) );
m_nOffsetCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nOffsetCP ) );
m_nOuputCP = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nOuputCP ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flInputMin;
float m_flInputMax;
float m_flInputBias;
int m_nStartCP;
int m_nEndCP;
int m_nOffsetCP;
int m_nOuputCP;
int m_nInputCP;
bool m_bRadialCheck;
bool m_bScaleOffset;
Vector m_vecOffset;
};
DEFINE_PARTICLE_OPERATOR( C_OP_CPOffsetToPercentageBetweenCPs, "Set CP Offset to CP Percentage Between Two Control Points", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_CPOffsetToPercentageBetweenCPs )
DMXELEMENT_UNPACK_FIELD( "percentage minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "percentage maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "percentage bias",".5", float, m_flInputBias )
DMXELEMENT_UNPACK_FIELD( "starting control point","0", int, m_nStartCP )
DMXELEMENT_UNPACK_FIELD( "ending control point","1", int, m_nEndCP )
DMXELEMENT_UNPACK_FIELD( "offset control point","2", int, m_nOffsetCP )
DMXELEMENT_UNPACK_FIELD( "input control point","3", int, m_nInputCP )
DMXELEMENT_UNPACK_FIELD( "output control point","4", int, m_nOuputCP )
DMXELEMENT_UNPACK_FIELD( "offset amount","0 0 0", Vector, m_vecOffset )
DMXELEMENT_UNPACK_FIELD( "treat distance between points as radius","1", bool, m_bRadialCheck )
DMXELEMENT_UNPACK_FIELD( "treat offset as scale of total distance","0", bool, m_bScaleOffset )
END_PARTICLE_OPERATOR_UNPACK( C_OP_CPOffsetToPercentageBetweenCPs )
void C_OP_CPOffsetToPercentageBetweenCPs::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint1 = pParticles->GetControlPointAtCurrentTime( m_nStartCP );
Vector vecControlPoint2 = pParticles->GetControlPointAtCurrentTime( m_nEndCP );
Vector vecControlPointOffset = pParticles->GetControlPointAtCurrentTime( m_nOffsetCP );
Vector vecControlPointInput = pParticles->GetControlPointAtCurrentTime( m_nInputCP );
float flTotalDistance = ( vecControlPoint1 - vecControlPoint2 ).Length();
Vector vecOffsetInput = m_vecOffset;
if ( m_bScaleOffset )
vecOffsetInput *= flTotalDistance;
float flPercentage;
if ( m_bRadialCheck )
{
Vector vecCPDelta = vecControlPoint1 - vecControlPointInput;
float flDistance = vecCPDelta.Length() + FLT_EPSILON;
flPercentage = 1 / ( flTotalDistance / flDistance );
}
else
{
Vector vecClosestPoint;
CalcClosestPointOnLine( vecControlPointInput, vecControlPoint1, vecControlPoint2, vecClosestPoint, &flPercentage );
}
flPercentage = RemapValClamped( flPercentage, m_flInputMin, m_flInputMax, 0.0f, 1.0f );
flPercentage = Bias( flPercentage, m_flInputBias );
Vector vecOffsetAmt = VectorLerp( vec3_origin, vecOffsetInput, flPercentage );
Vector vecControlPointOutput = vecControlPointOffset + vecOffsetAmt;
pParticles->SetControlPoint( m_nOuputCP, vecControlPointOutput );
}
//-----------------------------------------------------------------------------
// Plane Cull Operator - cull particles on the "wrong" side of a plane
//-----------------------------------------------------------------------------
class C_OP_PlaneCull : public CParticleOperatorInstance
{
int m_nPlaneControlPoint;
Vector m_vecPlaneDirection;
float m_flPlaneOffset;
DECLARE_PARTICLE_OPERATOR( C_OP_PlaneCull );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nPlaneControlPoint );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_PlaneCull, "Cull when crossing plane", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_PlaneCull )
DMXELEMENT_UNPACK_FIELD( "Control Point for point on plane", "0", int, m_nPlaneControlPoint )
DMXELEMENT_UNPACK_FIELD( "Cull plane offset", "0", float, m_flPlaneOffset )
DMXELEMENT_UNPACK_FIELD( "Plane Normal", "0 0 1", Vector, m_vecPlaneDirection )
END_PARTICLE_OPERATOR_UNPACK( C_OP_PlaneCull )
void C_OP_PlaneCull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
// setup vars
FourVectors v4N ;
v4N.DuplicateVector( m_vecPlaneDirection );
v4N.VectorNormalize();
FourVectors v4Pnt;
v4Pnt.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nPlaneControlPoint ) );
FourVectors ofs = v4N;
ofs *= ReplicateX4( m_flPlaneOffset );
v4Pnt -= ofs;
for ( int i = 0; i < nLimit; i+= 4 )
{
FourVectors f4PlaneRel = (*pXYZ );
f4PlaneRel -= v4Pnt;
fltx4 fl4PlaneEq = ( f4PlaneRel * v4N );
if ( IsAnyNegative( fl4PlaneEq ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4PlaneEq );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pXYZ;
}
}
//-----------------------------------------------------------------------------
// Distance Cull Operator - cull particles on the "wrong" side of a plane
//-----------------------------------------------------------------------------
class C_OP_DistanceCull : public CParticleOperatorInstance
{
int m_nControlPoint;
Vector m_vecPointOffset;
float m_flDistance;
bool m_bCullInside;
DECLARE_PARTICLE_OPERATOR( C_OP_DistanceCull );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nControlPoint );
}
void Render( CParticleCollection *pParticles ) const;
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_DistanceCull, "Cull when crossing sphere", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceCull )
DMXELEMENT_UNPACK_FIELD( "Control Point", "0", int, m_nControlPoint )
DMXELEMENT_UNPACK_FIELD( "Cull Distance", "0", float, m_flDistance )
DMXELEMENT_UNPACK_FIELD( "Control Point offset", "0 0 0", Vector, m_vecPointOffset )
DMXELEMENT_UNPACK_FIELD( "Cull inside instead of outside", "0", bool, m_bCullInside )
END_PARTICLE_OPERATOR_UNPACK( C_OP_DistanceCull )
void C_OP_DistanceCull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
int nLimit = pParticles->m_nPaddedActiveParticles << 2;
// setup vars
FourVectors v4Offset ;
v4Offset.DuplicateVector( m_vecPointOffset );
FourVectors v4CullPosition;
v4CullPosition.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nControlPoint ) );
v4CullPosition += v4Offset;
fltx4 fl4CullDistance = ReplicateX4( m_flDistance );
for ( int i = 0; i < nLimit; i+= 4 )
{
FourVectors f4ParticlePos = (*pXYZ );
f4ParticlePos -= v4CullPosition;
fltx4 fl4DistanceTest = f4ParticlePos.length();
bi32x4 fl4CullMask;
if ( m_bCullInside )
fl4CullMask = CmpLtSIMD( fl4DistanceTest, fl4CullDistance );
else
fl4CullMask = CmpGtSIMD( fl4DistanceTest, fl4CullDistance );
if ( IsAnyTrue( fl4CullMask ) )
{
// not especially pretty - we need to kill some particles.
int nMask = TestSignSIMD( fl4CullMask );
if ( nMask & 1 )
pParticles->KillParticle( i );
if ( nMask & 2 )
pParticles->KillParticle( i + 1 );
if ( nMask & 4 )
pParticles->KillParticle( i + 2 );
if ( nMask & 8 )
pParticles->KillParticle( i + 3 );
}
++pXYZ;
}
}
//-----------------------------------------------------------------------------
// Render visualization
//-----------------------------------------------------------------------------
void C_OP_DistanceCull::Render( CParticleCollection *pParticles ) const
{
Vector vecOrigin1 = pParticles->GetControlPointAtCurrentTime( m_nControlPoint );
vecOrigin1 += m_vecPointOffset;
RenderWireframeSphere( vecOrigin1, m_flDistance, 16, 8, Color( 255, 255, 255, 255 ), false );
}
//-----------------------------------------------------------------------------
// Model Cull Operator - cull particles inside or outside of a brush/animated model
//-----------------------------------------------------------------------------
class C_OP_ModelCull : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_ModelCull );
int m_nControlPointNumber;
bool m_bBoundBox;
bool m_bCullOutside;
char m_HitboxSetName[128];
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK;
}
uint32 GetFilter( void ) const
{
return FILTER_LIFE_DURATION_MASK | FILTER_POSITION_AND_VELOCITY_MASK;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nControlPointNumber = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_ModelCull , "Cull relative to model", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_ModelCull )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "use only bounding box", "0", bool, m_bBoundBox )
DMXELEMENT_UNPACK_FIELD( "cull outside instead of inside", "0", bool, m_bCullOutside )
DMXELEMENT_UNPACK_FIELD_STRING( "hitbox set", "effects", m_HitboxSetName )
END_PARTICLE_OPERATOR_UNPACK( C_OP_ModelCull )
void C_OP_ModelCull::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( pParticles->ControlPoint( m_nControlPointNumber ).m_pObject != NULL )
{
pParticles->UpdateHitBoxInfo( m_nControlPointNumber, m_HitboxSetName );
if ( pParticles->ControlPointHitBox( m_nControlPointNumber ).CurAndPrevValid() )
{
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *pXYZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
Vector vecParticlePosition;
SetVectorFromAttribute( vecParticlePosition, pXYZ );
bool bInside = g_pParticleSystemMgr->Query()->IsPointInControllingObjectHitBox( pParticles, m_nControlPointNumber, vecParticlePosition, m_bBoundBox );
if ( ( bInside && m_bCullOutside ) || ( !bInside && !m_bCullOutside ))
continue;
pParticles->KillParticle(i);
}
}
}
};
//-----------------------------------------------------------------------------
// Assign CP to Center
//-----------------------------------------------------------------------------
class C_OP_SetControlPointToCenter : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointToCenter );
int m_nCP1;
Vector m_vecCP1Pos;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_CONTROL_POINTS_MASK;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCP1 = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nCP1 ) );
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointToCenter, "Set Control Point To Particles' Center", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToCenter )
DMXELEMENT_UNPACK_FIELD( "Control Point Number to Set", "1", int, m_nCP1 )
DMXELEMENT_UNPACK_FIELD( "Center Offset", "0 0 0", Vector, m_vecCP1Pos )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToCenter )
void C_OP_SetControlPointToCenter::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecMinBounds;
Vector vecMaxBounds;
pParticles->GetBounds( &vecMinBounds, &vecMaxBounds );
Vector vecCenter = ( ( vecMinBounds + vecMaxBounds ) / 2 );
pParticles->SetControlPoint( m_nCP1, m_vecCP1Pos + vecCenter );
}
//-----------------------------------------------------------------------------
// Velocity Match a group of particles
//-----------------------------------------------------------------------------
class C_OP_VelocityMatchingForce : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_VelocityMatchingForce );
float m_flDirScale;
float m_flSpdScale;
int m_nCPBroadcast;
struct VelocityMatchingForceContext_t
{
Vector m_vecAvgVelocity;
float m_flAvgSpeed;
};
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
VelocityMatchingForceContext_t *pCtx = reinterpret_cast<VelocityMatchingForceContext_t *>( pContext );
pCtx->m_vecAvgVelocity = vec3_origin;
pCtx->m_flAvgSpeed = 0;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( VelocityMatchingForceContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_VelocityMatchingForce , "Movement Match Particle Velocities", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityMatchingForce )
DMXELEMENT_UNPACK_FIELD( "Direction Matching Strength", "0.25", float, m_flDirScale )
DMXELEMENT_UNPACK_FIELD( "Speed Matching Strength", "0.25", float, m_flSpdScale )
DMXELEMENT_UNPACK_FIELD( "Control Point to Broadcast Speed and Direction To", "-1", int, m_nCPBroadcast )
END_PARTICLE_OPERATOR_UNPACK( C_OP_VelocityMatchingForce )
void C_OP_VelocityMatchingForce::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
VelocityMatchingForceContext_t *pCtx = reinterpret_cast<VelocityMatchingForceContext_t *>( pContext );
Vector vecVelocityAvg = vec3_origin;
float flAvgSpeed = 0;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
Vector vecVelocityCur = ( ( vecXYZ - vecPXYZ ) / pParticles->m_flDt );
vecVelocityAvg += vecVelocityCur;
float flSpeed = vecVelocityCur.Length();
flAvgSpeed += flSpeed;
if ( pCtx->m_vecAvgVelocity != vec3_origin )
{
Vector vecScaledXYZ;
VectorNormalizeFast(vecVelocityCur);
VectorLerp( vecVelocityCur, pCtx->m_vecAvgVelocity, m_flDirScale, vecScaledXYZ );
VectorNormalizeFast(vecScaledXYZ);
flSpeed = Lerp ( m_flSpdScale, flSpeed, pCtx->m_flAvgSpeed );
vecScaledXYZ *= flSpeed;
vecScaledXYZ = ( ( vecScaledXYZ * pParticles->m_flDt ) + vecPXYZ );
SetVectorAttribute( xyz, vecScaledXYZ );
}
}
VectorNormalizeFast( vecVelocityAvg );
pCtx->m_vecAvgVelocity = vecVelocityAvg;
pCtx->m_flAvgSpeed = ( flAvgSpeed / pParticles->m_nActiveParticles );
if ( m_nCPBroadcast != -1 )
{
pParticles->SetControlPoint( m_nCPBroadcast, Vector ( pCtx->m_flAvgSpeed, pCtx->m_flAvgSpeed, pCtx->m_flAvgSpeed ) );
pParticles->SetControlPointForwardVector( m_nCPBroadcast, pCtx->m_vecAvgVelocity );
}
};
//-----------------------------------------------------------------------------
// Movement maintain offset
//-----------------------------------------------------------------------------
class C_OP_MovementMaintainOffset : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MovementMaintainOffset );
Vector m_vecOffset;
int m_nCP;
bool m_bRadiusScale;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MovementMaintainOffset , "Movement Maintain Offset", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MovementMaintainOffset )
DMXELEMENT_UNPACK_FIELD( "Local Space CP", "-1", int, m_nCP )
DMXELEMENT_UNPACK_FIELD( "Desired Offset", "0 0 0", Vector, m_vecOffset )
DMXELEMENT_UNPACK_FIELD( "Scale by Radius", "0", bool, m_bRadiusScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MovementMaintainOffset )
void C_OP_MovementMaintainOffset::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecLocalOffset = m_vecOffset;
if ( m_nCP > -1 )
{
matrix3x4_t mat;
pParticles->GetControlPointTransformAtCurrentTime( m_nCP, &mat );
VectorRotate( m_vecOffset, mat, vecLocalOffset );
}
Vector vecOffsetPos = ( vecLocalOffset * ( pParticles->m_nActiveParticles - 1 ) ) / 2 ;
Vector vecCurAvgPos = vec3_origin;
Vector vecCurAvgPrevPos = vec3_origin;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
vecCurAvgPos += vecXYZ;
vecCurAvgPrevPos += vecPXYZ;
}
vecCurAvgPos = vecCurAvgPos / pParticles->m_nActiveParticles;
vecCurAvgPrevPos = vecCurAvgPrevPos / pParticles->m_nActiveParticles;
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
float flRadius = 1;
if ( m_bRadiusScale )
{
const float *rad = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_RADIUS, i );
flRadius = *rad;
}
vecXYZ = vecCurAvgPos + vecOffsetPos * flRadius;
vecPXYZ = vecCurAvgPrevPos + vecOffsetPos * flRadius;
SetVectorAttribute( xyz, vecXYZ );
SetVectorAttribute( xyz_prev, vecPXYZ);
vecOffsetPos -= vecLocalOffset;
}
};
//-----------------------------------------------------------------------------
// Movement Place on Ground
//-----------------------------------------------------------------------------
class C_OP_MovementPlaceOnGround : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MovementPlaceOnGround );
struct PlaceOnGroundContext_t
{
Vector m_vecPrevPos1;
Vector m_vecPrevPos2;
Vector m_vecPrevPosLerp;
float m_flLerpTime;
};
float m_flOffset;
float m_flMaxTraceLength;
float m_flTolerance;
float m_flTraceOffset;
float m_flLerpRate;
char m_CollisionGroupName[128];
int m_nCollisionGroupNumber;
int m_nRefCP1;
int m_nRefCP2;
int m_nLerpCP;
unsigned int m_CollisionMask;
bool m_bKill;
bool m_bIncludeWater;
bool m_bUsesCPs;
bool m_bUsesLerp;
//bool m_bSetNormal;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_LIFE_DURATION_MASK | PARTICLE_ATTRIBUTE_NORMAL_MASK | PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
uint64 nMask = 0;
if ( m_nRefCP1 != -1 )
{
nMask |= ( 1ULL << m_nRefCP1 );
}
if ( m_nRefCP2 != -1 )
{
nMask |= ( 1ULL << m_nRefCP2 );
}
if ( m_nLerpCP != -1 )
{
nMask |= ( 1ULL << m_nLerpCP );
}
return nMask;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
if ( m_bIncludeWater )
m_CollisionMask = MASK_SHOT_HULL|MASK_SPLITAREAPORTAL;
else
m_CollisionMask = MASK_SHOT_HULL;
if ( ( m_nRefCP1 > -1 || m_nRefCP2 > -1 || m_nLerpCP > -1 ) && ( m_flTolerance > 0 ) )
m_bUsesCPs = true;
else
m_bUsesCPs = false;
if ( m_nLerpCP > -1 || m_flLerpRate > 0 )
m_bUsesLerp = true;
else
m_bUsesLerp = false;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
PlaceOnGroundContext_t *pCtx = reinterpret_cast<PlaceOnGroundContext_t *>( pContext );
pCtx->m_vecPrevPos1 = vec3_invalid;
pCtx->m_vecPrevPos2 = vec3_invalid;
pCtx->m_vecPrevPosLerp = vec3_invalid;
pCtx->m_flLerpTime = pParticles->m_flCurTime;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( PlaceOnGroundContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MovementPlaceOnGround, "Movement Place On Ground", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MovementPlaceOnGround )
DMXELEMENT_UNPACK_FIELD( "offset", "0", float, m_flOffset )
DMXELEMENT_UNPACK_FIELD( "kill on no collision", "0", bool, m_bKill )
DMXELEMENT_UNPACK_FIELD( "include water", "0", bool, m_bIncludeWater )
//DMXELEMENT_UNPACK_FIELD( "set normal", "0", bool, m_bSetNormal )
DMXELEMENT_UNPACK_FIELD( "max trace length", "128", float, m_flMaxTraceLength )
DMXELEMENT_UNPACK_FIELD( "trace offset", "64", float, m_flTraceOffset )
DMXELEMENT_UNPACK_FIELD_STRING( "collision group", "NONE", m_CollisionGroupName )
DMXELEMENT_UNPACK_FIELD( "reference CP 1", "-1", int, m_nRefCP1 )
DMXELEMENT_UNPACK_FIELD( "reference CP 2", "-1", int, m_nRefCP2 )
DMXELEMENT_UNPACK_FIELD( "CP movement tolerance", "32", float, m_flTolerance )
DMXELEMENT_UNPACK_FIELD( "interpolation rate", "0", float, m_flLerpRate )
DMXELEMENT_UNPACK_FIELD( "interploation distance tolerance cp", "-1", int, m_nLerpCP )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MovementPlaceOnGround )
void C_OP_MovementPlaceOnGround::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
PlaceOnGroundContext_t *pCtx = reinterpret_cast<PlaceOnGroundContext_t *>( pContext );
// Only update if our reference CPs have moved more than the tolerance for performance
bool bDirty = false;
if ( m_bUsesCPs )
{
if ( m_nRefCP1 > -1 )
{
if ( ( pParticles->GetControlPointAtCurrentTime( m_nRefCP1 ) - pCtx->m_vecPrevPos1 ).Length() > m_flTolerance )
{
bDirty = true;
pCtx->m_vecPrevPos1 = pParticles->GetControlPointAtCurrentTime( m_nRefCP1 );
pCtx->m_flLerpTime = pParticles->m_flCurTime;
}
}
if ( m_nRefCP2 > -1 )
{
if ( ( pParticles->GetControlPointAtCurrentTime( m_nRefCP2 ) - pCtx->m_vecPrevPos2 ).Length() > m_flTolerance )
{
bDirty = true;
pCtx->m_vecPrevPos2 = pParticles->GetControlPointAtCurrentTime( m_nRefCP2 );
pCtx->m_flLerpTime = pParticles->m_flCurTime;
}
}
if ( m_nLerpCP > -1 )
{
if ( ( pParticles->GetControlPointAtCurrentTime( m_nLerpCP ) - pCtx->m_vecPrevPosLerp ).Length() > m_flTolerance )
{
pCtx->m_vecPrevPosLerp = pParticles->GetControlPointAtCurrentTime( m_nLerpCP );
}
}
}
else if ( !m_bUsesLerp )
{
// If we don't use CP or lerping tolerances, we always require an update so set dirty to true
bDirty = true;
}
// Set our lerp percentage based on rate for later use
float flPerc = 0;
if ( m_bUsesLerp )
{
// Either store the percentage based on time or by distance moved, but not both
if ( m_flLerpRate > 0 )
{
flPerc = RemapValClamped( pParticles->m_flCurTime, pCtx->m_flLerpTime, ( pCtx->m_flLerpTime + m_flLerpRate ), 0.0f, 1.0f );
if ( flPerc == 1.0f && !m_bUsesCPs)
{
bDirty = true;
pCtx->m_flLerpTime = pParticles->m_flCurTime;
}
}
else if ( m_nLerpCP > -1 )
flPerc = clamp( ( ( pParticles->GetControlPointAtCurrentTime( m_nLerpCP ) - pCtx->m_vecPrevPosLerp ).Length() ) / m_flTolerance, 0.0f, 1.0f );
// Debug for visualing the percentage amount
//g_pParticleSystemMgr->Query()->DebugDrawLine( pParticles->GetControlPointAtCurrentTime( m_nLerpCP ), ( pParticles->GetControlPointAtCurrentTime( m_nLerpCP ) + Vector ( 0, 0, flPerc * 128 ) ), 255, 0, ( flPerc * 255 ), true, 1.0f );
}
if ( bDirty || m_bUsesLerp )
{
// Trace down
Vector TraceDir=Vector(0, 0, -1);
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pxyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
float *plife = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_LIFE_DURATION, i );
//HACK - uses Hitbox Relative XYZ to store past/desired Z component for smooth lerping
float *pDesiredZ = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ, i );
//float *pNormal = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_NORMAL, i );
Vector vecXYZPos, vecXYZPrevPos, vecTracePos, vecDesiredZ;
SetVectorFromAttribute( vecXYZPos, xyz );
SetVectorFromAttribute( vecXYZPrevPos, pxyz );
SetVectorFromAttribute( vecDesiredZ, pDesiredZ );
if ( m_bUsesLerp && vecDesiredZ.y != 1 )
{
vecDesiredZ = Vector( vecXYZPos.z, 1, vecXYZPos.z);
bDirty = true;
}
if ( bDirty )
{
vecTracePos = vecXYZPos;
vecTracePos.z += m_flTraceOffset;
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecTracePos, ( vecTracePos + ( TraceDir * m_flMaxTraceLength ) ), m_CollisionMask, NULL, m_nCollisionGroupNumber, &tr );
if ( tr.fraction == 1.0 && m_bKill )
{
*plife = -1.0f;
}
else
{
Vector vecEndPos = tr.endpos;
Vector vecOffset = Vector( 0, 0, m_flOffset );
//if ( m_bSetNormal )
//{
//SetVectorAttribute( pNormal, tr.plane.normal);
//vecOffset = tr.plane.normal * m_flOffset;
//}
vecEndPos += vecOffset;
if ( m_bUsesLerp )
{
vecDesiredZ.x = vecDesiredZ.z;
vecDesiredZ.z = vecEndPos.z;
SetVectorAttribute( pDesiredZ, vecDesiredZ );
}
else
{
vecXYZPos.z = vecEndPos.z;
vecXYZPrevPos.z = vecEndPos.z;
}
}
}
if ( m_bUsesLerp )
{
vecXYZPos.z = Lerp ( flPerc, vecDesiredZ.x, vecDesiredZ.z );
vecXYZPrevPos.z = vecXYZPos.z;
}
SetVectorAttribute( xyz, vecXYZPos );
SetVectorAttribute( pxyz, vecXYZPrevPos );
}
}
}
class C_OP_InheritFromParentParticles : public CParticleInitializerOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_InheritFromParentParticles );
struct ParentParticlesContext_t
{
int m_nCurrentParentParticle;
};
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
ParentParticlesContext_t *pCtx = reinterpret_cast<ParentParticlesContext_t *>( pContext );
pCtx->m_nCurrentParentParticle = 0;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( ParentParticlesContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
float m_flScale;
int m_nFieldOutput;
int m_nIncrement;
bool m_bRandomDistribution;
};
DEFINE_PARTICLE_OPERATOR( C_OP_InheritFromParentParticles, "Inherit Attribute From Parent Particle", OPERATOR_GENERIC );
BEGIN_PARTICLE_INITIALIZER_OPERATOR_UNPACK( C_OP_InheritFromParentParticles )
DMXELEMENT_UNPACK_FIELD_USERDATA( "Inherited Field", "3", int, m_nFieldOutput, "intchoice particlefield" )
DMXELEMENT_UNPACK_FIELD( "Scale","1", float, m_flScale )
DMXELEMENT_UNPACK_FIELD( "Random Parent Particle Distribution","0", bool, m_bRandomDistribution )
DMXELEMENT_UNPACK_FIELD( "Particle Increment Amount","1", int, m_nIncrement )
END_PARTICLE_OPERATOR_UNPACK( C_OP_InheritFromParentParticles )
void C_OP_InheritFromParentParticles::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( !pParticles->m_pParent )
{
return;
}
ParentParticlesContext_t *pCtx = reinterpret_cast<ParentParticlesContext_t *>( pContext );
int nActiveParticles = pParticles->m_pParent->m_nActiveParticles;
if ( nActiveParticles == 0 )
{
return;
}
nActiveParticles = MAX( 0, nActiveParticles - 1 );
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
if ( m_bRandomDistribution )
{
pCtx->m_nCurrentParentParticle = pParticles->RandomInt( 0, nActiveParticles );
}
else if ( pCtx->m_nCurrentParentParticle > nActiveParticles )
{
pCtx->m_nCurrentParentParticle = 0;
}
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
const float *pParentValue = pParticles->m_pParent->GetFloatAttributePtr( m_nFieldOutput, pCtx->m_nCurrentParentParticle );
if ( ATTRIBUTES_WHICH_ARE_VEC3S_MASK & ( 1 << m_nFieldOutput ) )
{
Vector vecParentValue;
SetVectorFromAttribute( vecParentValue, pParentValue );
vecParentValue *= m_flScale;
// Clamp to 0-1 if color
if ( ATTRIBUTES_WHICH_ARE_COLOR_AND_OPACITY & ( 1 << m_nFieldOutput ) )
{
vecParentValue.Min( Vector( 1, 1, 1 ) );
vecParentValue.Max( Vector( 0, 0, 0 ) );
}
SetVectorAttribute( pOutput, vecParentValue );
}
else
{
float flOutput = *pParentValue * m_flScale;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flOutput = clamp(flOutput, 0.0f, 1.0f );
}
*pOutput = flOutput;
}
pCtx->m_nCurrentParentParticle += m_nIncrement;
}
}
//-----------------------------------------------------------------------------
// Orient to heading
//-----------------------------------------------------------------------------
class C_OP_OrientTo2dDirection : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_OrientTo2dDirection );
float m_flRotOffset;
float m_flSpinStrength;
int m_nFieldOutput;
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_OrientTo2dDirection , "Rotation Orient to 2D Direction", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_OrientTo2dDirection )
DMXELEMENT_UNPACK_FIELD( "Rotation Offset", "0", float, m_flRotOffset )
DMXELEMENT_UNPACK_FIELD( "Spin Strength", "1", float, m_flSpinStrength )
DMXELEMENT_UNPACK_FIELD_USERDATA( "rotation field", "4", int, m_nFieldOutput, "intchoice particlefield_rotation" )
END_PARTICLE_OPERATOR_UNPACK( C_OP_OrientTo2dDirection )
void C_OP_OrientTo2dDirection::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotOffset = m_flRotOffset * ( M_PI / 180.0f );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
const float *xyz_prev = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
float *roll = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
Vector vecXYZ;
Vector vecPXYZ;
vecXYZ.x = xyz[0];
vecXYZ.y = xyz[4];
vecXYZ.z = xyz[8];
vecPXYZ.x = xyz_prev[0];
vecPXYZ.y = xyz_prev[4];
vecPXYZ.z = xyz_prev[8];
Vector vecVelocityCur = ( vecXYZ - vecPXYZ );
vecVelocityCur.z = 0.0f;
VectorNormalizeFast ( vecVelocityCur );
float flCurRot = *roll;
float flVelRot = atan2(vecVelocityCur.y, vecVelocityCur.x ) + M_PI;
flVelRot += flRotOffset;
float flRotation = Lerp ( m_flSpinStrength, flCurRot, flVelRot );
*roll = flRotation;
}
};
//-----------------------------------------------------------------------------
// Restart after Randomized Duration
//-----------------------------------------------------------------------------
class C_OP_RestartAfterDuration : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RestartAfterDuration );
float m_flDurationMin;
float m_flDurationMax;
int m_nCP;
int m_nCPField;
int m_nChildGroupID;
bool m_bOnlyChildren;
struct RestartAfterDurationContext_t
{
float m_flLastRestart;
float m_flRestartDuration;
};
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nCP );
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_nCP = clamp( m_nCP, -1, MAX_PARTICLE_CONTROL_POINTS );
m_nCPField = clamp( m_nCPField, 0, 2 );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
RestartAfterDurationContext_t *pCtx = reinterpret_cast<RestartAfterDurationContext_t *>( pContext );
pCtx->m_flRestartDuration = pParticles->RandomFloat( m_flDurationMin, m_flDurationMax );
pCtx->m_flLastRestart = 0;
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( RestartAfterDurationContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RestartAfterDuration , "Restart Effect after Duration", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RestartAfterDuration )
DMXELEMENT_UNPACK_FIELD( "Minimum Restart Time", "0", float, m_flDurationMin )
DMXELEMENT_UNPACK_FIELD( "Maximum Restart Time", "1", float, m_flDurationMax )
DMXELEMENT_UNPACK_FIELD( "Control Point to Scale Duration", "-1", int, m_nCP )
DMXELEMENT_UNPACK_FIELD( "Control Point Field X/Y/Z", "0", int, m_nCPField )
DMXELEMENT_UNPACK_FIELD( "Only Restart Children", "0", bool, m_bOnlyChildren )
DMXELEMENT_UNPACK_FIELD( "Child Group ID", "0", int, m_nChildGroupID )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RestartAfterDuration )
void C_OP_RestartAfterDuration::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( !pParticles->m_bEmissionStopped )
{
RestartAfterDurationContext_t *pCtx = reinterpret_cast<RestartAfterDurationContext_t *>( pContext );
float flDuration = pCtx->m_flRestartDuration;
if ( m_nCP > -1 )
{
flDuration *= pParticles->GetControlPointAtCurrentTime( m_nCP )[m_nCPField];
}
if ( pParticles->m_flCurTime > flDuration + pCtx->m_flLastRestart )
{
if ( m_bOnlyChildren )
{
for( CParticleCollection *pChild = pParticles->m_Children.m_pHead; pChild; pChild = pChild->m_pNext )
{
if ( pChild->GetGroupID() == m_nChildGroupID )
pChild->Restart();
}
}
else
{
pParticles->Restart();
}
pCtx->m_flLastRestart = pParticles->m_flCurTime;
pCtx->m_flRestartDuration = pParticles->RandomFloat( m_flDurationMin, m_flDurationMax );
}
}
};
//-----------------------------------------------------------------------------
// Stop after CP Specified Duration
//-----------------------------------------------------------------------------
class C_OP_StopAfterCPDuration : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_StopAfterCPDuration );
float m_flDuration;
int m_nCP;
int m_nCPField;
bool m_bDestroyImmediately;
bool m_bPlayEndCap;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nCP );
}
virtual void InitParams(CParticleSystemDefinition *pDef )
{
m_nCP = clamp( m_nCP, -1, MAX_PARTICLE_CONTROL_POINTS );
m_nCPField = clamp( m_nCPField, 0, 2 );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_StopAfterCPDuration , "Stop Effect after Duration", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_StopAfterCPDuration )
DMXELEMENT_UNPACK_FIELD( "Duration at which to Stop", "1", float, m_flDuration )
DMXELEMENT_UNPACK_FIELD( "Control Point to Scale Duration", "-1", int, m_nCP )
DMXELEMENT_UNPACK_FIELD( "Control Point Field X/Y/Z", "0", int, m_nCPField )
DMXELEMENT_UNPACK_FIELD( "Destroy All Particles Immediately", "0", bool, m_bDestroyImmediately )
DMXELEMENT_UNPACK_FIELD( "Play End Cap Effect", "1", bool, m_bPlayEndCap )
END_PARTICLE_OPERATOR_UNPACK( C_OP_StopAfterCPDuration )
void C_OP_StopAfterCPDuration::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( !pParticles->m_bEmissionStopped )
{
float flDuration = m_flDuration;
if ( m_nCP > -1 )
{
flDuration *= pParticles->GetControlPointAtCurrentTime( m_nCP )[m_nCPField];
}
if ( pParticles->m_flCurTime > flDuration )
{
pParticles->StopEmission( false, m_bDestroyImmediately, true, m_bPlayEndCap );
}
}
};
//-----------------------------------------------------------------------------
// Orient relative to CP
//-----------------------------------------------------------------------------
class C_OP_Orient2DRelToCP : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_Orient2DRelToCP );
float m_flRotOffset;
float m_flSpinStrength;
int m_nCP;
int m_nFieldOutput;
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK ;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nCP );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_Orient2DRelToCP , "Rotation Orient Relative to CP", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_Orient2DRelToCP )
DMXELEMENT_UNPACK_FIELD( "Rotation Offset", "0", float, m_flRotOffset )
DMXELEMENT_UNPACK_FIELD( "Spin Strength", "1", float, m_flSpinStrength )
DMXELEMENT_UNPACK_FIELD( "Control Point", "0", int, m_nCP )
DMXELEMENT_UNPACK_FIELD_USERDATA( "rotation field", "4", int, m_nFieldOutput, "intchoice particlefield_rotation" )
END_PARTICLE_OPERATOR_UNPACK( C_OP_Orient2DRelToCP )
void C_OP_Orient2DRelToCP::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotOffset = m_flRotOffset * ( M_PI / 180.0f );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *xyz = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_XYZ, i );
float *roll = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
Vector vecXYZ;
Vector vecCP;
vecCP = pParticles->GetControlPointAtCurrentTime( m_nCP );
vecXYZ.x = xyz[0];
vecXYZ.y = xyz[4];
vecXYZ.z = xyz[8];
Vector vecVelocityCur = ( vecXYZ - vecCP );
vecVelocityCur.z = 0.0f;
VectorNormalizeFast ( vecVelocityCur );
float flCurRot = *roll;
float flVelRot = atan2(vecVelocityCur.y, vecVelocityCur.x ) + M_PI;
flVelRot += flRotOffset;
float flRotation = Lerp ( m_flSpinStrength, flCurRot, flVelRot );
*roll = flRotation;
}
};
//-----------------------------------------------------------------------------
// Rotate CP
//-----------------------------------------------------------------------------
class C_OP_SetControlPointRotation : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointRotation );
Vector m_vecRotAxis;
float m_flRotRate;
int m_nCP;
int m_nLocalCP;
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
uint64 nMask = ( 1ULL << m_nCP );
if ( m_nLocalCP != -1 )
{
nMask |= ( 1ULL << m_nLocalCP );
}
return nMask;
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
void InitParams( CParticleSystemDefinition *pDef )
{
VectorNormalize( m_vecRotAxis );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointRotation , "Set Control Point Rotation", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointRotation )
DMXELEMENT_UNPACK_FIELD( "Rotation Axis", "0 0 1", Vector, m_vecRotAxis )
DMXELEMENT_UNPACK_FIELD( "Rotation Rate", "180", float, m_flRotRate )
DMXELEMENT_UNPACK_FIELD( "Control Point", "0", int, m_nCP )
DMXELEMENT_UNPACK_FIELD( "Local Space Control Point", "-1", int, m_nLocalCP )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointRotation )
void C_OP_SetControlPointRotation::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotRate = m_flRotRate * pParticles->m_flDt;
Vector vecForward, vecRight, vecUp;
matrix3x4_t matCP, matRot;
Vector vecRotAxis = m_vecRotAxis;
if ( m_nLocalCP > -1 )
{
matrix3x4_t matLocalCP;
pParticles->GetControlPointTransformAtCurrentTime( m_nLocalCP, &matLocalCP );
VectorRotate( m_vecRotAxis, matLocalCP, vecRotAxis );
}
pParticles->GetControlPointTransformAtCurrentTime( m_nCP, &matCP );
MatrixBuildRotationAboutAxis ( vecRotAxis, flRotRate, matRot );
MatrixMultiply( matCP, matRot, matCP );
Quaternion quatRot;
MatrixQuaternion( matCP, quatRot );
pParticles->SetControlPointOrientation( m_nCP, quatRot );
//perhaps it should be done this way rather than using a quaternion?
//MatrixVectors( matCP, &vecForward, &vecRight, &vecUp );
//VectorNormalize( vecRight );
//VectorNormalize( vecUp );
//vecForward = CrossProduct( vecRight, vecUp );
//pParticles->SetControlPointOrientation( m_nCP, vecForward, vecRight, vecUp );
};
//-----------------------------------------------------------------------------
// Rotate Particle around axis
//-----------------------------------------------------------------------------
class C_OP_MovementRotateParticleAroundAxis : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MovementRotateParticleAroundAxis );
Vector m_vecRotAxis;
float m_flRotRate;
int m_nCP;
bool m_bLocalSpace;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nCP;
}
void InitParams( CParticleSystemDefinition *pDef )
{
VectorNormalize( m_vecRotAxis );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MovementRotateParticleAroundAxis , "Movement Rotate Particle Around Axis", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MovementRotateParticleAroundAxis )
DMXELEMENT_UNPACK_FIELD( "Rotation Axis", "0 0 1", Vector, m_vecRotAxis )
DMXELEMENT_UNPACK_FIELD( "Rotation Rate", "180", float, m_flRotRate )
DMXELEMENT_UNPACK_FIELD( "Control Point", "0", int, m_nCP )
DMXELEMENT_UNPACK_FIELD( "Use Local Space", "0", bool, m_bLocalSpace )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MovementRotateParticleAroundAxis )
void C_OP_MovementRotateParticleAroundAxis::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flRotRate = m_flRotRate * pParticles->m_flDt;
matrix3x4_t matRot;
Vector vecRotAxis = m_vecRotAxis;
if ( m_bLocalSpace )
{
matrix3x4_t matLocalCP;
pParticles->GetControlPointTransformAtCurrentTime( m_nCP, &matLocalCP );
VectorRotate( m_vecRotAxis, matLocalCP, vecRotAxis );
}
MatrixBuildRotationAboutAxis ( vecRotAxis, flRotRate, matRot );
Vector vecCPPos = pParticles->GetControlPointAtCurrentTime( m_nCP );
FourVectors fvCPPos;
fvCPPos.DuplicateVector( vecCPPos );
fltx4 fl4Strength = ReplicateX4( flStrength );
C4VAttributeWriteIterator pXYZ( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pPrevXYZ( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
FourVectors fvCurPos = *pXYZ - fvCPPos;
FourVectors fvPrevPos = *pPrevXYZ - fvCPPos;
fvCurPos.RotateBy( matRot );
fvPrevPos.RotateBy( matRot );
fvCurPos += fvCPPos - *pXYZ;
fvCurPos *= fl4Strength;
*pXYZ += fvCurPos;
fvPrevPos += fvCPPos - *pPrevXYZ;
fvPrevPos *= fl4Strength;
*pPrevXYZ += fvPrevPos;
++pXYZ;
++pPrevXYZ;
} while ( --nCtr );
};
//-----------------------------------------------------------------------------
// Rotate Vector
//-----------------------------------------------------------------------------
class C_OP_RotateVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RotateVector );
int m_nFieldOutput;
Vector m_vecRotAxisMin;
Vector m_vecRotAxisMax;
float m_flRotRateMin;
float m_flRotRateMax;
bool m_bNormalize;
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nFieldOutput | PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return 0;
}
void InitParams( CParticleSystemDefinition *pDef )
{
VectorNormalize( m_vecRotAxisMin );
VectorNormalize( m_vecRotAxisMax );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RotateVector , "Rotate Vector Random", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RotateVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "21", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "Rotation Axis Min", "0 0 1", Vector, m_vecRotAxisMin )
DMXELEMENT_UNPACK_FIELD( "Rotation Axis Max", "0 0 1", Vector, m_vecRotAxisMax )
DMXELEMENT_UNPACK_FIELD( "Rotation Rate Min", "180", float, m_flRotRateMin )
DMXELEMENT_UNPACK_FIELD( "Rotation Rate Max", "180", float, m_flRotRateMax )
DMXELEMENT_UNPACK_FIELD( "Normalize Ouput", "0", float, m_bNormalize )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RotateVector )
void C_OP_RotateVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecForward, vecRight, vecUp;
matrix3x4_t matCP, matRot;
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const int *pParticleID = pParticles->GetIntAttributePtr( PARTICLE_ATTRIBUTE_PARTICLE_ID, i );
float flRotRate = pParticles->RandomFloat( *pParticleID, m_flRotRateMin, m_flRotRateMax );
flRotRate *= pParticles->m_flDt;
Vector vecRotAxis;
float flAxis = pParticles->RandomFloat( *pParticleID, 0, 1 );
VectorLerp( m_vecRotAxisMin, m_vecRotAxisMax, flAxis, vecRotAxis );
VectorNormalize( vecRotAxis );
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
Vector vecOutput;
SetVectorFromAttribute( vecOutput, pOutput );
Vector vecInput = vecOutput;
MatrixBuildRotationAboutAxis ( vecRotAxis, flRotRate, matRot );
VectorRotate( vecInput, matRot, vecOutput );
if ( m_bNormalize )
VectorNormalize( vecOutput );
vecOutput = VectorLerp ( vecInput, vecOutput, flStrength );
SetVectorAttribute( pOutput, vecOutput );
}
};
//-----------------------------------------------------------------------------
// Max Velocity - clamps the maximum velocity of a particle
//-----------------------------------------------------------------------------
class C_OP_MaxVelocity : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MaxVelocity );
float m_flMaxVelocity;
int m_nOverrideCP;
int m_nOverrideCPField;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nOverrideCP );
}
virtual void InitParams( CParticleSystemDefinition *pDef )
{
m_nOverrideCPField = int (clamp (m_nOverrideCPField, 0, 2));
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MaxVelocity , "Movement Max Velocity", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MaxVelocity )
DMXELEMENT_UNPACK_FIELD( "Maximum Velocity", "0", float, m_flMaxVelocity )
DMXELEMENT_UNPACK_FIELD( "Override Max Velocity from this CP", "-1", int, m_nOverrideCP )
DMXELEMENT_UNPACK_FIELD( "Override CP field", "0", int, m_nOverrideCPField )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MaxVelocity )
void C_OP_MaxVelocity::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
float flMaxVelocity = m_flMaxVelocity;
if ( m_nOverrideCP >= 0 )
{
Vector vecVelInput = pParticles->GetControlPointAtCurrentTime( m_nOverrideCP );
flMaxVelocity = vecVelInput[m_nOverrideCPField];
}
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
Vector vecVelocityCur = ( ( vecXYZ - vecPXYZ ) );
float flSpeed = vecVelocityCur.Length();
VectorNormalizeFast( vecVelocityCur );
float flMaxVelocityNormalized = flMaxVelocity * pParticles->m_flDt;
vecVelocityCur *= MIN( flSpeed, flMaxVelocityNormalized);
vecXYZ = vecPXYZ + vecVelocityCur;
SetVectorAttribute( xyz, vecXYZ );
}
};
//-----------------------------------------------------------------------------
// Movement Lag Compensation - Sets a speed and decelerates it based on an input lag amount (Sort of DotA specific)
//-----------------------------------------------------------------------------
class C_OP_LagCompensation : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LagCompensation );
int m_nDesiredVelocityCP;
int m_nLatencyCP;
int m_nLatencyCPField;
int m_nDesiredVelocityCPField;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK ;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nDesiredVelocityCP ) | ( 1ULL << m_nLatencyCP );
}
virtual void InitParams( CParticleSystemDefinition *pDef )
{
m_nLatencyCPField = int (clamp (m_nLatencyCPField, 0, 2));
m_nDesiredVelocityCPField = int (clamp (m_nDesiredVelocityCPField, -1, 2));
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LagCompensation , "Movement Lag Compensation", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LagCompensation )
DMXELEMENT_UNPACK_FIELD( "Desired Velocity CP", "-1", int, m_nDesiredVelocityCP )
DMXELEMENT_UNPACK_FIELD( "Desired Velocity CP Field Override(for speed only)", "-1", int, m_nDesiredVelocityCPField )
DMXELEMENT_UNPACK_FIELD( "Latency CP", "-1", int, m_nLatencyCP )
DMXELEMENT_UNPACK_FIELD( "Latency CP field", "0", int, m_nLatencyCPField )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LagCompensation )
void C_OP_LagCompensation::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
if ( m_nDesiredVelocityCP >= 0 && m_nLatencyCP >= 0 )
{
Vector vecDesiredVelocity = pParticles->GetControlPointAtCurrentTime( m_nDesiredVelocityCP );
Vector vecLatency = pParticles->GetControlPointAtCurrentTime( m_nLatencyCP );
float flLatency = vecLatency[m_nLatencyCPField] + FLT_EPSILON;
float flDesiredSpeed;
if ( m_nDesiredVelocityCPField > -1 )
flDesiredSpeed = vecDesiredVelocity[m_nDesiredVelocityCPField];
else
flDesiredSpeed = vecDesiredVelocity.Length();
float flStartSpeedScaled = flDesiredSpeed * 3;
float flCatchupTime = ( flLatency / 1000.0f );
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *xyz_prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
const float *ct = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
float flAge = pParticles->m_flCurTime - *ct;
//float flCurrentSpeed = SimpleSplineRemapValClamped( flAge, 0.0f, flCatchupTime, flStartSpeedScaled, flDesiredSpeed );
float flCurrentSpeed = RemapValClamped( flAge, 0.0f, flCatchupTime, flStartSpeedScaled, flDesiredSpeed );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, xyz_prev );
Vector vecVelocityCur = ( ( vecXYZ - vecPXYZ ) );
VectorNormalizeFast( vecVelocityCur );
double flSpeed = flCurrentSpeed * pParticles->m_flDt;
vecVelocityCur *= flSpeed;
vecXYZ = vecPXYZ + vecVelocityCur;
SetVectorAttribute( xyz, vecXYZ );
}
}
};
//-----------------------------------------------------------------------------
// Maintain position along a path
//-----------------------------------------------------------------------------
struct SequentialPositionContext_t
{
int m_nParticleCount;
float m_flStep;
int m_nCountAmount;
bool m_bUseParticleCount;
Vector m_vecPrevPosStart;
Vector m_vecPrevPosEnd;
};
class C_OP_MaintainSequentialPath : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_MaintainSequentialPath );
float m_fMaxDistance;
float m_flNumToAssign;
float m_flCohesionStrength;
float m_flTolerance;
bool m_bLoop;
bool m_bUseParticleCount;
struct CPathParameters m_PathParams;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
uint64 nStartMask = ( 1ULL << m_PathParams.m_nStartControlPointNumber ) - 1;
uint64 nEndMask = ( 1ULL << ( m_PathParams.m_nEndControlPointNumber + 1 ) ) - 1;
return nEndMask & (~nStartMask);
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
SequentialPositionContext_t *pCtx = reinterpret_cast<SequentialPositionContext_t *>( pContext );
pCtx->m_nParticleCount = 0;
if ( m_flNumToAssign > 1.0f )
{
pCtx->m_flStep = 1.0f / ( m_flNumToAssign - 1 );
}
else
{
pCtx->m_flStep = 0.0f;
}
pCtx->m_nCountAmount = 1;
if ( m_flTolerance > 0 )
{
pCtx->m_vecPrevPosStart = vec3_invalid;
pCtx->m_vecPrevPosEnd = vec3_invalid;
}
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_PathParams.ClampControlPointIndices();
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( SequentialPositionContext_t );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_MaintainSequentialPath, "Movement Maintain Position Along Path", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_MaintainSequentialPath )
DMXELEMENT_UNPACK_FIELD( "maximum distance", "0", float, m_fMaxDistance )
DMXELEMENT_UNPACK_FIELD( "bulge", "0", float, m_PathParams.m_flBulge )
DMXELEMENT_UNPACK_FIELD( "start control point number", "0", int, m_PathParams.m_nStartControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "end control point number", "0", int, m_PathParams.m_nEndControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "bulge control 0=random 1=orientation of start pnt 2=orientation of end point", "0", int, m_PathParams.m_nBulgeControl )
DMXELEMENT_UNPACK_FIELD( "mid point position", "0.5", float, m_PathParams.m_flMidPoint )
DMXELEMENT_UNPACK_FIELD( "particles to map from start to end", "100", float, m_flNumToAssign )
DMXELEMENT_UNPACK_FIELD( "restart behavior (0 = bounce, 1 = loop )", "1", bool, m_bLoop )
DMXELEMENT_UNPACK_FIELD( "cohesion strength", "1", float, m_flCohesionStrength )
DMXELEMENT_UNPACK_FIELD( "use existing particle count", "0", bool, m_bUseParticleCount )
DMXELEMENT_UNPACK_FIELD( "control point movement tolerance", "0", float, m_flTolerance )
END_PARTICLE_OPERATOR_UNPACK( C_OP_MaintainSequentialPath )
void C_OP_MaintainSequentialPath::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
SequentialPositionContext_t *pCtx = reinterpret_cast<SequentialPositionContext_t *>( pContext );
// Check to see if our CP movement is within tolerances - if so abort.
if ( m_flTolerance > 0 )
{
if ( ( pParticles->GetControlPointAtCurrentTime( m_PathParams.m_nStartControlPointNumber ) - pCtx->m_vecPrevPosStart ).Length() < m_flTolerance )
{
if ( ( pParticles->GetControlPointAtCurrentTime( m_PathParams.m_nEndControlPointNumber ) - pCtx->m_vecPrevPosEnd ).Length() < m_flTolerance )
return;
}
pCtx->m_vecPrevPosStart = pParticles->GetControlPointAtCurrentTime( m_PathParams.m_nStartControlPointNumber );
pCtx->m_vecPrevPosEnd = pParticles->GetControlPointAtCurrentTime( m_PathParams.m_nEndControlPointNumber );
}
float fl_Cohesion = ( 1 - m_flCohesionStrength );
float flNumToAssign = m_flNumToAssign;
if ( m_bUseParticleCount )
{
flNumToAssign = pParticles->m_nActiveParticles;
if ( flNumToAssign > 1.0f )
{
pCtx->m_flStep = 1.0f / ( flNumToAssign - 1 );
}
else
{
pCtx->m_flStep = 0.0f;
}
}
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pxyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector StartPnt, MidP, EndPnt;
pParticles->CalculatePathValues( m_PathParams, pParticles->m_flCurTime, &StartPnt, &MidP, &EndPnt);
if ( pCtx->m_nParticleCount >= flNumToAssign || pCtx->m_nParticleCount < 0 )
{
if ( m_bLoop )
{
pCtx->m_nParticleCount = 0;
}
else
{
pCtx->m_nCountAmount *= -1;
pCtx->m_nParticleCount = MIN( pCtx->m_nParticleCount, ( flNumToAssign - 1) );
pCtx->m_nParticleCount = MAX( pCtx->m_nParticleCount, 1 );
}
}
float t= pCtx->m_nParticleCount * pCtx->m_flStep;
// form delta terms needed for quadratic bezier
Vector Delta0=MidP-StartPnt;
Vector Delta1 = EndPnt-MidP;
Vector L0 = StartPnt+t*Delta0;
Vector L1 = MidP+t*Delta1;
Vector Pnt = L0+(L1-L0)*t;
// Allow an offset distance and position lerp
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, pxyz );
vecXYZ -= Pnt;
vecPXYZ -= Pnt;
float flXYZOffset = MIN(vecXYZ.Length(), m_fMaxDistance );
float flPXYZOffset = MIN(vecPXYZ.Length(), m_fMaxDistance );
VectorNormalizeFast( vecXYZ );
vecXYZ *= flXYZOffset * fl_Cohesion;
VectorNormalizeFast( vecPXYZ );
vecPXYZ *= flPXYZOffset * fl_Cohesion;
vecXYZ += Pnt;
vecPXYZ += Pnt;
xyz[0] = vecXYZ.x;
xyz[4] = vecXYZ.y;
xyz[8] = vecXYZ.z;
pxyz[0] = vecPXYZ.x;
pxyz[4] = vecPXYZ.y;
pxyz[8] = vecPXYZ.z;
pCtx->m_nParticleCount += pCtx->m_nCountAmount;
}
}
class C_OP_LockToSavedSequentialPath : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_LockToSavedSequentialPath );
int m_nPathCount;
float m_flFadeStart;
float m_flFadeEnd;
float m_flTolerance;
bool m_bCPPairs;
struct CPathParameters m_PathParams;
struct LockPathPositionContext_t
{
Vector m_vecPrevStartPnt[MAX_PARTICLE_CONTROL_POINTS];
Vector m_vecPrevMidP[MAX_PARTICLE_CONTROL_POINTS];
Vector m_vecPrevEndPnt[MAX_PARTICLE_CONTROL_POINTS];
};
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_HITBOX_INDEX_MASK | PARTICLE_ATTRIBUTE_CREATION_TIME_MASK | PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
uint64 nStartMask = ( 1ULL << m_PathParams.m_nStartControlPointNumber ) - 1;
uint64 nEndMask = m_bCPPairs ? 0xFFFFFFFFFFFFFFFFULL : ( 1ULL << ( m_PathParams.m_nEndControlPointNumber + 1 ) ) - 1;
return nEndMask & (~nStartMask);
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_PathParams.ClampControlPointIndices();
m_nPathCount = MAX( 1, m_bCPPairs ? m_PathParams.m_nEndControlPointNumber - m_PathParams.m_nStartControlPointNumber : 1 );
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( LockPathPositionContext_t );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
LockPathPositionContext_t *pCtx = reinterpret_cast<LockPathPositionContext_t *>( pContext );
for ( int i = 0; i < m_nPathCount; ++i )
{
pCtx->m_vecPrevStartPnt[i] = vec3_invalid;
}
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_LockToSavedSequentialPath, "Movement Lock to Saved Position Along Path", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_LockToSavedSequentialPath )
DMXELEMENT_UNPACK_FIELD( "bulge", "0", float, m_PathParams.m_flBulge )
DMXELEMENT_UNPACK_FIELD( "start control point number", "0", int, m_PathParams.m_nStartControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "end control point number", "1", int, m_PathParams.m_nEndControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "bulge control 0=random 1=orientation of start pnt 2=orientation of end point", "0", int, m_PathParams.m_nBulgeControl )
DMXELEMENT_UNPACK_FIELD( "mid point position", "0.5", float, m_PathParams.m_flMidPoint )
DMXELEMENT_UNPACK_FIELD( "Use sequential CP pairs between start and end point", "0", bool, m_bCPPairs )
//DMXELEMENT_UNPACK_FIELD( "start fade time", "1", float, m_flFadeStart )
//DMXELEMENT_UNPACK_FIELD( "end fade time", "1", float, m_flFadeEnd )
END_PARTICLE_OPERATOR_UNPACK( C_OP_LockToSavedSequentialPath )
void C_OP_LockToSavedSequentialPath::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
LockPathPositionContext_t *pCtx = reinterpret_cast<LockPathPositionContext_t *>( pContext );
Vector Delta0[MAX_PARTICLE_CONTROL_POINTS];
Vector Delta1[MAX_PARTICLE_CONTROL_POINTS];
Vector PrevDelta0[MAX_PARTICLE_CONTROL_POINTS];
Vector PrevDelta1[MAX_PARTICLE_CONTROL_POINTS];
Vector StartPnt[MAX_PARTICLE_CONTROL_POINTS];
Vector MidP[MAX_PARTICLE_CONTROL_POINTS];
Vector EndPnt[MAX_PARTICLE_CONTROL_POINTS];
for ( int i = 0; i < m_nPathCount; ++i )
{
struct CPathParameters CurrentPathParams = m_PathParams;
if ( m_bCPPairs )
{
CurrentPathParams.m_nStartControlPointNumber += i;
CurrentPathParams.m_nEndControlPointNumber = CurrentPathParams.m_nStartControlPointNumber + 1;
}
pParticles->CalculatePathValues( CurrentPathParams, pParticles->m_flCurTime, &StartPnt[i], &MidP[i], &EndPnt[i]);
// If it's first run, initialize our values
if ( pCtx->m_vecPrevStartPnt[i] == vec3_invalid )
{
pParticles->CalculatePathValues( CurrentPathParams, pParticles->m_flCurTime - pParticles->m_flDt, &pCtx->m_vecPrevStartPnt[i], &pCtx->m_vecPrevMidP[i], &pCtx->m_vecPrevEndPnt[i]);
}
// form delta terms needed for quadratic bezier
Delta0[i] = MidP[i] - StartPnt[i];
Delta1[i] = EndPnt[i] - MidP[i];
PrevDelta0[i] = pCtx->m_vecPrevMidP[i] - pCtx->m_vecPrevStartPnt[i];
PrevDelta1[i] = pCtx->m_vecPrevEndPnt[i] - pCtx->m_vecPrevMidP[i];
}
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
float *pxyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
const float *pSavedPos = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ, i );
const float *pCt = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
Vector vecSavedPos;
SetVectorFromAttribute( vecSavedPos, pSavedPos );
float flParticleAge = pParticles->m_flCurTime - *pCt;
float flCreationFrameBias = MIN( flParticleAge, pParticles->m_flDt );
flCreationFrameBias *= ( 1 / pParticles->m_flDt );
float t= vecSavedPos.x;
int nStartCP = int ( MAX( 0, vecSavedPos.y - m_PathParams.m_nStartControlPointNumber ) );
Vector PrevL0 = pCtx->m_vecPrevStartPnt[nStartCP]+t*PrevDelta0[nStartCP];
Vector PrevL1 = pCtx->m_vecPrevMidP[nStartCP]+t*PrevDelta1[nStartCP];
Vector PrevPnt = PrevL0+(PrevL1-PrevL0)*t;
Vector L0 = StartPnt[nStartCP]+t*Delta0[nStartCP];
Vector L1 = MidP[nStartCP]+t*Delta1[nStartCP];
Vector Pnt = L0+(L1-L0)*t;
Pnt -= PrevPnt;
VectorLerp( vec3_origin, Pnt, vec_t ( flCreationFrameBias ), Pnt );
Vector vecXYZ;
Vector vecPXYZ;
SetVectorFromAttribute( vecXYZ, xyz );
SetVectorFromAttribute( vecPXYZ, pxyz );
vecXYZ += Pnt;
vecPXYZ += Pnt;
xyz[0] = vecXYZ.x;
xyz[4] = vecXYZ.y;
xyz[8] = vecXYZ.z;
pxyz[0] = vecPXYZ.x;
pxyz[4] = vecPXYZ.y;
pxyz[8] = vecPXYZ.z;
}
for ( int i = 0; i < m_nPathCount; ++i )
{
pCtx->m_vecPrevStartPnt[i] = StartPnt[i];
pCtx->m_vecPrevMidP[i] = MidP[i];
pCtx->m_vecPrevEndPnt[i] = EndPnt[i];
}
}
//-----------------------------------------------------------------------------
// Remap Dot Product to Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapDotProductToScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapDotProductToScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
if ( m_bScaleInitialRange )
return 1 << m_nFieldOutput;
else
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nInputCP1 ) | ( 1ULL << m_nInputCP2 );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nInputCP1;
int m_nInputCP2;
int m_nFieldOutput;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
bool m_bUseParticleVelocity;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
bool m_bActiveRange;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapDotProductToScalar, "Remap Dot Product to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapDotProductToScalar )
DMXELEMENT_UNPACK_FIELD( "use particle velocity for first input", "0", bool, m_bUseParticleVelocity )
DMXELEMENT_UNPACK_FIELD( "first input control point", "0", int, m_nInputCP1 )
DMXELEMENT_UNPACK_FIELD( "second input control point", "0", int, m_nInputCP2 )
DMXELEMENT_UNPACK_FIELD( "input minimum (-1 to 1)","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum (-1 to 1)","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
DMXELEMENT_UNPACK_FIELD( "only active within specified input range","0", bool, m_bActiveRange )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapDotProductToScalar )
void C_OP_RemapDotProductToScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecInput1;
Vector vecInput2;
CParticleSIMDTransformation pXForm1;
CParticleSIMDTransformation pXForm2;
pParticles->GetControlPointTransformAtTime( m_nInputCP1, pParticles->m_flCurTime, &pXForm1 );
pParticles->GetControlPointTransformAtTime( m_nInputCP2, pParticles->m_flCurTime, &pXForm2 );
vecInput1 = pXForm1.m_v4Fwd.Vec( 0 );
vecInput2 = pXForm2.m_v4Fwd.Vec( 0 );
float flInput = DotProduct( vecInput1, vecInput2 );
// only use within start/end time frame and, if set, active input range
if ( ( m_bActiveRange && !m_bUseParticleVelocity && ( flInput < m_flInputMin || flInput > m_flInputMax ) ) )
return;
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
if ( m_bUseParticleVelocity )
{
const float *xyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_XYZ, i );
const float *pxyz = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vecXYZ;
Vector vecPXYZ;
vecXYZ.x = xyz[0];
vecXYZ.y = xyz[4];
vecXYZ.z = xyz[8];
vecPXYZ.x = pxyz[0];
vecPXYZ.y = pxyz[4];
vecPXYZ.z = pxyz[8];
vecInput1 = vecXYZ - vecPXYZ;
VectorNormalizeFast( vecInput1 );
float flInput = DotProduct( vecInput1, vecInput2 );
// only use within start/end time frame and, if set, active input range
if ( ( m_bActiveRange && ( flInput < m_flInputMin || flInput > m_flInputMax ) ) )
continue;
}
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( flInput, m_flInputMin, m_flInputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
flOutput = *pInput * flOutput;
}
if ( m_bScaleCurrent )
{
flOutput *= *pOutput;
}
if ( ATTRIBUTES_WHICH_ARE_INTS & ( 1 << m_nFieldOutput ) )
{
*pOutput = int ( flOutput );
}
else
{
*pOutput = flOutput;
}
}
}
//-----------------------------------------------------------------------------
// Remap CP to Scalar Operator
//-----------------------------------------------------------------------------
class C_OP_RemapCPtoScalar : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapCPtoScalar );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
uint32 GetReadInitialAttributes( void ) const
{
if ( m_bScaleInitialRange )
return 1 << m_nFieldOutput;
else
return 0;
}
uint32 GetFilter( void ) const
{
return FILTER_PARAMETER_REMAPPING_MASK;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nCPInput;
}
virtual void InitParams( CParticleSystemDefinition *pDef )
{
m_nField = int (clamp (m_nField, 0, 2));
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nCPInput;
int m_nFieldOutput;
int m_nField;
float m_flInputMin;
float m_flInputMax;
float m_flOutputMin;
float m_flOutputMax;
float m_flStartTime;
float m_flEndTime;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapCPtoScalar, "Remap Control Point to Scalar", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPtoScalar )
DMXELEMENT_UNPACK_FIELD( "emitter lifetime start time (seconds)", "-1", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "emitter lifetime end time (seconds)", "-1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD( "input control point number", "0", int, m_nCPInput )
DMXELEMENT_UNPACK_FIELD( "input minimum","0", float, m_flInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","1", float, m_flInputMax )
DMXELEMENT_UNPACK_FIELD( "input field 0-2 X/Y/Z","0", int, m_nField )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "3", int, m_nFieldOutput, "intchoice particlefield_scalar" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0", float, m_flOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","1", float, m_flOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPtoScalar )
void C_OP_RemapCPtoScalar::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
const float *pCreationTime;
// clamp the result to 0 and 1 if it's alpha
float flMin=m_flOutputMin;
float flMax=m_flOutputMax;
if ( ATTRIBUTES_WHICH_ARE_0_TO_1 & ( 1 << m_nFieldOutput ) )
{
flMin = clamp(m_flOutputMin, 0.0f, 1.0f );
flMax = clamp(m_flOutputMax, 0.0f, 1.0f );
}
Vector vecControlPoint = pParticles->GetControlPointAtCurrentTime( m_nCPInput );
float flInput = vecControlPoint[m_nField];
// FIXME: SSE-ize
for( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
// using raw creation time to map to emitter lifespan
float flLifeTime = *pCreationTime;
// only use within start/end time frame
if ( ( ( flLifeTime < m_flStartTime ) || ( flLifeTime >= m_flEndTime ) ) && ( ( m_flStartTime != -1.0f) && ( m_flEndTime != -1.0f) ) )
continue;
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
float flOutput = RemapValClamped( flInput, m_flInputMin, m_flInputMax, flMin, flMax );
if ( m_bScaleInitialRange )
{
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
flOutput = *pInput * flOutput;
}
if ( m_bScaleCurrent )
{
flOutput *= *pOutput;
}
if ( ATTRIBUTES_WHICH_ARE_INTS & ( 1 << m_nFieldOutput ) )
{
*pOutput = int ( flOutput );
}
else
{
*pOutput = flOutput;
}
}
}
//-----------------------------------------------------------------------------
// Normal Lock to Control Point
// Locks all particles to the specified control point
// Useful for making particles move with their emitter and so forth
//-----------------------------------------------------------------------------
class C_OP_NormalLock : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_NormalLock );
struct C_OP_NormalLockContext_t
{
matrix3x4_t m_matPrevTransform;
};
int m_nControlPointNumber;
uint32 GetWrittenAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_NORMAL_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK ;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nControlPointNumber;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nControlPointNumber = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nControlPointNumber ) );
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( C_OP_NormalLockContext_t );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_NormalLockContext_t *pCtx=reinterpret_cast<C_OP_NormalLockContext_t *>( pContext );
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &pCtx->m_matPrevTransform );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_NormalLock , "Normal Lock to Control Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_NormalLock )
DMXELEMENT_UNPACK_FIELD( "control_point_number", "0", int, m_nControlPointNumber )
END_PARTICLE_OPERATOR_UNPACK( C_OP_NormalLock )
void C_OP_NormalLock::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C_OP_NormalLockContext_t *pCtx=reinterpret_cast<C_OP_NormalLockContext_t *>( pContext );
matrix3x4_t matCurrentTransform;
matrix3x4_t matTransformLock;
pParticles->GetControlPointTransformAtTime( m_nControlPointNumber, pParticles->m_flCurTime, &matCurrentTransform );
matrix3x4_t matPrev;
MatrixInvert( pCtx->m_matPrevTransform, matPrev );
MatrixMultiply( matCurrentTransform, matPrev, matTransformLock);
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pCreationTime;
pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
float flParticleAge = pParticles->m_flCurTime - *pCreationTime;
float flCreationFrameBias = MIN( flParticleAge, pParticles->m_flDt );
flCreationFrameBias *= ( 1 / pParticles->m_flDt );
float *normal = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_NORMAL, i );
Vector vecNormalOld, vecNormalNew;
SetVectorFromAttribute( vecNormalOld, normal );
VectorRotate( vecNormalOld, matTransformLock, vecNormalNew );
VectorLerp( vecNormalOld, vecNormalNew, vec_t ( flCreationFrameBias ), vecNormalNew );
SetVectorAttribute( normal, vecNormalNew );
}
// Store off the control point position for the next delta computation
pCtx->m_matPrevTransform = matCurrentTransform;
};
//-----------------------------------------------------------------------------
// Set Control Point to Impact Point
//-----------------------------------------------------------------------------
class C_OP_SetControlPointToImpactPoint : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetControlPointToImpactPoint );
int m_nCPOut;
int m_nCPIn;
int m_nCollisionGroupNumber;
float m_flUpdateRate;
float m_flTraceLength;
float m_flOffset;
Vector m_vecTraceDir;
char m_CollisionGroupName[128];
struct C_OP_SetCPToImpactPointContext_t
{
float m_flNextUpdateTime;
};
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
bool ShouldRunBeforeEmitters( void ) const
{
return true;
}
void InitParams( CParticleSystemDefinition *pDef )
{
m_nCollisionGroupNumber = g_pParticleSystemMgr->Query()->GetCollisionGroupFromName( m_CollisionGroupName );
m_nCPIn = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nCPIn ) );
m_nCPOut = MAX( 0, MIN( MAX_PARTICLE_CONTROL_POINTS-1, m_nCPOut ) );
}
size_t GetRequiredContextBytes( void ) const
{
return sizeof( C_OP_SetCPToImpactPointContext_t );
}
virtual void InitializeContextData( CParticleCollection *pParticles, void *pContext ) const
{
C_OP_SetCPToImpactPointContext_t *pCtx=reinterpret_cast<C_OP_SetCPToImpactPointContext_t *>( pContext );
pCtx->m_flNextUpdateTime = 0.0 - m_flUpdateRate;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetControlPointToImpactPoint, "Set Control Point to Impact Point", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToImpactPoint )
DMXELEMENT_UNPACK_FIELD( "Control Point to Set", "1", int, m_nCPOut )
DMXELEMENT_UNPACK_FIELD( "Control Point to Trace From", "1", int, m_nCPIn )
DMXELEMENT_UNPACK_FIELD( "Trace Direction Override", "0 0 0", Vector, m_vecTraceDir )
DMXELEMENT_UNPACK_FIELD( "Trace Update Rate", "0.5", float, m_flUpdateRate )
DMXELEMENT_UNPACK_FIELD( "Max Trace Length", "1024", float, m_flTraceLength )
DMXELEMENT_UNPACK_FIELD( "Offset End Point Amount", "0", float, m_flOffset )
DMXELEMENT_UNPACK_FIELD_STRING( "trace collision group", "NONE", m_CollisionGroupName )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetControlPointToImpactPoint )
void C_OP_SetControlPointToImpactPoint::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C_OP_SetCPToImpactPointContext_t *pCtx=reinterpret_cast<C_OP_SetCPToImpactPointContext_t *>( pContext );
if ( pCtx->m_flNextUpdateTime <= pParticles->m_flCurTime )
{
Vector pForward = m_vecTraceDir;
Vector pUp;
Vector pRight;
if ( m_vecTraceDir == vec3_origin )
pParticles->GetControlPointOrientationAtTime(m_nCPIn, pParticles->m_flCurTime, &pForward, &pRight, &pUp );
Vector vecStartPnt = pParticles->GetControlPointAtCurrentTime( m_nCPIn );
Vector vecEndPnt = vecStartPnt + ( pForward * m_flTraceLength );
CBaseTrace tr;
g_pParticleSystemMgr->Query()->TraceLine( vecStartPnt, vecEndPnt, MASK_ALL, NULL , m_nCollisionGroupNumber, &tr );
Vector vecForward, vecRight, vecUp;
vecForward = tr.plane.normal;
VectorVectors( vecForward, vecRight, vecUp );
Vector vecPos = tr.endpos + ( pForward * -m_flOffset );
pParticles->SetControlPoint( m_nCPOut, vecPos );
pParticles->SetControlPointOrientation( m_nCPOut, vecForward, vecRight, vecUp );
pCtx->m_flNextUpdateTime = pParticles->m_flCurTime + m_flUpdateRate;
}
}
//-----------------------------------------------------------------------------
// Remap CP to Vector Operator
//-----------------------------------------------------------------------------
class C_OP_RemapCPtoVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapCPtoVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput | PARTICLE_ATTRIBUTE_PREV_XYZ_MASK;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_CREATION_TIME_MASK;
}
uint32 GetReadInitialAttributes( void ) const
{
if ( m_bScaleInitialRange )
return 1 << m_nFieldOutput;
else
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
uint64 nMask = ( 1ULL << m_nCPInput );
if ( m_nLocalSpaceCP != -1 )
{
nMask |= ( 1ULL << m_nLocalSpaceCP );
}
return nMask;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nCPInput;
int m_nFieldOutput;
int m_nField;
int m_nLocalSpaceCP;
Vector m_vInputMin;
Vector m_vInputMax;
Vector m_vOutputMin;
Vector m_vOutputMax;
float m_flStartTime;
float m_flEndTime;
bool m_bScaleInitialRange;
bool m_bScaleCurrent;
bool m_bOffset;
bool m_bAccelerate;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapCPtoVector, "Remap Control Point to Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPtoVector )
DMXELEMENT_UNPACK_FIELD( "emitter lifetime start time (seconds)", "-1", float, m_flStartTime )
DMXELEMENT_UNPACK_FIELD( "emitter lifetime end time (seconds)", "-1", float, m_flEndTime )
DMXELEMENT_UNPACK_FIELD( "input control point number", "0", int, m_nCPInput )
DMXELEMENT_UNPACK_FIELD( "input minimum","0 0 0", Vector, m_vInputMin )
DMXELEMENT_UNPACK_FIELD( "input maximum","0 0 0", Vector, m_vInputMax )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "output minimum","0 0 0", Vector, m_vOutputMin )
DMXELEMENT_UNPACK_FIELD( "output maximum","0 0 0", Vector, m_vOutputMax )
DMXELEMENT_UNPACK_FIELD( "output is scalar of initial random range","0", bool, m_bScaleInitialRange )
DMXELEMENT_UNPACK_FIELD( "output is scalar of current value","0", bool, m_bScaleCurrent )
DMXELEMENT_UNPACK_FIELD( "offset position","0", bool, m_bOffset )
DMXELEMENT_UNPACK_FIELD( "accelerate position","0", bool, m_bAccelerate )
DMXELEMENT_UNPACK_FIELD( "local space CP","-1", int, m_nLocalSpaceCP )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPtoVector )
void C_OP_RemapCPtoVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecControlPoint;
pParticles->GetControlPointAtTime( m_nCPInput, pParticles->m_flCurTime, &vecControlPoint );
Vector vOutputMinLocal = m_vOutputMin;
Vector vOutputMaxLocal = m_vOutputMax;
if ( m_nLocalSpaceCP != -1 )
{
matrix3x4_t mat;
pParticles->GetControlPointTransformAtTime( m_nLocalSpaceCP, pParticles->m_flCurTime, &mat );
Vector vecTransformLocal = vec3_origin;
VectorRotate( vOutputMinLocal, mat, vecTransformLocal );
vOutputMinLocal = vecTransformLocal;
VectorRotate( vOutputMaxLocal, mat, vecTransformLocal );
vOutputMaxLocal = vecTransformLocal;
}
// FIXME: SSE-ize
for ( int i = 0; i < pParticles->m_nActiveParticles; ++i )
{
const float *pCreationTime = pParticles->GetFloatAttributePtr( PARTICLE_ATTRIBUTE_CREATION_TIME, i );
// using raw creation time to map to emitter lifespan
float flLifeTime = *pCreationTime;
// only use within start/end time frame
if ( ( ( flLifeTime < m_flStartTime ) || ( flLifeTime >= m_flEndTime ) ) && ( ( m_flStartTime != -1.0f) && ( m_flEndTime != -1.0f) ) )
continue;
float *pOutput = pParticles->GetFloatAttributePtrForWrite( m_nFieldOutput, i );
Vector vOutput;
vOutput.x = RemapValClamped( vecControlPoint.x, m_vInputMin.x, m_vInputMax.x, vOutputMinLocal.x, vOutputMaxLocal.x );
vOutput.y = RemapValClamped( vecControlPoint.y, m_vInputMin.y, m_vInputMax.y, vOutputMinLocal.y, vOutputMaxLocal.y );
vOutput.z = RemapValClamped( vecControlPoint.z, m_vInputMin.z, m_vInputMax.z, vOutputMinLocal.z, vOutputMaxLocal.z );
if ( m_bScaleInitialRange )
{
Vector vOrgValue;
const float *pInput = pParticles->GetInitialFloatAttributePtr( m_nFieldOutput, i );
SetVectorFromAttribute ( vOrgValue, pInput );
vOutput *= vOrgValue;
}
if ( m_bScaleCurrent )
{
vOutput *= *pOutput;
}
if ( ATTRIBUTES_WHICH_ARE_COLOR_AND_OPACITY & ( 1 << m_nFieldOutput ) )
{
pOutput[0] = MAX( 0.0f, MIN( vOutput.x, 1.0f) );
pOutput[4] = MAX( 0.0f, MIN( vOutput.y, 1.0f) );
pOutput[8] = MAX( 0.0f, MIN( vOutput.z, 1.0f) );
}
else
{
float *pXYZ_Prev = pParticles->GetFloatAttributePtrForWrite( PARTICLE_ATTRIBUTE_PREV_XYZ, i );
Vector vXYZPrev;
if ( m_bAccelerate )
{
if ( m_bOffset )
{
Vector vOrgValue;
SetVectorFromAttribute ( vOrgValue, pOutput );
SetVectorFromAttribute ( vXYZPrev, pXYZ_Prev );
vOutput += vOrgValue;
vXYZPrev += vOutput;
vOutput += vOutput * pParticles->m_flDt;
SetVectorAttribute ( pOutput, vOutput );
SetVectorAttribute ( pXYZ_Prev, vXYZPrev );
}
else
{
vOutput *= pParticles->m_flDt;
SetVectorAttribute ( pOutput, vOutput );
}
}
else
{
vXYZPrev = vOutput;
if ( m_bOffset )
{
Vector vOrgValue;
SetVectorFromAttribute ( vOrgValue, pOutput );
SetVectorFromAttribute ( vXYZPrev, pXYZ_Prev );
vOutput += vOrgValue;
vXYZPrev += vOutput;
}
SetVectorAttribute ( pOutput, vOutput );
SetVectorAttribute ( pXYZ_Prev, vXYZPrev );
}
}
}
}
class C_OP_RemapVelocityToVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapVelocityToVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flScale;
bool m_bNormalize;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapVelocityToVector, "Remap Velocity to Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapVelocityToVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "normalize","0", bool, m_bNormalize )
DMXELEMENT_UNPACK_FIELD( "scale factor" , "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapVelocityToVector )
void C_OP_RemapVelocityToVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeIterator prev_xyz( PARTICLE_ATTRIBUTE_PREV_XYZ, pParticles );
C4VAttributeIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
int nCtr = pParticles->m_nPaddedActiveParticles;
if ( m_bNormalize )
{
fltx4 fl4Scale = ReplicateX4( m_flScale );
do
{
FourVectors v4Vel = *xyz;
v4Vel -= *prev_xyz;
v4Vel.VectorNormalize();
v4Vel *= fl4Scale;
*pOutField = v4Vel;
++pOutField;
++xyz;
++prev_xyz;
} while( --nCtr );
}
else
{
fltx4 fl4Scale = ReplicateX4( m_flScale * 1.0 / ( MAX( 1.0e-20, pParticles->m_flPreviousDt ) ) );
do
{
FourVectors v4Vel = *xyz;
v4Vel -= *prev_xyz;
v4Vel *= fl4Scale;
*pOutField = v4Vel;
++pOutField;
++xyz;
++prev_xyz;
} while( --nCtr );
}
}
class C_OP_RemapCPVelocityToVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapCPVelocityToVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nControlPoint;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nControlPoint;
int m_nFieldOutput;
float m_flScale;
bool m_bNormalize;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapCPVelocityToVector, "Remap CP Velocity to Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPVelocityToVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "control point","0", int, m_nControlPoint )
DMXELEMENT_UNPACK_FIELD( "normalize","0", bool, m_bNormalize )
DMXELEMENT_UNPACK_FIELD( "scale factor" , "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapCPVelocityToVector )
void C_OP_RemapCPVelocityToVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecCPPos = pParticles->GetControlPointAtCurrentTime( m_nControlPoint );
Vector vecCPPrevPos;
pParticles->GetControlPointAtPrevTime( m_nControlPoint, &vecCPPrevPos );
Vector vecDelta = vecCPPos - vecCPPrevPos;
if ( m_bNormalize )
{
vecDelta.NormalizeInPlace();
vecDelta *= m_flScale;
}
else
{
vecDelta *= m_flScale * 1.0 / ( MAX( 1.0e-20, pParticles->m_flPreviousDt ) );
}
FourVectors v4Vel;
v4Vel.DuplicateVector( vecDelta );
C4VAttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
int nCtr = pParticles->m_nPaddedActiveParticles;
do
{
*pOutField = v4Vel;
++pOutField;
} while( --nCtr );
}
class C_OP_SetCPOrientationToDirection : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_SetCPOrientationToDirection );
uint32 GetWrittenAttributes( void ) const
{
return 0;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nInputControlPoint ) | ( 1ULL << m_nOutputControlPoint );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nInputControlPoint;
int m_nOutputControlPoint;
};
DEFINE_PARTICLE_OPERATOR( C_OP_SetCPOrientationToDirection, "Set CP Orientation to CP Direction", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_SetCPOrientationToDirection )
DMXELEMENT_UNPACK_FIELD( "input control point","0", int, m_nInputControlPoint )
DMXELEMENT_UNPACK_FIELD( "output control point","0", int, m_nOutputControlPoint )
END_PARTICLE_OPERATOR_UNPACK( C_OP_SetCPOrientationToDirection )
void C_OP_SetCPOrientationToDirection::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
Vector vecCPPos = pParticles->GetControlPointAtCurrentTime( m_nInputControlPoint );
Vector vecCPPrevPos;
pParticles->GetControlPointAtPrevTime( m_nInputControlPoint, &vecCPPrevPos );
Vector vecFwd = vecCPPos - vecCPPrevPos;
vecFwd.NormalizeInPlace();
Vector vecRight, vecUp;
VectorVectors( vecFwd, vecRight, vecUp );
pParticles->SetControlPointOrientation( m_nOutputControlPoint, vecFwd, vecRight, vecUp );
}
class C_OP_RemapDirectionToCPToVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapDirectionToCPToVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return PARTICLE_ATTRIBUTE_XYZ_MASK | PARTICLE_ATTRIBUTE_PREV_XYZ;
}
virtual uint64 GetReadControlPointMask() const
{
return ( 1ULL << m_nCP );
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nCP;
int m_nFieldOutput;
float m_flScale;
float m_flOffsetRot;
Vector m_vecOffsetAxis;
bool m_bNormalize;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapDirectionToCPToVector, "Remap Direction to CP to Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapDirectionToCPToVector )
DMXELEMENT_UNPACK_FIELD( "control point","0", int, m_nCP )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "normalize","0", bool, m_bNormalize )
DMXELEMENT_UNPACK_FIELD( "offset axis","0 0 0", Vector, m_vecOffsetAxis )
DMXELEMENT_UNPACK_FIELD( "offset rotation","0", float, m_flOffsetRot )
DMXELEMENT_UNPACK_FIELD( "scale factor" , "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapDirectionToCPToVector )
void C_OP_RemapDirectionToCPToVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeIterator xyz( PARTICLE_ATTRIBUTE_XYZ, pParticles );
C4VAttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
int nCtr = pParticles->m_nPaddedActiveParticles;
FourVectors v4CPPosition;
FourVectors v4Offset;
matrix3x4_t matRot;
MatrixBuildRotationAboutAxis ( m_vecOffsetAxis, m_flOffsetRot, matRot );
v4CPPosition.DuplicateVector( pParticles->GetControlPointAtCurrentTime( m_nCP ) );
if ( m_bNormalize )
{
fltx4 fl4Scale = ReplicateX4( m_flScale );
do
{
FourVectors v4Vel = *xyz;
v4Vel -= v4CPPosition;
v4Vel.RotateBy( matRot );
v4Vel.VectorNormalize();
v4Vel *= fl4Scale;
*pOutField = v4Vel;
++pOutField;
++xyz;
} while( --nCtr );
}
else
{
fltx4 fl4Scale = ReplicateX4( m_flScale * 1.0 / ( MAX( 1.0e-20, pParticles->m_flPreviousDt ) ) );
do
{
FourVectors v4Vel = *xyz;
v4Vel -= v4CPPosition;
v4Vel += v4Offset;
v4Vel.RotateBy( matRot );
v4Vel *= fl4Scale;
*pOutField = v4Vel;
++pOutField;
++xyz;
} while( --nCtr );
}
}
class C_OP_NormalizeVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_NormalizeVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flScale;
};
DEFINE_PARTICLE_OPERATOR( C_OP_NormalizeVector, "Normalize Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_NormalizeVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "scale factor" , "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_NormalizeVector )
void C_OP_NormalizeVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
int nCtr = pParticles->m_nPaddedActiveParticles;
fltx4 fl4Scale = ReplicateX4( m_flScale );
do
{
FourVectors v4Val = *pOutField;
v4Val.VectorNormalize();
v4Val *= fl4Scale;
*pOutField = v4Val;
++pOutField;
} while( --nCtr );
}
class C_OP_RemapControlPointDirectionToVector : public CParticleOperatorInstance
{
DECLARE_PARTICLE_OPERATOR( C_OP_RemapControlPointDirectionToVector );
uint32 GetWrittenAttributes( void ) const
{
return 1 << m_nFieldOutput;
}
uint32 GetReadAttributes( void ) const
{
return 0;
}
virtual uint64 GetReadControlPointMask() const
{
return 1ULL << m_nControlPointNumber;
}
virtual void Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const;
int m_nFieldOutput;
float m_flScale;
int m_nControlPointNumber;
};
DEFINE_PARTICLE_OPERATOR( C_OP_RemapControlPointDirectionToVector, "Remap Control Point Direction to Vector", OPERATOR_GENERIC );
BEGIN_PARTICLE_OPERATOR_UNPACK( C_OP_RemapControlPointDirectionToVector )
DMXELEMENT_UNPACK_FIELD_USERDATA( "output field", "0", int, m_nFieldOutput, "intchoice particlefield_vector" )
DMXELEMENT_UNPACK_FIELD( "control point number", "0", int, m_nControlPointNumber )
DMXELEMENT_UNPACK_FIELD( "scale factor" , "1", float, m_flScale )
END_PARTICLE_OPERATOR_UNPACK( C_OP_RemapControlPointDirectionToVector )
void C_OP_RemapControlPointDirectionToVector::Operate( CParticleCollection *pParticles, float flStrength, void *pContext ) const
{
C4VAttributeWriteIterator pOutField( m_nFieldOutput, pParticles) ;
int nCtr = pParticles->m_nPaddedActiveParticles;
Vector vecFwd, vecRight, vecUp;
pParticles->GetControlPointOrientationAtCurrentTime( m_nControlPointNumber, &vecFwd, &vecRight, &vecUp );
vecFwd *= m_flScale;
FourVectors v4Out;
v4Out.DuplicateVector( vecFwd );
do
{
*pOutField = v4Out;
++pOutField;
} while( --nCtr );
}
void AddBuiltInParticleOperators( void )
{
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_BasicMovement );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Decay );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DecayMaintainCount );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_VelocityDecay );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_AlphaDecay );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeAndKill );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeAndKillForTracers );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeIn );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeInSimple );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeOut );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_FadeOutSimple );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Spin );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SpinUpdate );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SpinYaw );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OrientTo2dDirection );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Orient2DRelToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_InterpolateRadius );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ColorInterpolate );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OscillateScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OscillateScalarSimple );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OscillateVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_OscillateVectorSimple );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DampenToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_PositionLock );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LockToBone );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DistanceBetweenCPs );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DistanceBetweenCPsToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_PercentageBetweenCPs );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_PercentageBetweenCPsVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DistanceToCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointToPlayer );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointToCenter );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetChildControlPoints );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointsToParticle );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointPositions );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointToImpactPoint );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_CPOffsetToPercentageBetweenCPs );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_PlaneCull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ModelCull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Cull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DistanceCull );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ControlpointLight );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapSpeed );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapSpeedtoCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_Noise );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_VectorNoise );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_VelocityMatchingForce );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MaxVelocity );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MaintainSequentialPath );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MovementMaintainOffset );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MovementPlaceOnGround );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapDotProductToScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapCPtoScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapCPtoVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapDirectionToCPToVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapModelVolumetoCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapBoundingVolumetoCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapVelocityToVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapCPVelocityToVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapControlPointDirectionToVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RemapAverageScalarValuetoCP );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_DifferencePreviousParticle );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RampScalarLinear );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RampScalarSpline );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RampScalarSplineSimple );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RampScalarLinearSimple );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_NormalLock );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_NormalizeVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RotateVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetControlPointRotation );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetCPOrientationToDirection );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_StopAfterCPDuration );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RestartAfterDuration );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MoveToHitbox );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ClampScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_ClampVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_RadiusDecay );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LockToSavedSequentialPath );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_SetPerChildControlPoint );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LerpVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LerpScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LerpEndCapScalar );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LerpEndCapVector );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_InheritFromParentParticles );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_LagCompensation );
REGISTER_PARTICLE_OPERATOR( FUNCTION_OPERATOR, C_OP_MovementRotateParticleAroundAxis );
}