5835 lines
157 KiB
C++
5835 lines
157 KiB
C++
//===== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ======//
|
||
//
|
||
// Purpose: Math primitives.
|
||
//
|
||
//===========================================================================//
|
||
|
||
/// FIXME: As soon as all references to mathlib.c are gone, include it in here
|
||
|
||
#include <math.h>
|
||
#include <float.h> // needed for flt_epsilon
|
||
|
||
#include "tier0/basetypes.h"
|
||
//#include <memory.h>
|
||
#include "tier0/dbg.h"
|
||
|
||
#include "tier0/vprof.h"
|
||
//#define _VPROF_MATHLIB
|
||
|
||
#if !defined(__SPU__)
|
||
#pragma warning(disable:4244) // "conversion from 'const int' to 'float', possible loss of data"
|
||
#pragma warning(disable:4730) // "mixing _m64 and floating point expressions may result in incorrect code"
|
||
#endif
|
||
|
||
#include "mathlib/mathlib.h"
|
||
#include "mathlib/vector.h"
|
||
#include "mathlib/vplane.h"
|
||
#if !defined(__SPU__)
|
||
#include "mathlib/vmatrix.h"
|
||
#endif
|
||
|
||
#if !defined( _X360 )
|
||
#include "sse.h"
|
||
#endif
|
||
|
||
#include "mathlib/ssemath.h"
|
||
#include "mathlib/ssequaternion.h"
|
||
|
||
// memdbgon must be the last include file in a .cpp file!!!
|
||
#include "tier0/memdbgon.h"
|
||
|
||
bool s_bMathlibInitialized = false;
|
||
#ifdef PARANOID
|
||
// User must provide an implementation of Sys_Error()
|
||
void Sys_Error (char *error, ...);
|
||
#endif
|
||
|
||
const Vector vec3_origin(0,0,0);
|
||
const QAngle vec3_angle(0,0,0);
|
||
const Quaternion quat_identity(0,0,0,1);
|
||
const Vector vec3_invalid( FLT_MAX, FLT_MAX, FLT_MAX );
|
||
const int nanmask = 255<<23;
|
||
|
||
const matrix3x4a_t g_MatrixIdentity(
|
||
1,0,0,0,
|
||
0,1,0,0,
|
||
0,0,1,0
|
||
);
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Standard C implementations of optimized routines:
|
||
//-----------------------------------------------------------------------------
|
||
float _sqrtf(float _X)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
return sqrtf(_X);
|
||
}
|
||
|
||
float _rsqrtf(float x)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
return 1.f / _sqrtf( x );
|
||
}
|
||
|
||
#ifndef PLATFORM_PPC
|
||
float VectorNormalize (Vector& vec)
|
||
{
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "_VectorNormalize", "Mathlib" );
|
||
#endif
|
||
Assert( s_bMathlibInitialized );
|
||
float radius = sqrtf(vec.x*vec.x + vec.y*vec.y + vec.z*vec.z);
|
||
|
||
// FLT_EPSILON is added to the radius to eliminate the possibility of divide by zero.
|
||
float iradius = 1.f / ( radius + FLT_EPSILON );
|
||
|
||
vec.x *= iradius;
|
||
vec.y *= iradius;
|
||
vec.z *= iradius;
|
||
|
||
return radius;
|
||
}
|
||
#endif
|
||
|
||
|
||
// TODO: Add fast C VectorNormalizeFast.
|
||
// Perhaps use approximate rsqrt trick, if the accuracy isn't too bad.
|
||
void FASTCALL _VectorNormalizeFast (Vector& vec)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
// FLT_EPSILON is added to the radius to eliminate the possibility of divide by zero.
|
||
float iradius = 1.f / ( sqrtf(vec.x*vec.x + vec.y*vec.y + vec.z*vec.z) + FLT_EPSILON );
|
||
|
||
vec.x *= iradius;
|
||
vec.y *= iradius;
|
||
vec.z *= iradius;
|
||
|
||
}
|
||
|
||
float _InvRSquared(const float* v)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float r2 = DotProduct(v, v);
|
||
return r2 < 1.f ? 1.f : 1/r2;
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Function pointers selecting the appropriate implementation
|
||
//-----------------------------------------------------------------------------
|
||
void (FASTCALL *pfVectorNormalizeFast)(Vector& v) = _VectorNormalizeFast;
|
||
|
||
float SinCosTable[SIN_TABLE_SIZE];
|
||
void InitSinCosTable()
|
||
{
|
||
for( int i = 0; i < SIN_TABLE_SIZE; i++ )
|
||
{
|
||
SinCosTable[i] = sin(i * 2.0 * M_PI / SIN_TABLE_SIZE);
|
||
}
|
||
}
|
||
#endif // !defined(__SPU__)
|
||
|
||
|
||
qboolean VectorsEqual( const float *v1, const float *v2 )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
return ( ( v1[0] == v2[0] ) &&
|
||
( v1[1] == v2[1] ) &&
|
||
( v1[2] == v2[2] ) );
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Generates Euler angles given a left-handed orientation matrix. The
|
||
// columns of the matrix contain the forward, left, and up vectors.
|
||
// Input : matrix - Left-handed orientation matrix.
|
||
// angles[PITCH, YAW, ROLL]. Receives right-handed counterclockwise
|
||
// rotations in degrees around Y, Z, and X respectively.
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void MatrixAngles( const matrix3x4_t& matrix, RadianEuler &angles, Vector &position )
|
||
{
|
||
MatrixGetColumn( matrix, 3, position );
|
||
MatrixAngles( matrix, angles );
|
||
}
|
||
|
||
void MatrixAngles( const matrix3x4_t &matrix, Quaternion &q, Vector &pos )
|
||
{
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "MatrixQuaternion", "Mathlib" );
|
||
#endif
|
||
float trace;
|
||
trace = matrix[0][0] + matrix[1][1] + matrix[2][2] + 1.0f;
|
||
if( trace > 1.0f + FLT_EPSILON )
|
||
{
|
||
// VPROF_INCREMENT_COUNTER("MatrixQuaternion A",1);
|
||
q.x = ( matrix[2][1] - matrix[1][2] );
|
||
q.y = ( matrix[0][2] - matrix[2][0] );
|
||
q.z = ( matrix[1][0] - matrix[0][1] );
|
||
q.w = trace;
|
||
}
|
||
else if ( matrix[0][0] > matrix[1][1] && matrix[0][0] > matrix[2][2] )
|
||
{
|
||
// VPROF_INCREMENT_COUNTER("MatrixQuaternion B",1);
|
||
trace = 1.0f + matrix[0][0] - matrix[1][1] - matrix[2][2];
|
||
q.x = trace;
|
||
q.y = (matrix[1][0] + matrix[0][1] );
|
||
q.z = (matrix[0][2] + matrix[2][0] );
|
||
q.w = (matrix[2][1] - matrix[1][2] );
|
||
}
|
||
else if (matrix[1][1] > matrix[2][2])
|
||
{
|
||
// VPROF_INCREMENT_COUNTER("MatrixQuaternion C",1);
|
||
trace = 1.0f + matrix[1][1] - matrix[0][0] - matrix[2][2];
|
||
q.x = (matrix[0][1] + matrix[1][0] );
|
||
q.y = trace;
|
||
q.z = (matrix[2][1] + matrix[1][2] );
|
||
q.w = (matrix[0][2] - matrix[2][0] );
|
||
}
|
||
else
|
||
{
|
||
// VPROF_INCREMENT_COUNTER("MatrixQuaternion D",1);
|
||
trace = 1.0f + matrix[2][2] - matrix[0][0] - matrix[1][1];
|
||
q.x = (matrix[0][2] + matrix[2][0] );
|
||
q.y = (matrix[2][1] + matrix[1][2] );
|
||
q.z = trace;
|
||
q.w = (matrix[1][0] - matrix[0][1] );
|
||
}
|
||
|
||
QuaternionNormalize( q );
|
||
|
||
#if 0
|
||
// check against the angle version
|
||
RadianEuler ang;
|
||
MatrixAngles( matrix, ang );
|
||
Quaternion test;
|
||
AngleQuaternion( ang, test );
|
||
float d = QuaternionDotProduct( q, test );
|
||
Assert( fabs(d) > 0.99 && fabs(d) < 1.01 );
|
||
#endif
|
||
|
||
MatrixGetColumn( matrix, 3, pos );
|
||
}
|
||
|
||
void MatrixAngles( const matrix3x4_t& matrix, float *angles )
|
||
{
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "MatrixAngles", "Mathlib" );
|
||
#endif
|
||
Assert( s_bMathlibInitialized );
|
||
float forward[3];
|
||
float left[3];
|
||
float up[3];
|
||
|
||
//
|
||
// Extract the basis vectors from the matrix. Since we only need the Z
|
||
// component of the up vector, we don't get X and Y.
|
||
//
|
||
forward[0] = matrix[0][0];
|
||
forward[1] = matrix[1][0];
|
||
forward[2] = matrix[2][0];
|
||
left[0] = matrix[0][1];
|
||
left[1] = matrix[1][1];
|
||
left[2] = matrix[2][1];
|
||
up[2] = matrix[2][2];
|
||
|
||
float xyDist = sqrtf( forward[0] * forward[0] + forward[1] * forward[1] );
|
||
|
||
// enough here to get angles?
|
||
if ( xyDist > 0.001f )
|
||
{
|
||
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
|
||
angles[1] = RAD2DEG( atan2f( forward[1], forward[0] ) );
|
||
|
||
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
|
||
angles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) );
|
||
|
||
// (roll) z = ATAN( left.z, up.z );
|
||
angles[2] = RAD2DEG( atan2f( left[2], up[2] ) );
|
||
}
|
||
else // forward is mostly Z, gimbal lock-
|
||
{
|
||
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw
|
||
angles[1] = RAD2DEG( atan2f( -left[0], left[1] ) );
|
||
|
||
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
|
||
angles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) );
|
||
|
||
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
|
||
angles[2] = 0;
|
||
}
|
||
}
|
||
|
||
Vector MatrixNormalize( const matrix3x4_t &in, matrix3x4_t &out )
|
||
{
|
||
Vector vScale;
|
||
vScale.x = sqrt( in[ 0 ][ 0 ] * in[ 0 ][ 0 ] + in[ 1 ][ 0 ] * in[ 1 ][ 0 ] + in[ 2 ][ 0 ] * in[ 2 ][ 0 ] );
|
||
vScale.y = sqrt( in[ 0 ][ 1 ] * in[ 0 ][ 1 ] + in[ 1 ][ 1 ] * in[ 1 ][ 1 ] + in[ 2 ][ 1 ] * in[ 2 ][ 1 ] );
|
||
vScale.z = sqrt( in[ 0 ][ 2 ] * in[ 0 ][ 2 ] + in[ 1 ][ 2 ] * in[ 1 ][ 2 ] + in[ 2 ][ 2 ] * in[ 2 ][ 2 ] );
|
||
|
||
matrix3x4_t norm;
|
||
float flInvScaleX = 1.0f / vScale.x;
|
||
float flInvScaleY = 1.0f / vScale.y;
|
||
float flInvScaleZ = 1.0f / vScale.z;
|
||
out[ 0 ][ 0 ] = in[ 0 ][ 0 ] * flInvScaleX; out[ 1 ][ 0 ] = in[ 1 ][ 0 ] * flInvScaleX; out[ 2 ][ 0 ] = in[ 2 ][ 0 ] * flInvScaleX;
|
||
out[ 0 ][ 1 ] = in[ 0 ][ 1 ] * flInvScaleY; out[ 1 ][ 1 ] = in[ 1 ][ 1 ] * flInvScaleY; out[ 2 ][ 1 ] = in[ 2 ][ 1 ] * flInvScaleY;
|
||
out[ 0 ][ 2 ] = in[ 0 ][ 2 ] * flInvScaleZ; out[ 1 ][ 2 ] = in[ 1 ][ 2 ] * flInvScaleZ; out[ 2 ][ 2 ] = in[ 2 ][ 2 ] * flInvScaleZ;
|
||
out[ 0 ][ 3 ] = in[ 0 ][ 3 ]; out[ 1 ][ 3 ] = in[ 1 ][ 3 ]; out[ 2 ][ 3 ] = in[ 2 ][ 3 ];
|
||
|
||
return vScale;
|
||
}
|
||
|
||
|
||
|
||
#if !defined(__SPU__)
|
||
// transform in1 by the matrix in2
|
||
void VectorTransform (const float * RESTRICT in1, const matrix3x4_t& in2, float * RESTRICT out)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float x = DotProduct(in1, in2[0]) + in2[0][3];
|
||
float y = DotProduct(in1, in2[1]) + in2[1][3];
|
||
float z = DotProduct(in1, in2[2]) + in2[2][3];
|
||
|
||
out[ 0 ] = x;
|
||
out[ 1 ] = y;
|
||
out[ 2 ] = z;
|
||
}
|
||
|
||
|
||
// assuming the matrix is orthonormal, transform in1 by the transpose (also the inverse in this case) of in2.
|
||
void VectorITransform (const float *in1, const matrix3x4_t& in2, float *out)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float in1t[3];
|
||
|
||
in1t[0] = in1[0] - in2[0][3];
|
||
in1t[1] = in1[1] - in2[1][3];
|
||
in1t[2] = in1[2] - in2[2][3];
|
||
|
||
float x = in1t[0] * in2[0][0] + in1t[1] * in2[1][0] + in1t[2] * in2[2][0];
|
||
float y = in1t[0] * in2[0][1] + in1t[1] * in2[1][1] + in1t[2] * in2[2][1];
|
||
float z = in1t[0] * in2[0][2] + in1t[1] * in2[1][2] + in1t[2] * in2[2][2];
|
||
|
||
out[ 0 ] = x;
|
||
out[ 1 ] = y;
|
||
out[ 2 ] = z;
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
// assume in2 is a rotation and rotate the input vector
|
||
void VectorRotate( const float * RESTRICT in1, const matrix3x4_t& in2, float * RESTRICT out )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float x = DotProduct( in1, in2[ 0 ] );
|
||
float y = DotProduct( in1, in2[ 1 ] );
|
||
float z = DotProduct( in1, in2[ 2 ] );
|
||
|
||
out[ 0 ] = x;
|
||
out[ 1 ] = y;
|
||
out[ 2 ] = z;
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
// assume in2 is a rotation and rotate the input vector
|
||
void VectorRotate( const Vector &in1, const QAngle &in2, Vector &out )
|
||
{
|
||
matrix3x4_t matRotate;
|
||
AngleMatrix( in2, matRotate );
|
||
VectorRotate( in1, matRotate, out );
|
||
}
|
||
|
||
// assume in2 is a rotation and rotate the input vector
|
||
void VectorRotate( const Vector &in1, const Quaternion &in2, Vector &out )
|
||
{
|
||
#if WE_WANT_OUR_CODE_TO_BE_POINTLESSLY_SLOW
|
||
matrix3x4_t matRotate;
|
||
QuaternionMatrix( in2, matRotate );
|
||
VectorRotate( in1, matRotate, out );
|
||
#else
|
||
// rotation is q * v * q^-1
|
||
|
||
Quaternion conjugate = in2.Conjugate();
|
||
|
||
|
||
// do the rotation as unrolled flop code ( QuaternionMult is a function call, which murders instruction scheduling )
|
||
// first q*v
|
||
Quaternion temp;
|
||
temp.x = in2.y * in1.z - in2.z * in1.y + in2.w * in1.x;
|
||
temp.y = -in2.x * in1.z + in2.z * in1.x + in2.w * in1.y;
|
||
temp.z = in2.x * in1.y - in2.y * in1.x + in2.w * in1.z;
|
||
temp.w = -in2.x * in1.x - in2.y * in1.y - in2.z * in1.z;
|
||
|
||
// now (qv)(q*)
|
||
out.x = temp.x * conjugate.w + temp.y * conjugate.z - temp.z * conjugate.y + temp.w * conjugate.x;
|
||
out.y = -temp.x * conjugate.z + temp.y * conjugate.w + temp.z * conjugate.x + temp.w * conjugate.y;
|
||
out.z = temp.x * conjugate.y - temp.y * conjugate.x + temp.z * conjugate.w + temp.w * conjugate.z;
|
||
Assert( fabs(-temp.x * conjugate.x - temp.y * conjugate.y - temp.z * conjugate.z + temp.w * conjugate.w) < 0.0001 );
|
||
#endif
|
||
}
|
||
|
||
|
||
// rotate by the inverse of the matrix
|
||
void VectorIRotate( const float * RESTRICT in1, const matrix3x4_t& in2, float * RESTRICT out )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( in1 != out );
|
||
out[0] = in1[0]*in2[0][0] + in1[1]*in2[1][0] + in1[2]*in2[2][0];
|
||
out[1] = in1[0]*in2[0][1] + in1[1]*in2[1][1] + in1[2]*in2[2][1];
|
||
out[2] = in1[0]*in2[0][2] + in1[1]*in2[1][2] + in1[2]*in2[2][2];
|
||
}
|
||
|
||
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
||
// transform a set of angles in the output space of parentMatrix to the input space
|
||
QAngle TransformAnglesToLocalSpace( const QAngle &angles, const matrix3x4_t &parentMatrix )
|
||
{
|
||
matrix3x4_t angToWorld, worldToParent, localMatrix;
|
||
MatrixInvert( parentMatrix, worldToParent );
|
||
AngleMatrix( angles, angToWorld );
|
||
ConcatTransforms( worldToParent, angToWorld, localMatrix );
|
||
|
||
QAngle out;
|
||
MatrixAngles( localMatrix, out );
|
||
return out;
|
||
}
|
||
|
||
// transform a set of angles in the input space of parentMatrix to the output space
|
||
QAngle TransformAnglesToWorldSpace( const QAngle &angles, const matrix3x4_t &parentMatrix )
|
||
{
|
||
matrix3x4_t angToParent, angToWorld;
|
||
AngleMatrix( angles, angToParent );
|
||
ConcatTransforms( parentMatrix, angToParent, angToWorld );
|
||
QAngle out;
|
||
MatrixAngles( angToWorld, out );
|
||
return out;
|
||
}
|
||
|
||
#endif // VECTOR_NO_SLOW_OPERATIONS
|
||
|
||
void MatrixInitialize( matrix3x4_t &mat, const Vector &vecOrigin, const Vector &vecXAxis, const Vector &vecYAxis, const Vector &vecZAxis )
|
||
{
|
||
MatrixSetColumn( vecXAxis, 0, mat );
|
||
MatrixSetColumn( vecYAxis, 1, mat );
|
||
MatrixSetColumn( vecZAxis, 2, mat );
|
||
MatrixSetColumn( vecOrigin, 3, mat );
|
||
}
|
||
|
||
void MatrixCopy( const matrix3x4_t& in, matrix3x4_t& out )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
memcpy( out.Base(), in.Base(), sizeof( float ) * 3 * 4 );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Matrix equality test
|
||
//-----------------------------------------------------------------------------
|
||
bool MatricesAreEqual( const matrix3x4_t &src1, const matrix3x4_t &src2, float flTolerance )
|
||
{
|
||
for ( int i = 0; i < 3; ++i )
|
||
{
|
||
for ( int j = 0; j < 4; ++j )
|
||
{
|
||
if ( fabs( src1[i][j] - src2[i][j] ) > flTolerance )
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
|
||
// NOTE: This is just the transpose not a general inverse
|
||
void MatrixInvert( const matrix3x4_t& in, matrix3x4_t& out )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
if ( &in == &out )
|
||
{
|
||
V_swap(out[0][1],out[1][0]);
|
||
V_swap(out[0][2],out[2][0]);
|
||
V_swap(out[1][2],out[2][1]);
|
||
}
|
||
else
|
||
{
|
||
// transpose the matrix
|
||
out[0][0] = in[0][0];
|
||
out[0][1] = in[1][0];
|
||
out[0][2] = in[2][0];
|
||
|
||
out[1][0] = in[0][1];
|
||
out[1][1] = in[1][1];
|
||
out[1][2] = in[2][1];
|
||
|
||
out[2][0] = in[0][2];
|
||
out[2][1] = in[1][2];
|
||
out[2][2] = in[2][2];
|
||
}
|
||
|
||
// now fix up the translation to be in the other space
|
||
float tmp[3];
|
||
tmp[0] = in[0][3];
|
||
tmp[1] = in[1][3];
|
||
tmp[2] = in[2][3];
|
||
|
||
out[0][3] = -DotProduct( tmp, out[0] );
|
||
out[1][3] = -DotProduct( tmp, out[1] );
|
||
out[2][3] = -DotProduct( tmp, out[2] );
|
||
}
|
||
|
||
void MatrixGetColumn( const matrix3x4_t& in, int column, Vector &out )
|
||
{
|
||
out.x = in[0][column];
|
||
out.y = in[1][column];
|
||
out.z = in[2][column];
|
||
}
|
||
|
||
void MatrixSetColumn( const Vector &in, int column, matrix3x4_t& out )
|
||
{
|
||
out[0][column] = in.x;
|
||
out[1][column] = in.y;
|
||
out[2][column] = in.z;
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
int VectorCompare (const float *v1, const float *v2)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
int i;
|
||
|
||
for (i=0 ; i<3 ; i++)
|
||
if (v1[i] != v2[i])
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
void CrossProduct (const float* v1, const float* v2, float* cross)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( v1 != cross );
|
||
Assert( v2 != cross );
|
||
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
||
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||
}
|
||
|
||
size_t Q_log2( unsigned int val )
|
||
{
|
||
#ifdef _X360 // use hardware
|
||
// both zero and one return zero (per old implementation)
|
||
return ( val == 0 ) ? 0 : 31 - _CountLeadingZeros( val );
|
||
#else // use N. Compoop's algorithm ( inherited from days of yore )
|
||
int answer=0;
|
||
while (val>>=1)
|
||
answer++;
|
||
return answer;
|
||
#endif
|
||
}
|
||
|
||
// Matrix is right-handed x=forward, y=left, z=up. We a left-handed convention for vectors in the game code (forward, right, up)
|
||
void MatrixVectorsFLU( const matrix3x4_t &matrix, Vector* pForward, Vector *pLeft, Vector *pUp )
|
||
{
|
||
MatrixGetColumn( matrix, FORWARD_AXIS, *pForward );
|
||
MatrixGetColumn( matrix, LEFT_AXIS, *pLeft );
|
||
MatrixGetColumn( matrix, UP_AXIS, *pUp );
|
||
}
|
||
|
||
// Matrix is right-handed x=forward, y=left, z=up. We a left-handed convention for vectors in the game code (forward, right, up)
|
||
void MatrixVectors( const matrix3x4_t &matrix, Vector* pForward, Vector *pRight, Vector *pUp )
|
||
{
|
||
MatrixGetColumn( matrix, 0, *pForward );
|
||
MatrixGetColumn( matrix, 1, *pRight );
|
||
MatrixGetColumn( matrix, 2, *pUp );
|
||
*pRight *= -1.0f;
|
||
}
|
||
|
||
|
||
void VectorVectors( const Vector &forward, Vector &right, Vector &up )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector tmp;
|
||
|
||
if ( fabs( forward[0] ) < 1e-6 && fabs( forward[1] ) < 1e-6 )
|
||
{
|
||
// pitch 90 degrees up/down from identity
|
||
right[0] = 0;
|
||
right[1] = -1;
|
||
right[2] = 0;
|
||
up[0] = -forward[2];
|
||
up[1] = 0;
|
||
up[2] = 0;
|
||
}
|
||
else
|
||
{
|
||
tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0;
|
||
CrossProduct( forward, tmp, right );
|
||
VectorNormalize( right );
|
||
CrossProduct( right, forward, up );
|
||
VectorNormalize( up );
|
||
}
|
||
}
|
||
|
||
void VectorMatrix( const Vector &forward, matrix3x4_t& matrix)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector right, up;
|
||
VectorVectors(forward, right, up);
|
||
|
||
MatrixSetColumn( forward, 0, matrix );
|
||
MatrixSetColumn( -right, 1, matrix );
|
||
MatrixSetColumn( up, 2, matrix );
|
||
}
|
||
|
||
void VectorPerpendicularToVector( Vector const &in, Vector *pvecOut )
|
||
{
|
||
float flY = in.y * in.y;
|
||
pvecOut->x = RemapVal( flY, 0, 1, in.z, 1 );
|
||
pvecOut->y = 0;
|
||
pvecOut->z = -in.x;
|
||
pvecOut->NormalizeInPlace();
|
||
float flDot = DotProduct( *pvecOut, in );
|
||
*pvecOut -= flDot * in;
|
||
pvecOut->NormalizeInPlace();
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Euler QAngle -> Basis Vectors. Each vector is optional
|
||
//-----------------------------------------------------------------------------
|
||
void AngleVectorsFLU( const QAngle &angles, Vector *pForward, Vector *pLeft, Vector *pUp )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
#ifdef _X360
|
||
fltx4 radians, scale, sine, cosine;
|
||
radians = LoadUnaligned3SIMD( angles.Base() );
|
||
scale = ReplicateX4( M_PI_F / 180.f );
|
||
radians = MulSIMD( radians, scale );
|
||
SinCos3SIMD( sine, cosine, radians );
|
||
sp = SubFloat( sine, 0 ); sy = SubFloat( sine, 1 ); sr = SubFloat( sine, 2 );
|
||
cp = SubFloat( cosine, 0 ); cy = SubFloat( cosine, 1 ); cr = SubFloat( cosine, 2 );
|
||
#else
|
||
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy );
|
||
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp );
|
||
SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr );
|
||
#endif
|
||
|
||
if ( pForward )
|
||
{
|
||
(*pForward)[FORWARD_AXIS] = cp*cy;
|
||
(*pForward)[LEFT_AXIS] = cp*sy;
|
||
(*pForward)[UP_AXIS] = -sp;
|
||
}
|
||
|
||
if ( pLeft )
|
||
{
|
||
(*pLeft)[FORWARD_AXIS] = (sr*sp*cy+cr*-sy);
|
||
(*pLeft)[LEFT_AXIS] = (sr*sp*sy+cr*cy);
|
||
(*pLeft)[UP_AXIS] = sr*cp;
|
||
}
|
||
|
||
if ( pUp )
|
||
{
|
||
(*pUp)[FORWARD_AXIS] = (cr*sp*cy+-sr*-sy);
|
||
(*pUp)[LEFT_AXIS] = (cr*sp*sy+-sr*cy);
|
||
(*pUp)[UP_AXIS] = cr*cp;
|
||
}
|
||
}
|
||
|
||
void VectorAngles( const float *forward, float *angles )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float tmp, yaw, pitch;
|
||
|
||
if (forward[1] == 0 && forward[0] == 0)
|
||
{
|
||
yaw = 0;
|
||
if (forward[2] > 0)
|
||
pitch = 270;
|
||
else
|
||
pitch = 90;
|
||
}
|
||
else
|
||
{
|
||
yaw = (atan2(forward[1], forward[0]) * 180 / M_PI);
|
||
if (yaw < 0)
|
||
yaw += 360;
|
||
|
||
tmp = sqrt (forward[0]*forward[0] + forward[1]*forward[1]);
|
||
pitch = (atan2(-forward[2], tmp) * 180 / M_PI);
|
||
if (pitch < 0)
|
||
pitch += 360;
|
||
}
|
||
|
||
angles[0] = pitch;
|
||
angles[1] = yaw;
|
||
angles[2] = 0;
|
||
}
|
||
|
||
|
||
/*
|
||
================
|
||
R_ConcatRotations
|
||
================
|
||
*/
|
||
void ConcatRotations (const float in1[3][3], const float in2[3][3], float out[3][3])
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( in1 != out );
|
||
Assert( in2 != out );
|
||
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
||
in1[0][2] * in2[2][0];
|
||
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
||
in1[0][2] * in2[2][1];
|
||
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
||
in1[0][2] * in2[2][2];
|
||
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
||
in1[1][2] * in2[2][0];
|
||
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
||
in1[1][2] * in2[2][1];
|
||
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
||
in1[1][2] * in2[2][2];
|
||
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
||
in1[2][2] * in2[2][0];
|
||
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
||
in1[2][2] * in2[2][1];
|
||
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
||
in1[2][2] * in2[2][2];
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
|
||
void ConcatTransforms_Aligned( const matrix3x4a_t &m0, const matrix3x4a_t &m1, matrix3x4a_t &out )
|
||
{
|
||
AssertAligned( &m0 );
|
||
AssertAligned( &m1 );
|
||
AssertAligned( &out );
|
||
|
||
fltx4 lastMask = *(fltx4 *)(&g_SIMD_ComponentMask[3]);
|
||
fltx4 rowA0 = LoadAlignedSIMD( m0.m_flMatVal[0] );
|
||
fltx4 rowA1 = LoadAlignedSIMD( m0.m_flMatVal[1] );
|
||
fltx4 rowA2 = LoadAlignedSIMD( m0.m_flMatVal[2] );
|
||
|
||
fltx4 rowB0 = LoadAlignedSIMD( m1.m_flMatVal[0] );
|
||
fltx4 rowB1 = LoadAlignedSIMD( m1.m_flMatVal[1] );
|
||
fltx4 rowB2 = LoadAlignedSIMD( m1.m_flMatVal[2] );
|
||
|
||
// now we have the rows of m0 and the columns of m1
|
||
// first output row
|
||
fltx4 A0 = SplatXSIMD(rowA0);
|
||
fltx4 A1 = SplatYSIMD(rowA0);
|
||
fltx4 A2 = SplatZSIMD(rowA0);
|
||
fltx4 mul00 = MulSIMD( A0, rowB0 );
|
||
fltx4 mul01 = MulSIMD( A1, rowB1 );
|
||
fltx4 mul02 = MulSIMD( A2, rowB2 );
|
||
fltx4 out0 = AddSIMD( mul00, AddSIMD(mul01,mul02) );
|
||
|
||
// second output row
|
||
A0 = SplatXSIMD(rowA1);
|
||
A1 = SplatYSIMD(rowA1);
|
||
A2 = SplatZSIMD(rowA1);
|
||
fltx4 mul10 = MulSIMD( A0, rowB0 );
|
||
fltx4 mul11 = MulSIMD( A1, rowB1 );
|
||
fltx4 mul12 = MulSIMD( A2, rowB2 );
|
||
fltx4 out1 = AddSIMD( mul10, AddSIMD(mul11,mul12) );
|
||
|
||
// third output row
|
||
A0 = SplatXSIMD(rowA2);
|
||
A1 = SplatYSIMD(rowA2);
|
||
A2 = SplatZSIMD(rowA2);
|
||
fltx4 mul20 = MulSIMD( A0, rowB0 );
|
||
fltx4 mul21 = MulSIMD( A1, rowB1 );
|
||
fltx4 mul22 = MulSIMD( A2, rowB2 );
|
||
fltx4 out2 = AddSIMD( mul20, AddSIMD(mul21,mul22) );
|
||
|
||
// add in translation vector
|
||
A0 = AndSIMD(rowA0,lastMask);
|
||
A1 = AndSIMD(rowA1,lastMask);
|
||
A2 = AndSIMD(rowA2,lastMask);
|
||
out0 = AddSIMD(out0, A0);
|
||
out1 = AddSIMD(out1, A1);
|
||
out2 = AddSIMD(out2, A2);
|
||
|
||
StoreAlignedSIMD( out.m_flMatVal[0], out0 );
|
||
StoreAlignedSIMD( out.m_flMatVal[1], out1 );
|
||
StoreAlignedSIMD( out.m_flMatVal[2], out2 );
|
||
}
|
||
|
||
/*
|
||
================
|
||
R_ConcatTransforms
|
||
================
|
||
*/
|
||
|
||
void ConcatTransforms (const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out)
|
||
{
|
||
#if 0
|
||
// test for ones that'll be 2x faster
|
||
if ( (((size_t)&in1) % 16) == 0 && (((size_t)&in2) % 16) == 0 && (((size_t)&out) % 16) == 0 )
|
||
{
|
||
ConcatTransforms_Aligned( in1, in2, out );
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
fltx4 lastMask = *(fltx4 *)(&g_SIMD_ComponentMask[3]);
|
||
fltx4 rowA0 = LoadUnalignedSIMD( in1.m_flMatVal[0] );
|
||
fltx4 rowA1 = LoadUnalignedSIMD( in1.m_flMatVal[1] );
|
||
fltx4 rowA2 = LoadUnalignedSIMD( in1.m_flMatVal[2] );
|
||
|
||
fltx4 rowB0 = LoadUnalignedSIMD( in2.m_flMatVal[0] );
|
||
fltx4 rowB1 = LoadUnalignedSIMD( in2.m_flMatVal[1] );
|
||
fltx4 rowB2 = LoadUnalignedSIMD( in2.m_flMatVal[2] );
|
||
|
||
// now we have the rows of m0 and the columns of m1
|
||
// first output row
|
||
fltx4 A0 = SplatXSIMD(rowA0);
|
||
fltx4 A1 = SplatYSIMD(rowA0);
|
||
fltx4 A2 = SplatZSIMD(rowA0);
|
||
fltx4 mul00 = MulSIMD( A0, rowB0 );
|
||
fltx4 mul01 = MulSIMD( A1, rowB1 );
|
||
fltx4 mul02 = MulSIMD( A2, rowB2 );
|
||
fltx4 out0 = AddSIMD( mul00, AddSIMD(mul01,mul02) );
|
||
|
||
// second output row
|
||
A0 = SplatXSIMD(rowA1);
|
||
A1 = SplatYSIMD(rowA1);
|
||
A2 = SplatZSIMD(rowA1);
|
||
fltx4 mul10 = MulSIMD( A0, rowB0 );
|
||
fltx4 mul11 = MulSIMD( A1, rowB1 );
|
||
fltx4 mul12 = MulSIMD( A2, rowB2 );
|
||
fltx4 out1 = AddSIMD( mul10, AddSIMD(mul11,mul12) );
|
||
|
||
// third output row
|
||
A0 = SplatXSIMD(rowA2);
|
||
A1 = SplatYSIMD(rowA2);
|
||
A2 = SplatZSIMD(rowA2);
|
||
fltx4 mul20 = MulSIMD( A0, rowB0 );
|
||
fltx4 mul21 = MulSIMD( A1, rowB1 );
|
||
fltx4 mul22 = MulSIMD( A2, rowB2 );
|
||
fltx4 out2 = AddSIMD( mul20, AddSIMD(mul21,mul22) );
|
||
|
||
// add in translation vector
|
||
A0 = AndSIMD(rowA0,lastMask);
|
||
A1 = AndSIMD(rowA1,lastMask);
|
||
A2 = AndSIMD(rowA2,lastMask);
|
||
out0 = AddSIMD(out0, A0);
|
||
out1 = AddSIMD(out1, A1);
|
||
out2 = AddSIMD(out2, A2);
|
||
|
||
// write to output
|
||
StoreUnalignedSIMD( out.m_flMatVal[0], out0 );
|
||
StoreUnalignedSIMD( out.m_flMatVal[1], out1 );
|
||
StoreUnalignedSIMD( out.m_flMatVal[2], out2 );
|
||
}
|
||
|
||
|
||
/*
|
||
===================
|
||
FloorDivMod
|
||
|
||
Returns mathematically correct (floor-based) quotient and remainder for
|
||
numer and denom, both of which should contain no fractional part. The
|
||
quotient must fit in 32 bits.
|
||
====================
|
||
*/
|
||
#if !defined(__SPU__)
|
||
void FloorDivMod (double numer, double denom, int *quotient,
|
||
int *rem)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
int q, r;
|
||
double x;
|
||
|
||
#ifdef PARANOID
|
||
if (denom <= 0.0)
|
||
Sys_Error ("FloorDivMod: bad denominator %d\n", denom);
|
||
|
||
// if ((floor(numer) != numer) || (floor(denom) != denom))
|
||
// Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
|
||
// numer, denom);
|
||
#endif
|
||
|
||
if (numer >= 0.0)
|
||
{
|
||
|
||
x = floor(numer / denom);
|
||
q = (int)x;
|
||
r = Floor2Int(numer - (x * denom));
|
||
}
|
||
else
|
||
{
|
||
//
|
||
// perform operations with positive values, and fix mod to make floor-based
|
||
//
|
||
x = floor(-numer / denom);
|
||
q = -(int)x;
|
||
r = Floor2Int(-numer - (x * denom));
|
||
if (r != 0)
|
||
{
|
||
q--;
|
||
r = (int)denom - r;
|
||
}
|
||
}
|
||
|
||
*quotient = q;
|
||
*rem = r;
|
||
}
|
||
|
||
|
||
/*
|
||
===================
|
||
GreatestCommonDivisor
|
||
====================
|
||
*/
|
||
int GreatestCommonDivisor (int i1, int i2)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
if (i1 > i2)
|
||
{
|
||
if (i2 == 0)
|
||
return (i1);
|
||
return GreatestCommonDivisor (i2, i1 % i2);
|
||
}
|
||
else
|
||
{
|
||
if (i1 == 0)
|
||
return (i2);
|
||
return GreatestCommonDivisor (i1, i2 % i1);
|
||
}
|
||
}
|
||
|
||
|
||
bool IsDenormal( const float &val )
|
||
{
|
||
const int x = *reinterpret_cast <const int *> (&val); // needs 32-bit int
|
||
const int abs_mantissa = x & 0x007FFFFF;
|
||
const int biased_exponent = x & 0x7F800000;
|
||
|
||
return ( biased_exponent == 0 && abs_mantissa != 0 );
|
||
}
|
||
|
||
int SignbitsForPlane (cplane_t *out)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
int bits, j;
|
||
|
||
// for fast box on planeside test
|
||
|
||
bits = 0;
|
||
for (j=0 ; j<3 ; j++)
|
||
{
|
||
if (out->normal[j] < 0)
|
||
bits |= 1<<j;
|
||
}
|
||
return bits;
|
||
}
|
||
|
||
/*
|
||
==================
|
||
BoxOnPlaneSide
|
||
|
||
Returns 1, 2, or 1 + 2
|
||
==================
|
||
*/
|
||
int __cdecl BoxOnPlaneSide (const float *emins, const float *emaxs, const cplane_t *p)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float dist1, dist2;
|
||
int sides;
|
||
|
||
// fast axial cases
|
||
if (p->type < 3)
|
||
{
|
||
if (p->dist <= emins[p->type])
|
||
return 1;
|
||
if (p->dist >= emaxs[p->type])
|
||
return 2;
|
||
return 3;
|
||
}
|
||
|
||
// general case
|
||
switch (p->signbits)
|
||
{
|
||
case 0:
|
||
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
break;
|
||
case 1:
|
||
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
break;
|
||
case 2:
|
||
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
break;
|
||
case 3:
|
||
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
break;
|
||
case 4:
|
||
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
break;
|
||
case 5:
|
||
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
break;
|
||
case 6:
|
||
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
break;
|
||
case 7:
|
||
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
break;
|
||
default:
|
||
dist1 = dist2 = 0; // shut up compiler
|
||
Assert( 0 );
|
||
break;
|
||
}
|
||
|
||
sides = 0;
|
||
if (dist1 >= p->dist)
|
||
sides = 1;
|
||
if (dist2 < p->dist)
|
||
sides |= 2;
|
||
|
||
Assert( sides != 0 );
|
||
|
||
return sides;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Euler QAngle -> Basis Vectors
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void AngleVectors (const QAngle &angles, Vector *forward)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( forward );
|
||
|
||
float sp, sy, cp, cy;
|
||
|
||
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy );
|
||
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp );
|
||
|
||
forward->x = cp*cy;
|
||
forward->y = cp*sy;
|
||
forward->z = -sp;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Euler QAngle -> Basis Vectors. Each vector is optional
|
||
//-----------------------------------------------------------------------------
|
||
void AngleVectors( const QAngle &angles, Vector *forward, Vector *right, Vector *up )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
#ifdef _X360
|
||
fltx4 radians, scale, sine, cosine;
|
||
radians = LoadUnaligned3SIMD( angles.Base() );
|
||
scale = ReplicateX4( M_PI_F / 180.f );
|
||
radians = MulSIMD( radians, scale );
|
||
SinCos3SIMD( sine, cosine, radians );
|
||
sp = SubFloat( sine, 0 ); sy = SubFloat( sine, 1 ); sr = SubFloat( sine, 2 );
|
||
cp = SubFloat( cosine, 0 ); cy = SubFloat( cosine, 1 ); cr = SubFloat( cosine, 2 );
|
||
#else
|
||
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy );
|
||
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp );
|
||
SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr );
|
||
#endif
|
||
|
||
if (forward)
|
||
{
|
||
forward->x = cp*cy;
|
||
forward->y = cp*sy;
|
||
forward->z = -sp;
|
||
}
|
||
|
||
if (right)
|
||
{
|
||
right->x = (-1*sr*sp*cy+-1*cr*-sy);
|
||
right->y = (-1*sr*sp*sy+-1*cr*cy);
|
||
right->z = -1*sr*cp;
|
||
}
|
||
|
||
if (up)
|
||
{
|
||
up->x = (cr*sp*cy+-sr*-sy);
|
||
up->y = (cr*sp*sy+-sr*cy);
|
||
up->z = cr*cp;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Euler QAngle -> Basis Vectors transposed
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void AngleVectorsTranspose (const QAngle &angles, Vector *forward, Vector *right, Vector *up)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy );
|
||
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp );
|
||
SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr );
|
||
|
||
if (forward)
|
||
{
|
||
forward->x = cp*cy;
|
||
forward->y = (sr*sp*cy+cr*-sy);
|
||
forward->z = (cr*sp*cy+-sr*-sy);
|
||
}
|
||
|
||
if (right)
|
||
{
|
||
right->x = cp*sy;
|
||
right->y = (sr*sp*sy+cr*cy);
|
||
right->z = (cr*sp*sy+-sr*cy);
|
||
}
|
||
|
||
if (up)
|
||
{
|
||
up->x = -sp;
|
||
up->y = sr*cp;
|
||
up->z = cr*cp;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Forward direction vector -> Euler angles
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void VectorAngles( const Vector& forward, QAngle &angles )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float tmp, yaw, pitch;
|
||
|
||
if (forward[1] == 0 && forward[0] == 0)
|
||
{
|
||
yaw = 0;
|
||
if (forward[2] > 0)
|
||
pitch = 270;
|
||
else
|
||
pitch = 90;
|
||
}
|
||
else
|
||
{
|
||
yaw = (atan2(forward[1], forward[0]) * 180 / M_PI);
|
||
if (yaw < 0)
|
||
yaw += 360;
|
||
|
||
tmp = FastSqrt (forward[0]*forward[0] + forward[1]*forward[1]);
|
||
pitch = (atan2(-forward[2], tmp) * 180 / M_PI);
|
||
if (pitch < 0)
|
||
pitch += 360;
|
||
}
|
||
|
||
angles[0] = pitch;
|
||
angles[1] = yaw;
|
||
angles[2] = 0;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Forward direction vector with a reference up vector -> Euler angles
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void VectorAngles( const Vector &forward, const Vector &pseudoup, QAngle &angles )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
Vector left;
|
||
|
||
CrossProduct( pseudoup, forward, left );
|
||
VectorNormalizeFast( left );
|
||
|
||
float xyDist = sqrtf( forward[0] * forward[0] + forward[1] * forward[1] );
|
||
|
||
// enough here to get angles?
|
||
if ( xyDist > 0.001f )
|
||
{
|
||
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
|
||
angles[1] = RAD2DEG( atan2f( forward[1], forward[0] ) );
|
||
|
||
// The engine does pitch inverted from this, but we always end up negating it in the DLL
|
||
// UNDONE: Fix the engine to make it consistent
|
||
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
|
||
angles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) );
|
||
|
||
float up_z = (left[1] * forward[0]) - (left[0] * forward[1]);
|
||
|
||
// (roll) z = ATAN( left.z, up.z );
|
||
angles[2] = RAD2DEG( atan2f( left[2], up_z ) );
|
||
}
|
||
else // forward is mostly Z, gimbal lock-
|
||
{
|
||
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw
|
||
angles[1] = RAD2DEG( atan2f( -left[0], left[1] ) ); //This was originally copied from the "void MatrixAngles( const matrix3x4_t& matrix, float *angles )" code, and it's 180 degrees off, negated the values and it all works now (Dave Kircher)
|
||
|
||
// The engine does pitch inverted from this, but we always end up negating it in the DLL
|
||
// UNDONE: Fix the engine to make it consistent
|
||
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
|
||
angles[0] = RAD2DEG( atan2f( -forward[2], xyDist ) );
|
||
|
||
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
|
||
angles[2] = 0;
|
||
}
|
||
}
|
||
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
void SetIdentityMatrix( matrix3x4_t& matrix )
|
||
{
|
||
memset( matrix.Base(), 0, sizeof(float)*3*4 );
|
||
matrix[0][0] = 1.0;
|
||
matrix[1][1] = 1.0;
|
||
matrix[2][2] = 1.0;
|
||
}
|
||
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Builds a scale matrix
|
||
//-----------------------------------------------------------------------------
|
||
void SetScaleMatrix( float x, float y, float z, matrix3x4_t &dst )
|
||
{
|
||
dst[0][0] = x; dst[0][1] = 0.0f; dst[0][2] = 0.0f; dst[0][3] = 0.0f;
|
||
dst[1][0] = 0.0f; dst[1][1] = y; dst[1][2] = 0.0f; dst[1][3] = 0.0f;
|
||
dst[2][0] = 0.0f; dst[2][1] = 0.0f; dst[2][2] = z; dst[2][3] = 0.0f;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Builds the matrix for a counterclockwise rotation about an arbitrary axis.
|
||
//
|
||
// | ax2 + (1 - ax2)cosQ axay(1 - cosQ) - azsinQ azax(1 - cosQ) + aysinQ |
|
||
// Ra(Q) = | axay(1 - cosQ) + azsinQ ay2 + (1 - ay2)cosQ ayaz(1 - cosQ) - axsinQ |
|
||
// | azax(1 - cosQ) - aysinQ ayaz(1 - cosQ) + axsinQ az2 + (1 - az2)cosQ |
|
||
//
|
||
// Input : mat -
|
||
// vAxisOrRot -
|
||
// angle -
|
||
//-----------------------------------------------------------------------------
|
||
void MatrixBuildRotationAboutAxis( const Vector &vAxisOfRot, float angleDegrees, matrix3x4_t &dst )
|
||
{
|
||
float radians;
|
||
float axisXSquared;
|
||
float axisYSquared;
|
||
float axisZSquared;
|
||
float fSin;
|
||
float fCos;
|
||
|
||
radians = angleDegrees * ( M_PI / 180.0 );
|
||
fSin = sin( radians );
|
||
fCos = cos( radians );
|
||
|
||
axisXSquared = vAxisOfRot[0] * vAxisOfRot[0];
|
||
axisYSquared = vAxisOfRot[1] * vAxisOfRot[1];
|
||
axisZSquared = vAxisOfRot[2] * vAxisOfRot[2];
|
||
|
||
// Column 0:
|
||
dst[0][0] = axisXSquared + (1 - axisXSquared) * fCos;
|
||
dst[1][0] = vAxisOfRot[0] * vAxisOfRot[1] * (1 - fCos) + vAxisOfRot[2] * fSin;
|
||
dst[2][0] = vAxisOfRot[2] * vAxisOfRot[0] * (1 - fCos) - vAxisOfRot[1] * fSin;
|
||
|
||
// Column 1:
|
||
dst[0][1] = vAxisOfRot[0] * vAxisOfRot[1] * (1 - fCos) - vAxisOfRot[2] * fSin;
|
||
dst[1][1] = axisYSquared + (1 - axisYSquared) * fCos;
|
||
dst[2][1] = vAxisOfRot[1] * vAxisOfRot[2] * (1 - fCos) + vAxisOfRot[0] * fSin;
|
||
|
||
// Column 2:
|
||
dst[0][2] = vAxisOfRot[2] * vAxisOfRot[0] * (1 - fCos) + vAxisOfRot[1] * fSin;
|
||
dst[1][2] = vAxisOfRot[1] * vAxisOfRot[2] * (1 - fCos) - vAxisOfRot[0] * fSin;
|
||
dst[2][2] = axisZSquared + (1 - axisZSquared) * fCos;
|
||
|
||
// Column 3:
|
||
dst[0][3] = 0;
|
||
dst[1][3] = 0;
|
||
dst[2][3] = 0;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Computes the transpose
|
||
//-----------------------------------------------------------------------------
|
||
void MatrixTranspose( matrix3x4_t& mat )
|
||
{
|
||
vec_t tmp;
|
||
tmp = mat[0][1]; mat[0][1] = mat[1][0]; mat[1][0] = tmp;
|
||
tmp = mat[0][2]; mat[0][2] = mat[2][0]; mat[2][0] = tmp;
|
||
tmp = mat[1][2]; mat[1][2] = mat[2][1]; mat[2][1] = tmp;
|
||
}
|
||
|
||
void MatrixTranspose( const matrix3x4_t& src, matrix3x4_t& dst )
|
||
{
|
||
dst[0][0] = src[0][0]; dst[0][1] = src[1][0]; dst[0][2] = src[2][0]; dst[0][3] = 0.0f;
|
||
dst[1][0] = src[0][1]; dst[1][1] = src[1][1]; dst[1][2] = src[2][1]; dst[1][3] = 0.0f;
|
||
dst[2][0] = src[0][2]; dst[2][1] = src[1][2]; dst[2][2] = src[2][2]; dst[2][3] = 0.0f;
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: converts engine euler angles into a matrix
|
||
// Input : vec3_t angles - PITCH, YAW, ROLL
|
||
// Output : *matrix - left-handed column matrix
|
||
// the basis vectors for the rotations will be in the columns as follows:
|
||
// matrix[][0] is forward
|
||
// matrix[][1] is left
|
||
// matrix[][2] is up
|
||
//-----------------------------------------------------------------------------
|
||
void AngleMatrix( RadianEuler const &angles, const Vector &position, matrix3x4_t& matrix )
|
||
{
|
||
AngleMatrix( angles, matrix );
|
||
MatrixSetColumn( position, 3, matrix );
|
||
}
|
||
|
||
void AngleMatrix( const RadianEuler& angles, matrix3x4_t& matrix )
|
||
{
|
||
QAngle quakeEuler( RAD2DEG( angles.y ), RAD2DEG( angles.z ), RAD2DEG( angles.x ) );
|
||
|
||
AngleMatrix( quakeEuler, matrix );
|
||
}
|
||
|
||
|
||
void AngleMatrix( const QAngle &angles, const Vector &position, matrix3x4_t& matrix )
|
||
{
|
||
AngleMatrix( angles, matrix );
|
||
MatrixSetColumn( position, 3, matrix );
|
||
}
|
||
|
||
void AngleMatrix( const QAngle &angles, matrix3x4_t& matrix )
|
||
{
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "AngleMatrix", "Mathlib" );
|
||
#endif
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
#ifdef _X360
|
||
fltx4 radians, scale, sine, cosine;
|
||
radians = LoadUnaligned3SIMD( angles.Base() );
|
||
scale = ReplicateX4( M_PI_F / 180.f );
|
||
radians = MulSIMD( radians, scale );
|
||
SinCos3SIMD( sine, cosine, radians );
|
||
|
||
sp = SubFloat( sine, 0 ); sy = SubFloat( sine, 1 ); sr = SubFloat( sine, 2 );
|
||
cp = SubFloat( cosine, 0 ); cy = SubFloat( cosine, 1 ); cr = SubFloat( cosine, 2 );
|
||
#else
|
||
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy );
|
||
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp );
|
||
SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr );
|
||
#endif
|
||
|
||
// matrix = (YAW * PITCH) * ROLL
|
||
matrix[0][0] = cp*cy;
|
||
matrix[1][0] = cp*sy;
|
||
matrix[2][0] = -sp;
|
||
|
||
// NOTE: Do not optimize this to reduce multiplies! optimizer bug will screw this up.
|
||
matrix[0][1] = sr*sp*cy+cr*-sy;
|
||
matrix[1][1] = sr*sp*sy+cr*cy;
|
||
matrix[2][1] = sr*cp;
|
||
matrix[0][2] = (cr*sp*cy+-sr*-sy);
|
||
matrix[1][2] = (cr*sp*sy+-sr*cy);
|
||
matrix[2][2] = cr*cp;
|
||
|
||
matrix[0][3] = 0.0f;
|
||
matrix[1][3] = 0.0f;
|
||
matrix[2][3] = 0.0f;
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
void AngleIMatrix( const RadianEuler& angles, matrix3x4_t& matrix )
|
||
{
|
||
QAngle quakeEuler( RAD2DEG( angles.y ), RAD2DEG( angles.z ), RAD2DEG( angles.x ) );
|
||
|
||
AngleIMatrix( quakeEuler, matrix );
|
||
}
|
||
|
||
void AngleIMatrix (const QAngle& angles, matrix3x4_t& matrix )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy );
|
||
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp );
|
||
SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr );
|
||
|
||
// matrix = (YAW * PITCH) * ROLL
|
||
matrix[0][0] = cp*cy;
|
||
matrix[0][1] = cp*sy;
|
||
matrix[0][2] = -sp;
|
||
matrix[1][0] = sr*sp*cy+cr*-sy;
|
||
matrix[1][1] = sr*sp*sy+cr*cy;
|
||
matrix[1][2] = sr*cp;
|
||
matrix[2][0] = (cr*sp*cy+-sr*-sy);
|
||
matrix[2][1] = (cr*sp*sy+-sr*cy);
|
||
matrix[2][2] = cr*cp;
|
||
matrix[0][3] = 0.f;
|
||
matrix[1][3] = 0.f;
|
||
matrix[2][3] = 0.f;
|
||
}
|
||
|
||
void AngleIMatrix (const QAngle &angles, const Vector &position, matrix3x4_t &mat )
|
||
{
|
||
AngleIMatrix( angles, mat );
|
||
|
||
Vector vecTranslation;
|
||
VectorRotate( position, mat, vecTranslation );
|
||
vecTranslation *= -1.0f;
|
||
MatrixSetColumn( vecTranslation, 3, mat );
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Bounding box construction methods
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void ClearBounds (Vector& mins, Vector& maxs)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
mins[0] = mins[1] = mins[2] = FLT_MAX;
|
||
maxs[0] = maxs[1] = maxs[2] = -FLT_MAX;
|
||
}
|
||
|
||
void AddPointToBounds (const Vector& v, Vector& mins, Vector& maxs)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
int i;
|
||
vec_t val;
|
||
|
||
for (i=0 ; i<3 ; i++)
|
||
{
|
||
val = v[i];
|
||
if (val < mins[i])
|
||
mins[i] = val;
|
||
if (val > maxs[i])
|
||
maxs[i] = val;
|
||
}
|
||
}
|
||
|
||
bool AreBoundsValid( const Vector &vMin, const Vector &vMax )
|
||
{
|
||
for ( int i = 0; i < 3; ++ i )
|
||
{
|
||
if ( vMin[i] > vMax[i] )
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IsPointInBounds( const Vector &vPoint, const Vector &vMin, const Vector &vMax )
|
||
{
|
||
for ( int i = 0; i < 3; ++ i )
|
||
{
|
||
if ( vPoint[i] < vMin[i] || vPoint[i] > vMax[i] )
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// solve a x^2 + b x + c = 0
|
||
bool SolveQuadratic( float a, float b, float c, float &root1, float &root2 )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
if (a == 0)
|
||
{
|
||
if (b != 0)
|
||
{
|
||
// no x^2 component, it's a linear system
|
||
root1 = root2 = -c / b;
|
||
return true;
|
||
}
|
||
if (c == 0)
|
||
{
|
||
// all zero's
|
||
root1 = root2 = 0;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
float tmp = b * b - 4.0f * a * c;
|
||
|
||
if (tmp < 0)
|
||
{
|
||
// imaginary number, bah, no solution.
|
||
return false;
|
||
}
|
||
|
||
tmp = sqrt( tmp );
|
||
root1 = (-b + tmp) / (2.0f * a);
|
||
root2 = (-b - tmp) / (2.0f * a);
|
||
return true;
|
||
}
|
||
|
||
// solves for "a, b, c" where "a x^2 + b x + c = y", return true if solution exists
|
||
bool SolveInverseQuadratic( float x1, float y1, float x2, float y2, float x3, float y3, float &a, float &b, float &c )
|
||
{
|
||
float det = (x1 - x2)*(x1 - x3)*(x2 - x3);
|
||
|
||
// FIXME: check with some sort of epsilon
|
||
if (det == 0.0)
|
||
return false;
|
||
|
||
a = (x3*(-y1 + y2) + x2*(y1 - y3) + x1*(-y2 + y3)) / det;
|
||
|
||
b = (x3*x3*(y1 - y2) + x1*x1*(y2 - y3) + x2*x2*(-y1 + y3)) / det;
|
||
|
||
c = (x1*x3*(-x1 + x3)*y2 + x2*x2*(x3*y1 - x1*y3) + x2*(-(x3*x3*y1) + x1*x1*y3)) / det;
|
||
|
||
return true;
|
||
}
|
||
|
||
bool SolveInverseQuadraticMonotonic( float x1, float y1, float x2, float y2, float x3, float y3,
|
||
float &a, float &b, float &c )
|
||
{
|
||
// use SolveInverseQuadratic, but if the sigm of the derivative at the start point is the wrong
|
||
// sign, displace the mid point
|
||
|
||
// first, sort parameters
|
||
if (x1>x2)
|
||
{
|
||
V_swap(x1,x2);
|
||
V_swap(y1,y2);
|
||
}
|
||
if (x2>x3)
|
||
{
|
||
V_swap(x2,x3);
|
||
V_swap(y2,y3);
|
||
}
|
||
if (x1>x2)
|
||
{
|
||
V_swap(x1,x2);
|
||
V_swap(y1,y2);
|
||
}
|
||
// this code is not fast. what it does is when the curve would be non-monotonic, slowly shifts
|
||
// the center point closer to the linear line between the endpoints. Should anyone need htis
|
||
// function to be actually fast, it would be fairly easy to change it to be so.
|
||
for(float blend_to_linear_factor=0.0;blend_to_linear_factor<=1.0;blend_to_linear_factor+=0.05)
|
||
{
|
||
float tempy2=(1-blend_to_linear_factor)*y2+blend_to_linear_factor*FLerp(y1,y3,x1,x3,x2);
|
||
if (!SolveInverseQuadratic(x1,y1,x2,tempy2,x3,y3,a,b,c))
|
||
return false;
|
||
float derivative=2.0*a+b;
|
||
if ( (y1<y2) && (y2<y3)) // monotonically increasing
|
||
{
|
||
if (derivative>=0.0)
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if ( (y1>y2) && (y2>y3)) // monotonically decreasing
|
||
{
|
||
if (derivative<=0.0)
|
||
return true;
|
||
}
|
||
else
|
||
return true;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
// solves for "a, b, c" where "1/(a x^2 + b x + c ) = y", return true if solution exists
|
||
bool SolveInverseReciprocalQuadratic( float x1, float y1, float x2, float y2, float x3, float y3, float &a, float &b, float &c )
|
||
{
|
||
float det = (x1 - x2)*(x1 - x3)*(x2 - x3)*y1*y2*y3;
|
||
|
||
// FIXME: check with some sort of epsilon
|
||
if (det == 0.0)
|
||
return false;
|
||
|
||
a = (x1*y1*(y2 - y3) + x3*(y1 - y2)*y3 + x2*y2*(-y1 + y3)) / det;
|
||
|
||
b = (x2*x2*y2*(y1 - y3) + x3*x3*(-y1 + y2)*y3 + x1*x1*y1*(-y2 + y3)) / det;
|
||
|
||
c = (x2*(x2 - x3)*x3*y2*y3 + x1*x1*y1*(x2*y2 - x3*y3) + x1*(-(x2*x2*y1*y2) + x3*x3*y1*y3)) / det;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
// Rotate a vector around the Z axis (YAW)
|
||
void VectorYawRotate( const Vector &in, float flYaw, Vector &out)
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
if (&in == &out )
|
||
{
|
||
Vector tmp;
|
||
tmp = in;
|
||
VectorYawRotate( tmp, flYaw, out );
|
||
return;
|
||
}
|
||
|
||
float sy, cy;
|
||
|
||
SinCos( DEG2RAD(flYaw), &sy, &cy );
|
||
|
||
out.x = in.x * cy - in.y * sy;
|
||
out.y = in.x * sy + in.y * cy;
|
||
out.z = in.z;
|
||
}
|
||
|
||
|
||
|
||
float Bias( float x, float biasAmt )
|
||
{
|
||
// WARNING: not thread safe
|
||
static float lastAmt = -1;
|
||
static float lastExponent = 0;
|
||
if( lastAmt != biasAmt )
|
||
{
|
||
lastExponent = log( biasAmt ) * -1.4427f; // (-1.4427 = 1 / log(0.5))
|
||
}
|
||
return pow( x, lastExponent );
|
||
}
|
||
|
||
|
||
float Gain( float x, float biasAmt )
|
||
{
|
||
// WARNING: not thread safe
|
||
if( x < 0.5 )
|
||
return 0.5f * Bias( 2*x, 1-biasAmt );
|
||
else
|
||
return 1 - 0.5f * Bias( 2 - 2*x, 1-biasAmt );
|
||
}
|
||
|
||
|
||
float SmoothCurve( float x )
|
||
{
|
||
return (1 - cos( x * M_PI )) * 0.5f;
|
||
}
|
||
|
||
|
||
inline float MovePeak( float x, float flPeakPos )
|
||
{
|
||
// Todo: make this higher-order?
|
||
if( x < flPeakPos )
|
||
return x * 0.5f / flPeakPos;
|
||
else
|
||
return 0.5 + 0.5 * (x - flPeakPos) / (1 - flPeakPos);
|
||
}
|
||
|
||
|
||
float SmoothCurve_Tweak( float x, float flPeakPos, float flPeakSharpness )
|
||
{
|
||
float flMovedPeak = MovePeak( x, flPeakPos );
|
||
float flSharpened = Gain( flMovedPeak, flPeakSharpness );
|
||
return SmoothCurve( flSharpened );
|
||
}
|
||
|
||
#endif // !defined(__SPU__)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// make sure quaternions are within 180 degrees of one another, if not, reverse q
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void QuaternionAlign( const Quaternion &p, const Quaternion &q, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
// FIXME: can this be done with a quat dot product?
|
||
|
||
int i;
|
||
// decide if one of the quaternions is backwards
|
||
float a = 0;
|
||
float b = 0;
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
a += (p[i]-q[i])*(p[i]-q[i]);
|
||
b += (p[i]+q[i])*(p[i]+q[i]);
|
||
}
|
||
if (a > b)
|
||
{
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
qt[i] = -q[i];
|
||
}
|
||
}
|
||
else if (&qt != &q)
|
||
{
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
qt[i] = q[i];
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Do a piecewise addition of the quaternion elements. This actually makes little
|
||
// mathematical sense, but it's a cheap way to simulate a slerp.
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionBlend( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
#if ALLOW_SIMD_QUATERNION_MATH
|
||
fltx4 psimd, qsimd, qtsimd;
|
||
psimd = LoadUnalignedSIMD( p.Base() );
|
||
qsimd = LoadUnalignedSIMD( q.Base() );
|
||
qtsimd = QuaternionBlendSIMD( psimd, qsimd, t );
|
||
StoreUnalignedSIMD( qt.Base(), qtsimd );
|
||
#else
|
||
// decide if one of the quaternions is backwards
|
||
Quaternion q2;
|
||
QuaternionAlign( p, q, q2 );
|
||
QuaternionBlendNoAlign( p, q2, t, qt );
|
||
#endif
|
||
}
|
||
|
||
|
||
void QuaternionBlendNoAlign( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float sclp, sclq;
|
||
int i;
|
||
|
||
// 0.0 returns p, 1.0 return q.
|
||
sclp = 1.0f - t;
|
||
sclq = t;
|
||
for (i = 0; i < 4; i++) {
|
||
qt[i] = sclp * p[i] + sclq * q[i];
|
||
}
|
||
QuaternionNormalize( qt );
|
||
}
|
||
|
||
|
||
|
||
void QuaternionIdentityBlend( const Quaternion &p, float t, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float sclp;
|
||
|
||
sclp = 1.0f - t;
|
||
|
||
qt.x = p.x * sclp;
|
||
qt.y = p.y * sclp;
|
||
qt.z = p.z * sclp;
|
||
if (qt.w < 0.0)
|
||
{
|
||
qt.w = p.w * sclp - t;
|
||
}
|
||
else
|
||
{
|
||
qt.w = p.w * sclp + t;
|
||
}
|
||
QuaternionNormalize( qt );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Quaternion sphereical linear interpolation
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void QuaternionSlerp( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt )
|
||
{
|
||
Quaternion q2;
|
||
// 0.0 returns p, 1.0 return q.
|
||
|
||
// decide if one of the quaternions is backwards
|
||
QuaternionAlign( p, q, q2 );
|
||
|
||
QuaternionSlerpNoAlign( p, q2, t, qt );
|
||
}
|
||
|
||
|
||
void QuaternionSlerpNoAlign( const Quaternion &p, const Quaternion &q, float t, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float omega, cosom, sinom, sclp, sclq;
|
||
int i;
|
||
|
||
// 0.0 returns p, 1.0 return q.
|
||
|
||
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
|
||
|
||
if ((1.0f + cosom) > 0.000001f) {
|
||
if ((1.0f - cosom) > 0.000001f) {
|
||
omega = acos( cosom );
|
||
sinom = sin( omega );
|
||
sclp = sin( (1.0f - t)*omega) / sinom;
|
||
sclq = sin( t*omega ) / sinom;
|
||
}
|
||
else {
|
||
// TODO: add short circuit for cosom == 1.0f?
|
||
sclp = 1.0f - t;
|
||
sclq = t;
|
||
}
|
||
for (i = 0; i < 4; i++) {
|
||
qt[i] = sclp * p[i] + sclq * q[i];
|
||
}
|
||
}
|
||
else {
|
||
Assert( &qt != &q );
|
||
|
||
qt[0] = -q[1];
|
||
qt[1] = q[0];
|
||
qt[2] = -q[3];
|
||
qt[3] = q[2];
|
||
sclp = sin( (1.0f - t) * (0.5f * M_PI));
|
||
sclq = sin( t * (0.5f * M_PI));
|
||
for (i = 0; i < 3; i++) {
|
||
qt[i] = sclp * p[i] + sclq * qt[i];
|
||
}
|
||
}
|
||
|
||
Assert( qt.IsValid() );
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Returns the angular delta between the two normalized quaternions in degrees.
|
||
//-----------------------------------------------------------------------------
|
||
float QuaternionAngleDiff( const Quaternion &p, const Quaternion &q )
|
||
{
|
||
#if 1
|
||
// this code path is here for 2 reasons:
|
||
// 1 - acos maps 1-epsilon to values much larger than epsilon (vs asin, which maps epsilon to itself)
|
||
// this means that in floats, anything below ~0.05 degrees truncates to 0
|
||
// 2 - normalized quaternions are frequently slightly non-normalized due to float precision issues,
|
||
// and the epsilon off of normalized can be several percents of a degree
|
||
Quaternion qInv, diff;
|
||
QuaternionConjugate( q, qInv );
|
||
QuaternionMult( p, qInv, diff );
|
||
|
||
// Note if the quaternion is slightly non-normalized the square root below may be more than 1,
|
||
// the value is clamped to one otherwise it may result in asin() returning an undefined result.
|
||
float sinang = MIN( 1.0f, sqrt( diff.x * diff.x + diff.y * diff.y + diff.z * diff.z ) );
|
||
float angle = RAD2DEG( 2 * asin( sinang ) );
|
||
return angle;
|
||
#else
|
||
Quaternion q2;
|
||
QuaternionAlign( p, q, q2 );
|
||
|
||
Assert( s_bMathlibInitialized );
|
||
float cosom = p.x * q2.x + p.y * q2.y + p.z * q2.z + p.w * q2.w;
|
||
|
||
if ( cosom > -1.0f )
|
||
{
|
||
if ( cosom < 1.0f )
|
||
{
|
||
float omega = 2 * fabs( acos( cosom ) );
|
||
return RAD2DEG( omega );
|
||
}
|
||
return 0.0f;
|
||
}
|
||
|
||
return 180.0f;
|
||
#endif
|
||
}
|
||
|
||
void QuaternionConjugate( const Quaternion &p, Quaternion &q )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
q.x = -p.x;
|
||
q.y = -p.y;
|
||
q.z = -p.z;
|
||
q.w = p.w;
|
||
}
|
||
|
||
void QuaternionInvert( const Quaternion &p, Quaternion &q )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
QuaternionConjugate( p, q );
|
||
|
||
float magnitudeSqr = QuaternionDotProduct( p, p );
|
||
Assert( magnitudeSqr );
|
||
if ( magnitudeSqr )
|
||
{
|
||
float inv = 1.0f / magnitudeSqr;
|
||
q.x *= inv;
|
||
q.y *= inv;
|
||
q.z *= inv;
|
||
q.w *= inv;
|
||
}
|
||
}
|
||
|
||
void QuaternionMultiply( const Quaternion &q, const Vector &v, Vector &result )
|
||
{
|
||
Vector t, t2;
|
||
CrossProduct( q.ImaginaryPart(), v, t );
|
||
t *= 2.0f;
|
||
VectorMA( v, q.RealPart(), t, result );
|
||
CrossProduct( q.ImaginaryPart(), t, t2 );
|
||
result += t2;
|
||
}
|
||
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Make sure the quaternion is of unit length
|
||
//-----------------------------------------------------------------------------
|
||
float QuaternionNormalize( Quaternion &q )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float radius, iradius;
|
||
|
||
Assert( q.IsValid() );
|
||
|
||
radius = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
|
||
|
||
if ( radius ) // > FLT_EPSILON && ((radius < 1.0f - 4*FLT_EPSILON) || (radius > 1.0f + 4*FLT_EPSILON))
|
||
{
|
||
radius = sqrt(radius);
|
||
iradius = 1.0f/radius;
|
||
q[3] *= iradius;
|
||
q[2] *= iradius;
|
||
q[1] *= iradius;
|
||
q[0] *= iradius;
|
||
}
|
||
return radius;
|
||
}
|
||
|
||
|
||
void QuaternionScale( const Quaternion &p, float t, Quaternion &q )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
#if 0
|
||
Quaternion p0;
|
||
Quaternion q;
|
||
p0.Init( 0.0, 0.0, 0.0, 1.0 );
|
||
|
||
// slerp in "reverse order" so that p doesn't get realigned
|
||
QuaternionSlerp( p, p0, 1.0 - fabs( t ), q );
|
||
if (t < 0.0)
|
||
{
|
||
q.w = -q.w;
|
||
}
|
||
#else
|
||
float r;
|
||
|
||
// FIXME: nick, this isn't overly sensitive to accuracy, and it may be faster to
|
||
// use the cos part (w) of the quaternion (sin(omega)*N,cos(omega)) to figure the new scale.
|
||
float sinom = sqrt( DotProduct( &p.x, &p.x ) );
|
||
sinom = MIN( sinom, 1.f );
|
||
|
||
float sinsom = sin( asin( sinom ) * t );
|
||
|
||
t = sinsom / (sinom + FLT_EPSILON);
|
||
VectorScale( &p.x, t, &q.x );
|
||
|
||
// rescale rotation
|
||
r = 1.0f - sinsom * sinsom;
|
||
|
||
// Assert( r >= 0 );
|
||
if (r < 0.0f)
|
||
r = 0.0f;
|
||
r = sqrt( r );
|
||
|
||
// keep sign of rotation
|
||
if (p.w < 0)
|
||
q.w = -r;
|
||
else
|
||
q.w = r;
|
||
#endif
|
||
|
||
Assert( q.IsValid() );
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
void QuaternionAdd( const Quaternion &p, const Quaternion &q, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( p.IsValid() );
|
||
Assert( q.IsValid() );
|
||
|
||
// decide if one of the quaternions is backwards
|
||
Quaternion q2;
|
||
QuaternionAlign( p, q, q2 );
|
||
|
||
// is this right???
|
||
qt[0] = p[0] + q2[0];
|
||
qt[1] = p[1] + q2[1];
|
||
qt[2] = p[2] + q2[2];
|
||
qt[3] = p[3] + q2[3];
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
float QuaternionDotProduct( const Quaternion &p, const Quaternion &q )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( p.IsValid() );
|
||
Assert( q.IsValid() );
|
||
|
||
return p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w;
|
||
}
|
||
|
||
|
||
// qt = p * q
|
||
void QuaternionMult( const Quaternion &p, const Quaternion &q, Quaternion &qt )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( p.IsValid() );
|
||
Assert( q.IsValid() );
|
||
|
||
if (&p == &qt)
|
||
{
|
||
Quaternion p2 = p;
|
||
QuaternionMult( p2, q, qt );
|
||
return;
|
||
}
|
||
|
||
// decide if one of the quaternions is backwards
|
||
Quaternion q2;
|
||
QuaternionAlign( p, q, q2 );
|
||
|
||
qt.x = p.x * q2.w + p.y * q2.z - p.z * q2.y + p.w * q2.x;
|
||
qt.y = -p.x * q2.z + p.y * q2.w + p.z * q2.x + p.w * q2.y;
|
||
qt.z = p.x * q2.y - p.y * q2.x + p.z * q2.w + p.w * q2.z;
|
||
qt.w = -p.x * q2.x - p.y * q2.y - p.z * q2.z + p.w * q2.w;
|
||
}
|
||
|
||
|
||
#if !defined(__SPU__)
|
||
|
||
void QuaternionExp( const Quaternion &p, Quaternion &q )
|
||
{
|
||
float r = sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
|
||
float et = exp(p[3]);
|
||
float s = r>=0.00001f? et*sin(r)/r: 0.f;
|
||
q.Init( s*p[0],s*p[1],s*p[2], et*cos( r ) );
|
||
}
|
||
|
||
void QuaternionLn( const Quaternion &p, Quaternion &q )
|
||
{
|
||
float r = sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
|
||
float t = r>0.00001f? atan2(r,p[3])/r: 0.f;
|
||
float norm = p[0]*p[0] + p[1]*p[1] + p[2]*p[2] + p[3]*p[3];
|
||
q.Init( t*p[0],t*p[1],t*p[2],0.5*log(norm) );
|
||
}
|
||
|
||
// Average using exponential method
|
||
// Qave = exp( 1 / n * log( Q1 ) + ... + 1 / n * log( Qn ) ) where
|
||
// if pflWeights passed in 1/n is replaced by normalized weighting
|
||
void QuaternionAverageExponential( Quaternion &q, int nCount, const Quaternion *pQuaternions, const float *pflWeights /*=NULL*/ )
|
||
{
|
||
Assert( nCount >= 1 );
|
||
Assert( pQuaternions );
|
||
|
||
// Nothing to do if only one input quaternions
|
||
if ( nCount == 1 )
|
||
{
|
||
q = pQuaternions[ 0 ];
|
||
return;
|
||
}
|
||
|
||
float ooWeightSum = 1.0f;
|
||
float flWeightSum = 0.0f;
|
||
for ( int i = 0 ; i < nCount; ++i )
|
||
{
|
||
if ( pflWeights )
|
||
{
|
||
flWeightSum += pflWeights[ i ];
|
||
}
|
||
else
|
||
{
|
||
flWeightSum += 1.0f;
|
||
}
|
||
}
|
||
|
||
if ( flWeightSum > 0.0f )
|
||
{
|
||
ooWeightSum = 1.0f / flWeightSum;
|
||
}
|
||
|
||
Quaternion sum( 0, 0, 0, 0 );
|
||
// Now sum the ln of the quaternions
|
||
for ( int i = 0; i < nCount; ++i )
|
||
{
|
||
float weight = ooWeightSum;
|
||
if ( pflWeights )
|
||
{
|
||
weight *= pflWeights[ i ];
|
||
}
|
||
|
||
// Make sure all quaternions are aligned with the
|
||
// first to avoid blending the wrong direction.
|
||
Quaternion alignedQuat;
|
||
QuaternionAlign( pQuaternions[ 0 ], pQuaternions[ i ], alignedQuat );
|
||
|
||
Quaternion qLn;
|
||
QuaternionLn( alignedQuat, qLn );
|
||
for ( int j = 0; j < 4; ++j )
|
||
{
|
||
sum[ j ] += ( qLn[ j ] * weight );
|
||
}
|
||
}
|
||
|
||
// then exponentiate to get final value
|
||
QuaternionExp( sum, q );
|
||
}
|
||
|
||
// Given a vector and a pseudo-up reference vector, create a quaternion which represents
|
||
// the orientation of the forward vector. Note, will be unstable if vecForward is close
|
||
// to referenceUp
|
||
void QuaternionLookAt( const Vector &vecForward, const Vector &referenceUp, Quaternion &q )
|
||
{
|
||
Vector forward = vecForward;
|
||
forward.NormalizeInPlace();
|
||
float ratio = DotProduct( forward, referenceUp );
|
||
Vector up = referenceUp - ( forward * ratio );
|
||
up.NormalizeInPlace();
|
||
|
||
Vector right = forward.Cross( up );
|
||
right.NormalizeInPlace();
|
||
|
||
const Vector &x = right;
|
||
const Vector &y = forward;
|
||
const Vector &z = up;
|
||
|
||
float tr = x.x + y.y + z.z;
|
||
q.Init( y.z - z.y , z.x - x.z, x.y - y.x, tr + 1.0f );
|
||
QuaternionNormalize( q );
|
||
|
||
/*
|
||
Vector z = vecForward;
|
||
z.NormalizeInPlace();
|
||
Vector x = referenceUp.Cross( z );
|
||
x.NormalizeInPlace();
|
||
Vector y = z.Cross( x );
|
||
y.NormalizeInPlace();
|
||
|
||
float tr = x.x + y.y + z.z;
|
||
q.Init( y.z - z.y , z.x - x.z, x.y - y.x, tr + 1.0f );
|
||
QuaternionNormalize( q );
|
||
*/
|
||
}
|
||
|
||
#endif // !defined(__SPU__)
|
||
|
||
void QuaternionMatrix( const Quaternion &q, const Vector &pos, matrix3x4_t& matrix )
|
||
{
|
||
Assert( pos.IsValid() );
|
||
|
||
QuaternionMatrix( q, matrix );
|
||
|
||
matrix[0][3] = pos.x;
|
||
matrix[1][3] = pos.y;
|
||
matrix[2][3] = pos.z;
|
||
}
|
||
|
||
void QuaternionMatrix( const Quaternion &q, const Vector &pos, const Vector &vScale, matrix3x4_t& mat )
|
||
{
|
||
Assert( pos.IsValid() );
|
||
Assert( q.IsValid() );
|
||
Assert( vScale.IsValid() );
|
||
|
||
QuaternionMatrix( q, mat );
|
||
|
||
mat[ 0 ][ 0 ] *= vScale.x; mat[ 1 ][ 0 ] *= vScale.x; mat[ 2 ][ 0 ] *= vScale.x;
|
||
mat[ 0 ][ 1 ] *= vScale.y; mat[ 1 ][ 1 ] *= vScale.y; mat[ 2 ][ 1 ] *= vScale.y;
|
||
mat[ 0 ][ 2 ] *= vScale.z; mat[ 1 ][ 2 ] *= vScale.z; mat[ 2 ][ 2 ] *= vScale.z;
|
||
mat[ 0 ][ 3 ] = pos.x; mat[ 1 ][ 3 ] = pos.y; mat[ 2 ][ 3 ] = pos.z;
|
||
}
|
||
|
||
|
||
void QuaternionMatrix( const Quaternion &q, matrix3x4_t& matrix )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "QuaternionMatrix", "Mathlib" );
|
||
#endif
|
||
|
||
// Original code
|
||
// This should produce the same code as below with optimization, but looking at the assmebly,
|
||
// it doesn't. There are 7 extra multiplies in the release build of this, go figure.
|
||
#if 1
|
||
matrix[0][0] = 1.0 - 2.0 * q.y * q.y - 2.0 * q.z * q.z;
|
||
matrix[1][0] = 2.0 * q.x * q.y + 2.0 * q.w * q.z;
|
||
matrix[2][0] = 2.0 * q.x * q.z - 2.0 * q.w * q.y;
|
||
|
||
matrix[0][1] = 2.0f * q.x * q.y - 2.0f * q.w * q.z;
|
||
matrix[1][1] = 1.0f - 2.0f * q.x * q.x - 2.0f * q.z * q.z;
|
||
matrix[2][1] = 2.0f * q.y * q.z + 2.0f * q.w * q.x;
|
||
|
||
matrix[0][2] = 2.0f * q.x * q.z + 2.0f * q.w * q.y;
|
||
matrix[1][2] = 2.0f * q.y * q.z - 2.0f * q.w * q.x;
|
||
matrix[2][2] = 1.0f - 2.0f * q.x * q.x - 2.0f * q.y * q.y;
|
||
|
||
matrix[0][3] = 0.0f;
|
||
matrix[1][3] = 0.0f;
|
||
matrix[2][3] = 0.0f;
|
||
#else
|
||
float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
|
||
|
||
// precalculate common multiplitcations
|
||
x2 = q.x + q.x;
|
||
y2 = q.y + q.y;
|
||
z2 = q.z + q.z;
|
||
xx = q.x * x2;
|
||
xy = q.x * y2;
|
||
xz = q.x * z2;
|
||
yy = q.y * y2;
|
||
yz = q.y * z2;
|
||
zz = q.z * z2;
|
||
wx = q.w * x2;
|
||
wy = q.w * y2;
|
||
wz = q.w * z2;
|
||
|
||
matrix[0][0] = 1.0 - (yy + zz);
|
||
matrix[0][1] = xy - wz;
|
||
matrix[0][2] = xz + wy;
|
||
matrix[0][3] = 0.0f;
|
||
|
||
matrix[1][0] = xy + wz;
|
||
matrix[1][1] = 1.0 - (xx + zz);
|
||
matrix[1][2] = yz - wx;
|
||
matrix[1][3] = 0.0f;
|
||
|
||
matrix[2][0] = xz - wy;
|
||
matrix[2][1] = yz + wx;
|
||
matrix[2][2] = 1.0 - (xx + yy);
|
||
matrix[2][3] = 0.0f;
|
||
#endif
|
||
}
|
||
|
||
|
||
const Vector Quaternion::GetForward()const
|
||
{
|
||
Vector vAxisX;
|
||
vAxisX.x = 1.0 - 2.0 * y * y - 2.0 * z * z;
|
||
vAxisX.y = 2.0 * x * y + 2.0 * w * z;
|
||
vAxisX.z = 2.0 * x * z - 2.0 * w * y;
|
||
return vAxisX;
|
||
}
|
||
|
||
|
||
const Vector Quaternion::GetLeft()const
|
||
{
|
||
Vector vAxisY;
|
||
vAxisY.x = 2.0f * x * y - 2.0f * w * z;
|
||
vAxisY.y = 1.0f - 2.0f * x * x - 2.0f * z * z;
|
||
vAxisY.z = 2.0f * y * z + 2.0f * w * x;
|
||
return vAxisY;
|
||
}
|
||
|
||
|
||
|
||
const Vector Quaternion::GetUp()const
|
||
{
|
||
Vector vAxisZ;
|
||
vAxisZ.x = 2.0f * x * z + 2.0f * w * y;
|
||
vAxisZ.y = 2.0f * y * z - 2.0f * w * x;
|
||
vAxisZ.z = 1.0f - 2.0f * x * x - 2.0f * y * y;
|
||
return vAxisZ;
|
||
}
|
||
|
||
|
||
|
||
const Quaternion RotateBetween( const Vector& v1, const Vector& v2 )
|
||
{
|
||
// Find quaternion that rotates v1 into v2
|
||
Quaternion qOut;
|
||
|
||
Vector vBisector = 0.5f * ( v1 + v2 );
|
||
if ( vBisector.LengthSqr() > 1e-9f )
|
||
{
|
||
qOut.Init( CrossProduct( v1, vBisector ), DotProduct( v1, vBisector ) );
|
||
}
|
||
else
|
||
{
|
||
// Anti-parallel: Use a perpendicular vector
|
||
if ( fabsf( v1.x ) > 0.5f )
|
||
{
|
||
qOut.x = v1.y;
|
||
qOut.y = -v1.x;
|
||
qOut.z = 0.0f;
|
||
}
|
||
else
|
||
{
|
||
qOut.x = 0.0f;
|
||
qOut.y = v1.z;
|
||
qOut.z = -v1.y;
|
||
}
|
||
|
||
qOut.w = 0.0f;
|
||
}
|
||
|
||
// The algorithm is simplified and made more accurate by normalizing at the end
|
||
QuaternionNormalize( qOut );
|
||
|
||
Assert( ( VectorTransform( v1, QuaternionMatrix( qOut ) ) - v2 ).Length() < 2e-3f );
|
||
|
||
return qOut;
|
||
}
|
||
|
||
|
||
void UnitTestQuatExpLog()
|
||
{
|
||
for ( int i = 0; i < 300000; ++i )
|
||
{
|
||
Quaternion q = RandomQuaternion();
|
||
Vector l = QuaternionLog( q );
|
||
Quaternion q2 = Exp( l );
|
||
Assert( QuaternionLength( q - q2 ) < 0.0001f );
|
||
}
|
||
}
|
||
|
||
|
||
void UnitTestRotateBetween()
|
||
{
|
||
RandomSeed( 1 );
|
||
float flMaxError = 0;
|
||
int nMaxError;
|
||
for ( int i = 0; i < 3000000; ++i )
|
||
{
|
||
Vector u = RandomVectorOnUnitSphere(), v = RandomVectorOnUnitSphere();
|
||
Quaternion q = RotateBetween( u, v );
|
||
|
||
float flError = ( VectorTransform( u, QuaternionMatrix( q ) ) - v ).Length();
|
||
if ( flMaxError < flError )
|
||
{
|
||
flMaxError = flError;
|
||
nMaxError = i;
|
||
}
|
||
}
|
||
Assert( flMaxError < 0.001f );
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts a quaternion into engine angles
|
||
// Input : *quaternion - q3 + q0.i + q1.j + q2.k
|
||
// *outAngles - PITCH, YAW, ROLL
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionAngles( const Quaternion &q, QAngle &angles )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "QuaternionAngles", "Mathlib" );
|
||
#endif
|
||
|
||
#if 1
|
||
// FIXME: doing it this way calculates too much data, needs to do an optimized version...
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
MatrixAngles( matrix, angles );
|
||
#else
|
||
float m11, m12, m13, m23, m33;
|
||
|
||
m11 = ( 2.0f * q.w * q.w ) + ( 2.0f * q.x * q.x ) - 1.0f;
|
||
m12 = ( 2.0f * q.x * q.y ) + ( 2.0f * q.w * q.z );
|
||
m13 = ( 2.0f * q.x * q.z ) - ( 2.0f * q.w * q.y );
|
||
m23 = ( 2.0f * q.y * q.z ) + ( 2.0f * q.w * q.x );
|
||
m33 = ( 2.0f * q.w * q.w ) + ( 2.0f * q.z * q.z ) - 1.0f;
|
||
|
||
// FIXME: this code has a singularity near PITCH +-90
|
||
angles[YAW] = RAD2DEG( atan2(m12, m11) );
|
||
angles[PITCH] = RAD2DEG( asin(-m13) );
|
||
angles[ROLL] = RAD2DEG( atan2(m23, m33) );
|
||
#endif
|
||
|
||
Assert( angles.IsValid() );
|
||
}
|
||
|
||
|
||
float QuaternionionGetYaw( const Quaternion &q )
|
||
{
|
||
// FIXME: doing it this way calculates too much data, need to do an optimized version...
|
||
QAngle angles;
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
MatrixAngles( matrix, angles );
|
||
return angles[ YAW ];
|
||
}
|
||
|
||
float QuaternionionGetPitch( const Quaternion &q )
|
||
{
|
||
// FIXME: doing it this way calculates too much data, need to do an optimized version...
|
||
QAngle angles;
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
MatrixAngles( matrix, angles );
|
||
return angles[ PITCH ];
|
||
}
|
||
|
||
float QuaternionionGetRoll( const Quaternion &q )
|
||
{
|
||
// FIXME: doing it this way calculates too much data, need to do an optimized version...
|
||
QAngle angles;
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
MatrixAngles( matrix, angles );
|
||
return angles[ ROLL ];
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts a quaternion into FLU vectors
|
||
// Input : *quaternion - q3 + q0.i + q1.j + q2.k
|
||
// basis vectors, each vector is optional
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionVectorsFLU( Quaternion const &q, Vector *pForward, Vector *pLeft, Vector *pUp )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
#ifdef _VPROF_MATHLIB
|
||
// @TODO: VPROF_BUDGET( "QuaternionVectorsFLU", "Mathlib" );
|
||
#endif
|
||
|
||
// Note: it's pretty much identical to just computing the quaternion matrix and assigning its columns to the vectors
|
||
*pForward = q.GetForward();
|
||
*pLeft = q.GetLeft();
|
||
*pUp = q.GetUp();
|
||
#ifdef DBGFLAG_ASSERT
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
Vector forward, left, up;
|
||
MatrixVectorsFLU( matrix, &forward, &left, &up );
|
||
Assert( ( forward - *pForward ).Length() + ( left - *pLeft ).Length() + ( up - *pUp ).Length() < 1e-4f );
|
||
#endif
|
||
}
|
||
|
||
void QuaternionVectorsForward( const Quaternion& q, Vector *pForward )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
#ifdef _VPROF_MATHLIB
|
||
// @TODO: VPROF_BUDGET( "QuaternionVectorsForward", "Mathlib" );
|
||
#endif
|
||
|
||
*pForward = q.GetForward();
|
||
#ifdef DBGFLAG_ASSERT
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
Assert( ( MatrixGetColumn( matrix, FORWARD_AXIS ) - *pForward ).Length() < 1e-4f );
|
||
#endif
|
||
}
|
||
|
||
|
||
void UnitTestVectorFLU()
|
||
{
|
||
for ( int i = 0; i < 100000; ++i )
|
||
{
|
||
Quaternion q = RandomQuaternion();
|
||
Vector forward, left, up;
|
||
QuaternionVectorsForward( q, &forward );
|
||
QuaternionVectorsFLU( q, &forward, &left, &up );
|
||
}
|
||
}
|
||
|
||
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts a quaternion to an axis / angle in degrees
|
||
// (exponential map)
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionAxisAngle( const Quaternion &q, Vector &axis, float &angle )
|
||
{
|
||
angle = RAD2DEG(2 * acos(q.w));
|
||
if ( angle > 180 )
|
||
{
|
||
angle -= 360;
|
||
}
|
||
axis.x = q.x;
|
||
axis.y = q.y;
|
||
axis.z = q.z;
|
||
VectorNormalize( axis );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts an exponential map (ang/axis) to a quaternion
|
||
//-----------------------------------------------------------------------------
|
||
void AxisAngleQuaternion( const Vector &axis, float angle, Quaternion &q )
|
||
{
|
||
float sa, ca;
|
||
|
||
SinCos( DEG2RAD(angle) * 0.5f, &sa, &ca );
|
||
|
||
q.x = axis.x * sa;
|
||
q.y = axis.y * sa;
|
||
q.z = axis.z * sa;
|
||
q.w = ca;
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts radian-euler axis aligned angles to a quaternion
|
||
// Input : *pfAngles - Right-handed Euler angles in radians
|
||
// *outQuat - quaternion of form (i,j,k,real)
|
||
//-----------------------------------------------------------------------------
|
||
void AngleQuaternion( const RadianEuler &angles, Quaternion &outQuat )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
// Assert( angles.IsValid() );
|
||
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "AngleQuaternion", "Mathlib" );
|
||
#endif
|
||
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
#ifdef _X360
|
||
fltx4 radians, scale, sine, cosine;
|
||
radians = LoadUnaligned3SIMD( &angles.x );
|
||
scale = ReplicateX4( 0.5f );
|
||
radians = MulSIMD( radians, scale );
|
||
SinCos3SIMD( sine, cosine, radians );
|
||
|
||
// NOTE: The ordering here is *different* from the AngleQuaternion below
|
||
// because p, y, r are not in the same locations in QAngle + RadianEuler. Yay!
|
||
sr = SubFloat( sine, 0 ); sp = SubFloat( sine, 1 ); sy = SubFloat( sine, 2 );
|
||
cr = SubFloat( cosine, 0 ); cp = SubFloat( cosine, 1 ); cy = SubFloat( cosine, 2 );
|
||
#else
|
||
SinCos( angles.z * 0.5f, &sy, &cy );
|
||
SinCos( angles.y * 0.5f, &sp, &cp );
|
||
SinCos( angles.x * 0.5f, &sr, &cr );
|
||
#endif
|
||
|
||
// NJS: for some reason VC6 wasn't recognizing the common subexpressions:
|
||
float srXcp = sr * cp, crXsp = cr * sp;
|
||
outQuat.x = srXcp*cy-crXsp*sy; // X
|
||
outQuat.y = crXsp*cy+srXcp*sy; // Y
|
||
|
||
float crXcp = cr * cp, srXsp = sr * sp;
|
||
outQuat.z = crXcp*sy-srXsp*cy; // Z
|
||
outQuat.w = crXcp*cy+srXsp*sy; // W (real component)
|
||
}
|
||
|
||
#ifdef _X360
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts radian-euler axis aligned angles to a quaternion, returning
|
||
// it on a vector register.
|
||
// Input : *vAngles - Right-handed Euler angles in radians (roll pitch yaw)
|
||
//
|
||
// Algorithm based on that found in the XDK (which really uses RPY order, as
|
||
// opposed to this which takes the parameters in RPY order but catenates them
|
||
// in PYR order).
|
||
//-----------------------------------------------------------------------------
|
||
fltx4 AngleQuaternionSIMD( FLTX4 vAngles )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
// Assert( angles.IsValid() );
|
||
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "AngleQuaternion", "Mathlib" );
|
||
#endif
|
||
|
||
// we compute the sin and cos of half all the angles.
|
||
// in the comments I'll call these components
|
||
// sr = sin(r/2), cp = cos(p/2), sy = sin(y/2), etc.
|
||
|
||
fltx4 OneHalf = __vspltisw(1);
|
||
OneHalf = __vcfsx(OneHalf, 1);
|
||
|
||
fltx4 HalfAngles = MulSIMD(vAngles, OneHalf);
|
||
fltx4 sine,cosine;
|
||
SinCos3SIMD(sine, cosine, HalfAngles);
|
||
|
||
fltx4 SignMask = __vspltisw(-1);
|
||
fltx4 Zero = __vspltisw(0);
|
||
SignMask = __vslw(SignMask, SignMask); // shift left so 1 is only in the sign bit
|
||
SignMask = __vrlimi(SignMask, Zero, 0x5, 0); // { -1, 0, -1, 0 }
|
||
|
||
fltx4 Rc, Pc, Yc, Rs, Ps, Ys, retsum, retval;
|
||
|
||
Rc = __vspltw(cosine, 0); // cr cr cr cr
|
||
Pc = __vspltw(cosine, 1); // cp cp cp cp
|
||
Yc = __vspltw(cosine, 2); // cy cy cy cy
|
||
Rs = __vspltw(sine, 0); // sr sr sr sr
|
||
Ps = __vspltw(sine, 1); // sp sp sp sp
|
||
Ys = __vspltw(sine, 2); // sy sy sy sy
|
||
|
||
Rc = __vrlimi(Rc, sine, 0x8, 0); // sr cr cr cr
|
||
Rs = __vrlimi(Rs, cosine, 0x8, 0); // cr sr sr sr
|
||
Pc = __vrlimi(Pc, sine, 0x4, 0); // cp sp cp cp
|
||
Ps = __vrlimi(Ps, cosine, 0x4, 0); // sp cp sp sp
|
||
Yc = __vrlimi(Yc, sine, 0x2, 0); // cy cy sy cy
|
||
Ys = __vrlimi(Ys, cosine, 0x2, 0); // sy sy cy sy
|
||
|
||
retsum = __vxor(Rs, SignMask); // -cr sr -sr sr
|
||
retval = __vmulfp(Pc, Yc); // cp*cy sp*cy cp*sy cp*cy
|
||
retsum = __vmulfp(retsum, Ys); // -cr*sy sr*sy -sr*cy sr*sy
|
||
retval = __vmulfp(retval, Rc); // cp*cy*sr sp*cy*cr cp*sy*cr cp*cy*cr
|
||
retval = __vmaddfp(retsum, Ps, retval); // cp*cy*sr + -cr*sy*sp ...
|
||
|
||
return retval;
|
||
}
|
||
|
||
inline fltx4 AngleQuaternionSIMD( const RadianEuler &angles )
|
||
{
|
||
return AngleQuaternionSIMD(LoadUnaligned3SIMD(angles.Base()));
|
||
}
|
||
#endif
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts engine-format euler angles to a quaternion
|
||
// Input : angles - Right-handed Euler angles in degrees as follows:
|
||
// [0]: PITCH: Clockwise rotation around the Y axis.
|
||
// [1]: YAW: Counterclockwise rotation around the Z axis.
|
||
// [2]: ROLL: Counterclockwise rotation around the X axis.
|
||
// *outQuat - quaternion of form (i,j,k,real)
|
||
//-----------------------------------------------------------------------------
|
||
void AngleQuaternion( const QAngle &angles, Quaternion &outQuat )
|
||
{
|
||
#ifdef _VPROF_MATHLIB
|
||
VPROF_BUDGET( "AngleQuaternion", "Mathlib" );
|
||
#endif
|
||
|
||
float sr, sp, sy, cr, cp, cy;
|
||
|
||
#ifdef _X360
|
||
fltx4 radians, scale, sine, cosine;
|
||
radians = LoadUnaligned3SIMD( angles.Base() );
|
||
scale = ReplicateX4( 0.5f * M_PI_F / 180.f );
|
||
radians = MulSIMD( radians, scale );
|
||
SinCos3SIMD( sine, cosine, radians );
|
||
|
||
// NOTE: The ordering here is *different* from the AngleQuaternion above
|
||
// because p, y, r are not in the same locations in QAngle + RadianEuler. Yay!
|
||
sp = SubFloat( sine, 0 ); sy = SubFloat( sine, 1 ); sr = SubFloat( sine, 2 );
|
||
cp = SubFloat( cosine, 0 ); cy = SubFloat( cosine, 1 ); cr = SubFloat( cosine, 2 );
|
||
#else
|
||
SinCos( DEG2RAD( angles.y ) * 0.5f, &sy, &cy );
|
||
SinCos( DEG2RAD( angles.x ) * 0.5f, &sp, &cp );
|
||
SinCos( DEG2RAD( angles.z ) * 0.5f, &sr, &cr );
|
||
#endif
|
||
|
||
// NJS: for some reason VC6 wasn't recognizing the common subexpressions:
|
||
float srXcp = sr * cp, crXsp = cr * sp;
|
||
outQuat.x = srXcp*cy-crXsp*sy; // X
|
||
outQuat.y = crXsp*cy+srXcp*sy; // Y
|
||
|
||
float crXcp = cr * cp, srXsp = sr * sp;
|
||
outQuat.z = crXcp*sy-srXsp*cy; // Z
|
||
outQuat.w = crXcp*cy+srXsp*sy; // W (real component)
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts a basis to a quaternion
|
||
//-----------------------------------------------------------------------------
|
||
void BasisToQuaternion( const Vector &vecForward, const Vector &vecRight, const Vector &vecUp, Quaternion &q )
|
||
{
|
||
Assert( fabs( vecForward.LengthSqr() - 1.0f ) < 1e-3 );
|
||
Assert( fabs( vecRight.LengthSqr() - 1.0f ) < 1e-3 );
|
||
Assert( fabs( vecUp.LengthSqr() - 1.0f ) < 1e-3 );
|
||
|
||
Vector vecLeft;
|
||
VectorMultiply( vecRight, -1.0f, vecLeft );
|
||
|
||
// FIXME: Don't know why, but this doesn't match at all with other result
|
||
// so we can't use this super-fast way.
|
||
/*
|
||
// Find the trace of the matrix:
|
||
float flTrace = vecForward.x + vecLeft.y + vecUp.z + 1.0f;
|
||
if ( flTrace > 1e-6 )
|
||
{
|
||
float flSqrtTrace = FastSqrt( flTrace );
|
||
float s = 0.5f / flSqrtTrace;
|
||
q.x = ( vecUp.y - vecLeft.z ) * s;
|
||
q.y = ( vecForward.z - vecUp.x ) * s;
|
||
q.z = ( vecLeft.x - vecForward.y ) * s;
|
||
q.w = 0.5f * flSqrtTrace;
|
||
}
|
||
else
|
||
{
|
||
if (( vecForward.x > vecLeft.y ) && ( vecForward.x > vecUp.z ) )
|
||
{
|
||
float flSqrtTrace = FastSqrt( 1.0f + vecForward.x - vecLeft.y - vecUp.z );
|
||
float s = 0.5f / flSqrtTrace;
|
||
q.x = 0.5f * flSqrtTrace;
|
||
q.y = ( vecForward.y + vecLeft.x ) * s;
|
||
q.z = ( vecUp.x + vecForward.z ) * s;
|
||
q.w = ( vecUp.y - vecLeft.z ) * s;
|
||
}
|
||
else if ( vecLeft.y > vecUp.z )
|
||
{
|
||
float flSqrtTrace = FastSqrt( 1.0f + vecLeft.y - vecForward.x - vecUp.z );
|
||
float s = 0.5f / flSqrtTrace;
|
||
q.x = ( vecForward.y + vecLeft.x ) * s;
|
||
q.y = 0.5f * flSqrtTrace;
|
||
q.z = ( vecUp.y + vecLeft.z ) * s;
|
||
q.w = ( vecForward.z - vecUp.x ) * s;
|
||
}
|
||
else
|
||
{
|
||
float flSqrtTrace = FastSqrt( 1.0 + vecUp.z - vecForward.x - vecLeft.y );
|
||
float s = 0.5f / flSqrtTrace;
|
||
q.x = ( vecUp.x + vecForward.z ) * s;
|
||
q.y = ( vecUp.y + vecLeft.z ) * s;
|
||
q.z = 0.5f * flSqrtTrace;
|
||
q.w = ( vecLeft.x - vecForward.y ) * s;
|
||
}
|
||
}
|
||
QuaternionNormalize( q );
|
||
*/
|
||
|
||
// Version 2: Go through angles
|
||
|
||
matrix3x4_t mat;
|
||
MatrixSetColumn( vecForward, 0, mat );
|
||
MatrixSetColumn( vecLeft, 1, mat );
|
||
MatrixSetColumn( vecUp, 2, mat );
|
||
|
||
QAngle angles;
|
||
MatrixAngles( mat, angles );
|
||
|
||
// Quaternion q2;
|
||
AngleQuaternion( angles, q );
|
||
|
||
// Assert( fabs(q.x - q2.x) < 1e-3 );
|
||
// Assert( fabs(q.y - q2.y) < 1e-3 );
|
||
// Assert( fabs(q.z - q2.z) < 1e-3 );
|
||
// Assert( fabs(q.w - q2.w) < 1e-3 );
|
||
}
|
||
|
||
// FIXME: Optimize!
|
||
void MatrixQuaternion( const matrix3x4_t &mat, Quaternion &q )
|
||
{
|
||
QAngle angles;
|
||
MatrixAngles( mat, angles );
|
||
AngleQuaternion( angles, q );
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
void MatrixQuaternionFast( const matrix3x4_t &mat, Quaternion &q )
|
||
{
|
||
float t;
|
||
if ( mat[ 2 ][ 2 ] < 0 )
|
||
{
|
||
if ( mat[ 0 ][ 0 ] > mat[ 1 ][ 1 ] )
|
||
{
|
||
t = 1 + mat[ 0 ][ 0 ] - mat[ 1 ][ 1 ] - mat[ 2 ][ 2 ];
|
||
q.Init( t, mat[ 0 ][ 1 ] + mat[ 1 ][ 0 ], mat[ 2 ][ 0 ] + mat[ 0 ][ 2 ], mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] );
|
||
}
|
||
else
|
||
{
|
||
t = 1 - mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] - mat[ 2 ][ 2 ];
|
||
q.Init( mat[ 0 ][ 1 ] + mat[ 1 ][ 0 ], t, mat[ 1 ][ 2 ] + mat[ 2 ][ 1 ], mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] );
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ( mat[ 0 ][ 0 ] < -mat[ 1 ][ 1 ] )
|
||
{
|
||
t = 1 - mat[ 0 ][ 0 ] - mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ];
|
||
q.Init( mat[ 2 ][ 0 ] + mat[ 0 ][ 2 ], mat[ 1 ][ 2 ] + mat[ 2 ][ 1 ], t, mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] );
|
||
}
|
||
else
|
||
{
|
||
t = 1 + mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ];
|
||
q.Init( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ], mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ], mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ], t );
|
||
}
|
||
}
|
||
q = q * ( 0.5f / sqrtf( t ) );
|
||
}
|
||
|
||
|
||
float MatrixQuaternionTest( uint nCount )
|
||
{
|
||
float flMaxError = 0, flSumError = 0;
|
||
for ( uint i = 0; i < nCount; ++i )
|
||
{
|
||
Quaternion q = RandomQuaternion(), r;
|
||
Assert( fabsf( q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w - 1 ) < 1e-5f );
|
||
matrix3x4_t mat;
|
||
QuaternionMatrix( q, mat );
|
||
MatrixQuaternion( mat, r );
|
||
if ( QuaternionDotProduct( q, r ) < 0 )
|
||
{
|
||
r = -r;
|
||
}
|
||
float flError = Sqr( q.x - r.x ) + Sqr( q.y - r.y ) + Sqr( q.z - r.z ) + Sqr( q.w - r.w );
|
||
flSumError += flError;
|
||
if ( flError > flMaxError )
|
||
{
|
||
flMaxError = flError;
|
||
}
|
||
}
|
||
NOTE_UNUSED( flMaxError ); NOTE_UNUSED( flSumError );
|
||
return flSumError / nCount;
|
||
}
|
||
|
||
float MatrixQuaternionFastTest( uint nCount )
|
||
{
|
||
float flMaxError = 0, flSumError = 0;
|
||
for ( uint i = 0; i < nCount; ++i )
|
||
{
|
||
Quaternion q = RandomQuaternion(), r;
|
||
Assert( fabsf( q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w - 1 ) < 1e-5f );
|
||
matrix3x4_t mat;
|
||
QuaternionMatrix( q, mat );
|
||
MatrixQuaternionFast( mat, r );
|
||
if ( QuaternionDotProduct( q, r ) < 0 )
|
||
{
|
||
r = -r;
|
||
}
|
||
float flError = Sqr( q.x - r.x ) + Sqr( q.y - r.y ) + Sqr( q.z - r.z ) + Sqr( q.w - r.w );
|
||
flSumError += flError;
|
||
if ( flError > flMaxError )
|
||
{
|
||
flMaxError = flError;
|
||
}
|
||
}
|
||
NOTE_UNUSED( flMaxError ); NOTE_UNUSED( flSumError );
|
||
return flSumError / nCount;
|
||
}
|
||
|
||
// the same as MatrixQuaternionTest, but uses inline helper functions that return matrix and quaternion instead of using return-by-reference versions
|
||
// on MSVC10, this generates the same code as MatrixQuaternionTest, but it's easier to read, write and maintain code
|
||
float MatrixQuaternionTest2( uint nCount )
|
||
{
|
||
float flMaxError = 0, flSumError = 0;
|
||
for ( uint i = 0; i < nCount; ++i )
|
||
{
|
||
Quaternion q = RandomQuaternion(), r;
|
||
Assert( fabsf( q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w - 1 ) < 1e-5f );
|
||
matrix3x4_t mat = QuaternionMatrix( q );
|
||
r = MatrixQuaternion( mat );
|
||
if ( QuaternionDotProduct( q, r ) < 0 )
|
||
{
|
||
r = -r;
|
||
}
|
||
float flError = Sqr( q.x - r.x ) + Sqr( q.y - r.y ) + Sqr( q.z - r.z ) + Sqr( q.w - r.w );
|
||
flSumError += flError;
|
||
if ( flError > flMaxError )
|
||
{
|
||
flMaxError = flError;
|
||
}
|
||
}
|
||
NOTE_UNUSED( flMaxError ); NOTE_UNUSED( flSumError );
|
||
return flSumError / nCount;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Converts a quaternion into engine angles
|
||
// Input : *quaternion - q3 + q0.i + q1.j + q2.k
|
||
// *outAngles - PITCH, YAW, ROLL
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionAngles( const Quaternion &q, RadianEuler &angles )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Assert( q.IsValid() );
|
||
|
||
// FIXME: doing it this way calculates too much data, needs to do an optimized version...
|
||
matrix3x4_t matrix;
|
||
QuaternionMatrix( q, matrix );
|
||
MatrixAngles( matrix, angles );
|
||
|
||
Assert( angles.IsValid() );
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: A helper function to normalize p2.x->p1.x and p3.x->p4.x to
|
||
// be the same length as p2.x->p3.x
|
||
// Input : &p2 -
|
||
// &p4 -
|
||
// p4n -
|
||
//-----------------------------------------------------------------------------
|
||
void Spline_Normalize(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
Vector& p1n,
|
||
Vector& p4n )
|
||
{
|
||
float dt = p3.x - p2.x;
|
||
|
||
p1n = p1;
|
||
p4n = p4;
|
||
|
||
if ( dt != 0.0 )
|
||
{
|
||
if (p1.x != p2.x)
|
||
{
|
||
// Equivalent to p1n = p2 - (p2 - p1) * (dt / (p2.x - p1.x));
|
||
VectorLerp( p2, p1, dt / (p2.x - p1.x), p1n );
|
||
}
|
||
if (p4.x != p3.x)
|
||
{
|
||
// Equivalent to p4n = p3 + (p4 - p3) * (dt / (p4.x - p3.x));
|
||
VectorLerp( p3, p4, dt / (p4.x - p3.x), p4n );
|
||
}
|
||
}
|
||
}
|
||
#endif // #if !defined(__SPU__)
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
// Input :
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void Catmull_Rom_Spline(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float tSqr = t*t*0.5f;
|
||
float tSqrSqr = t*tSqr;
|
||
t *= 0.5f;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &p3 );
|
||
Assert( &output != &p4 );
|
||
|
||
output.Init();
|
||
|
||
Vector a, b, c, d;
|
||
|
||
// matrix row 1
|
||
VectorScale( p1, -tSqrSqr, a ); // 0.5 t^3 * [ (-1*p1) + ( 3*p2) + (-3*p3) + p4 ]
|
||
VectorScale( p2, tSqrSqr*3, b );
|
||
VectorScale( p3, tSqrSqr*-3, c );
|
||
VectorScale( p4, tSqrSqr, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 2
|
||
VectorScale( p1, tSqr*2, a ); // 0.5 t^2 * [ ( 2*p1) + (-5*p2) + ( 4*p3) - p4 ]
|
||
VectorScale( p2, tSqr*-5, b );
|
||
VectorScale( p3, tSqr*4, c );
|
||
VectorScale( p4, -tSqr, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 3
|
||
VectorScale( p1, -t, a ); // 0.5 t * [ (-1*p1) + p3 ]
|
||
VectorScale( p3, t, b );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
|
||
// matrix row 4
|
||
VectorAdd( p2, output, output ); // p2
|
||
}
|
||
|
||
void Catmull_Rom_Spline_Tangent(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float tOne = 3*t*t*0.5f;
|
||
float tTwo = 2*t*0.5f;
|
||
float tThree = 0.5;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &p3 );
|
||
Assert( &output != &p4 );
|
||
|
||
output.Init();
|
||
|
||
Vector a, b, c, d;
|
||
|
||
// matrix row 1
|
||
VectorScale( p1, -tOne, a ); // 0.5 t^3 * [ (-1*p1) + ( 3*p2) + (-3*p3) + p4 ]
|
||
VectorScale( p2, tOne*3, b );
|
||
VectorScale( p3, tOne*-3, c );
|
||
VectorScale( p4, tOne, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 2
|
||
VectorScale( p1, tTwo*2, a ); // 0.5 t^2 * [ ( 2*p1) + (-5*p2) + ( 4*p3) - p4 ]
|
||
VectorScale( p2, tTwo*-5, b );
|
||
VectorScale( p3, tTwo*4, c );
|
||
VectorScale( p4, -tTwo, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 3
|
||
VectorScale( p1, -tThree, a ); // 0.5 t * [ (-1*p1) + p3 ]
|
||
VectorScale( p3, tThree, b );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
}
|
||
|
||
// area under the curve [0..t]
|
||
void Catmull_Rom_Spline_Integral(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
output = p2*t
|
||
-0.25f*(p1 - p3)*t*t
|
||
+ (1.0f/6.0f)*(2.0f*p1 - 5.0f*p2 + 4.0f*p3 - p4)*t*t*t
|
||
- 0.125f*(p1 - 3.0f*p2 + 3.0f*p3 - p4)*t*t*t*t;
|
||
}
|
||
|
||
|
||
// area under the curve [0..1]
|
||
void Catmull_Rom_Spline_Integral(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
Vector& output )
|
||
{
|
||
output = (-0.25f * p1 + 3.25f * p2 + 3.25f * p3 - 0.25f * p4) * (1.0f / 6.0f);
|
||
}
|
||
|
||
|
||
void Catmull_Rom_Spline_Normalize(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
|
||
float dt = p3.DistTo(p2);
|
||
|
||
Vector p1n, p4n;
|
||
VectorSubtract( p1, p2, p1n );
|
||
VectorSubtract( p4, p3, p4n );
|
||
|
||
VectorNormalize( p1n );
|
||
VectorNormalize( p4n );
|
||
|
||
VectorMA( p2, dt, p1n, p1n );
|
||
VectorMA( p3, dt, p4n, p4n );
|
||
|
||
Catmull_Rom_Spline( p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
|
||
void Catmull_Rom_Spline_Integral_Normalize(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
// Normalize p2->p1 and p3->p4 to be the same length as p2->p3
|
||
float dt = p3.DistTo(p2);
|
||
|
||
Vector p1n, p4n;
|
||
VectorSubtract( p1, p2, p1n );
|
||
VectorSubtract( p4, p3, p4n );
|
||
|
||
VectorNormalize( p1n );
|
||
VectorNormalize( p4n );
|
||
|
||
VectorMA( p2, dt, p1n, p1n );
|
||
VectorMA( p3, dt, p4n, p4n );
|
||
|
||
Catmull_Rom_Spline_Integral( p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
|
||
void Catmull_Rom_Spline_NormalizeX(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Vector p1n, p4n;
|
||
Spline_Normalize( p1, p2, p3, p4, p1n, p4n );
|
||
Catmull_Rom_Spline( p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
#endif // !defined(__SPU__)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: basic hermite spline. t = 0 returns p1, t = 1 returns p2,
|
||
// d1 and d2 are used to entry and exit slope of curve
|
||
// Input :
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void Hermite_Spline(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &d1,
|
||
const Vector &d2,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float tSqr = t*t;
|
||
float tCube = t*tSqr;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &d1 );
|
||
Assert( &output != &d2 );
|
||
|
||
float b1 = 2.0f*tCube-3.0f*tSqr+1.0f;
|
||
float b2 = 1.0f - b1; // -2*tCube+3*tSqr;
|
||
float b3 = tCube-2*tSqr+t;
|
||
float b4 = tCube-tSqr;
|
||
|
||
VectorScale( p1, b1, output );
|
||
VectorMA( output, b2, p2, output );
|
||
VectorMA( output, b3, d1, output );
|
||
VectorMA( output, b4, d2, output );
|
||
}
|
||
|
||
float Hermite_Spline(
|
||
float p1,
|
||
float p2,
|
||
float d1,
|
||
float d2,
|
||
float t )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
float output;
|
||
float tSqr = t*t;
|
||
float tCube = t*tSqr;
|
||
|
||
float b1 = 2.0f*tCube-3.0f*tSqr+1.0f;
|
||
float b2 = 1.0f - b1; // -2*tCube+3*tSqr;
|
||
float b3 = tCube-2*tSqr+t;
|
||
float b4 = tCube-tSqr;
|
||
|
||
output = p1 * b1;
|
||
output += p2 * b2;
|
||
output += d1 * b3;
|
||
output += d2 * b4;
|
||
|
||
return output;
|
||
}
|
||
|
||
|
||
void Hermite_SplineBasis( float t, float basis[4] )
|
||
{
|
||
float tSqr = t*t;
|
||
float tCube = t*tSqr;
|
||
|
||
basis[0] = 2.0f*tCube-3.0f*tSqr+1.0f;
|
||
basis[1] = 1.0f - basis[0]; // -2*tCube+3*tSqr;
|
||
basis[2] = tCube-2*tSqr+t;
|
||
basis[3] = tCube-tSqr;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: simple three data point hermite spline.
|
||
// t = 0 returns p1, t = 1 returns p2,
|
||
// slopes are generated from the p0->p1 and p1->p2 segments
|
||
// this is reasonable C1 method when there's no "p3" data yet.
|
||
// Input :
|
||
//-----------------------------------------------------------------------------
|
||
|
||
// BUG: the VectorSubtract()'s calls go away if the global optimizer is enabled
|
||
#if !defined(__SPU__)
|
||
#pragma optimize( "g", off )
|
||
#endif
|
||
|
||
void Hermite_Spline( const Vector &p0, const Vector &p1, const Vector &p2, float t, Vector& output )
|
||
{
|
||
Vector e10, e21;
|
||
VectorSubtract( p1, p0, e10 );
|
||
VectorSubtract( p2, p1, e21 );
|
||
Hermite_Spline( p1, p2, e10, e21, t, output );
|
||
}
|
||
|
||
#if !defined(__SPU__)
|
||
#pragma optimize( "", on )
|
||
#endif
|
||
|
||
float Hermite_Spline( float p0, float p1, float p2, float t )
|
||
{
|
||
return Hermite_Spline( p1, p2, p1 - p0, p2 - p1, t );
|
||
}
|
||
|
||
|
||
void Hermite_Spline( const Quaternion &q0, const Quaternion &q1, const Quaternion &q2, float t, Quaternion &output )
|
||
{
|
||
// cheap, hacked version of quaternions
|
||
Quaternion q0a;
|
||
Quaternion q1a;
|
||
|
||
QuaternionAlign( q2, q0, q0a );
|
||
QuaternionAlign( q2, q1, q1a );
|
||
|
||
output.x = Hermite_Spline( q0a.x, q1a.x, q2.x, t );
|
||
output.y = Hermite_Spline( q0a.y, q1a.y, q2.y, t );
|
||
output.z = Hermite_Spline( q0a.z, q1a.z, q2.z, t );
|
||
output.w = Hermite_Spline( q0a.w, q1a.w, q2.w, t );
|
||
|
||
QuaternionNormalize( output );
|
||
}
|
||
|
||
|
||
#if !defined(__SPU__)
|
||
// See http://en.wikipedia.org/wiki/Kochanek-Bartels_curves
|
||
//
|
||
// Tension: -1 = Round -> 1 = Tight
|
||
// Bias: -1 = Pre-shoot (bias left) -> 1 = Post-shoot (bias right)
|
||
// Continuity: -1 = Box corners -> 1 = Inverted corners
|
||
//
|
||
// If T=B=C=0 it's the same matrix as Catmull-Rom.
|
||
// If T=1 & B=C=0 it's the same as Cubic.
|
||
// If T=B=0 & C=-1 it's just linear interpolation
|
||
//
|
||
// See http://news.povray.org/povray.binaries.tutorials/attachment/%3CXns91B880592482seed7@povray.org%3E/Splines.bas.txt
|
||
// for example code and descriptions of various spline types...
|
||
//
|
||
void Kochanek_Bartels_Spline(
|
||
float tension,
|
||
float bias,
|
||
float continuity,
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float ffa, ffb, ffc, ffd;
|
||
|
||
ffa = ( 1.0f - tension ) * ( 1.0f + continuity ) * ( 1.0f + bias );
|
||
ffb = ( 1.0f - tension ) * ( 1.0f - continuity ) * ( 1.0f - bias );
|
||
ffc = ( 1.0f - tension ) * ( 1.0f - continuity ) * ( 1.0f + bias );
|
||
ffd = ( 1.0f - tension ) * ( 1.0f + continuity ) * ( 1.0f - bias );
|
||
|
||
float tSqr = t*t*0.5f;
|
||
float tSqrSqr = t*tSqr;
|
||
t *= 0.5f;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &p3 );
|
||
Assert( &output != &p4 );
|
||
|
||
output.Init();
|
||
|
||
Vector a, b, c, d;
|
||
|
||
// matrix row 1
|
||
VectorScale( p1, tSqrSqr * -ffa, a );
|
||
VectorScale( p2, tSqrSqr * ( 4.0f + ffa - ffb - ffc ), b );
|
||
VectorScale( p3, tSqrSqr * ( -4.0f + ffb + ffc - ffd ), c );
|
||
VectorScale( p4, tSqrSqr * ffd, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 2
|
||
VectorScale( p1, tSqr* 2 * ffa, a );
|
||
VectorScale( p2, tSqr * ( -6 - 2 * ffa + 2 * ffb + ffc ), b );
|
||
VectorScale( p3, tSqr * ( 6 - 2 * ffb - ffc + ffd ), c );
|
||
VectorScale( p4, tSqr * -ffd, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 3
|
||
VectorScale( p1, t * -ffa, a );
|
||
VectorScale( p2, t * ( ffa - ffb ), b );
|
||
VectorScale( p3, t * ffb, c );
|
||
// p4 unchanged
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
|
||
// matrix row 4
|
||
// p1, p3, p4 unchanged
|
||
// p2 is multiplied by 1 and added, so just added it directly
|
||
|
||
VectorAdd( p2, output, output );
|
||
}
|
||
|
||
void Kochanek_Bartels_Spline_NormalizeX(
|
||
float tension,
|
||
float bias,
|
||
float continuity,
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Vector p1n, p4n;
|
||
Spline_Normalize( p1, p2, p3, p4, p1n, p4n );
|
||
Kochanek_Bartels_Spline( tension, bias, continuity, p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
void Cubic_Spline(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float tSqr = t*t;
|
||
float tSqrSqr = t*tSqr;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &p3 );
|
||
Assert( &output != &p4 );
|
||
|
||
output.Init();
|
||
|
||
Vector a, b, c, d;
|
||
|
||
// matrix row 1
|
||
VectorScale( p2, tSqrSqr * 2, b );
|
||
VectorScale( p3, tSqrSqr * -2, c );
|
||
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
|
||
// matrix row 2
|
||
VectorScale( p2, tSqr * -3, b );
|
||
VectorScale( p3, tSqr * 3, c );
|
||
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
|
||
// matrix row 3
|
||
// no influence
|
||
// p4 unchanged
|
||
|
||
// matrix row 4
|
||
// p1, p3, p4 unchanged
|
||
VectorAdd( p2, output, output );
|
||
}
|
||
|
||
void Cubic_Spline_NormalizeX(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Vector p1n, p4n;
|
||
Spline_Normalize( p1, p2, p3, p4, p1n, p4n );
|
||
Cubic_Spline( p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
void BSpline(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float oneOver6 = 1.0f / 6.0f;
|
||
|
||
float tSqr = t * t * oneOver6;
|
||
float tSqrSqr = t*tSqr;
|
||
t *= oneOver6;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &p3 );
|
||
Assert( &output != &p4 );
|
||
|
||
output.Init();
|
||
|
||
Vector a, b, c, d;
|
||
|
||
// matrix row 1
|
||
VectorScale( p1, -tSqrSqr, a );
|
||
VectorScale( p2, tSqrSqr * 3.0f, b );
|
||
VectorScale( p3, tSqrSqr * -3.0f, c );
|
||
VectorScale( p4, tSqrSqr, d );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
VectorAdd( d, output, output );
|
||
|
||
// matrix row 2
|
||
VectorScale( p1, tSqr * 3.0f, a );
|
||
VectorScale( p2, tSqr * -6.0f, b );
|
||
VectorScale( p3, tSqr * 3.0f, c );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
|
||
// matrix row 3
|
||
VectorScale( p1, t * -3.0f, a );
|
||
VectorScale( p3, t * 3.0f, c );
|
||
// p4 unchanged
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( c, output, output );
|
||
|
||
// matrix row 4
|
||
// p1 and p3 scaled by 1.0f, so done below
|
||
VectorScale( p1, oneOver6, a );
|
||
VectorScale( p2, 4.0f * oneOver6, b );
|
||
VectorScale( p3, oneOver6, c );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
}
|
||
|
||
void BSpline_NormalizeX(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Vector p1n, p4n;
|
||
Spline_Normalize( p1, p2, p3, p4, p1n, p4n );
|
||
BSpline( p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
void Parabolic_Spline(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
|
||
float tSqr = t*t*0.5f;
|
||
t *= 0.5f;
|
||
|
||
Assert( &output != &p1 );
|
||
Assert( &output != &p2 );
|
||
Assert( &output != &p3 );
|
||
Assert( &output != &p4 );
|
||
|
||
output.Init();
|
||
|
||
Vector a, b, c, d;
|
||
|
||
// matrix row 1
|
||
// no influence from t cubed
|
||
|
||
// matrix row 2
|
||
VectorScale( p1, tSqr, a );
|
||
VectorScale( p2, tSqr * -2.0f, b );
|
||
VectorScale( p3, tSqr, c );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
VectorAdd( c, output, output );
|
||
|
||
// matrix row 3
|
||
VectorScale( p1, t * -2.0f, a );
|
||
VectorScale( p2, t * 2.0f, b );
|
||
// p4 unchanged
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
|
||
// matrix row 4
|
||
VectorScale( p1, 0.5f, a );
|
||
VectorScale( p2, 0.5f, b );
|
||
|
||
VectorAdd( a, output, output );
|
||
VectorAdd( b, output, output );
|
||
}
|
||
|
||
void Parabolic_Spline_NormalizeX(
|
||
const Vector &p1,
|
||
const Vector &p2,
|
||
const Vector &p3,
|
||
const Vector &p4,
|
||
float t,
|
||
Vector& output )
|
||
{
|
||
Vector p1n, p4n;
|
||
Spline_Normalize( p1, p2, p3, p4, p1n, p4n );
|
||
Parabolic_Spline( p1n, p2, p3, p4n, t, output );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Cubic Bernstein basis functions
|
||
// http://mathworld.wolfram.com/BernsteinPolynomial.html
|
||
//
|
||
// Purpose: Evaluate the cubic Bernstein basis for the input parametric coordinate.
|
||
// Output is the coefficient for that basis polynomial.
|
||
//-----------------------------------------------------------------------------
|
||
float CubicBasis0( float t )
|
||
{
|
||
float invT = 1.0f-t;
|
||
return invT*invT*invT;
|
||
}
|
||
float CubicBasis1( float t )
|
||
{
|
||
float invT = 1.0f-t;
|
||
return 3.0f*t*invT*invT;
|
||
}
|
||
float CubicBasis2( float t )
|
||
{
|
||
float invT = 1.0f-t;
|
||
return 3.0f*t*t*invT;
|
||
}
|
||
float CubicBasis3( float t )
|
||
{
|
||
return t*t*t;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Compress the input values for a ranged result such that from 75% to 200% smoothly of the range maps
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float RangeCompressor( float flValue, float flMin, float flMax, float flBase )
|
||
{
|
||
// clamp base
|
||
if (flBase < flMin)
|
||
flBase = flMin;
|
||
if (flBase > flMax)
|
||
flBase = flMax;
|
||
|
||
flValue += flBase;
|
||
|
||
// convert to 0 to 1 value
|
||
float flMid = (flValue - flMin) / (flMax - flMin);
|
||
// convert to -1 to 1 value
|
||
float flTarget = flMid * 2 - 1;
|
||
|
||
if (fabs(flTarget) > 0.75)
|
||
{
|
||
float t = (fabs(flTarget) - 0.75) / (1.25);
|
||
if (t < 1.0)
|
||
{
|
||
if (flTarget > 0)
|
||
{
|
||
flTarget = Hermite_Spline( 0.75, 1, 0.75, 0, t );
|
||
}
|
||
else
|
||
{
|
||
flTarget = -Hermite_Spline( 0.75, 1, 0.75, 0, t );
|
||
}
|
||
}
|
||
else
|
||
{
|
||
flTarget = (flTarget > 0) ? 1.0f : -1.0f;
|
||
}
|
||
}
|
||
|
||
flMid = (flTarget + 1 ) / 2.0;
|
||
flValue = flMin * (1 - flMid) + flMax * flMid;
|
||
|
||
flValue -= flBase;
|
||
|
||
return flValue;
|
||
}
|
||
|
||
|
||
//#pragma optimize( "", on )
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Transforms a AABB into another space; which will inherently grow the box.
|
||
//-----------------------------------------------------------------------------
|
||
void TransformAABB( const matrix3x4_t& transform, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut )
|
||
{
|
||
Vector localCenter;
|
||
VectorAdd( vecMinsIn, vecMaxsIn, localCenter );
|
||
localCenter *= 0.5f;
|
||
|
||
Vector localExtents;
|
||
VectorSubtract( vecMaxsIn, localCenter, localExtents );
|
||
|
||
Vector worldCenter;
|
||
VectorTransform( localCenter, transform, worldCenter );
|
||
|
||
Vector worldExtents;
|
||
worldExtents.x = DotProductAbs( localExtents, transform[0] );
|
||
worldExtents.y = DotProductAbs( localExtents, transform[1] );
|
||
worldExtents.z = DotProductAbs( localExtents, transform[2] );
|
||
|
||
VectorSubtract( worldCenter, worldExtents, vecMinsOut );
|
||
VectorAdd( worldCenter, worldExtents, vecMaxsOut );
|
||
// sanity chec
|
||
Assert( vecMinsOut.LengthSqr() + vecMaxsOut.LengthSqr() < 1e+12 );
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Uses the inverse transform of in1
|
||
//-----------------------------------------------------------------------------
|
||
void ITransformAABB( const matrix3x4_t& transform, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut )
|
||
{
|
||
Vector worldCenter;
|
||
VectorAdd( vecMinsIn, vecMaxsIn, worldCenter );
|
||
worldCenter *= 0.5f;
|
||
|
||
Vector worldExtents;
|
||
VectorSubtract( vecMaxsIn, worldCenter, worldExtents );
|
||
|
||
Vector localCenter;
|
||
VectorITransform( worldCenter, transform, localCenter );
|
||
|
||
Vector localExtents;
|
||
localExtents.x = FloatMakePositive( worldExtents.x * transform[0][0] ) +
|
||
FloatMakePositive( worldExtents.y * transform[1][0] ) +
|
||
FloatMakePositive( worldExtents.z * transform[2][0] );
|
||
localExtents.y = FloatMakePositive( worldExtents.x * transform[0][1] ) +
|
||
FloatMakePositive( worldExtents.y * transform[1][1] ) +
|
||
FloatMakePositive( worldExtents.z * transform[2][1] );
|
||
localExtents.z = FloatMakePositive( worldExtents.x * transform[0][2] ) +
|
||
FloatMakePositive( worldExtents.y * transform[1][2] ) +
|
||
FloatMakePositive( worldExtents.z * transform[2][2] );
|
||
|
||
VectorSubtract( localCenter, localExtents, vecMinsOut );
|
||
VectorAdd( localCenter, localExtents, vecMaxsOut );
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Rotates a AABB into another space; which will inherently grow the box.
|
||
// (same as TransformAABB, but doesn't take the translation into account)
|
||
//-----------------------------------------------------------------------------
|
||
void RotateAABB( const matrix3x4_t &transform, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut )
|
||
{
|
||
Vector localCenter;
|
||
VectorAdd( vecMinsIn, vecMaxsIn, localCenter );
|
||
localCenter *= 0.5f;
|
||
|
||
Vector localExtents;
|
||
VectorSubtract( vecMaxsIn, localCenter, localExtents );
|
||
|
||
Vector newCenter;
|
||
VectorRotate( localCenter, transform, newCenter );
|
||
|
||
Vector newExtents;
|
||
newExtents.x = DotProductAbs( localExtents, transform[0] );
|
||
newExtents.y = DotProductAbs( localExtents, transform[1] );
|
||
newExtents.z = DotProductAbs( localExtents, transform[2] );
|
||
|
||
VectorSubtract( newCenter, newExtents, vecMinsOut );
|
||
VectorAdd( newCenter, newExtents, vecMaxsOut );
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Uses the inverse transform of in1
|
||
//-----------------------------------------------------------------------------
|
||
void IRotateAABB( const matrix3x4_t &transform, const Vector &vecMinsIn, const Vector &vecMaxsIn, Vector &vecMinsOut, Vector &vecMaxsOut )
|
||
{
|
||
Vector oldCenter;
|
||
VectorAdd( vecMinsIn, vecMaxsIn, oldCenter );
|
||
oldCenter *= 0.5f;
|
||
|
||
Vector oldExtents;
|
||
VectorSubtract( vecMaxsIn, oldCenter, oldExtents );
|
||
|
||
Vector newCenter;
|
||
VectorIRotate( oldCenter, transform, newCenter );
|
||
|
||
Vector newExtents;
|
||
newExtents.x = FloatMakePositive( oldExtents.x * transform[0][0] ) +
|
||
FloatMakePositive( oldExtents.y * transform[1][0] ) +
|
||
FloatMakePositive( oldExtents.z * transform[2][0] );
|
||
newExtents.y = FloatMakePositive( oldExtents.x * transform[0][1] ) +
|
||
FloatMakePositive( oldExtents.y * transform[1][1] ) +
|
||
FloatMakePositive( oldExtents.z * transform[2][1] );
|
||
newExtents.z = FloatMakePositive( oldExtents.x * transform[0][2] ) +
|
||
FloatMakePositive( oldExtents.y * transform[1][2] ) +
|
||
FloatMakePositive( oldExtents.z * transform[2][2] );
|
||
|
||
VectorSubtract( newCenter, newExtents, vecMinsOut );
|
||
VectorAdd( newCenter, newExtents, vecMaxsOut );
|
||
}
|
||
|
||
|
||
float CalcSqrDistanceToAABB( const Vector &mins, const Vector &maxs, const Vector &point )
|
||
{
|
||
float flDelta;
|
||
float flDistSqr = 0.0f;
|
||
|
||
if ( point.x < mins.x )
|
||
{
|
||
flDelta = (mins.x - point.x);
|
||
flDistSqr += flDelta * flDelta;
|
||
}
|
||
else if ( point.x > maxs.x )
|
||
{
|
||
flDelta = (point.x - maxs.x);
|
||
flDistSqr += flDelta * flDelta;
|
||
}
|
||
|
||
if ( point.y < mins.y )
|
||
{
|
||
flDelta = (mins.y - point.y);
|
||
flDistSqr += flDelta * flDelta;
|
||
}
|
||
else if ( point.y > maxs.y )
|
||
{
|
||
flDelta = (point.y - maxs.y);
|
||
flDistSqr += flDelta * flDelta;
|
||
}
|
||
|
||
if ( point.z < mins.z )
|
||
{
|
||
flDelta = (mins.z - point.z);
|
||
flDistSqr += flDelta * flDelta;
|
||
}
|
||
else if ( point.z > maxs.z )
|
||
{
|
||
flDelta = (point.z - maxs.z);
|
||
flDistSqr += flDelta * flDelta;
|
||
}
|
||
|
||
return flDistSqr;
|
||
}
|
||
|
||
|
||
void CalcClosestPointOnAABB( const Vector &mins, const Vector &maxs, const Vector &point, Vector &closestOut )
|
||
{
|
||
closestOut.x = clamp( point.x, mins.x, maxs.x );
|
||
closestOut.y = clamp( point.y, mins.y, maxs.y );
|
||
closestOut.z = clamp( point.z, mins.z, maxs.z );
|
||
}
|
||
|
||
void CalcSqrDistAndClosestPointOnAABB( const Vector &mins, const Vector &maxs, const Vector &point, Vector &closestOut, float &distSqrOut )
|
||
{
|
||
distSqrOut = 0.0f;
|
||
for ( int i = 0; i < 3; i++ )
|
||
{
|
||
if ( point[i] < mins[i] )
|
||
{
|
||
closestOut[i] = mins[i];
|
||
float flDelta = closestOut[i] - mins[i];
|
||
distSqrOut += flDelta * flDelta;
|
||
}
|
||
else if ( point[i] > maxs[i] )
|
||
{
|
||
closestOut[i] = maxs[i];
|
||
float flDelta = closestOut[i] - maxs[i];
|
||
distSqrOut += flDelta * flDelta;
|
||
}
|
||
else
|
||
{
|
||
closestOut[i] = point[i];
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
float CalcClosestPointToLineT( const Vector &P, const Vector &vLineA, const Vector &vLineB, Vector &vDir )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
VectorSubtract( vLineB, vLineA, vDir );
|
||
|
||
// D dot [P - (A + D*t)] = 0
|
||
// t = ( DP - DA) / DD
|
||
float div = vDir.Dot( vDir );
|
||
if( div < 0.00001f )
|
||
{
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
return (vDir.Dot( P ) - vDir.Dot( vLineA )) / div;
|
||
}
|
||
}
|
||
|
||
void CalcClosestPointOnLine( const Vector &P, const Vector &vLineA, const Vector &vLineB, Vector &vClosest, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector vDir;
|
||
float t = CalcClosestPointToLineT( P, vLineA, vLineB, vDir );
|
||
if ( outT ) *outT = t;
|
||
vClosest.MulAdd( vLineA, vDir, t );
|
||
}
|
||
|
||
|
||
float CalcDistanceToLine( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector vClosest;
|
||
CalcClosestPointOnLine( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistTo(vClosest);
|
||
}
|
||
|
||
float CalcDistanceSqrToLine( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector vClosest;
|
||
CalcClosestPointOnLine( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistToSqr(vClosest);
|
||
}
|
||
|
||
void CalcClosestPointOnLineSegment( const Vector &P, const Vector &vLineA, const Vector &vLineB, Vector &vClosest, float *outT )
|
||
{
|
||
Vector vDir;
|
||
float t = CalcClosestPointToLineT( P, vLineA, vLineB, vDir );
|
||
t = clamp( t, 0, 1 );
|
||
if ( outT )
|
||
{
|
||
*outT = t;
|
||
}
|
||
vClosest.MulAdd( vLineA, vDir, t );
|
||
}
|
||
|
||
|
||
float CalcDistanceToLineSegment( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector vClosest;
|
||
CalcClosestPointOnLineSegment( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistTo( vClosest );
|
||
}
|
||
|
||
float CalcDistanceSqrToLineSegment( const Vector &P, const Vector &vLineA, const Vector &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector vClosest;
|
||
CalcClosestPointOnLineSegment( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistToSqr(vClosest);
|
||
}
|
||
|
||
float CalcClosestPointToLineT2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, Vector2D &vDir )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector2DSubtract( vLineB, vLineA, vDir );
|
||
|
||
// D dot [P - (A + D*t)] = 0
|
||
// t = (DP - DA) / DD
|
||
float div = vDir.Dot( vDir );
|
||
if( div < 0.00001f )
|
||
{
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
return (vDir.Dot( P ) - vDir.Dot( vLineA )) / div;
|
||
}
|
||
}
|
||
|
||
void CalcClosestPointOnLine2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, Vector2D &vClosest, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector2D vDir;
|
||
float t = CalcClosestPointToLineT2D( P, vLineA, vLineB, vDir );
|
||
if ( outT ) *outT = t;
|
||
vClosest.MulAdd( vLineA, vDir, t );
|
||
}
|
||
|
||
float CalcDistanceToLine2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector2D vClosest;
|
||
CalcClosestPointOnLine2D( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistTo( vClosest );
|
||
}
|
||
|
||
float CalcDistanceSqrToLine2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector2D vClosest;
|
||
CalcClosestPointOnLine2D( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistToSqr(vClosest);
|
||
}
|
||
|
||
void CalcClosestPointOnLineSegment2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, Vector2D &vClosest, float *outT )
|
||
{
|
||
Vector2D vDir;
|
||
float t = CalcClosestPointToLineT2D( P, vLineA, vLineB, vDir );
|
||
t = clamp( t, 0, 1 );
|
||
if ( outT )
|
||
{
|
||
*outT = t;
|
||
}
|
||
vClosest.MulAdd( vLineA, vDir, t );
|
||
}
|
||
|
||
float CalcDistanceToLineSegment2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector2D vClosest;
|
||
CalcClosestPointOnLineSegment2D( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistTo( vClosest );
|
||
}
|
||
|
||
float CalcDistanceSqrToLineSegment2D( const Vector2D &P, const Vector2D &vLineA, const Vector2D &vLineB, float *outT )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
Vector2D vClosest;
|
||
CalcClosestPointOnLineSegment2D( P, vLineA, vLineB, vClosest, outT );
|
||
return P.DistToSqr( vClosest );
|
||
}
|
||
|
||
// Do we have another epsilon we could use
|
||
#define LINE_EPS ( 0.000001f )
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Given lines p1->p2 and p3->p4, computes a line segment (pa->pb) and returns the parameters 0->1 multipliers
|
||
// along each segment for the returned points
|
||
// Input : p1 -
|
||
// p2 -
|
||
// p3 -
|
||
// p4 -
|
||
// *s1 -
|
||
// *s2 -
|
||
// Output : Returns true on success, false on failure.
|
||
//-----------------------------------------------------------------------------
|
||
bool CalcLineToLineIntersectionSegment(
|
||
const Vector& p1,const Vector& p2,const Vector& p3,const Vector& p4,Vector *s1,Vector *s2,
|
||
float *t1, float *t2)
|
||
{
|
||
Vector p13,p43,p21;
|
||
float d1343,d4321,d1321,d4343,d2121;
|
||
float numer,denom;
|
||
|
||
p13.x = p1.x - p3.x;
|
||
p13.y = p1.y - p3.y;
|
||
p13.z = p1.z - p3.z;
|
||
p43.x = p4.x - p3.x;
|
||
p43.y = p4.y - p3.y;
|
||
p43.z = p4.z - p3.z;
|
||
|
||
if (fabs(p43.x) < LINE_EPS && fabs(p43.y) < LINE_EPS && fabs(p43.z) < LINE_EPS)
|
||
return false;
|
||
p21.x = p2.x - p1.x;
|
||
p21.y = p2.y - p1.y;
|
||
p21.z = p2.z - p1.z;
|
||
if (fabs(p21.x) < LINE_EPS && fabs(p21.y) < LINE_EPS && fabs(p21.z) < LINE_EPS)
|
||
return false;
|
||
|
||
d1343 = p13.x * p43.x + p13.y * p43.y + p13.z * p43.z;
|
||
d4321 = p43.x * p21.x + p43.y * p21.y + p43.z * p21.z;
|
||
d1321 = p13.x * p21.x + p13.y * p21.y + p13.z * p21.z;
|
||
d4343 = p43.x * p43.x + p43.y * p43.y + p43.z * p43.z;
|
||
d2121 = p21.x * p21.x + p21.y * p21.y + p21.z * p21.z;
|
||
|
||
denom = d2121 * d4343 - d4321 * d4321;
|
||
if (fabs(denom) < LINE_EPS)
|
||
return false;
|
||
numer = d1343 * d4321 - d1321 * d4343;
|
||
|
||
*t1 = numer / denom;
|
||
*t2 = (d1343 + d4321 * (*t1)) / d4343;
|
||
|
||
if ( s1 != NULL && s2 != NULL )
|
||
{
|
||
s1->x = p1.x + *t1 * p21.x;
|
||
s1->y = p1.y + *t1 * p21.y;
|
||
s1->z = p1.z + *t1 * p21.z;
|
||
s2->x = p3.x + *t2 * p43.x;
|
||
s2->y = p3.y + *t2 * p43.y;
|
||
s2->z = p3.z + *t2 * p43.z;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
#pragma optimize( "", off )
|
||
|
||
#ifndef EXCEPTION_EXECUTE_HANDLER
|
||
#define EXCEPTION_EXECUTE_HANDLER 1
|
||
#endif
|
||
|
||
#pragma optimize( "", on )
|
||
|
||
|
||
#ifndef NDEBUG
|
||
volatile static char const *pDebugString;
|
||
#endif
|
||
|
||
void MathLib_Init( float gamma, float texGamma, float brightness, int overbright, bool bAllow3DNow, bool bAllowSSE, bool bAllowSSE2, bool bAllowMMX )
|
||
{
|
||
if ( s_bMathlibInitialized )
|
||
return;
|
||
#ifdef _WIN32
|
||
Assert( _rotl( 0xC7654321, 1 ) == 0x8ECA8643 );
|
||
Assert( _rotl64( 0xC7654321ABCDEF00ull, 1 ) == 0x8ECA8643579BDE01ull );
|
||
#endif
|
||
#ifndef NDEBUG
|
||
pDebugString = "mathlib.lib built debug!";
|
||
#endif
|
||
|
||
// FIXME: Hook SSE into VectorAligned + Vector4DAligned
|
||
|
||
#if !defined( _GAMECONSOLE )
|
||
// Grab the processor information:
|
||
const CPUInformation& pi = GetCPUInformation();
|
||
|
||
if ( ! ( pi.m_bSSE && pi.m_bSSE2 ) )
|
||
{
|
||
Assert( 0 );
|
||
Error( "SSE and SSE2 are required." );
|
||
}
|
||
#endif //!360
|
||
|
||
|
||
s_bMathlibInitialized = true;
|
||
|
||
InitSinCosTable();
|
||
BuildGammaTable( gamma, texGamma, brightness, overbright );
|
||
SeedRandSIMD( 0x31415926 );
|
||
}
|
||
|
||
|
||
bool MathLib_MMXEnabled( void )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
return true;
|
||
}
|
||
|
||
bool MathLib_SSEEnabled( void )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
return true;
|
||
}
|
||
|
||
bool MathLib_SSE2Enabled( void )
|
||
{
|
||
Assert( s_bMathlibInitialized );
|
||
return true;
|
||
}
|
||
|
||
|
||
// BUGBUG: Why doesn't this call angle diff?!?!?
|
||
float ApproachAngle( float target, float value, float speed )
|
||
{
|
||
target = anglemod( target );
|
||
value = anglemod( value );
|
||
|
||
float delta = target - value;
|
||
|
||
// Speed is assumed to be positive
|
||
if ( speed < 0 )
|
||
speed = -speed;
|
||
|
||
if ( delta < -180 )
|
||
delta += 360;
|
||
else if ( delta > 180 )
|
||
delta -= 360;
|
||
|
||
if ( delta > speed )
|
||
value += speed;
|
||
else if ( delta < -speed )
|
||
value -= speed;
|
||
else
|
||
value = target;
|
||
|
||
return value;
|
||
}
|
||
|
||
|
||
// BUGBUG: Why do we need both of these?
|
||
float AngleDiff( float destAngle, float srcAngle )
|
||
{
|
||
float delta;
|
||
|
||
delta = fmodf(destAngle - srcAngle, 360.0f);
|
||
if ( destAngle > srcAngle )
|
||
{
|
||
if ( delta >= 180 )
|
||
delta -= 360;
|
||
}
|
||
else
|
||
{
|
||
if ( delta <= -180 )
|
||
delta += 360;
|
||
}
|
||
return delta;
|
||
}
|
||
|
||
|
||
float AngleDistance( float next, float cur )
|
||
{
|
||
float delta = next - cur;
|
||
|
||
if ( delta < -180 )
|
||
delta += 360;
|
||
else if ( delta > 180 )
|
||
delta -= 360;
|
||
|
||
return delta;
|
||
}
|
||
|
||
|
||
float AngleNormalize( float angle )
|
||
{
|
||
angle = fmodf(angle, 360.0f);
|
||
if (angle > 180)
|
||
{
|
||
angle -= 360;
|
||
}
|
||
if (angle < -180)
|
||
{
|
||
angle += 360;
|
||
}
|
||
return angle;
|
||
}
|
||
|
||
//--------------------------------------------------------------------------------------------------------------
|
||
// ensure that 0 <= angle <= 360
|
||
float AngleNormalizePositive( float angle )
|
||
{
|
||
angle = fmodf( angle, 360.0f );
|
||
|
||
if (angle < 0.0f)
|
||
{
|
||
angle += 360.0f;
|
||
}
|
||
|
||
return angle;
|
||
}
|
||
|
||
//--------------------------------------------------------------------------------------------------------------
|
||
bool AnglesAreEqual( float a, float b, float tolerance )
|
||
{
|
||
return (fabs( AngleDiff( a, b ) ) < tolerance);
|
||
}
|
||
|
||
void RotationDeltaAxisAngle( const QAngle &srcAngles, const QAngle &destAngles, Vector &deltaAxis, float &deltaAngle )
|
||
{
|
||
Quaternion srcQuat, destQuat, srcQuatInv, out;
|
||
AngleQuaternion( srcAngles, srcQuat );
|
||
AngleQuaternion( destAngles, destQuat );
|
||
QuaternionScale( srcQuat, -1, srcQuatInv );
|
||
QuaternionMult( destQuat, srcQuatInv, out );
|
||
|
||
QuaternionNormalize( out );
|
||
QuaternionAxisAngle( out, deltaAxis, deltaAngle );
|
||
}
|
||
|
||
void RotationDelta( const QAngle &srcAngles, const QAngle &destAngles, QAngle *out )
|
||
{
|
||
matrix3x4_t src, srcInv;
|
||
matrix3x4_t dest;
|
||
AngleMatrix( srcAngles, src );
|
||
AngleMatrix( destAngles, dest );
|
||
// xform = src(-1) * dest
|
||
MatrixInvert( src, srcInv );
|
||
matrix3x4_t xform;
|
||
ConcatTransforms( dest, srcInv, xform );
|
||
QAngle xformAngles;
|
||
MatrixAngles( xform, xformAngles );
|
||
if ( out )
|
||
{
|
||
*out = xformAngles;
|
||
}
|
||
}
|
||
|
||
void ClipLineSegmentToPlane( const Vector &vNormal, const Vector &vPlanePoint, Vector *p1, Vector *p2, float flBias )
|
||
{
|
||
float flDot1, flDot2;
|
||
flDot1 = ( *p1 - vPlanePoint ).Dot( vNormal ) + flBias;
|
||
flDot2 = ( *p2 - vPlanePoint ).Dot( vNormal ) + flBias;
|
||
|
||
if ( flDot1 >= 0 && flDot2 >= 0 )
|
||
{
|
||
return;
|
||
}
|
||
|
||
if ( flDot1 >= 0 )
|
||
{
|
||
Vector vRay = *p2 - *p1;
|
||
*p2 = *p1 + vRay * flDot1 / ( flDot1 - flDot2 );
|
||
}
|
||
else if ( flDot2 >= 0 )
|
||
{
|
||
Vector vRay = *p1 - *p2;
|
||
*p1 = *p2 + vRay * flDot2 / ( flDot2 - flDot1 );
|
||
}
|
||
else
|
||
{
|
||
*p1 = vec3_invalid;
|
||
*p2 = vec3_invalid;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Computes a triangle normal
|
||
//-----------------------------------------------------------------------------
|
||
void ComputeTrianglePlane( const Vector& v1, const Vector& v2, const Vector& v3, Vector& normal, float& intercept )
|
||
{
|
||
Vector e1, e2;
|
||
VectorSubtract( v2, v1, e1 );
|
||
VectorSubtract( v3, v1, e2 );
|
||
CrossProduct( e1, e2, normal );
|
||
VectorNormalize( normal );
|
||
intercept = DotProduct( normal, v1 );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Calculate the volume of a tetrahedron with these vertices
|
||
// Input : p0 - points of tetrahedron
|
||
// p1 -
|
||
// p2 -
|
||
// p3 -
|
||
// Output : float (volume in units^3)
|
||
//-----------------------------------------------------------------------------
|
||
float TetrahedronVolume( const Vector &p0, const Vector &p1, const Vector &p2, const Vector &p3 )
|
||
{
|
||
Vector a, b, c, cross;
|
||
float volume = 1.0f / 6.0f;
|
||
|
||
a = p1 - p0;
|
||
b = p2 - p0;
|
||
c = p3 - p0;
|
||
cross = CrossProduct( b, c );
|
||
|
||
volume *= DotProduct( a, cross );
|
||
if ( volume < 0 )
|
||
return -volume;
|
||
return volume;
|
||
}
|
||
|
||
|
||
// computes the area of a triangle given three verts
|
||
float TriangleArea( const Vector &v0, const Vector &v1, const Vector &v2 )
|
||
{
|
||
Vector vecEdge0, vecEdge1, vecCross;
|
||
VectorSubtract( v1, v0, vecEdge0 );
|
||
VectorSubtract( v2, v0, vecEdge1 );
|
||
CrossProduct( vecEdge0, vecEdge1, vecCross );
|
||
return ( VectorLength( vecCross ) * 0.5f );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: This is a clone of BaseWindingForPlane()
|
||
// Input : *pOutVerts - an array of preallocated verts to build the polygon in
|
||
// normal - the plane normal
|
||
// dist - the plane constant
|
||
// Output : int - vert count (always 4)
|
||
//-----------------------------------------------------------------------------
|
||
int PolyFromPlane( Vector *pOutVerts, const Vector& normal, float dist, float fHalfScale )
|
||
{
|
||
int i, x;
|
||
vec_t max, v;
|
||
Vector org, vright, vup;
|
||
|
||
// find the major axis
|
||
|
||
max = -16384; //MAX_COORD_INTEGER
|
||
x = -1;
|
||
for (i=0 ; i<3; i++)
|
||
{
|
||
v = fabs(normal[i]);
|
||
if (v > max)
|
||
{
|
||
x = i;
|
||
max = v;
|
||
}
|
||
}
|
||
|
||
if (x==-1)
|
||
return 0;
|
||
|
||
// Build a unit vector along something other than the major axis
|
||
VectorCopy (vec3_origin, vup);
|
||
switch (x)
|
||
{
|
||
case 0:
|
||
case 1:
|
||
vup[2] = 1;
|
||
break;
|
||
case 2:
|
||
vup[0] = 1;
|
||
break;
|
||
}
|
||
|
||
// Remove the component of this vector along the normal
|
||
v = DotProduct (vup, normal);
|
||
VectorMA (vup, -v, normal, vup);
|
||
// Make it a unit (perpendicular)
|
||
VectorNormalize (vup);
|
||
|
||
// Center of the poly is at normal * dist
|
||
VectorScale (normal, dist, org);
|
||
// Calculate the third orthonormal basis vector for our plane space (this one and vup are in the plane)
|
||
CrossProduct (vup, normal, vright);
|
||
|
||
// Make the plane's basis vectors big (these are the half-sides of the polygon we're making)
|
||
VectorScale (vup, fHalfScale, vup);
|
||
VectorScale (vright, fHalfScale, vright);
|
||
|
||
// Move diagonally away from org to create the corner verts
|
||
VectorSubtract (org, vright, pOutVerts[0]); // left
|
||
VectorAdd (pOutVerts[0], vup, pOutVerts[0]); // up
|
||
|
||
VectorAdd (org, vright, pOutVerts[1]); // right
|
||
VectorAdd (pOutVerts[1], vup, pOutVerts[1]); // up
|
||
|
||
VectorAdd (org, vright, pOutVerts[2]); // right
|
||
VectorSubtract (pOutVerts[2], vup, pOutVerts[2]); // down
|
||
|
||
VectorSubtract (org, vright, pOutVerts[3]); // left
|
||
VectorSubtract (pOutVerts[3], vup, pOutVerts[3]); // down
|
||
|
||
// The four corners form a planar quadrilateral normal to "normal"
|
||
return 4;
|
||
}
|
||
|
||
// Returns void as it was impossible for the function to returns anything other than 4.
|
||
// Any absolute of a floating value will always return a number greater than -16384. That test seemed bogus.
|
||
void PolyFromPlane_SIMD( fltx4 *pOutVerts, const fltx4 & plane, float fHalfScale )
|
||
{
|
||
// So we need to find the biggest component of all three,
|
||
// And depending of the value, we need to build a unit vector along something that is not the major axis.
|
||
|
||
fltx4 f4Abs = AbsSIMD( plane );
|
||
fltx4 x = SplatXSIMD( f4Abs );
|
||
fltx4 y = SplatYSIMD( f4Abs );
|
||
fltx4 z = SplatZSIMD( f4Abs );
|
||
fltx4 max = MaxSIMD( x, y );
|
||
max = MaxSIMD( max, z );
|
||
|
||
// Simplify the code, if Z is the biggest component, we will use 1 0 0.
|
||
// If X or Y are the biggest, we will use 0 0 1.
|
||
bi32x4 fIsMax = CmpEqSIMD( max, f4Abs ); // isMax will be set for the components that are the max
|
||
fltx4 fIsZMax = SplatZSIMD( (fltx4)fIsMax ); // 0 if Z is not the max, 0xffffffff is Z is the max
|
||
// And depending if Z is max or not, we are going to select one unit vector or the other
|
||
fltx4 vup = MaskedAssign( (bi32x4)fIsZMax, g_SIMD_Identity[0], g_SIMD_Identity[2] );
|
||
|
||
fltx4 normal = SetWToZeroSIMD( plane );
|
||
fltx4 dist = SplatWSIMD( plane );
|
||
|
||
// Remove the component of this vector along the normal
|
||
fltx4 v = Dot3SIMD( vup, normal );
|
||
vup = MaddSIMD( -v, normal, vup);
|
||
// Make it a unit (perpendicular)
|
||
vup = Normalized3SIMD( vup );
|
||
|
||
// Center of the poly is at normal * dist
|
||
fltx4 org = MulSIMD( dist, normal );
|
||
// Calculate the third orthonormal basis vector for our plane space (this one and vup are in the plane)
|
||
fltx4 vright = CrossProductSIMD( vup, normal);
|
||
|
||
// Make the plane's basis vectors big (these are the half-sides of the polygon we're making)
|
||
fltx4 f4HalfScale = ReplicateX4( fHalfScale );
|
||
vup = MulSIMD( f4HalfScale, vup );
|
||
vright = MulSIMD( f4HalfScale, vright );
|
||
|
||
// Move diagonally away from org to create the corner verts
|
||
fltx4 vleft = SubSIMD( org, vright );
|
||
vright = AddSIMD( org, vright );
|
||
|
||
pOutVerts[0] = AddSIMD( vleft, vup ); // left + up
|
||
pOutVerts[1] = AddSIMD( vright, vup ); // right + up
|
||
pOutVerts[2] = SubSIMD( vright, vup ); // right + down
|
||
pOutVerts[3] = SubSIMD( vleft, vup ); // left + down
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: clip a poly to the plane and return the poly on the front side of the plane
|
||
// Input : *inVerts - input polygon
|
||
// vertCount - # verts in input poly
|
||
// *outVerts - destination poly
|
||
// normal - plane normal
|
||
// dist - plane constant
|
||
// Output : int - # verts in output poly
|
||
//-----------------------------------------------------------------------------
|
||
|
||
int ClipPolyToPlane( Vector *inVerts, int vertCount, Vector *outVerts, const Vector& normal, float dist, float fOnPlaneEpsilon )
|
||
{
|
||
vec_t *dists = (vec_t *)stackalloc( sizeof(vec_t) * vertCount * 4 ); //4x vertcount should cover all cases
|
||
int *sides = (int *)stackalloc( sizeof(vec_t) * vertCount * 4 );
|
||
int counts[3];
|
||
vec_t dot;
|
||
int i, j;
|
||
Vector mid = vec3_origin;
|
||
int outCount;
|
||
|
||
counts[0] = counts[1] = counts[2] = 0;
|
||
|
||
// determine sides for each point
|
||
for ( i = 0; i < vertCount; i++ )
|
||
{
|
||
dot = DotProduct( inVerts[i], normal) - dist;
|
||
dists[i] = dot;
|
||
if ( dot > fOnPlaneEpsilon )
|
||
{
|
||
sides[i] = SIDE_FRONT;
|
||
}
|
||
else if ( dot < -fOnPlaneEpsilon )
|
||
{
|
||
sides[i] = SIDE_BACK;
|
||
}
|
||
else
|
||
{
|
||
sides[i] = SIDE_ON;
|
||
}
|
||
counts[sides[i]]++;
|
||
}
|
||
sides[i] = sides[0];
|
||
dists[i] = dists[0];
|
||
|
||
if (!counts[0])
|
||
return 0;
|
||
|
||
if (!counts[1])
|
||
{
|
||
// Copy to output verts
|
||
for ( i = 0; i < vertCount; i++ )
|
||
{
|
||
VectorCopy( inVerts[i], outVerts[i] );
|
||
}
|
||
return vertCount;
|
||
}
|
||
|
||
outCount = 0;
|
||
for ( i = 0; i < vertCount; i++ )
|
||
{
|
||
Vector& p1 = inVerts[i];
|
||
|
||
if (sides[i] == SIDE_ON)
|
||
{
|
||
VectorCopy( p1, outVerts[outCount]);
|
||
outCount++;
|
||
continue;
|
||
}
|
||
|
||
if (sides[i] == SIDE_FRONT)
|
||
{
|
||
VectorCopy( p1, outVerts[outCount]);
|
||
outCount++;
|
||
}
|
||
|
||
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
||
continue;
|
||
|
||
// generate a split point
|
||
Vector& p2 = inVerts[(i+1)%vertCount];
|
||
|
||
dot = dists[i] / (dists[i]-dists[i+1]);
|
||
for (j=0 ; j<3 ; j++)
|
||
{ // avoid round off error when possible
|
||
if (normal[j] == 1)
|
||
mid[j] = dist;
|
||
else if (normal[j] == -1)
|
||
mid[j] = -dist;
|
||
else
|
||
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
|
||
}
|
||
|
||
VectorCopy (mid, outVerts[outCount]);
|
||
outCount++;
|
||
}
|
||
|
||
return outCount;
|
||
}
|
||
|
||
int ClipPolyToPlane_SIMD( fltx4 *pInVerts, int nVertCount, fltx4 *pOutVerts, const fltx4& plane, float fOnPlaneEpsilon )
|
||
{
|
||
vec_t *dists = (vec_t *)stackalloc( sizeof(vec_t) * nVertCount * 4 ); //4* nVertCount should cover all cases
|
||
uint8 *sides = (uint8 *)stackalloc( sizeof(uint8) * nVertCount * 4 );
|
||
int i;
|
||
|
||
/*
|
||
* It seems something could be done here... Especially in relation with the code below i, i + 1, etc...
|
||
fltx4 f4OnPlaneEpsilonP = ReplicateX4( fOnPlaneEpsilon );
|
||
fltx4 f4OnPlaneEpsilonM = -f4OnPlaneEpsilonP;
|
||
Also we could store the full fltx4 instead of a single float. It would avoid doing a SubFloat() here,
|
||
and a ReplicateX4() later. Trading off potential LHS against L2 cache misses?
|
||
*/
|
||
// determine sides for each point
|
||
int nAllSides = 0;
|
||
fltx4 f4Dist = SplatWSIMD( plane );
|
||
for ( i = 0; i < nVertCount; i++ )
|
||
{
|
||
// dot = DotProduct( pInVerts[i], normal) - dist;
|
||
fltx4 dot = Dot3SIMD( pInVerts[i], plane );
|
||
dot = SubSIMD( dot, f4Dist );
|
||
float fDot = SubFloat( dot, 0 );
|
||
dists[i] = fDot;
|
||
// Look how to update sides with a branch-less version
|
||
int nSide = OR_SIDE_ON;
|
||
if ( fDot > fOnPlaneEpsilon )
|
||
{
|
||
nSide = OR_SIDE_FRONT;
|
||
}
|
||
else if ( fDot < -fOnPlaneEpsilon )
|
||
{
|
||
nSide = OR_SIDE_BACK;
|
||
}
|
||
sides[i] = nSide;
|
||
nAllSides |= nSide;
|
||
}
|
||
sides[i] = sides[0];
|
||
dists[i] = dists[0];
|
||
|
||
// Shortcuts (either completely clipped or not clipped at all)
|
||
if ( ( nAllSides & OR_SIDE_FRONT ) == 0 )
|
||
{
|
||
return 0; // Completely clipped
|
||
}
|
||
|
||
if ( ( nAllSides & OR_SIDE_BACK ) == 0 )
|
||
{
|
||
// Not clipped at all, copy to output verts
|
||
Assert ( i == nVertCount );
|
||
int nIndex = 0;
|
||
while ( i >= 4 )
|
||
{
|
||
pOutVerts[nIndex] = pInVerts[nIndex];
|
||
pOutVerts[nIndex + 1] = pInVerts[nIndex + 1];
|
||
pOutVerts[nIndex + 2] = pInVerts[nIndex + 2];
|
||
pOutVerts[nIndex + 3] = pInVerts[nIndex + 3];
|
||
nIndex += 4;
|
||
i -= 4;
|
||
}
|
||
while ( i > 0 )
|
||
{
|
||
pOutVerts[nIndex] = pInVerts[nIndex];
|
||
++nIndex;
|
||
--i;
|
||
}
|
||
return nVertCount;
|
||
}
|
||
|
||
fltx4 f4one = Four_Ones;
|
||
fltx4 f4MOne = -f4one;
|
||
|
||
fltx4 f4OneMask = (fltx4)CmpEqSIMD( plane, f4one );
|
||
fltx4 f4mOneMask = (fltx4)CmpEqSIMD( plane, f4MOne );
|
||
fltx4 f4AllMask = OrSIMD( f4OneMask, f4mOneMask ); // 0xffffffff where normal was 1 or -1, 0 otherwise
|
||
f4OneMask = AndSIMD( f4OneMask, f4Dist ); // Dist where normal.* was 1
|
||
f4mOneMask = AndSIMD( f4mOneMask, -f4Dist ); // -Dist where normal.* was -1
|
||
fltx4 f4AllValue = OrSIMD( f4OneMask, f4mOneMask ); // Dist and -Dist where normal.* was 1 and -1
|
||
// f4AllMask and f4AllValue will be used together (to override the default calculation).
|
||
|
||
int nOutCount = 0;
|
||
for ( i = 0; i < nVertCount; i++ )
|
||
{
|
||
const fltx4& p1 = pInVerts[i];
|
||
|
||
if (sides[i] == OR_SIDE_ON)
|
||
{
|
||
pOutVerts[nOutCount++] = p1;
|
||
continue;
|
||
}
|
||
|
||
if (sides[i] == OR_SIDE_FRONT)
|
||
{
|
||
pOutVerts[nOutCount++] = p1;
|
||
}
|
||
|
||
if (sides[i+1] == OR_SIDE_ON || sides[i+1] == sides[i])
|
||
continue;
|
||
|
||
// generate a split point
|
||
fltx4& p2 = pInVerts[(i+1)%nVertCount];
|
||
|
||
float fDot = dists[i] / (dists[i]-dists[i+1]);
|
||
fltx4 f4Dot = ReplicateX4( fDot );
|
||
|
||
// mid[j] = v1[j] + dot*(v2[j]-v1[j]); - For j=0...2
|
||
fltx4 f4Result = MaddSIMD( f4Dot, SubSIMD( p2, p1) , p1);
|
||
// If normal.* is 1, it should be dist, if -1, it should be -dist, otherwise it should be mid[j] = v1[j] + dot*(v2[j]-v1[j]);
|
||
fltx4 mid = MaskedAssign( (bi32x4)f4AllMask, f4AllValue, f4Result );
|
||
pOutVerts[nOutCount++] = mid;
|
||
}
|
||
|
||
return nOutCount;
|
||
}
|
||
|
||
int ClipPolyToPlane_Precise( double *inVerts, int vertCount, double *outVerts, const double *normal, double dist, double fOnPlaneEpsilon )
|
||
{
|
||
double *dists = (double *)stackalloc( sizeof(double) * vertCount * 4 ); //4x vertcount should cover all cases
|
||
int *sides = (int *)stackalloc( sizeof(double) * vertCount * 4 );
|
||
int counts[3];
|
||
double dot;
|
||
int i, j;
|
||
//Vector mid = vec3_origin;
|
||
double mid[3];
|
||
mid[0] = 0.0;
|
||
mid[1] = 0.0;
|
||
mid[2] = 0.0;
|
||
int outCount;
|
||
|
||
counts[0] = counts[1] = counts[2] = 0;
|
||
|
||
// determine sides for each point
|
||
for ( i = 0; i < vertCount; i++ )
|
||
{
|
||
//dot = DotProduct( inVerts[i], normal) - dist;
|
||
dot = ((inVerts[i*3 + 0] * normal[0]) + (inVerts[i*3 + 1] * normal[1]) + (inVerts[i*3 + 2] * normal[2])) - dist;
|
||
dists[i] = dot;
|
||
if ( dot > fOnPlaneEpsilon )
|
||
{
|
||
sides[i] = SIDE_FRONT;
|
||
}
|
||
else if ( dot < -fOnPlaneEpsilon )
|
||
{
|
||
sides[i] = SIDE_BACK;
|
||
}
|
||
else
|
||
{
|
||
sides[i] = SIDE_ON;
|
||
}
|
||
counts[sides[i]]++;
|
||
}
|
||
sides[i] = sides[0];
|
||
dists[i] = dists[0];
|
||
|
||
if (!counts[0])
|
||
return 0;
|
||
|
||
if (!counts[1])
|
||
{
|
||
// Copy to output verts
|
||
//for ( i = 0; i < vertCount; i++ )
|
||
for ( i = 0; i < vertCount * 3; i++ )
|
||
{
|
||
//VectorCopy( inVerts[i], outVerts[i] );
|
||
outVerts[i] = inVerts[i];
|
||
}
|
||
return vertCount;
|
||
}
|
||
|
||
outCount = 0;
|
||
for ( i = 0; i < vertCount; i++ )
|
||
{
|
||
//Vector& p1 = inVerts[i];
|
||
double *p1 = &inVerts[i*3];
|
||
//p1[0] = inVerts[i*3 + 0];
|
||
//p1[1] = inVerts[i*3 + 1];
|
||
//p1[2] = inVerts[i*3 + 2];
|
||
|
||
if (sides[i] == SIDE_ON)
|
||
{
|
||
//VectorCopy( p1, outVerts[outCount]);
|
||
outVerts[outCount*3 + 0] = p1[0];
|
||
outVerts[outCount*3 + 1] = p1[1];
|
||
outVerts[outCount*3 + 2] = p1[2];
|
||
outCount++;
|
||
continue;
|
||
}
|
||
|
||
if (sides[i] == SIDE_FRONT)
|
||
{
|
||
//VectorCopy( p1, outVerts[outCount]);
|
||
outVerts[outCount*3 + 0] = p1[0];
|
||
outVerts[outCount*3 + 1] = p1[1];
|
||
outVerts[outCount*3 + 2] = p1[2];
|
||
outCount++;
|
||
}
|
||
|
||
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
|
||
continue;
|
||
|
||
// generate a split point
|
||
//Vector& p2 = inVerts[(i+1)%vertCount];
|
||
int wrappedindex = (i+1)%vertCount;
|
||
double *p2 = &inVerts[wrappedindex*3];
|
||
//p2[0] = inVerts[wrappedindex*3 + 0];
|
||
//p2[1] = inVerts[wrappedindex*3 + 1];
|
||
//p2[2] = inVerts[wrappedindex*3 + 2];
|
||
|
||
dot = dists[i] / (dists[i]-dists[i+1]);
|
||
for (j=0 ; j<3 ; j++)
|
||
{
|
||
mid[j] = (double)p1[j] + dot*((double)p2[j]-(double)p1[j]);
|
||
}
|
||
|
||
//VectorCopy (mid, outVerts[outCount]);
|
||
outVerts[outCount*3 + 0] = mid[0];
|
||
outVerts[outCount*3 + 1] = mid[1];
|
||
outVerts[outCount*3 + 2] = mid[2];
|
||
outCount++;
|
||
}
|
||
|
||
return outCount;
|
||
}
|
||
|
||
int CeilPow2( int in )
|
||
{
|
||
int retval;
|
||
|
||
retval = 1;
|
||
while( retval < in )
|
||
retval <<= 1;
|
||
return retval;
|
||
}
|
||
|
||
int FloorPow2( int in )
|
||
{
|
||
int retval;
|
||
|
||
retval = 1;
|
||
while( retval < in )
|
||
retval <<= 1;
|
||
return retval >> 1;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Computes Y fov from an X fov and a screen aspect ratio
|
||
//-----------------------------------------------------------------------------
|
||
float CalcFovY( float flFovX, float flAspect )
|
||
{
|
||
if ( flFovX < 1 || flFovX > 179)
|
||
{
|
||
flFovX = 90; // error, set to 90
|
||
}
|
||
|
||
// The long, but illustrative version (more closely matches CShaderAPIDX8::PerspectiveX, which
|
||
// is what it's based on).
|
||
//
|
||
//float width = 2 * zNear * tan( DEG2RAD( fov_x / 2.0 ) );
|
||
//float height = width / screenaspect;
|
||
//float yRadians = atan( (height/2.0) / zNear );
|
||
//return RAD2DEG( yRadians ) * 2;
|
||
|
||
// The short and sweet version.
|
||
float val = atan( tan( DEG2RAD( flFovX ) * 0.5f ) / flAspect );
|
||
val = RAD2DEG( val ) * 2.0f;
|
||
return val;
|
||
}
|
||
|
||
float CalcFovX( float flFovY, float flAspect )
|
||
{
|
||
return RAD2DEG( atan( tan( DEG2RAD( flFovY ) * 0.5f ) * flAspect ) ) * 2.0f;
|
||
}
|
||
|
||
#endif // !defined(__SPU__)
|
||
|
||
#if !defined(__SPU__)
|
||
//-----------------------------------------------------------------------------
|
||
// Generate a frustum based on perspective view parameters
|
||
//-----------------------------------------------------------------------------
|
||
void GeneratePerspectiveFrustum( const Vector& origin, const Vector &forward,
|
||
const Vector &right, const Vector &up, float flZNear, float flZFar,
|
||
float flFovX, float flFovY, VPlane *pPlanesOut )
|
||
{
|
||
float flIntercept = DotProduct( origin, forward );
|
||
|
||
// Setup the near and far planes.
|
||
pPlanesOut[FRUSTUM_FARZ].Init( -forward, -flZFar - flIntercept );
|
||
pPlanesOut[FRUSTUM_NEARZ].Init( forward, flZNear + flIntercept );
|
||
|
||
flFovX *= 0.5f;
|
||
flFovY *= 0.5f;
|
||
|
||
float flTanX = tan( DEG2RAD( flFovX ) );
|
||
float flTanY = tan( DEG2RAD( flFovY ) );
|
||
|
||
// OPTIMIZE: Normalizing these planes is not necessary for culling
|
||
Vector normalPos, normalNeg;
|
||
|
||
VectorMA( right, flTanX, forward, normalPos );
|
||
VectorMA( normalPos, -2.0f, right, normalNeg );
|
||
|
||
VectorNormalize( normalPos );
|
||
VectorNormalize( normalNeg );
|
||
|
||
pPlanesOut[FRUSTUM_LEFT].Init( normalPos, normalPos.Dot( origin ) );
|
||
pPlanesOut[FRUSTUM_RIGHT].Init( normalNeg, normalNeg.Dot( origin ) );
|
||
|
||
VectorMA( up, flTanY, forward, normalPos );
|
||
VectorMA( normalPos, -2.0f, up, normalNeg );
|
||
|
||
VectorNormalize( normalPos );
|
||
VectorNormalize( normalNeg );
|
||
|
||
pPlanesOut[FRUSTUM_BOTTOM].Init( normalPos, normalPos.Dot( origin ) );
|
||
pPlanesOut[FRUSTUM_TOP].Init( normalNeg, normalNeg.Dot( origin ) );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Generate a frustum based on orthographic parameters
|
||
//-----------------------------------------------------------------------------
|
||
void GenerateOrthoFrustum( const Vector &origin, const Vector &forward, const Vector &right, const Vector &up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar, VPlane *pPlanesOut )
|
||
{
|
||
float flIntercept = DotProduct( origin, forward );
|
||
|
||
pPlanesOut[FRUSTUM_NEARZ].Init( forward, flZNear + flIntercept );
|
||
pPlanesOut[FRUSTUM_FARZ].Init( -forward, -flZFar - flIntercept );
|
||
|
||
flIntercept = DotProduct( origin, right );
|
||
|
||
pPlanesOut[FRUSTUM_RIGHT].Init( -right, -flRight - flIntercept );
|
||
pPlanesOut[FRUSTUM_LEFT].Init( right, flLeft + flIntercept );
|
||
|
||
flIntercept = DotProduct( origin, up );
|
||
|
||
pPlanesOut[FRUSTUM_BOTTOM].Init( up, flBottom + flIntercept );
|
||
pPlanesOut[FRUSTUM_TOP].Init( -up, -flTop - flIntercept );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Version that accepts angles instead of vectors
|
||
//-----------------------------------------------------------------------------
|
||
void GeneratePerspectiveFrustum( const Vector& origin, const QAngle &angles, float flZNear, float flZFar, float flFovX, float flAspectRatio, Frustum_t &frustum )
|
||
{
|
||
VPlane planes[FRUSTUM_NUMPLANES];
|
||
Vector vecForward, vecRight, vecUp;
|
||
AngleVectors( angles, &vecForward, &vecRight, &vecUp );
|
||
float flFovY = CalcFovY( flFovX, flAspectRatio );
|
||
GeneratePerspectiveFrustum( origin, vecForward, vecRight, vecUp, flZNear, flZFar, flFovX, flFovY, planes );
|
||
frustum.SetPlanes( planes );
|
||
}
|
||
|
||
void fourplanes_t::ComputeSignbits()
|
||
{
|
||
xSign = CmpLtSIMD( nX, Four_Zeros );
|
||
ySign = CmpLtSIMD( nY, Four_Zeros );
|
||
zSign = CmpLtSIMD( nZ, Four_Zeros );
|
||
nXAbs = fabs(nX);
|
||
nYAbs = fabs(nY);
|
||
nZAbs = fabs(nZ);
|
||
}
|
||
|
||
void fourplanes_t::GetPlane( int index, Vector *pNormalOut, float *pDistOut ) const
|
||
{
|
||
pNormalOut->x = SubFloat(nX,index);
|
||
pNormalOut->y = SubFloat(nY,index);
|
||
pNormalOut->z = SubFloat(nZ,index);
|
||
*pDistOut = SubFloat(dist,index);
|
||
}
|
||
void fourplanes_t::SetPlane( int index, const Vector &vecNormal, float planeDist )
|
||
{
|
||
SubFloat(nX,index) = vecNormal.x;
|
||
SubFloat(nY,index) = vecNormal.y;
|
||
SubFloat(nZ,index) = vecNormal.z;
|
||
SubFloat(dist,index) = planeDist;
|
||
ComputeSignbits();
|
||
}
|
||
|
||
void fourplanes_t::Set4Planes( const VPlane *pPlanes )
|
||
{
|
||
nX = LoadUnalignedSIMD( &pPlanes[0].m_Normal.x );
|
||
nY = LoadUnalignedSIMD( &pPlanes[1].m_Normal.x );
|
||
nZ = LoadUnalignedSIMD( &pPlanes[2].m_Normal.x );
|
||
dist = LoadUnalignedSIMD( &pPlanes[3].m_Normal.x );
|
||
TransposeSIMD(nX, nY, nZ, dist);
|
||
ComputeSignbits();
|
||
}
|
||
|
||
void fourplanes_t::Set2Planes( const VPlane *pPlanes )
|
||
{
|
||
nX = LoadUnalignedSIMD( &pPlanes[0].m_Normal.x );
|
||
nY = LoadUnalignedSIMD( &pPlanes[1].m_Normal.x );
|
||
nZ = Four_Zeros;
|
||
dist = Four_Zeros;
|
||
TransposeSIMD(nX, nY, nZ, dist);
|
||
ComputeSignbits();
|
||
}
|
||
|
||
void fourplanes_t::Get4Planes( VPlane *pPlanesOut ) const
|
||
{
|
||
fltx4 p0 = nX;
|
||
fltx4 p1 = nY;
|
||
fltx4 p2 = nZ;
|
||
fltx4 p3 = dist;
|
||
TransposeSIMD(p0, p1, p2, p3);
|
||
StoreUnalignedSIMD( &pPlanesOut[0].m_Normal.x, p0 );
|
||
StoreUnalignedSIMD( &pPlanesOut[1].m_Normal.x, p1 );
|
||
StoreUnalignedSIMD( &pPlanesOut[2].m_Normal.x, p2 );
|
||
StoreUnalignedSIMD( &pPlanesOut[3].m_Normal.x, p3 );
|
||
}
|
||
|
||
void fourplanes_t::Get2Planes( VPlane *pPlanesOut ) const
|
||
{
|
||
fltx4 p0 = nX;
|
||
fltx4 p1 = nY;
|
||
fltx4 p2 = nZ;
|
||
fltx4 p3 = dist;
|
||
TransposeSIMD(p0, p1, p2, p3);
|
||
StoreUnalignedSIMD( &pPlanesOut[0].m_Normal.x, p0 );
|
||
StoreUnalignedSIMD( &pPlanesOut[1].m_Normal.x, p1 );
|
||
}
|
||
|
||
|
||
Frustum_t::Frustum_t()
|
||
{
|
||
memset(this, 0, sizeof(*this));
|
||
}
|
||
|
||
void Frustum_t::SetPlane( int i, const Vector &vecNormal, float dist )
|
||
{
|
||
if ( i < 4 )
|
||
{
|
||
planes[0].SetPlane( i, vecNormal, dist );
|
||
}
|
||
else
|
||
{
|
||
planes[1].SetPlane( i-4, vecNormal, dist );
|
||
}
|
||
}
|
||
|
||
void Frustum_t::GetPlane( int i, Vector *pNormalOut, float *pDistOut ) const
|
||
{
|
||
if ( i < 4 )
|
||
{
|
||
planes[0].GetPlane( i, pNormalOut, pDistOut );
|
||
}
|
||
else
|
||
{
|
||
planes[1].GetPlane( i-4, pNormalOut, pDistOut );
|
||
}
|
||
}
|
||
|
||
void Frustum_t::SetPlanes( const VPlane *pPlanes )
|
||
{
|
||
planes[0].Set4Planes(pPlanes);
|
||
planes[1].Set2Planes(pPlanes+4);
|
||
}
|
||
|
||
void Frustum_t::GetPlanes( VPlane *pPlanesOut ) const
|
||
{
|
||
planes[0].Get4Planes(pPlanesOut);
|
||
planes[1].Get2Planes(pPlanesOut+4);
|
||
}
|
||
|
||
|
||
bool Frustum_t::CullBox( const Vector &mins, const Vector &maxs ) const
|
||
{
|
||
fltx4 mins4 = LoadUnalignedSIMD( &mins.x );
|
||
fltx4 minx = SplatXSIMD(mins4);
|
||
fltx4 miny = SplatYSIMD(mins4);
|
||
fltx4 minz = SplatZSIMD(mins4);
|
||
fltx4 maxs4 = LoadUnalignedSIMD( &maxs.x );
|
||
fltx4 maxx = SplatXSIMD(maxs4);
|
||
fltx4 maxy = SplatYSIMD(maxs4);
|
||
fltx4 maxz = SplatZSIMD(maxs4);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = MulSIMD( planes[i].nX, MaskedAssign( planes[i].xSign, minx, maxx ) );
|
||
fltx4 yTotalBack = MulSIMD( planes[i].nY, MaskedAssign( planes[i].ySign, miny, maxy ) );
|
||
fltx4 zTotalBack = MulSIMD( planes[i].nZ, MaskedAssign( planes[i].zSign, minz, maxz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
if ( IsVector4LessThan( dotBack, planes[i].dist ) )
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Frustum_t::CullBox( const fltx4 &mins4, const fltx4 &maxs4 ) const
|
||
{
|
||
fltx4 minx = SplatXSIMD(mins4);
|
||
fltx4 miny = SplatYSIMD(mins4);
|
||
fltx4 minz = SplatZSIMD(mins4);
|
||
fltx4 maxx = SplatXSIMD(maxs4);
|
||
fltx4 maxy = SplatYSIMD(maxs4);
|
||
fltx4 maxz = SplatZSIMD(maxs4);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = MulSIMD( planes[i].nX, MaskedAssign( planes[i].xSign, minx, maxx ) );
|
||
fltx4 yTotalBack = MulSIMD( planes[i].nY, MaskedAssign( planes[i].ySign, miny, maxy ) );
|
||
fltx4 zTotalBack = MulSIMD( planes[i].nZ, MaskedAssign( planes[i].zSign, minz, maxz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
if ( IsVector4LessThan( dotBack, planes[i].dist ) )
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Frustum_t::CullBoxCenterExtents( const Vector ¢er, const Vector &extents ) const
|
||
{
|
||
fltx4 center4 = LoadUnalignedSIMD( ¢er.x );
|
||
fltx4 centerx = SplatXSIMD(center4);
|
||
fltx4 centery = SplatYSIMD(center4);
|
||
fltx4 centerz = SplatZSIMD(center4);
|
||
fltx4 extents4 = LoadUnalignedSIMD( &extents.x );
|
||
fltx4 extx = SplatXSIMD(extents4);
|
||
fltx4 exty = SplatYSIMD(extents4);
|
||
fltx4 extz = SplatZSIMD(extents4);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = AddSIMD( MulSIMD( planes[i].nX, centerx ), MulSIMD(planes[i].nXAbs, extx ) );
|
||
fltx4 yTotalBack = AddSIMD( MulSIMD( planes[i].nY, centery ), MulSIMD(planes[i].nYAbs, exty ) );
|
||
fltx4 zTotalBack = AddSIMD( MulSIMD( planes[i].nZ, centerz ), MulSIMD(planes[i].nZAbs, extz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
if ( IsVector4LessThan( dotBack, planes[i].dist ) )
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
bool Frustum_t::CullBoxCenterExtents( const fltx4 &fl4Center, const fltx4 &fl4Extents ) const
|
||
{
|
||
fltx4 centerx = SplatXSIMD(fl4Center);
|
||
fltx4 centery = SplatYSIMD(fl4Center);
|
||
fltx4 centerz = SplatZSIMD(fl4Center);
|
||
fltx4 extx = SplatXSIMD(fl4Extents);
|
||
fltx4 exty = SplatYSIMD(fl4Extents);
|
||
fltx4 extz = SplatZSIMD(fl4Extents);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = AddSIMD( MulSIMD( planes[i].nX, centerx ), MulSIMD(planes[i].nXAbs, extx ) );
|
||
fltx4 yTotalBack = AddSIMD( MulSIMD( planes[i].nY, centery ), MulSIMD(planes[i].nYAbs, exty ) );
|
||
fltx4 zTotalBack = AddSIMD( MulSIMD( planes[i].nZ, centerz ), MulSIMD(planes[i].nZAbs, extz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
if ( IsVector4LessThan( dotBack, planes[i].dist ) )
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Return true if this bounding volume is contained in the frustum, false if it is not
|
||
// TODO SIMDIFY
|
||
bool Frustum_t::Contains( const Vector &mins, const Vector &maxs ) const
|
||
{
|
||
// Get box corners
|
||
Vector vCorners[8];
|
||
vCorners[0] = mins;
|
||
vCorners[1] = Vector( mins.x, mins.y, maxs.z );
|
||
vCorners[2] = Vector( mins.x, maxs.y, mins.z );
|
||
vCorners[3] = Vector( mins.x, maxs.y, maxs.z );
|
||
|
||
vCorners[4] = Vector( maxs.x, mins.y, mins.z );
|
||
vCorners[5] = Vector( maxs.x, mins.y, maxs.z );
|
||
vCorners[6] = Vector( maxs.x, maxs.y, mins.z );
|
||
vCorners[7] = maxs;
|
||
|
||
|
||
// if we are in with all points, then we are fully in
|
||
for ( int j = 0; j < FRUSTUM_NUMPLANES; ++j )
|
||
{
|
||
for( int i = 0; i < 8; ++i )
|
||
{
|
||
// compute the dot product of the normal and the corner
|
||
Vector vNormal;
|
||
float dist;
|
||
GetPlane( i, &vNormal, &dist );
|
||
if ( DotProduct( vCorners[j], vNormal ) <= 0 )
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true; // all pts were inside
|
||
}
|
||
|
||
// Brute force SAT frustum intersection between two frustums
|
||
bool Frustum_t::Intersects( Frustum_t &otherFrustum ) const
|
||
{
|
||
Vector pPointsA[8];
|
||
bool bResult = false;
|
||
bResult = GetCorners( pPointsA );
|
||
Assert( bResult );
|
||
VPlane pPlanesA[FRUSTUM_NUMPLANES];
|
||
GetPlanes( pPlanesA );
|
||
|
||
Vector pPointsB[8];
|
||
bResult = otherFrustum.GetCorners( pPointsB );
|
||
Assert( bResult );
|
||
VPlane pPlanesB[FRUSTUM_NUMPLANES];
|
||
otherFrustum.GetPlanes( pPlanesB );
|
||
|
||
// See if all points in B are on one side of any plane in A
|
||
for ( int p=0; p<6; ++p )
|
||
{
|
||
bool bPointsOnOutside = true;
|
||
for ( int i=0; i<8; ++i )
|
||
{
|
||
float flDist = pPlanesA[ p ].DistTo( pPointsB[ i ] );
|
||
|
||
// If dist is pos, we are not on the outside
|
||
if ( flDist > 0 )
|
||
{
|
||
bPointsOnOutside = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// We never hit a negative case, we have a separating axis
|
||
if ( bPointsOnOutside )
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// See if all points in A are on one side of any plane in B
|
||
for ( int p=0; p<6; ++p )
|
||
{
|
||
bool bPointsOnOutside = true;
|
||
for ( int i=0; i<8; ++i )
|
||
{
|
||
float flDist = pPlanesB[ p ].DistTo( pPointsA[ i ] );
|
||
|
||
// If dist is pos, we are not on the outside
|
||
if ( flDist > 0 )
|
||
{
|
||
bPointsOnOutside = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// We never hit a negative case, we have a separating axis
|
||
if ( bPointsOnOutside )
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// They intersect
|
||
return true;
|
||
}
|
||
|
||
// Return true if this bounding volume intersects the frustum, false if it is outside
|
||
bool Frustum_t::Intersects( const Vector &mins, const Vector &maxs ) const
|
||
{
|
||
fltx4 mins4 = LoadUnalignedSIMD( &mins.x );
|
||
fltx4 minx = SplatXSIMD(mins4);
|
||
fltx4 miny = SplatYSIMD(mins4);
|
||
fltx4 minz = SplatZSIMD(mins4);
|
||
fltx4 maxs4 = LoadUnalignedSIMD( &maxs.x );
|
||
fltx4 maxx = SplatXSIMD(maxs4);
|
||
fltx4 maxy = SplatYSIMD(maxs4);
|
||
fltx4 maxz = SplatZSIMD(maxs4);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = MulSIMD( planes[i].nX, MaskedAssign( planes[i].xSign, minx, maxx ) );
|
||
fltx4 yTotalBack = MulSIMD( planes[i].nY, MaskedAssign( planes[i].ySign, miny, maxy ) );
|
||
fltx4 zTotalBack = MulSIMD( planes[i].nZ, MaskedAssign( planes[i].zSign, minz, maxz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
#if _X360
|
||
if ( !XMVector3GreaterOrEqual( dotBack, planes[i].dist ) )
|
||
return false;
|
||
#elif defined( _PS3 )
|
||
bi32x4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#else
|
||
fltx4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#endif
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool Frustum_t::Intersects( const fltx4 &mins4, const fltx4 &maxs4 ) const
|
||
{
|
||
fltx4 minx = SplatXSIMD(mins4);
|
||
fltx4 miny = SplatYSIMD(mins4);
|
||
fltx4 minz = SplatZSIMD(mins4);
|
||
fltx4 maxx = SplatXSIMD(maxs4);
|
||
fltx4 maxy = SplatYSIMD(maxs4);
|
||
fltx4 maxz = SplatZSIMD(maxs4);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
// dotBack0 = DotProduct( normal, normals.x < 0 ? mins.x : maxs.x );
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = MulSIMD( planes[i].nX, MaskedAssign( planes[i].xSign, minx, maxx ) );
|
||
fltx4 yTotalBack = MulSIMD( planes[i].nY, MaskedAssign( planes[i].ySign, miny, maxy ) );
|
||
fltx4 zTotalBack = MulSIMD( planes[i].nZ, MaskedAssign( planes[i].zSign, minz, maxz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
#if _X360
|
||
if ( !XMVector4GreaterOrEqual( dotBack, planes[i].dist ) )
|
||
return false;
|
||
#elif defined( _PS3 )
|
||
bi32x4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#else
|
||
fltx4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#endif
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool Frustum_t::IntersectsCenterExtents( const Vector ¢er, const Vector &extents ) const
|
||
{
|
||
fltx4 center4 = LoadUnalignedSIMD( ¢er.x );
|
||
fltx4 centerx = SplatXSIMD(center4);
|
||
fltx4 centery = SplatYSIMD(center4);
|
||
fltx4 centerz = SplatZSIMD(center4);
|
||
fltx4 extents4 = LoadUnalignedSIMD( &extents.x );
|
||
fltx4 extx = SplatXSIMD(extents4);
|
||
fltx4 exty = SplatYSIMD(extents4);
|
||
fltx4 extz = SplatZSIMD(extents4);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = AddSIMD( MulSIMD( planes[i].nX, centerx ), MulSIMD(planes[i].nXAbs, extx ) );
|
||
fltx4 yTotalBack = AddSIMD( MulSIMD( planes[i].nY, centery ), MulSIMD(planes[i].nYAbs, exty ) );
|
||
fltx4 zTotalBack = AddSIMD( MulSIMD( planes[i].nZ, centerz ), MulSIMD(planes[i].nZAbs, extz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
#if _X360
|
||
if ( !XMVector4GreaterOrEqual( dotBack, planes[i].dist ) )
|
||
return false;
|
||
#elif defined( _PS3 )
|
||
bi32x4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#else
|
||
fltx4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#endif
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
bool Frustum_t::IntersectsCenterExtents( const fltx4 &fl4Center, const fltx4 &fl4Extents ) const
|
||
{
|
||
fltx4 centerx = SplatXSIMD(fl4Center);
|
||
fltx4 centery = SplatYSIMD(fl4Center);
|
||
fltx4 centerz = SplatZSIMD(fl4Center);
|
||
fltx4 extx = SplatXSIMD(fl4Extents);
|
||
fltx4 exty = SplatYSIMD(fl4Extents);
|
||
fltx4 extz = SplatZSIMD(fl4Extents);
|
||
|
||
// compute the dot product of the normal and the farthest corner
|
||
for ( int i = 0; i < 2; i++ )
|
||
{
|
||
fltx4 xTotalBack = AddSIMD( MulSIMD( planes[i].nX, centerx ), MulSIMD(planes[i].nXAbs, extx ) );
|
||
fltx4 yTotalBack = AddSIMD( MulSIMD( planes[i].nY, centery ), MulSIMD(planes[i].nYAbs, exty ) );
|
||
fltx4 zTotalBack = AddSIMD( MulSIMD( planes[i].nZ, centerz ), MulSIMD(planes[i].nZAbs, extz ) );
|
||
fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) );
|
||
// if plane of the farthest corner is behind the plane, then the box is completely outside this plane
|
||
#if _X360
|
||
if ( !XMVector3GreaterOrEqual( dotBack, planes[i].dist ) )
|
||
return false;
|
||
#elif defined( _PS3 )
|
||
bi32x4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#else
|
||
fltx4 isOut = CmpLtSIMD( dotBack, planes[i].dist );
|
||
if ( IsAnyNegative(isOut) )
|
||
return false;
|
||
#endif
|
||
}
|
||
return true;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Generate a frustum based on orthographic parameters
|
||
//-----------------------------------------------------------------------------
|
||
void GenerateOrthoFrustumFLU( const Vector &origin, const Vector &forward, const Vector &vLeft, const Vector &up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar, VPlane *pPlanesOut )
|
||
{
|
||
// YUP_ACTIVE: FIXME : This is actually producing incorrect planes (see the VectorMA below)
|
||
Vector vRight = vLeft;
|
||
vRight *= -1.0f;
|
||
|
||
float flIntercept = DotProduct( origin, forward );
|
||
|
||
pPlanesOut[FRUSTUM_NEARZ].Init( forward, flZNear + flIntercept );
|
||
pPlanesOut[FRUSTUM_FARZ].Init( -forward, -flZFar - flIntercept );
|
||
|
||
flIntercept = DotProduct( origin, vRight );
|
||
|
||
pPlanesOut[FRUSTUM_RIGHT].Init( -vRight, -flRight - flIntercept );
|
||
pPlanesOut[FRUSTUM_LEFT].Init( vRight, flLeft + flIntercept );
|
||
|
||
flIntercept = DotProduct( origin, up );
|
||
|
||
pPlanesOut[FRUSTUM_BOTTOM].Init( up, flBottom + flIntercept );
|
||
pPlanesOut[FRUSTUM_TOP].Init( -up, -flTop - flIntercept );
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Generate a frustum based on perspective view parameters
|
||
//-----------------------------------------------------------------------------
|
||
void GeneratePerspectiveFrustumFLU( const Vector& origin, const Vector &forward,
|
||
const Vector &vLeft, const Vector &up, float flZNear, float flZFar,
|
||
float flFovX, float flAspect, VPlane *pPlanesOut )
|
||
{
|
||
// YUP_ACTIVE: FIXME : This is actually producing incorrect planes (see the VectorMA below)
|
||
Vector vRight = vLeft;
|
||
vRight *= -1.0f;
|
||
|
||
float flIntercept = DotProduct( origin, forward );
|
||
|
||
// Setup the near and far planes.
|
||
pPlanesOut[FRUSTUM_FARZ].Init( -forward, -flZFar - flIntercept );
|
||
pPlanesOut[FRUSTUM_NEARZ].Init( forward, flZNear + flIntercept );
|
||
|
||
flFovX *= 0.5f;
|
||
|
||
float flTanX = tan( DEG2RAD( flFovX ) );
|
||
float flTanY = flTanX / flAspect;
|
||
|
||
// OPTIMIZE: Normalizing these planes is not necessary for culling
|
||
Vector normalPos, normalNeg;
|
||
|
||
// NOTE: This should be using left and not right to produce correct planes, not changing it quite yet
|
||
// because I'm not able to test whether fixing this breaks anything.
|
||
VectorMA( vRight, flTanX, forward, normalPos );
|
||
VectorMA( normalPos, -2.0f, vRight, normalNeg );
|
||
|
||
VectorNormalize( normalPos );
|
||
VectorNormalize( normalNeg );
|
||
|
||
pPlanesOut[FRUSTUM_LEFT].Init( normalPos, normalPos.Dot( origin ) );
|
||
pPlanesOut[FRUSTUM_RIGHT].Init( normalNeg, normalNeg.Dot( origin ) );
|
||
|
||
VectorMA( up, flTanY, forward, normalPos );
|
||
VectorMA( normalPos, -2.0f, up, normalNeg );
|
||
|
||
VectorNormalize( normalPos );
|
||
VectorNormalize( normalNeg );
|
||
|
||
pPlanesOut[FRUSTUM_BOTTOM].Init( normalPos, normalPos.Dot( origin ) );
|
||
pPlanesOut[FRUSTUM_TOP].Init( normalNeg, normalNeg.Dot( origin ) );
|
||
}
|
||
|
||
// Generate a frustum based on perspective view parameters
|
||
void Frustum_t::CreatePerspectiveFrustumFLU( const Vector &vOrigin, const Vector &vForward,
|
||
const Vector &vLeft, const Vector &vUp, float flZNear, float flZFar,
|
||
float flFovX, float flAspect )
|
||
{
|
||
VPlane planes[FRUSTUM_NUMPLANES];
|
||
GeneratePerspectiveFrustumFLU( vOrigin, vForward, vLeft, vUp, flZNear, flZFar, flFovX, flAspect, planes );
|
||
SetPlanes( planes );
|
||
}
|
||
|
||
//#ifndef YUP_ACTIVE
|
||
void Frustum_t::CreatePerspectiveFrustum( const Vector& origin, const Vector &forward,
|
||
const Vector &right, const Vector &up, float flZNear, float flZFar,
|
||
float flFovX, float flAspect )
|
||
{
|
||
Vector vLeft = right;
|
||
vLeft *= -1.0f;
|
||
CreatePerspectiveFrustumFLU( origin, forward, vLeft, up, flZNear, flZFar, flFovX, flAspect );
|
||
}
|
||
//#endif
|
||
|
||
// Version that accepts angles instead of vectors
|
||
void Frustum_t::CreatePerspectiveFrustum( const Vector& origin, const QAngle &angles, float flZNear, float flZFar, float flFovX, float flAspectRatio )
|
||
{
|
||
VPlane planes[FRUSTUM_NUMPLANES];
|
||
Vector vecForward, vecLeft, vecUp;
|
||
AngleVectorsFLU( angles, &vecForward, &vecLeft, &vecUp );
|
||
GeneratePerspectiveFrustumFLU( origin, vecForward, vecLeft, vecUp, flZNear, flZFar, flFovX, flAspectRatio, planes );
|
||
SetPlanes( planes );
|
||
}
|
||
|
||
// Generate a frustum based on orthographic parameters
|
||
void Frustum_t::CreateOrthoFrustumFLU( const Vector &origin, const Vector &forward, const Vector &vLeft, const Vector &up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar )
|
||
{
|
||
VPlane planes[FRUSTUM_NUMPLANES];
|
||
GenerateOrthoFrustumFLU( origin, forward, vLeft, up, flLeft, flRight, flBottom, flTop, flZNear, flZFar, planes );
|
||
SetPlanes( planes );
|
||
}
|
||
|
||
//#ifndef YUP_ACTIVE
|
||
void Frustum_t::CreateOrthoFrustum( const Vector &origin, const Vector &forward, const Vector &right, const Vector &up, float flLeft, float flRight, float flBottom, float flTop, float flZNear, float flZFar )
|
||
{
|
||
Vector vLeft = right;
|
||
vLeft *= -1.0f;
|
||
CreateOrthoFrustumFLU( origin, forward, vLeft, up, flLeft, flRight, flBottom, flTop, flZNear, flZFar );
|
||
}
|
||
|
||
// The points returned correspond to the corners of the frustum faces
|
||
// Points 0 to 3 correspond to the near face
|
||
// Points 4 to 7 correspond to the far face
|
||
// Returns points in a face in this order:
|
||
// 2--3
|
||
// | |
|
||
// 0--1
|
||
bool Frustum_t::GetCorners( Vector *pPoints ) const
|
||
{
|
||
VPlane planes[FRUSTUM_NUMPLANES];
|
||
GetPlanes( planes );
|
||
|
||
// Near face
|
||
// Bottom Left
|
||
if ( !PlaneIntersection( planes[FRUSTUM_NEARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_BOTTOM], pPoints[0] ) )
|
||
return false;
|
||
|
||
// Bottom right
|
||
if ( !PlaneIntersection( planes[FRUSTUM_NEARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_BOTTOM], pPoints[1] ) )
|
||
return false;
|
||
|
||
// Upper Left
|
||
if ( !PlaneIntersection( planes[FRUSTUM_NEARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_TOP], pPoints[2] ) )
|
||
return false;
|
||
|
||
// Upper right
|
||
if ( !PlaneIntersection( planes[FRUSTUM_NEARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_TOP], pPoints[3] ) )
|
||
return false;
|
||
|
||
// Far face
|
||
// Bottom Left
|
||
if ( !PlaneIntersection( planes[FRUSTUM_FARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_BOTTOM], pPoints[4] ) )
|
||
return false;
|
||
|
||
// Bottom right
|
||
if ( !PlaneIntersection( planes[FRUSTUM_FARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_BOTTOM], pPoints[5] ) )
|
||
return false;
|
||
|
||
// Upper Left
|
||
if ( !PlaneIntersection( planes[FRUSTUM_FARZ], planes[FRUSTUM_LEFT], planes[FRUSTUM_TOP], pPoints[6] ) )
|
||
return false;
|
||
|
||
// Upper right
|
||
if ( !PlaneIntersection( planes[FRUSTUM_FARZ], planes[FRUSTUM_RIGHT], planes[FRUSTUM_TOP], pPoints[7] ) )
|
||
return false;
|
||
|
||
|
||
return true;
|
||
}
|
||
|
||
// NOTE: This routine was taken (and modified) from NVidia's BlinnReflection demo
|
||
// Creates basis vectors, based on a vertex and index list.
|
||
// See the NVidia white paper 'GDC2K PerPixel Lighting' for a description
|
||
// of how this computation works
|
||
#define SMALL_FLOAT 1e-12
|
||
|
||
void CalcTriangleTangentSpace( const Vector &p0, const Vector &p1, const Vector &p2,
|
||
const Vector2D &t0, const Vector2D &t1, const Vector2D& t2,
|
||
Vector &sVect, Vector &tVect )
|
||
{
|
||
/* Compute the partial derivatives of X, Y, and Z with respect to S and T. */
|
||
sVect.Init( 0.0f, 0.0f, 0.0f );
|
||
tVect.Init( 0.0f, 0.0f, 0.0f );
|
||
|
||
// x, s, t
|
||
Vector edge01( p1.x - p0.x, t1.x - t0.x, t1.y - t0.y );
|
||
Vector edge02( p2.x - p0.x, t2.x - t0.x, t2.y - t0.y );
|
||
|
||
Vector cross;
|
||
CrossProduct( edge01, edge02, cross );
|
||
if ( fabs( cross.x ) > SMALL_FLOAT )
|
||
{
|
||
sVect.x += -cross.y / cross.x;
|
||
tVect.x += -cross.z / cross.x;
|
||
}
|
||
|
||
// y, s, t
|
||
edge01.Init( p1.y - p0.y, t1.x - t0.x, t1.y - t0.y );
|
||
edge02.Init( p2.y - p0.y, t2.x - t0.x, t2.y - t0.y );
|
||
|
||
CrossProduct( edge01, edge02, cross );
|
||
if ( fabs( cross.x ) > SMALL_FLOAT )
|
||
{
|
||
sVect.y += -cross.y / cross.x;
|
||
tVect.y += -cross.z / cross.x;
|
||
}
|
||
|
||
// z, s, t
|
||
edge01.Init( p1.z - p0.z, t1.x - t0.x, t1.y - t0.y );
|
||
edge02.Init( p2.z - p0.z, t2.x - t0.x, t2.y - t0.y );
|
||
|
||
CrossProduct( edge01, edge02, cross );
|
||
if( fabs( cross.x ) > SMALL_FLOAT )
|
||
{
|
||
sVect.z += -cross.y / cross.x;
|
||
tVect.z += -cross.z / cross.x;
|
||
}
|
||
|
||
// Normalize sVect and tVect
|
||
VectorNormalize( sVect );
|
||
VectorNormalize( tVect );
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Convert RGB to HSV
|
||
//-----------------------------------------------------------------------------
|
||
void RGBtoHSV( const Vector &rgb, Vector &hsv )
|
||
{
|
||
float flMax = MAX( rgb.x, rgb.y );
|
||
flMax = MAX( flMax, rgb.z );
|
||
float flMin = MIN( rgb.x, rgb.y );
|
||
flMin = MIN( flMin, rgb.z );
|
||
|
||
// hsv.z is the value
|
||
hsv.z = flMax;
|
||
|
||
// hsv.y is the saturation
|
||
if (flMax != 0.0F)
|
||
{
|
||
hsv.y = (flMax - flMin) / flMax;
|
||
}
|
||
else
|
||
{
|
||
hsv.y = 0.0F;
|
||
}
|
||
|
||
// hsv.x is the hue
|
||
if (hsv.y == 0.0F)
|
||
{
|
||
hsv.x = -1.0f;
|
||
}
|
||
else
|
||
{
|
||
float32 d = flMax - flMin;
|
||
if (rgb.x == flMax)
|
||
{
|
||
hsv.x = (rgb.y - rgb.z) / d;
|
||
}
|
||
else if (rgb.y == flMax)
|
||
{
|
||
hsv.x = 2.0F + (rgb.z - rgb.x) / d;
|
||
}
|
||
else
|
||
{
|
||
hsv.x = 4.0F + (rgb.x - rgb.y) / d;
|
||
}
|
||
hsv.x *= 60.0F;
|
||
if ( hsv.x < 0.0F )
|
||
{
|
||
hsv.x += 360.0F;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Convert HSV to RGB
|
||
//-----------------------------------------------------------------------------
|
||
void HSVtoRGB( const Vector &hsv, Vector &rgb )
|
||
{
|
||
if ( hsv.y == 0.0F )
|
||
{
|
||
rgb.Init( hsv.z, hsv.z, hsv.z );
|
||
return;
|
||
}
|
||
|
||
float32 hue = hsv.x;
|
||
if (hue == 360.0F)
|
||
{
|
||
hue = 0.0F;
|
||
}
|
||
hue /= 60.0F;
|
||
int i = Float2Int( hue ); // integer part
|
||
float32 f = hue - i; // fractional part
|
||
float32 p = hsv.z * (1.0F - hsv.y);
|
||
float32 q = hsv.z * (1.0F - hsv.y * f);
|
||
float32 t = hsv.z * (1.0F - hsv.y * (1.0F - f));
|
||
switch(i)
|
||
{
|
||
case 0: rgb.Init( hsv.z, t, p ); break;
|
||
case 1: rgb.Init( q, hsv.z, p ); break;
|
||
case 2: rgb.Init( p, hsv.z, t ); break;
|
||
case 3: rgb.Init( p, q, hsv.z ); break;
|
||
case 4: rgb.Init( t, p, hsv.z ); break;
|
||
case 5: rgb.Init( hsv.z, p, q ); break;
|
||
}
|
||
}
|
||
|
||
|
||
void GetInterpolationData( float const *pKnotPositions,
|
||
float const *pKnotValues,
|
||
int nNumValuesinList,
|
||
int nInterpolationRange,
|
||
float flPositionToInterpolateAt,
|
||
bool bWrap,
|
||
float *pValueA,
|
||
float *pValueB,
|
||
float *pInterpolationValue)
|
||
{
|
||
// first, find the bracketting knots by looking for the first knot >= our index
|
||
|
||
int idx;
|
||
for(idx = 0; idx < nNumValuesinList; idx++ )
|
||
{
|
||
if ( pKnotPositions[idx] >= flPositionToInterpolateAt )
|
||
break;
|
||
}
|
||
int nKnot1, nKnot2;
|
||
float flOffsetFromStartOfGap, flSizeOfGap;
|
||
if ( idx == 0)
|
||
{
|
||
if ( bWrap )
|
||
{
|
||
nKnot1 = nNumValuesinList-1;
|
||
nKnot2 = 0;
|
||
flSizeOfGap =
|
||
( pKnotPositions[nKnot2] + ( nInterpolationRange-pKnotPositions[nKnot1] ) );
|
||
flOffsetFromStartOfGap =
|
||
flPositionToInterpolateAt + ( nInterpolationRange-pKnotPositions[nKnot1] );
|
||
}
|
||
else
|
||
{
|
||
*pValueA = *pValueB = pKnotValues[0];
|
||
*pInterpolationValue = 1.0;
|
||
return;
|
||
}
|
||
}
|
||
else if ( idx == nNumValuesinList ) // ran out of values
|
||
{
|
||
if ( bWrap )
|
||
{
|
||
nKnot1 = nNumValuesinList -1;
|
||
nKnot2 = 0;
|
||
flSizeOfGap = ( pKnotPositions[nKnot2] +
|
||
( nInterpolationRange-pKnotPositions[nKnot1] ) );
|
||
flOffsetFromStartOfGap = flPositionToInterpolateAt - pKnotPositions[nKnot1];
|
||
}
|
||
else
|
||
{
|
||
*pValueA = *pValueB = pKnotValues[nNumValuesinList-1];
|
||
*pInterpolationValue = 1.0;
|
||
return;
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
nKnot1 = idx-1;
|
||
nKnot2 = idx;
|
||
flSizeOfGap = pKnotPositions[nKnot2]-pKnotPositions[nKnot1];
|
||
flOffsetFromStartOfGap = flPositionToInterpolateAt-pKnotPositions[nKnot1];
|
||
}
|
||
|
||
*pValueA = pKnotValues[nKnot1];
|
||
*pValueB = pKnotValues[nKnot2];
|
||
*pInterpolationValue = FLerp( 0, 1, 0, flSizeOfGap, flOffsetFromStartOfGap );
|
||
return;
|
||
}
|
||
|
||
|
||
static Vector RandomVectorOnUnitSphere( float u, float v )
|
||
{
|
||
float flPhi = acos( 1 - 2 * u );
|
||
float flTheta = 2 * M_PI * v;
|
||
|
||
float flSinPhi, flCosPhi;
|
||
float flSinTheta, flCosTheta;
|
||
SinCos( flPhi, &flSinPhi, &flCosPhi );
|
||
SinCos( flTheta, &flSinTheta, &flCosTheta );
|
||
|
||
return Vector( flSinPhi * flCosTheta, flSinPhi * flSinTheta, flCosPhi );
|
||
}
|
||
|
||
|
||
Vector RandomVectorOnUnitSphere()
|
||
{
|
||
// Guarantee uniform random distribution on a sphere
|
||
// Graphics gems III contains this algorithm ("Nonuniform random point sets via warping")
|
||
float u = RandomFloat( 0., 1. );
|
||
float v = RandomFloat( 0., 1. );
|
||
return RandomVectorOnUnitSphere( u, v );
|
||
}
|
||
|
||
|
||
Vector RandomVectorOnUnitSphere( IUniformRandomStream *pRnd )
|
||
{
|
||
return RandomVectorOnUnitSphere( pRnd->RandomFloat(), pRnd->RandomFloat() );
|
||
}
|
||
|
||
float RandomVectorInUnitSphere( Vector *pVector )
|
||
{
|
||
// Guarantee uniform random distribution within a sphere
|
||
// Graphics gems III contains this algorithm ("Nonuniform random point sets via warping")
|
||
float u = ((float)rand() / VALVE_RAND_MAX);
|
||
float v = ((float)rand() / VALVE_RAND_MAX);
|
||
float w = ((float)rand() / VALVE_RAND_MAX);
|
||
|
||
float flPhi = acos( 1 - 2 * u );
|
||
float flTheta = 2 * M_PI * v;
|
||
float flRadius = powf( w, 1.0f / 3.0f );
|
||
|
||
float flSinPhi, flCosPhi;
|
||
float flSinTheta, flCosTheta;
|
||
SinCos( flPhi, &flSinPhi, &flCosPhi );
|
||
SinCos( flTheta, &flSinTheta, &flCosTheta );
|
||
|
||
pVector->x = flRadius * flSinPhi * flCosTheta;
|
||
pVector->y = flRadius * flSinPhi * flSinTheta;
|
||
pVector->z = flRadius * flCosPhi;
|
||
return flRadius;
|
||
}
|
||
|
||
|
||
Vector RandomVectorInUnitSphere()
|
||
{
|
||
Vector vOut;
|
||
RandomVectorInUnitSphere( &vOut );
|
||
return vOut;
|
||
}
|
||
|
||
Vector RandomVectorInUnitSphere( IUniformRandomStream *pRnd )
|
||
{
|
||
float w = pRnd->RandomFloat();
|
||
float flRadius = powf( w, 1.0f / 3.0f );
|
||
|
||
Vector v = RandomVectorOnUnitSphere( pRnd ) * flRadius;
|
||
|
||
return v;
|
||
}
|
||
|
||
|
||
|
||
|
||
float RandomVectorInUnitCircle( Vector2D *pVector )
|
||
{
|
||
// Guarantee uniform random distribution within a sphere
|
||
// Graphics gems III contains this algorithm ("Nonuniform random point sets via warping")
|
||
float u = ((float)rand() / VALVE_RAND_MAX);
|
||
float v = ((float)rand() / VALVE_RAND_MAX);
|
||
|
||
float flTheta = 2 * M_PI * v;
|
||
float flRadius = powf( u, 1.0f / 2.0f );
|
||
|
||
float flSinTheta, flCosTheta;
|
||
SinCos( flTheta, &flSinTheta, &flCosTheta );
|
||
|
||
pVector->x = flRadius * flCosTheta;
|
||
pVector->y = flRadius * flSinTheta;
|
||
return flRadius;
|
||
}
|
||
|
||
|
||
const Quaternion RandomQuaternion()
|
||
{
|
||
// Guarantee uniform distribution within S^3. Found on the internet, looked through the proof very briefly, looks sound enough to tentatively trust it before testing or checking the proof for real.
|
||
// http://mathproofs.blogspot.com/2005/05/uniformly-distributed-random-unit.html
|
||
float u = RandomFloat( 0, 2 * M_PI ), flSinU = sinf( u );
|
||
float v = acosf( RandomFloat( -1, 1 ) ), flSinV = sinf( v );
|
||
float w = 0.5f * ( RandomFloat( 0, M_PI ) + acosf( RandomFloat( 0, 1 ) ) + M_PI / 2 ), flSinW = sinf( w );
|
||
return Quaternion( cosf( u ), flSinU * cosf( v ), flSinU * flSinV * cosf( w ), flSinU * flSinV * flSinW );
|
||
}
|
||
|
||
const Quaternion RandomQuaternion( IUniformRandomStream *pRnd )
|
||
{
|
||
// Guarantee uniform distribution within S^3. Found on the internet, looked through the proof very briefly, looks sound enough to tentatively trust it before testing or checking the proof for real.
|
||
// http://mathproofs.blogspot.com/2005/05/uniformly-distributed-random-unit.html
|
||
float u = pRnd->RandomFloat( 0, 2 * M_PI ), flSinU = sinf( u );
|
||
float v = acosf( pRnd->RandomFloat( -1, 1 ) ), flSinV = sinf( v );
|
||
float w = 0.5f * ( pRnd->RandomFloat( 0, M_PI ) + acosf( pRnd->RandomFloat( 0, 1 ) ) + M_PI / 2 ), flSinW = sinf( w );
|
||
return Quaternion( cosf( u ), flSinU * cosf( v ), flSinU * flSinV * cosf( w ), flSinU * flSinV * flSinW );
|
||
}
|
||
|
||
// Originally from hammer_mathlib.cpp
|
||
//
|
||
// Generate the corner points of a box:
|
||
// +y _+z
|
||
// ^ /|
|
||
// | /
|
||
// | 3---7
|
||
// /| /|
|
||
// / | / |
|
||
// 2---6 |
|
||
// | 1|--5
|
||
// | / | /
|
||
// |/ |/
|
||
// 0---4 --> +x
|
||
//
|
||
void PointsFromBox( const Vector &mins, const Vector &maxs, Vector *points )
|
||
{
|
||
points[ 0 ][ 0 ] = mins[ 0 ];
|
||
points[ 0 ][ 1 ] = mins[ 1 ];
|
||
points[ 0 ][ 2 ] = mins[ 2 ];
|
||
|
||
points[ 1 ][ 0 ] = mins[ 0 ];
|
||
points[ 1 ][ 1 ] = mins[ 1 ];
|
||
points[ 1 ][ 2 ] = maxs[ 2 ];
|
||
|
||
points[ 2 ][ 0 ] = mins[ 0 ];
|
||
points[ 2 ][ 1 ] = maxs[ 1 ];
|
||
points[ 2 ][ 2 ] = mins[ 2 ];
|
||
|
||
points[ 3 ][ 0 ] = mins[ 0 ];
|
||
points[ 3 ][ 1 ] = maxs[ 1 ];
|
||
points[ 3 ][ 2 ] = maxs[ 2 ];
|
||
|
||
points[ 4 ][ 0 ] = maxs[ 0 ];
|
||
points[ 4 ][ 1 ] = mins[ 1 ];
|
||
points[ 4 ][ 2 ] = mins[ 2 ];
|
||
|
||
points[ 5 ][ 0 ] = maxs[ 0 ];
|
||
points[ 5 ][ 1 ] = mins[ 1 ];
|
||
points[ 5 ][ 2 ] = maxs[ 2 ];
|
||
|
||
points[ 6 ][ 0 ] = maxs[ 0 ];
|
||
points[ 6 ][ 1 ] = maxs[ 1 ];
|
||
points[ 6 ][ 2 ] = mins[ 2 ];
|
||
|
||
points[ 7 ][ 0 ] = maxs[ 0 ];
|
||
points[ 7 ][ 1 ] = maxs[ 1 ];
|
||
points[ 7 ][ 2 ] = maxs[ 2 ];
|
||
}
|
||
|
||
void BuildTransformedBox( Vector *v2, Vector const &bbmin, Vector const &bbmax, const matrix3x4_t& m )
|
||
{
|
||
Vector v[ 8 ];
|
||
PointsFromBox( bbmin, bbmax, v );
|
||
|
||
VectorTransform( v[ 0 ], m, v2[ 0 ] );
|
||
VectorTransform( v[ 1 ], m, v2[ 1 ] );
|
||
VectorTransform( v[ 2 ], m, v2[ 2 ] );
|
||
VectorTransform( v[ 3 ], m, v2[ 3 ] );
|
||
VectorTransform( v[ 4 ], m, v2[ 4 ] );
|
||
VectorTransform( v[ 5 ], m, v2[ 5 ] );
|
||
VectorTransform( v[ 6 ], m, v2[ 6 ] );
|
||
VectorTransform( v[ 7 ], m, v2[ 7 ] );
|
||
}
|
||
|
||
|
||
#endif // !defined(__SPU__)
|