2021-07-24 21:11:47 -07:00

97 lines
3.4 KiB
Plaintext

#include "common_vs_fxc.h"
//---------------------------------------------------------------------------------//
// Parallax occlusion mapping algorithm implementation. Vertex shader.
//---------------------------------------------------------------------------------//
#define matWorldViewProjection cModelViewProj
//float4x4 matViewInverse;
//float4x4 matView;
//float fBaseTextureRepeat;
//float4 vLightPosition;
struct VS_INPUT
{
float4 positionWS : POSITION;
float3 vNormalWS : NORMAL;
float2 texCoord : TEXCOORD0;
float3 vBinormalWS : BINORMAL;
float3 vTangentWS : TANGENT;
};
struct VS_OUTPUT
{
float4 position : POSITION; // proj-space position
float2 texCoord : TEXCOORD0;
// float3 vLightTS : TEXCOORD1; // light vector in tangent space, denormalized
float3 vViewTS : TEXCOORD2; // view vector in tangent space, denormalized
float2 vParallaxOffsetTS : TEXCOORD3; // Parallax offset vector in tangent space
float3 vNormalWS : TEXCOORD4; // Normal vector in world space
float3 vViewWS : TEXCOORD5; // View vector in world space
float4 vDebug : TEXCOORD6;
};
VS_OUTPUT main( VS_INPUT i )
{
VS_OUTPUT Out = (VS_OUTPUT) 0;
// Transform and output input position
Out.position = mul( float4( i.positionWS.xyz, 1 ), cModelViewProj );
//Out.position = mul( matWorldViewProjection, i.positionWS );
// Propagate texture coordinate through:
Out.texCoord = i.texCoord;
// Uncomment this to repeat the texture
// Out.texCoord *= fBaseTextureRepeat;
// Propagate the world vertex normal through:
Out.vNormalWS = i.vNormalWS;
// Compute and output the world view vector:
float3 vViewWS = cEyePos - i.positionWS;
Out.vViewWS = vViewWS;
// Compute denormalized light vector in world space:
// float3 vLightWS = vLightPosition - i.positionWS;
// Normalize the light and view vectors and transform it to the tangent space:
float3x3 mWorldToTangent = float3x3( i.vTangentWS, i.vBinormalWS, i.vNormalWS );
// float3x3 mWorldToTangent = float3x3( i.vBinormalWS, i.vTangentWS, i.vNormalWS );
// Propagate the view and the light vectors (in tangent space):
// Out.vLightTS = mul( mWorldToTangent, vLightWS );
Out.vViewTS = mul( mWorldToTangent, vViewWS );
float fHeightMapRange = 0.02f; // FIXME: should be a vmt param
// Compute the ray direction for intersecting the height field profile with
// current view ray. See the above paper for derivation of this computation.
// Compute initial parallax displacement direction:
float2 vParallaxDirection = normalize( Out.vViewTS.xy );
// The length of this vector determines the furthest amount of displacement:
float fLength = length( Out.vViewTS );
float fParallaxLength = sqrt( fLength * fLength - Out.vViewTS.z * Out.vViewTS.z ) / Out.vViewTS.z;
// Compute the actual reverse parallax displacement vector:
Out.vParallaxOffsetTS = vParallaxDirection * fParallaxLength;
// Need to scale the amount of displacement to account for different height ranges
// in height maps. This is controlled by an artist-editable parameter:
Out.vParallaxOffsetTS *= fHeightMapRange;
Out.vDebug = float4( 1.0f, 0.0f, 0.0f, 1.0f );
Out.vDebug.xy = vParallaxDirection;
// Out.vDebug.xyz = ( float3 )fHeightMapRange;
Out.vDebug.xyz = fParallaxLength * .1;
Out.vDebug.xyz = fHeightMapRange * 200;
return Out;
} // End of VS_OUTPUT vs_main(..)