2021-07-24 21:11:47 -07:00

1117 lines
36 KiB
C++

//========== Copyright © 2010, Valve Corporation, All rights reserved. ========
#include "dxabstract.h"
#include "ps3gcmstate.h"
#include "utlmap.h"
#include "ps3/ps3gcmlabels.h"
#include "spugcm.h"
#include "memdbgon.h"
#include <sysutil/sysutil_sysparam.h>
#include "ps3/ps3_helpers.h"
//////////////////////////////////////////////////////////////////////////
#define MB (1024*1024)
// the safety margin, in bytes, for the command buffer
// we may use the 16 bytes beyond the buffer to write jump-back commands
const uint s_nCmdSizeSafetyMargin = 32;
CPs3gcmGlobalState g_ps3gcmGlobalState;
uint8 g_dataShaderPsEmpty[] = {
#include "shader_ps_empty.h"
};
int32_t GcmContextPermCallbackError(struct CellGcmContextData *pCtx, uint32_t nAlloc )
{
Error( "Unexpected error while filling permanent cmd buffer: %d Kb filled up, choked on allocating %d words. RefCount=%d. Permanent cmd buffer size is not enough, or there's a leak.\n", uintp(pCtx->current)-uintp(pCtx->begin), nAlloc, g_ps3gcmGlobalState.m_nCmdBufferRefCount );
return EINVAL; // it's not CELL_OK
}
#if GCM_CTX_UNSAFE_MODE
static int32_t Ps3gcmGlobalCommandBufferReserveCallback( struct CellGcmContextData *context, uint32_t nCount )
{
nCount;
g_ps3gcmGlobalState.CmdBufferReservationCallback( context );
return CELL_OK;
}
#undef cellGcmFlush // we need it to implement our command buffer flush
uint32 CPs3gcmGlobalState::GetRsxControlNextReferenceValue()
{
static uint32 s_uiReferenceValue;
return ++ s_uiReferenceValue;
}
#endif
static inline uint32 Ps3gcmGlobalCommandBufferUsageSegmentBytes( uint32 nCmdSize )
{
#if GCM_CTX_UNSAFE_MODE
// Triple buffer in unsafe mode
return ( nCmdSize / 3 ) & ~127;
#else
// Default 32 Kb buffers in safe mode
return 32768;
#endif
}
static inline uint32 Ps3gcmGlobalCommandBufferUsageCookie( struct CellGcmContextData *context, void *pIoAddress, uint32 nCmdSize )
{
// Note only which portion is in use by RSX when switching to the next segment:
uint32 const offBegin = ( ( char * ) context->begin ) - ( ( char * ) pIoAddress );
uint32 const numSegmentBytes = Ps3gcmGlobalCommandBufferUsageSegmentBytes( nCmdSize );
return ( offBegin / numSegmentBytes );
}
uint32 CalculateMemorySizeFromCmdLineParam( char const *pCmdParamName, uint32 nDefaultValue, uint32 nMinValue )
{
uint nCmdSize = 0;
if ( const char *p = CommandLine()->ParmValue( pCmdParamName, (const char *)NULL ) )
{
for(; isdigit( *p ) ; ++p )
{
nCmdSize = nCmdSize * 10 + (*p-'0');
}
switch( *p )
{
case '\0':
case 'm':
case 'M':
nCmdSize *= 1024 * 1024;
break;
case 'k':
case 'K':
nCmdSize *= 1024;
break;
case 'b':
case 'B':
break;
default:
nCmdSize = 0;
break;
}
}
else
{
return nDefaultValue;
}
return MAX( nCmdSize, nMinValue );
}
int32 CPs3gcmGlobalState::Init()
{
MEM_ALLOC_CREDIT_( "GCM INIT" );
m_nIoLocalOffsetEmptyFragmentProgramSetupRoutine = 0;
///////////////////////////////////////////////////////////////////////////////////
// Negotiate video output resolution, setup display gamma, surface pitch and so on
//
if( int nError= InitVideo() )
return nError;
//////////////////////////////////////////////////////////////////////////
//
// Allocate GCM IO & CMD buffers
//
// Default sizes for IO and CMD buffers
#if GCM_CTX_UNSAFE_MODE
m_nCmdSize = 3*MB;
#else
m_nCmdSize = 512 * 1024; // TEST: 256Kb or less is for testing only; production should be at least 512Kb; NOTE: TEST WITH < 128k !!
#endif
m_nCmdSize = CalculateMemorySizeFromCmdLineParam( "-gcmSizeCMD", m_nCmdSize, m_nCmdSize );
const uint nMaxIoMappedMemorySize = 256*MB;
// start with nothing preallocated
m_nIoSize = m_nIoSizeNotPreallocated = nMaxIoMappedMemorySize;
m_pIoAddress = NULL;
CreateIoBuffers(); // let the buffers creation routine calculate the required buffers size
uint32 nMinIoMemoryRequired = nMaxIoMappedMemorySize - ( m_nIoSizeNotPreallocated - m_nCmdSize );
uint32 nIoMemoryAllocated = AlignValue( nMinIoMemoryRequired, MB ); // the size should not change here in release!
m_nIoSize = m_nIoSizeNotPreallocated = nIoMemoryAllocated;
// Try to allocate main memory that will be mapped to IO address space
Msg( "======== GCM IO memory allocated @0x%p size = %d MB ========\n", m_pIoAddress, m_nIoSize / 1024 / 1024 );
sys_addr_t pIoAddress = NULL;
int nError = sys_memory_allocate( m_nIoSize, SYS_MEMORY_PAGE_SIZE_1M, &pIoAddress );
if ( CELL_OK != nError )
{
Msg( "sys_memory_allocate failed to allocate %d bytes (err: %d)\n", m_nIoSize, nError );
return nError;
}
m_pIoAddress = (void *)pIoAddress;
CreateIoBuffers(); // Create the IO buffers for real now
// Determine how much memory has been used:
uint nCmdSizeSlackInitial = ( m_nIoSizeNotPreallocated - m_nCmdSize ); // we can use this much more for anyting, and the rest for cmd buffer (which is not preallocated in CreateIOBuffers())
Assert( nCmdSizeSlackInitial < MB );
g_spuGcm.UseIoBufferSlack( nCmdSizeSlackInitial );
Assert( m_nIoSizeNotPreallocated >= m_nCmdSize ); // we should have enough space for cmd buffer, even thought we may use up some slack
uint nCmdSizeSlackRemaining = ( m_nIoSizeNotPreallocated - m_nCmdSize ) & ( MB - 1 ); // we need this much for cmd buffer (not preallocated in CreateIOBuffers())
Msg( "IO Buffer slack: was %u kB, used %u kB, reusing remaining %u kB for cmd buffer\n", nCmdSizeSlackInitial / 1024, ( nCmdSizeSlackInitial - nCmdSizeSlackRemaining ) / 1024, nCmdSizeSlackRemaining / 1024 );
// leave space for all buffers, and use the rest of the space for cmd buffer
// we need the cmd buffer to be 16-byte aligned and have 16 byte slack in the end . Let's make it 32 for good measure
m_nCmdSize = ( m_nIoSizeNotPreallocated - s_nCmdSizeSafetyMargin ) & -16;
m_nCmdBufferRefCount = 0;
if( int nError = InitGcm() )
return nError;
// Retrieve RSX local memory config
CellGcmConfig rsxConfig;
cellGcmGetConfiguration( &rsxConfig );
m_pLocalBaseAddress = rsxConfig.localAddress;
m_nLocalSize = rsxConfig.localSize;
cellGcmAddressToOffset( m_pLocalBaseAddress, &m_nLocalBaseOffset );
Assert( m_nLocalBaseOffset == 0 );
// Initialize allocator/tracker
extern void Ps3gcmLocalMemoryAllocator_Init();
Ps3gcmLocalMemoryAllocator_Init();
CreateRsxBuffers();
CreateEmptyPixelShader();
CreateDebugStripeTextureBuffer();
g_spuGcm.OnGcmInit();
return CELL_OK;
}
void CPs3gcmGlobalState::CreateRsxBuffers()
{
//////////////////////////////////////////////////////////////////////////
//
// Create automatic display objects
//
if( m_nSurfaceRenderPitch != cellGcmGetTiledPitchSize( m_nRenderSize[0] * 4 ) )
{
Error("Pre-computed surface render pitch %u != %u = cellGcmGetTiledPitchSize( %u * 4 ) ", m_nSurfaceRenderPitch, cellGcmGetTiledPitchSize( m_nRenderSize[0] * 4 ), m_nRenderSize[0] );
}
// Color buffers
for ( int k = 0; k < ARRAYSIZE( m_display.surfaceColor ); ++ k )
{
uint32 nRenderSize32bpp = GetRenderSurfaceBytes(); // 32-line vertical alignment required in local memory
m_display.surfaceColor[k].Alloc( kAllocPs3gcmColorBufferFB, nRenderSize32bpp );
cellGcmSetDisplayBuffer( k, m_display.surfaceColor[k].Offset(), m_nSurfaceRenderPitch, m_nRenderSize[0], m_nRenderSize[1] );
}
// Depth buffer
{
uint32 zcullSize[2] = { AlignValue( m_nRenderSize[0], 64 ), AlignValue( m_nRenderSize[1], 64 ) };
uint32 nDepthPitch = cellGcmGetTiledPitchSize( zcullSize[0] * 4 );
uint32 uDepthBufferSize32bpp = nDepthPitch * zcullSize[1];
uDepthBufferSize32bpp = AlignValue( uDepthBufferSize32bpp, PS3GCMALLOCATIONALIGN( kAllocPs3gcmDepthBuffer ) );
m_display.surfaceDepth.Alloc( kAllocPs3gcmDepthBuffer, uDepthBufferSize32bpp );
uint32 uiZcullIndex = m_display.surfaceDepth.ZcullMemoryIndex();
cellGcmBindZcull( uiZcullIndex,
m_display.surfaceDepth.Offset(),
zcullSize[0], zcullSize[1],
m_display.surfaceDepth.ZcullMemoryStart(),
CELL_GCM_ZCULL_Z24S8,
CELL_GCM_SURFACE_CENTER_1,
CELL_GCM_ZCULL_LESS,
CELL_GCM_ZCULL_LONES,
CELL_GCM_SCULL_SFUNC_ALWAYS,
0, 0 // sRef, sMask
);
uint32 uiTileIndex = m_display.surfaceDepth.TiledMemoryIndex();
cellGcmSetTileInfo( uiTileIndex, CELL_GCM_LOCATION_LOCAL, m_display.surfaceDepth.Offset(),
uDepthBufferSize32bpp, m_nSurfaceRenderPitch, CELL_GCM_COMPMODE_Z32_SEPSTENCIL_REGULAR,
m_display.surfaceDepth.TiledMemoryTagAreaBase(), // The area base + size/0x10000 will be allocated as the tag area.
3 ); // Default depth buffer on bank 3
cellGcmBindTile( uiTileIndex );
}
g_spuGcm.CreateRsxBuffers();
}
void CPs3gcmGlobalState::DrawDebugStripe( uint nScreenX, uint nScreenY, uint nStripeY, uint nStripeWidth, uint nStripeHeight, int nNext )
{
if( nScreenX < m_nRenderSize[0] )
{
uint nDstOffset = m_display.surfaceColor[ m_display.NextSurfaceIndex( nNext + CPs3gcmDisplay::SURFACE_COUNT ) ].Offset();
uint nSrcOffset = m_debugStripeImageBuffer.Offset();
uint nRenderStripeWidth = MIN( ( uint )( m_nRenderSize[0] - nScreenX - 4 ), nStripeWidth );
Assert( nScreenX + nRenderStripeWidth < ( uint )m_nRenderSize[0] );
//static int x0 = 128, y0 = 64,x1 = 0,y1 = 0, w1 = 128, h1 = 1;
Assert( nStripeY + nStripeHeight <= 4 );
GCM_FUNC( cellGcmSetTransferImage, CELL_GCM_TRANSFER_LOCAL_TO_LOCAL,
nDstOffset,
m_nSurfaceRenderPitch,
/*x0,y0,*/nScreenX, nScreenY,
nSrcOffset,
m_nRenderSize[0] * 4,
/*x1,y1*/0, nStripeY, nRenderStripeWidth, nStripeHeight,
4 );
}
}
void CPs3gcmGlobalState::CreateDebugStripeTextureBuffer()
{
const int s_nDebugScanlineColor[] = { 0xFFFFFFFF, 0xFFFF80FF, 0xFF00FF00, 0xFFFFFF00 };
m_debugStripeImageBuffer.Alloc( kAllocPs3gcmTextureData, m_nRenderSize[0] * 4 * ARRAYSIZE( s_nDebugScanlineColor ) );
uint32 * pEaLocalDebugScanline = ( uint32* ) m_debugStripeImageBuffer.DataInLocalMemory();
for( uint y = 0; y < ARRAYSIZE( s_nDebugScanlineColor ); ++y )
{
for( uint nX = 0; nX < m_nRenderSize[0]; ++nX )
{
uint nColor = s_nDebugScanlineColor[y];
switch( nX % 100 )
{
case 98:case 99: case 1:case 2: nColor = 0x80808080; break;//
case 0: nColor = 0; break;//
case 50: nColor = 0xFF800000; break; //
default:
switch( nX % 10 )
{
case 8: case 9: case 1: case 2: nColor = 0xFFFFFF80; break;// grey;
case 0: nColor = 0xFF40C0FF; break;//
}
break;
}
pEaLocalDebugScanline[nX + m_nRenderSize[0] * y] = nColor;
}
}
}
void CPs3gcmGlobalState::CreateEmptyPixelShader()
{
//////////////////////////////////////////////////////////////////////////
//
// Create an empty pixel shader, upload ucode to local memory
//
m_pShaderPsEmpty = reinterpret_cast< CgBinaryProgram * >( g_dataShaderPsEmpty );
m_pShaderPsEmptyBuffer.Alloc( kAllocPs3GcmShader, m_pShaderPsEmpty->ucodeSize );
V_memcpy( m_pShaderPsEmptyBuffer.DataInLocalMemory(), ( (char*)m_pShaderPsEmpty ) + m_pShaderPsEmpty->ucode, m_pShaderPsEmpty->ucodeSize );
CellGcmContextData * permBufferContext = CmdBufferAlloc( );
uint32 * pBeginPermCmdBuffer = permBufferContext->current;
m_nIoLocalOffsetEmptyFragmentProgramSetupRoutine = CmdBufferToIoOffset( pBeginPermCmdBuffer );
cellGcmSetFragmentProgramInline( permBufferContext, ( CGprogram ) m_pShaderPsEmpty, m_pShaderPsEmptyBuffer.Offset() );
cellGcmSetReturnCommand( permBufferContext );
}
void CPs3gcmGlobalState::CreateIoBuffers()
{
//////////////////////////////////////////////////////////////////////////////
//
// Preallocate IO memory buffers, compute the max memory available to the command buffer
// THe memory is allocated from the end towards the beginning (where the cmd buffer is)
// and the cmd buffer occupies all the extra memory at the start
//
uint nPermanentCmdBufferSize = 16 * 1024; // reduce by padding in the end, to keep nice alignment
g_spuGcm.CreateIoBuffers();
// NOTE: the buffer MUST have 1KB padding in the end to prevent overfetch RSX crash!
m_cmdBufferPermContext.begin = m_cmdBufferPermContext.current = ( uint32* ) IoMemoryPrealloc( 128, nPermanentCmdBufferSize );
m_cmdBufferPermContext.end = ( uint32* )( uintp( m_cmdBufferPermContext.begin ) + nPermanentCmdBufferSize );
m_cmdBufferPermContext.callback = GcmContextPermCallbackError;
// RSX data transfer buffer
m_nRsxDataTransferBufferSize = 0*MB;
m_nRsxDataTransferBufferSize = CalculateMemorySizeFromCmdLineParam( "-gcmSizeTransfer", m_nRsxDataTransferBufferSize );
m_pRsxDataTransferBuffer = IoMemoryPrealloc( 1, m_nRsxDataTransferBufferSize );
// RSX main memory pool buffer
m_nRsxMainMemoryPoolBufferSize = PS3GCM_VBIB_IN_IO_MEMORY ? 60 * MB : 0 * MB;
m_pRsxMainMemoryPoolBuffer = m_nRsxMainMemoryPoolBufferSize ? IoMemoryPrealloc( 128, m_nRsxMainMemoryPoolBufferSize ) : NULL;
}
int CPs3gcmGlobalState::InitVideo()
{
//////////////////////////////////////////////////////////////////////////
//
// Initialize m_display
//
CellVideoOutState videoOutState;
int result = cellVideoOutGetState( CELL_VIDEO_OUT_PRIMARY, 0, &videoOutState);
if ( result < CELL_OK )
return result;
CellVideoOutResolution resolution;
result = cellVideoOutGetResolution( videoOutState.displayMode.resolutionId, &resolution );
if ( result < CELL_OK )
return result;
// Always output scanout in system m_display resolution
m_nRenderSize[0] = resolution.width;
m_nRenderSize[1] = resolution.height;
// Handle special case: 1080p will be upsampled from 720p
if ( resolution.height >= 720 && CommandLine()->FindParm( "-480p" ) )
{
m_nRenderSize[0] = 640;
m_nRenderSize[1] = 480;
videoOutState.displayMode.resolutionId = CELL_VIDEO_OUT_RESOLUTION_480;
}
else if ( resolution.height >= 1080 && !CommandLine()->FindParm( "-1080p" ) )
{
m_nRenderSize[0] = 1280;
m_nRenderSize[1] = 720;
videoOutState.displayMode.resolutionId = CELL_VIDEO_OUT_RESOLUTION_720;
}
//////////////////////////////////////////////////////////////////////////
//
// Set video output
//
CellVideoOutConfiguration videocfg;
memset( &videocfg, 0, sizeof(videocfg) );
videocfg.resolutionId = videoOutState.displayMode.resolutionId;
videocfg.format = CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8R8G8B8;
videocfg.pitch = cellGcmGetTiledPitchSize( m_nRenderSize[0] * 4 );
m_nSurfaceRenderPitch = videocfg.pitch;
// Configure video output
result = cellVideoOutConfigure( CELL_VIDEO_OUT_PRIMARY, &videocfg, NULL, 0 );
if ( result < CELL_OK )
return result;
// Get the new video output
result = cellVideoOutGetState( CELL_VIDEO_OUT_PRIMARY, 0, &videoOutState );
if ( result < CELL_OK )
return result;
m_flRenderAspect = ( videoOutState.displayMode.aspect == CELL_VIDEO_OUT_ASPECT_4_3 ) ? ( 4.0f/3.0f ) : ( 16.0f / 9.0f );
// Set the gamma to deal with TV's having a darker gamma than computer monitors
result = cellSysmoduleLoadModule( CELL_SYSMODULE_AVCONF_EXT );
if ( result == CELL_OK )
{
cellVideoOutSetGamma( CELL_VIDEO_OUT_PRIMARY, 2.2f / 2.5f );
}
else
{
Warning( "***** ERROR calling cellSysmoduleLoadModule( CELL_SYSMODULE_AVCONF_EXT )! Gamma not set!\n" );
return result;
}
// Output video color settings
CellVideoOutDeviceInfo info;
cellVideoOutGetDeviceInfo( CELL_VIDEO_OUT_PRIMARY, 0, &info );
if ( info.rgbOutputRange == CELL_VIDEO_OUT_RGB_OUTPUT_RANGE_LIMITED )
{
DevMsg( "***** Video Out - Limited Range (16-235) - Gamma=%d *****\n", info.colorInfo.gamma );
}
else
{
DevMsg( "***** Video Out - Full Range (0-255) - Gamma=%d *****\n", info.colorInfo.gamma );
}
return CELL_OK;
}
//////////////////////////////////////////////////////////////////////////
//
// Init GCM
//
int CPs3gcmGlobalState::InitGcm()
{
m_nFlushCounter = 0;
int32 result = cellGcmInit( m_nCmdSize, m_nIoSize, m_pIoAddress );
if ( result < CELL_OK )
return result;
g_pGcmSharedData->m_nIoMemorySize = m_nIoSize;
g_pGcmSharedData->m_pIoMemory = m_pIoAddress;
// Set the flip mode
cellGcmSetFlipMode( CELL_GCM_DISPLAY_HSYNC );
cellGcmAddressToOffset( m_pIoAddress, &m_nIoOffsetDelta );
m_nIoOffsetDelta -= uintp( m_pIoAddress );
if( CmdBufferToIoOffset( gCellGcmCurrentContext->begin ) != SYSTEM_CMD_BUFFER_RESERVED_AREA )
{
Warning(
"********************************************************************************\n"
"**********Unexpected GCM system command buffer begin 0x%08x*****************\n"
"********************************************************************************\n",
CmdBufferToIoOffset( gCellGcmCurrentContext->begin )
);
}
#if GCM_CTX_UNSAFE_MODE
// Set custom callback function
GCM_CTX->callback = Ps3gcmGlobalCommandBufferReserveCallback;
m_pCurrentCmdBufferSegmentRSX = ( uint32_t const volatile * ) cellGcmGetLabelAddress( GCM_LABEL_GLOBAL_CMD_BUFFER_BEGIN );
*const_cast< uint32_t * >( m_pCurrentCmdBufferSegmentRSX ) = Ps3gcmGlobalCommandBufferUsageCookie( GCM_CTX, m_pIoAddress, m_nCmdSize );
// In unsafe mode split command buffer into segments
GCM_CTX->end = ( uint32 * )( Ps3gcmGlobalCommandBufferUsageSegmentBytes( m_nCmdSize ) + ( ( char * ) m_pIoAddress ) ) - 4;
m_pCurrentCmdBufferUnflushedBeginRSX = GCM_CTX->begin;
#endif
return CELL_OK;
}
void CPs3gcmGlobalState::Shutdown()
{
// Let RSX wait for final flip
GCM_FUNC( cellGcmSetWaitFlip );
#if GCM_CTX_UNSAFE_MODE
// Let PPU wait for all commands done (include waitFlip)
uint32 rsxref = GetRsxControlNextReferenceValue();
GCM_FUNC( cellGcmFinish, rsxref );
#else
g_spuGcm.Shutdown();
#endif
cellSysmoduleUnloadModule( CELL_SYSMODULE_AVCONF_EXT );
}
void CPs3gcmGlobalState::CmdBufferFlush( CmdBufferFlushType_t eFlushType )
{
Assert( !g_spuGcm.IsDeferredDrawQueue() );
g_spuGcm.CmdBufferFlush();
m_nFlushCounter++;
if ( eFlushType == kFlushEndFrame )
{
extern void Ps3gcmLocalMemoryAllocator_Reclaim();
Ps3gcmLocalMemoryAllocator_Reclaim();
}
}
void CPs3gcmGlobalState::CmdBufferFinish()
{
#if GCM_CTX_UNSAFE_MODE
CmdBufferFlush( CPs3gcmGlobalState::kFlushForcefully );
uint32 rsxref = g_ps3gcmGlobalState.GetRsxControlNextReferenceValue();
GCM_FUNC( cellGcmFinish, rsxref );
#else
g_spuGcm.CmdBufferFinish();
#endif
}
#if GCM_CTX_UNSAFE_MODE
void CPs3gcmGlobalState::CmdBufferReservationCallback( struct CellGcmContextData *context )
{
enum CmdBufferSize_t
{
kJumpCmdSize = 1 * sizeof(uint32),
kSegmentReservedSize = kJumpCmdSize,
};
uint32 const uiOldRsxCookie = Ps3gcmGlobalCommandBufferUsageCookie( context, m_pIoAddress, m_nCmdSize );
uint32 const uiSegmentSize = Ps3gcmGlobalCommandBufferUsageSegmentBytes( m_nCmdSize );
uint32 uiNewBegin = ( ( char * ) context->end ) - ( ( char * ) m_pIoAddress ) + kSegmentReservedSize;
uint32 uiNewEnd = uiNewBegin + uiSegmentSize - kSegmentReservedSize;
if ( uiNewBegin >= m_nCmdSize )
{
uiNewBegin = SYSTEM_CMD_BUFFER_RESERVED_AREA;
uiNewEnd = uiSegmentSize - kSegmentReservedSize;
}
// Let RSX go ahead and grab the currently full segment
cellGcmFlush( context );
// Insert the jump command to jump into the new segment
cellGcmSetJumpCommandUnsafeInline( context, uiNewBegin );
// Prepare the settings for the new segment
context->begin = reinterpret_cast< uint32_t * >( ( ( char * ) m_pIoAddress ) + uiNewBegin );
context->end = reinterpret_cast< uint32_t * >( ( ( char * ) m_pIoAddress ) + uiNewEnd );
context->current = context->begin;
// Make sure that RSX is not using the new context segment
uint32 const uiNewRsxCookie = Ps3gcmGlobalCommandBufferUsageCookie( context, m_pIoAddress, m_nCmdSize );
if ( uiNewRsxCookie != uiOldRsxCookie )
{
while ( uiNewRsxCookie == *m_pCurrentCmdBufferSegmentRSX )
sys_timer_usleep( 30 ); // RSX is still using the segments with the new cookie
// The first word in the new segment will be to have RSX set label marking the segment
// as being used by RSX
cellGcmSetWriteCommandLabelUnsafeInline( context, GCM_LABEL_GLOBAL_CMD_BUFFER_BEGIN, uiNewRsxCookie );
}
#if GCM_CTX_UNSAFE_MODE
m_pCurrentCmdBufferUnflushedBeginRSX = context->current;
#endif
}
#endif
//////////////////////////////////////////////////////////////////////////
void * CPs3gcmGlobalState::IoMemoryPrealloc( uint nAlign, uint nSize )
{
Assert( !( nAlign & ( nAlign - 1 ) ) );
// we never need to allocate with alignment greater than the base of IO address;
// hence we can align the not-preallocated size only
Assert( !( ( nAlign - 1 ) & uintp( m_pIoAddress ) ) );
m_nIoSizeNotPreallocated = ( m_nIoSizeNotPreallocated - nSize ) & ~( nAlign - 1 );
uintp eaIoAddress = uintp( m_pIoAddress ) + m_nIoSizeNotPreallocated;
Assert( !( eaIoAddress & ( nAlign - 1 ) ) );
return m_pIoAddress ? ( void* )eaIoAddress : NULL;
}
void * CPs3gcmGlobalState::IoSlackAlloc( uint nAlign, uint nSize )
{
Assert( m_pIoAddress ); // don't call this in the first pass of CreateIoBuffers() !
Assert( !( nAlign & ( nAlign - 1 ) ) ); // alignment must be sane!
// we never need to allocate with alignment greater than the base of IO address;
// hence we can align the not-preallocated size only
Assert( !( ( nAlign - 1 ) & uintp( m_pIoAddress ) ) );
// preview what the new free io size will be ( may be negative if nSize is too big )
signed int nNewIoSizeNotPreallocated = ( m_nIoSizeNotPreallocated - nSize ) & ~( nAlign - 1 );
if( nNewIoSizeNotPreallocated > signed( m_nCmdSize + s_nCmdSizeSafetyMargin ) )
{
// we still have enough room left for command buffer, so we can allocate this memory and it'll be in IO slack
Msg( "Saving %d kB, using IO memory slack\n", nSize / 1024 );
m_nIoSizeNotPreallocated = nNewIoSizeNotPreallocated;
uintp eaIoAddress = uintp( m_pIoAddress ) + m_nIoSizeNotPreallocated;
Assert( !( eaIoAddress & ( nAlign - 1 ) ) );
return ( void* )eaIoAddress;
}
else
{
return MemAlloc_AllocAligned( nSize, nAlign );
}
}
void CPs3gcmGlobalState::IoSlackFree( void * eaMemory )
{
if( eaMemory && !IsIoMemory( eaMemory ) )
{
MemAlloc_FreeAligned( eaMemory );
}
}
//////////////////////////////////////////////////////////////////////////
//
// Texture layouts
//
//===============================================================================
#ifdef _CERT
#define GLMTEX_FMT_DESC( x )
#else
#define GLMTEX_FMT_DESC( x ) x ,
#endif
#define CELL_GCM_REMAP_MODE_OIO(order, inputARGB, outputARGB) \
(((order)<<16)|((inputARGB))|((outputARGB)<<8))
#define REMAPO( x ) CELL_GCM_TEXTURE_REMAP_ORDER_X##x##XY
#define REMAP4(a,r,g,b) (((a)<<0)|((r)<<2)|((g)<<4)|((b)<<6))
#define REMAP_ARGB REMAP4( CELL_GCM_TEXTURE_REMAP_FROM_A, CELL_GCM_TEXTURE_REMAP_FROM_R, CELL_GCM_TEXTURE_REMAP_FROM_G, CELL_GCM_TEXTURE_REMAP_FROM_B )
#define REMAP_4 REMAP4( CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP )
#define REMAP_13 REMAP4( CELL_GCM_TEXTURE_REMAP_ONE, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP )
#define REMAP_4X(x) REMAP4( x, x, x, x )
#define REMAP_13X(y, x) REMAP4( y, x, x, x )
#define REMAP_ALL_DEFAULT CELL_GCM_REMAP_MODE_OIO( REMAPO(Y), REMAP_ARGB, REMAP_4 )
#define REMAP_ALL_DEFAULT_X CELL_GCM_REMAP_MODE_OIO( REMAPO(X), REMAP_ARGB, REMAP_4 )
#define CAP( x ) CPs3gcmTextureLayout::Format_t::kCap##x
CPs3gcmTextureLayout::Format_t g_ps3texFormats[PS3_TEX_MAX_FORMAT_COUNT] =
{
// summ-name d3d-format
// gcmRemap
// gcmFormat
// gcmPitchPer4X gcmFlags
{ GLMTEX_FMT_DESC("_D16") D3DFMT_D16,
REMAP_ALL_DEFAULT,
8,
CELL_GCM_TEXTURE_DEPTH16,
0 },
{ GLMTEX_FMT_DESC("_D24X8") D3DFMT_D24X8,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_DEPTH24_D8,
0 },
{ GLMTEX_FMT_DESC("_D24S8") D3DFMT_D24S8,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_DEPTH24_D8,
0 },
{ GLMTEX_FMT_DESC("_A8R8G8B8") D3DFMT_A8R8G8B8,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_A8R8G8B8,
CAP(SRGB) },
{ GLMTEX_FMT_DESC("_X8R8G8B8") D3DFMT_X8R8G8B8,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_A8R8G8B8,
CAP(SRGB) },
{ GLMTEX_FMT_DESC("_X1R5G5B5") D3DFMT_X1R5G5B5,
CELL_GCM_REMAP_MODE_OIO( REMAPO(X), REMAP_ARGB, REMAP_13 ),
8,
CELL_GCM_TEXTURE_R5G6B5,
0 },
{ GLMTEX_FMT_DESC("_A1R5G5B5") D3DFMT_A1R5G5B5,
REMAP_ALL_DEFAULT_X,
8,
CELL_GCM_TEXTURE_A1R5G5B5,
0 },
{ GLMTEX_FMT_DESC("_L8") D3DFMT_L8,
CELL_GCM_REMAP_MODE_OIO( REMAPO(Y), REMAP_4X(CELL_GCM_TEXTURE_REMAP_FROM_B), REMAP_13 ),
4,
CELL_GCM_TEXTURE_B8,
0 },
{ GLMTEX_FMT_DESC("_A8L8") D3DFMT_A8L8,
CELL_GCM_REMAP_MODE_OIO( REMAPO(Y), REMAP_13X( CELL_GCM_TEXTURE_REMAP_FROM_G, CELL_GCM_TEXTURE_REMAP_FROM_B), REMAP_4 ),
8,
CELL_GCM_TEXTURE_G8B8,
0 },
{ GLMTEX_FMT_DESC("_DXT1") D3DFMT_DXT1,
CELL_GCM_REMAP_MODE_OIO( REMAPO(Y), REMAP_ARGB, REMAP_13 ),
8,
CELL_GCM_TEXTURE_COMPRESSED_DXT1,
CAP(SRGB) | CAP(4xBlocks) },
{ GLMTEX_FMT_DESC("_DXT3") D3DFMT_DXT3,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_COMPRESSED_DXT23,
CAP(SRGB) | CAP(4xBlocks) },
{ GLMTEX_FMT_DESC("_DXT5") D3DFMT_DXT5,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_COMPRESSED_DXT45,
CAP(SRGB) | CAP(4xBlocks) },
{ GLMTEX_FMT_DESC("_A16B16G16R16F") D3DFMT_A16B16G16R16F,
REMAP_ALL_DEFAULT_X,
32,
CELL_GCM_TEXTURE_W16_Z16_Y16_X16_FLOAT,
0 },
{ GLMTEX_FMT_DESC("_A16B16G16R16") D3DFMT_A16B16G16R16,
REMAP_ALL_DEFAULT_X,
64,
CELL_GCM_TEXTURE_W32_Z32_Y32_X32_FLOAT,
0 },
{ GLMTEX_FMT_DESC("_A32B32G32R32F") D3DFMT_A32B32G32R32F,
REMAP_ALL_DEFAULT_X,
64,
CELL_GCM_TEXTURE_W32_Z32_Y32_X32_FLOAT,
0 },
{ GLMTEX_FMT_DESC("_R8G8B8") D3DFMT_R8G8B8,
CELL_GCM_REMAP_MODE_OIO( REMAPO(Y),
REMAP4( CELL_GCM_TEXTURE_REMAP_FROM_B, CELL_GCM_TEXTURE_REMAP_FROM_A, CELL_GCM_TEXTURE_REMAP_FROM_R, CELL_GCM_TEXTURE_REMAP_FROM_G ),
REMAP_13 ),
16,
CELL_GCM_TEXTURE_A8R8G8B8,
CAP(SRGB) },
{ GLMTEX_FMT_DESC("_A8") D3DFMT_A8,
CELL_GCM_REMAP_MODE_OIO( REMAPO(Y),
REMAP4( CELL_GCM_TEXTURE_REMAP_FROM_B, CELL_GCM_TEXTURE_REMAP_FROM_R, CELL_GCM_TEXTURE_REMAP_FROM_B, CELL_GCM_TEXTURE_REMAP_FROM_B ),
REMAP_13X( CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_ZERO ) ),
4,
CELL_GCM_TEXTURE_B8,
0 },
{ GLMTEX_FMT_DESC("_R5G6B5") D3DFMT_R5G6B5,
CELL_GCM_REMAP_MODE_OIO( REMAPO(Y),
REMAP4( CELL_GCM_TEXTURE_REMAP_FROM_B, CELL_GCM_TEXTURE_REMAP_FROM_A, CELL_GCM_TEXTURE_REMAP_FROM_R, CELL_GCM_TEXTURE_REMAP_FROM_G ),
REMAP_13 ),
16,
CELL_GCM_TEXTURE_A8R8G8B8,
CAP(SRGB) },
{ GLMTEX_FMT_DESC("_Q8W8V8U8") D3DFMT_Q8W8V8U8,
REMAP_ALL_DEFAULT,
16,
CELL_GCM_TEXTURE_A8R8G8B8,
CAP(SRGB) },
};
uint g_nPs3texFormatCount = PS3_TEX_CANONICAL_FORMAT_COUNT;
#undef CAP
#undef GLMTEX_FMT_DESC
static bool Ps3texLayoutLessFunc( CPs3gcmTextureLayout::Key_t const &a, CPs3gcmTextureLayout::Key_t const &b )
{
return ( memcmp( &a, &b, sizeof( CPs3gcmTextureLayout::Key_t ) ) < 0 );
}
static CUtlMap< CPs3gcmTextureLayout::Key_t, CPs3gcmTextureLayout const * > s_ps3texLayouts( Ps3texLayoutLessFunc );
CPs3gcmTextureLayout const * CPs3gcmTextureLayout::New( Key_t const &k )
{
// SPUGCM shared area must be initialized BEFORE anyone calls this function
Assert( g_spuGcmShared.m_eaPs3texFormats == g_ps3texFormats );
// look up 'key' in the map and see if it's a hit, if so, bump the refcount and return
// if not, generate a completed layout based on the key, add to map, set refcount to 1, return that
unsigned short index = s_ps3texLayouts.Find( k );
if ( index != s_ps3texLayouts.InvalidIndex() )
{
CPs3gcmTextureLayout const *layout = s_ps3texLayouts[ index ];
++ layout->m_refCount;
return layout;
}
// Need to generate complete information about the texture layout
uint8 nMips = ( k.m_texFlags & kfMip ) ? k.m_nActualMipCount : 1;
uint8 nFaces = ( k.m_texFlags & kfTypeCubeMap ) ? 6 : 1;
uint32 nSlices = nMips * nFaces;
// Allocate layout memory
size_t numLayoutBytes = sizeof( CPs3gcmTextureLayout ) + nSlices * sizeof( Slice_t );
CPs3gcmTextureLayout *layout = ( CPs3gcmTextureLayout * ) MemAlloc_AllocAligned( numLayoutBytes, 16 );
memset( layout, 0, numLayoutBytes );
memcpy( &layout->m_key, &k, sizeof( Key_t ) );
layout->m_refCount = 1;
// Find the format descriptor
for ( int j = 0; j < PS3_TEX_CANONICAL_FORMAT_COUNT; ++ j )
{
if ( g_ps3texFormats[j].m_d3dFormat == k.m_texFormat )
{
layout->m_nFormat = j;
break;
}
Assert( j != PS3_TEX_CANONICAL_FORMAT_COUNT - 1 );
}
layout->m_mipCount = nMips;
//
// Slices
//
bool bSwizzled = layout->IsSwizzled();
size_t fmtPitch = layout->GetFormatPtr()->m_gcmPitchPer4X;
size_t fmtPitchBlock = ( layout->GetFormatPtr()->m_gcmCaps & CPs3gcmTextureLayout::Format_t::kCap4xBlocks ) ? 16 : 4;
size_t numDataBytes = 0;
Slice_t *pSlice = &layout->m_slices[0];
for ( int face = 0; face < nFaces; ++ face )
{
// For cubemaps every next face in swizzled addressing
// must be aligned on 128-byte boundary
if ( bSwizzled )
{
numDataBytes = ( numDataBytes + 127 ) & ~127;
}
for ( int mip = 0; mip < nMips; ++ mip, ++ pSlice )
{
for ( int j = 0; j < ARRAYSIZE( k.m_size ); ++ j )
{
pSlice->m_size[j] = k.m_size[j] >> mip;
pSlice->m_size[j] = MAX( pSlice->m_size[j], 1 );
}
pSlice->m_storageOffset = numDataBytes;
size_t numTexels;
// For linear layout textures every mip row must be padded to the
// width of the original highest level mip so that the pitch was
// the same for every mip
if ( bSwizzled )
numTexels = ( pSlice->m_size[0] * pSlice->m_size[1] * pSlice->m_size[2] );
else
numTexels = ( k.m_size[0] * pSlice->m_size[1] * pSlice->m_size[2] );
size_t numBytes = ( numTexels * fmtPitch ) / fmtPitchBlock;
if ( layout->GetFormatPtr()->m_gcmCaps & CPs3gcmTextureLayout::Format_t::kCap4xBlocks )
{
// Ensure the size of the smallest mipmap levels of DXT1/3/5 textures (the 1x1 and 2x2 mips) is accurately computed.
numBytes = MAX( numBytes, fmtPitch );
}
pSlice->m_storageSize = MAX( numBytes, 1 );
numDataBytes += pSlice->m_storageSize;
}
}
// Make the total size 128-byte aligned
// Realistically it is required only for depth textures
numDataBytes = ( numDataBytes + 127 ) & ~127;
//
// Tiled and ZCull memory adjustments
//
layout->m_gcmAllocType = kAllocPs3gcmTextureData;
if ( layout->IsTiledMemory() )
{
if( g_nPs3texFormatCount >= PS3_TEX_MAX_FORMAT_COUNT )
{
Error("Modified ps3 format array overflow. Increase PS3_TEX_MAX_FORMAT_COUNT appropriately and recompile\n");
}
Format_t *pModifiedFormat = &g_ps3texFormats[g_nPs3texFormatCount];
V_memcpy( pModifiedFormat, layout->GetFormatPtr(), sizeof( Format_t ) );
layout->m_nFormat = g_nPs3texFormatCount;
g_nPs3texFormatCount ++;
if ( k.m_texFlags & kfTypeDepthStencil )
{
//
// Tiled Zcull Surface
//
uint32 zcullSize[2] = { AlignValue( k.m_size[0], 64 ), AlignValue( k.m_size[1], 64 ) };
uint32 nDepthPitch = cellGcmGetTiledPitchSize( zcullSize[0] * 4 );
pModifiedFormat->m_gcmPitchPer4X = nDepthPitch;
uint32 uDepthBufferSize32bpp = nDepthPitch * zcullSize[1];
uDepthBufferSize32bpp = AlignValue( uDepthBufferSize32bpp, PS3GCMALLOCATIONALIGN( kAllocPs3gcmDepthBuffer ) );
Assert( uDepthBufferSize32bpp >= numDataBytes );
numDataBytes = uDepthBufferSize32bpp;
layout->m_gcmAllocType = kAllocPs3gcmDepthBuffer;
}
else
{
//
// Tiled Color Surface
//
uint32 nTiledPitch = cellGcmGetTiledPitchSize( k.m_size[0] * layout->GetFormatPtr()->m_gcmPitchPer4X / 4 );
pModifiedFormat->m_gcmPitchPer4X = nTiledPitch;
if ( k.m_size[0] == 512 && k.m_size[1] == 512 && k.m_size[2] == 1 )
layout->m_gcmAllocType = kAllocPs3gcmColorBuffer512;
else if ( k.m_size[0] == g_ps3gcmGlobalState.m_nRenderSize[0] && k.m_size[1] == g_ps3gcmGlobalState.m_nRenderSize[1] && k.m_size[2] == 1 )
layout->m_gcmAllocType = kAllocPs3gcmColorBufferFB;
else if ( k.m_size[0] == g_ps3gcmGlobalState.m_nRenderSize[0]/4 && k.m_size[1] == g_ps3gcmGlobalState.m_nRenderSize[1]/4 && k.m_size[2] == 1 )
layout->m_gcmAllocType = kAllocPs3gcmColorBufferFBQ;
else
layout->m_gcmAllocType = kAllocPs3gcmColorBufferMisc;
uint32 uRenderSize = nTiledPitch * AlignValue( k.m_size[1], 32 ); // 32-line vertical alignment required in local memory
if ( layout->m_gcmAllocType == kAllocPs3gcmColorBufferMisc )
uRenderSize = AlignValue( uRenderSize, PS3GCMALLOCATIONALIGN( kAllocPs3gcmColorBufferMisc ) );
Assert( uRenderSize >= numDataBytes );
numDataBytes = uRenderSize;
}
}
layout->m_storageTotalSize = numDataBytes;
//
// Finished creating the layout information
//
#ifndef _CERT
// generate summary
// "target, format, +/- mips, base size"
char scratch[1024];
char *targetname = targetname = "2D ";
if ( layout->IsVolumeTex() )
targetname = "3D ";
if ( layout->IsCubeMap() )
targetname = "CUBE";
sprintf( scratch, "[%s %s %dx%dx%d mips=%d slices=%d flags=%02X%s]",
targetname,
layout->GetFormatPtr()->m_formatSummary,
layout->m_key.m_size[0], layout->m_key.m_size[1], layout->m_key.m_size[2],
nMips,
nSlices,
layout->m_key.m_texFlags,
(layout->m_key.m_texFlags & kfSrgbEnabled) ? " SRGB" : ""
);
layout->m_layoutSummary = strdup( scratch );
#endif
// then insert into map. disregard returned index.
s_ps3texLayouts.Insert( k, layout );
return layout;
}
void CPs3gcmTextureLayout::Release() const
{
-- m_refCount;
// keep the layout in the map for easy access
Assert( m_refCount >= 0 );
}
//////////////////////////////////////////////////////////////////////////
//
// Texture management
//
CPs3gcmTexture * CPs3gcmTexture::New( CPs3gcmTextureLayout::Key_t const &key )
{
//
// Allocate a new layout for the texture
//
CPs3gcmTextureLayout const *pLayout = CPs3gcmTextureLayout::New( key );
if ( !pLayout )
{
Debugger();
return NULL;
}
CPs3gcmTexture *tex = (CPs3gcmTexture *)MemAlloc_AllocAligned( sizeof( CPs3gcmTexture ), 16 );
memset( tex, 0, sizeof( CPs3gcmTexture ) ); // NOTE: This clears the CPs3gcmLocalMemoryBlock
tex->m_layout = pLayout;
CPs3gcmAllocationType_t uAllocationType = pLayout->m_gcmAllocType;
if ( key.m_texFlags & CPs3gcmTextureLayout::kfNoD3DMemory )
{
if ( ( uAllocationType == kAllocPs3gcmDepthBuffer ) || ( uAllocationType == kAllocPs3gcmColorBufferMisc ) )
{
Assert( 0 );
Warning( "ERROR: (CPs3gcmTexture::New) depth/colour buffers should not be marked with kfNoD3DMemory!\n" );
}
else
{
// Early-out, storage will be allocated later (via IDirect3DDevice9::AllocateTextureStorage)
return tex;
}
}
tex->Allocate();
return tex;
}
void CPs3gcmTexture::Release()
{
// Wait for RSX to finish using the texture memory
// and free it later
if ( m_lmBlock.Size() )
{
m_lmBlock.Free();
}
m_layout->Release();
MemAlloc_FreeAligned( this );
}
bool CPs3gcmTexture::Allocate()
{
if ( m_lmBlock.Size() )
{
// Already allocated!
Assert( 0 );
Warning( "ERROR: CPs3gcmTexture::Allocate called twice!\n" );
return true;
}
CPs3gcmAllocationType_t uAllocationType = m_layout->m_gcmAllocType;
const CPs3gcmTextureLayout::Key_t & key = m_layout->m_key;
m_lmBlock.Alloc( uAllocationType, m_layout->m_storageTotalSize );
if ( m_layout->IsTiledMemory() )
{
if ( uAllocationType == kAllocPs3gcmDepthBuffer )
{
bool bIs16BitDepth = ( m_layout->GetFormatPtr()->m_gcmFormat == CELL_GCM_TEXTURE_DEPTH16 ) || ( m_layout->m_nFormat == CELL_GCM_TEXTURE_DEPTH16_FLOAT );
uint32 zcullSize[2] = { AlignValue( key.m_size[0], 64 ), AlignValue( key.m_size[1], 64 ) };
uint32 uiZcullIndex = m_lmBlock.ZcullMemoryIndex();
cellGcmBindZcull( uiZcullIndex,
m_lmBlock.Offset(),
zcullSize[0], zcullSize[1],
m_lmBlock.ZcullMemoryStart(),
bIs16BitDepth ? CELL_GCM_ZCULL_Z16 : CELL_GCM_ZCULL_Z24S8,
CELL_GCM_SURFACE_CENTER_1,
CELL_GCM_ZCULL_LESS,
CELL_GCM_ZCULL_LONES,
CELL_GCM_SCULL_SFUNC_ALWAYS,
0, 0 // sRef, sMask
);
uint32 uiTileIndex = m_lmBlock.TiledMemoryIndex();
cellGcmSetTileInfo( uiTileIndex, CELL_GCM_LOCATION_LOCAL, m_lmBlock.Offset(),
m_layout->m_storageTotalSize, m_layout->DefaultPitch(), bIs16BitDepth ? CELL_GCM_COMPMODE_DISABLED : CELL_GCM_COMPMODE_Z32_SEPSTENCIL_REGULAR,
m_lmBlock.TiledMemoryTagAreaBase(), // The area base + size/0x10000 will be allocated as the tag area.
1 ); // Misc depth buffers on bank 1
cellGcmBindTile( uiTileIndex );
}
else if ( uAllocationType == kAllocPs3gcmColorBufferMisc )
{
uint32 uiTileIndex = m_lmBlock.TiledMemoryIndex();
cellGcmSetTileInfo( uiTileIndex, CELL_GCM_LOCATION_LOCAL, m_lmBlock.Offset(),
m_layout->m_storageTotalSize, m_layout->DefaultPitch(), CELL_GCM_COMPMODE_DISABLED,
m_lmBlock.TiledMemoryTagAreaBase(), // The area base + size/0x10000 will be allocated as the tag area.
1 ); // Tile misc color buffers on bank 1
cellGcmBindTile( uiTileIndex );
}
}
#ifdef _DEBUG
memset( Data(), 0, m_layout->m_storageTotalSize ); // initialize texture data to BLACK in DEBUG
#endif
return true;
}
//////////////////////////////////////////////////////////////////////////
//
// Buffer management
//
CPs3gcmBuffer * CPs3gcmBuffer::New( uint32 uiSize, CPs3gcmAllocationType_t uType )
{
CPs3gcmBuffer * p = new CPs3gcmBuffer;
p->m_lmBlock.Alloc( uType, uiSize );
return p;
}
void CPs3gcmBuffer::Release()
{
// Wait for RSX to finish using the buffer memory
// and free it later
m_lmBlock.Free();
delete this;
}