2021-07-24 21:11:47 -07:00

5906 lines
177 KiB
C++

//========= Copyright (c) Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=====================================================================================//
#ifndef _X360
#ifdef PROTECTED_THINGS_ENABLE
#undef PROTECTED_THINGS_ENABLE
#endif
#endif
#include "platform.h"
// HACK: Need ShellExecute for PSD updates
#ifdef IS_WINDOWS_PC
#include <windows.h>
#include <shellapi.h>
#pragma comment ( lib, "shell32" )
#endif
#include "shaderapi/ishaderapi.h"
#include "materialsystem_global.h"
#include "itextureinternal.h"
#include "utlsymbol.h"
#include "time.h"
#include <sys/types.h>
#include <sys/stat.h>
#include "bitmap/imageformat.h"
#include "bitmap/tgaloader.h"
#include "bitmap/tgawriter.h"
#ifdef _WIN32
#include "direct.h"
#endif
#include "colorspace.h"
#include "string.h"
#ifndef _PS3
#include <malloc.h>
#endif
#include <stdlib.h>
#include "utlmemory.h"
#include "IHardwareConfigInternal.h"
#include "filesystem.h"
#include "tier1/strtools.h"
#include "vtf/vtf.h"
#include "materialsystem/materialsystem_config.h"
#include "mempool.h"
#include "texturemanager.h"
#include "utlbuffer.h"
#include "pixelwriter.h"
#include "tier1/callqueue.h"
#include "tier1/UtlStringMap.h"
#include "filesystem/IQueuedLoader.h"
#include "tier2/fileutils.h"
#include "filesystem.h"
#include "tier2/p4helpers.h"
#include "tier2/tier2.h"
#include "p4lib/ip4.h"
#include "ctype.h"
#include "ifilelist.h"
#include "tier0/icommandline.h"
#include "datacache/imdlcache.h"
#include "tier0/vprof.h"
#ifndef _PS3
#define MATSYS_INTERNAL
#endif
#include "cmaterialsystem.h"
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
// this allows the command line to force the "all mips" flag to on for all textures
bool g_bForceTextureAllMips = false;
#define TEXTURE_FNAME_EXTENSION PLATFORM_EXT ".vtf"
#define TEXTURE_FNAME_EXTENSION_NORMAL "_normal" PLATFORM_EXT ".vtf"
#define TEXTURE_FNAME_EXTENSION_LEN ( sizeof( TEXTURE_FNAME_EXTENSION ) - 1 )
ConVar mat_spewalloc( "mat_spewalloc", "0", FCVAR_ARCHIVE );
ConVar mat_exclude_async_update( "mat_exclude_async_update", "1" );
extern CMaterialSystem g_MaterialSystem;
//-----------------------------------------------------------------------------
// Internal texture flags
//-----------------------------------------------------------------------------
enum InternalTextureFlags
{
TEXTUREFLAGSINTERNAL_ERROR = 0x00000001,
TEXTUREFLAGSINTERNAL_ALLOCATED = 0x00000002,
TEXTUREFLAGSINTERNAL_PRELOADED = 0x00000004, // CONSOLE: textures that went through the preload process
TEXTUREFLAGSINTERNAL_QUEUEDLOAD = 0x00000008, // CONSOLE: load using the queued loader
TEXTUREFLAGSINTERNAL_EXCLUDED = 0x00000020, // actual exclusion state
TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE = 0x00000040, // desired exclusion state
TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET = 0x00000080, // 360: should only allocate texture bits upon first resolve, destroy at level end
TEXTUREFLAGSINTERNAL_CACHEABLE = 0x00000100, // 360: candidate for cacheing
TEXTUREFLAGSINTERNAL_REDUCED = 0x00000200, // CONSOLE: true dimensions forced smaller (i.e. exclusion)
TEXTUREFLAGSINTERNAL_TEMPEXCLUDED = 0x00000400, // actual temporary exclusion state
TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE = 0x00000800, // desired temporary exclusion state
TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE = 0x00001000, // private state bit used by temp exclusions
TEXTUREFLAGSINTERNAL_FORCED_TO_EXCLUDE = 0x00002000, // private state bit used to track/undo an artifical exclusion
TEXTUREFLAGSINTERNAL_ASYNC_DONE = 0x00004000, // async download for texture is done
};
//-----------------------------------------------------------------------------
// Use Warning to show texture flags.
//-----------------------------------------------------------------------------
static void PrintFlags( unsigned int flags )
{
if ( flags & TEXTUREFLAGS_NOMIP )
{
Warning( "TEXTUREFLAGS_NOMIP|" );
}
if ( flags & TEXTUREFLAGS_NOLOD )
{
Warning( "TEXTUREFLAGS_NOLOD|" );
}
if ( flags & TEXTUREFLAGS_POINTSAMPLE )
{
Warning( "TEXTUREFLAGS_POINTSAMPLE|" );
}
if ( flags & TEXTUREFLAGS_TRILINEAR )
{
Warning( "TEXTUREFLAGS_TRILINEAR|" );
}
if ( flags & TEXTUREFLAGS_CLAMPS )
{
Warning( "TEXTUREFLAGS_CLAMPS|" );
}
if ( flags & TEXTUREFLAGS_CLAMPT )
{
Warning( "TEXTUREFLAGS_CLAMPT|" );
}
if ( flags & TEXTUREFLAGS_HINT_DXT5 )
{
Warning( "TEXTUREFLAGS_HINT_DXT5|" );
}
if ( flags & TEXTUREFLAGS_ANISOTROPIC )
{
Warning( "TEXTUREFLAGS_ANISOTROPIC|" );
}
if ( flags & TEXTUREFLAGS_PROCEDURAL )
{
Warning( "TEXTUREFLAGS_PROCEDURAL|" );
}
if ( flags & TEXTUREFLAGS_ALL_MIPS )
{
Warning( "TEXTUREFLAGS_ALL_MIPS|" );
}
if ( flags & TEXTUREFLAGS_MOST_MIPS )
{
Warning( "TEXTUREFLAGS_MOST_MIPS|" );
}
if ( flags & TEXTUREFLAGS_SINGLECOPY )
{
Warning( "TEXTUREFLAGS_SINGLECOPY|" );
}
}
namespace TextureLodOverride
{
struct OverrideInfo
{
OverrideInfo() : x( 0 ), y( 0 ) {}
OverrideInfo( int8 x_, int8 y_ ) : x( x_ ), y( y_ ) {}
int8 x, y;
};
// Override map
typedef CUtlStringMap< OverrideInfo > OverrideMap_t;
OverrideMap_t s_OverrideMap;
// Retrieves the override info adjustments
OverrideInfo Get( char const *szName )
{
UtlSymId_t idx = s_OverrideMap.Find( szName );
if ( idx != s_OverrideMap.InvalidIndex() )
return s_OverrideMap[ idx ];
else
return OverrideInfo();
}
// Combines the existing override info adjustments with the given one
void Add( char const *szName, OverrideInfo oi )
{
OverrideInfo oiex = Get( szName );
oiex.x += oi.x;
oiex.y += oi.y;
s_OverrideMap[ szName ] = oiex;
}
}; // end namespace TextureLodOverride
namespace TextureLodExclude
{
typedef CUtlStringMap< int > ExcludeMap_t;
ExcludeMap_t s_ExcludeMap;
int Get( char const *szName )
{
UtlSymId_t idx = s_ExcludeMap.Find( szName );
if ( idx != s_ExcludeMap.InvalidIndex() )
{
return s_ExcludeMap[ idx ];
}
else
{
return -1;
}
}
void Add( char const *szName, int iOverride )
{
UtlSymId_t idx = s_ExcludeMap.Find( szName );
if ( idx != s_ExcludeMap.InvalidIndex() )
{
int &x = s_ExcludeMap[ idx ];
x = iOverride;
}
else
{
s_ExcludeMap[ szName ] = iOverride;
}
}
}; // end namespace TextureLodExclude
//-----------------------------------------------------------------------------
// Base texture class
//-----------------------------------------------------------------------------
class CTexture : public ITextureInternal
{
public:
CTexture();
virtual ~CTexture();
virtual const char *GetName( void ) const;
const char *GetTextureGroupName( void ) const;
// Stats about the texture itself
virtual ImageFormat GetImageFormat() const;
virtual int GetMappingWidth() const;
virtual int GetMappingHeight() const;
virtual int GetActualWidth() const;
virtual int GetActualHeight() const;
virtual int GetNumAnimationFrames() const;
virtual bool IsTranslucent() const;
virtual void GetReflectivity( Vector& reflectivity );
// Reference counting
virtual void IncrementReferenceCount( );
virtual void DecrementReferenceCount( );
virtual int GetReferenceCount() const;
// Used to modify the texture bits (procedural textures only)
virtual void SetTextureRegenerator( ITextureRegenerator *pTextureRegen, bool releaseExisting = true );
// Little helper polling methods
virtual bool IsNormalMap( ) const;
virtual bool IsCubeMap( void ) const;
virtual bool IsRenderTarget( ) const;
virtual bool IsTempRenderTarget( void ) const;
virtual bool IsProcedural() const;
virtual bool IsMipmapped() const;
virtual bool IsError() const;
virtual bool IsDefaultPool() const;
// For volume textures
virtual bool IsVolumeTexture() const;
virtual int GetMappingDepth() const;
virtual int GetActualDepth() const;
// Various ways of initializing the texture
void InitFileTexture( const char *pTextureFile, const char *pTextureGroupName );
void InitProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, int d, ImageFormat fmt, int nFlags );
// Releases the texture's hw memory
void Release();
virtual void OnRestore();
// Sets the filtering modes on the texture we're modifying
void SetFilteringAndClampingMode();
void Download( Rect_t *pRect = NULL, int nAdditionalCreationFlags = 0 );
// Loads up information about the texture
virtual void Precache();
// FIXME: Bogus methods... can we please delete these?
virtual void GetLowResColorSample( float s, float t, float *color ) const;
// Gets texture resource data of the specified type.
// Params:
// eDataType type of resource to retrieve.
// pnumBytes on return is the number of bytes available in the read-only data buffer or is undefined
// Returns:
// pointer to the resource data, or NULL. Note that the data from this pointer can disappear when
// the texture goes away - you want to copy this data!
virtual void *GetResourceData( uint32 eDataType, size_t *pNumBytes ) const;
virtual int GetApproximateVidMemBytes( void ) const;
// Stretch blit the framebuffer into this texture.
virtual void CopyFrameBufferToMe( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL );
virtual void CopyMeToFrameBuffer( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL );
virtual ITexture *GetEmbeddedTexture( int nIndex );
// Get the shaderapi texture handle associated w/ a particular frame
virtual ShaderAPITextureHandle_t GetTextureHandle( int nFrame, int nChannel = 0 );
// Sets the texture as the render target
virtual void Bind( Sampler_t sampler, TextureBindFlags_t nBindFlags );
virtual void Bind( Sampler_t sampler1, TextureBindFlags_t nBindFlags, int nFrame, Sampler_t sampler2 = SHADER_SAMPLER_INVALID );
virtual void BindVertexTexture( VertexTextureSampler_t stage, int nFrame );
// Set this texture as a render target
bool SetRenderTarget( int nRenderTargetID );
// Set this texture as a render target (optionally set depth texture as depth buffer as well)
bool SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture);
virtual void MarkAsPreloaded( bool bSet );
virtual bool IsPreloaded() const;
virtual void MarkAsExcluded( bool bSet, int nDimensionsLimit, bool bMarkAsTrumpedExclude );
virtual bool UpdateExcludedState();
// Retrieve the vtf flags mask
virtual unsigned int GetFlags( void ) const;
virtual void ForceLODOverride( int iNumLodsOverrideUpOrDown );
virtual void ForceExcludeOverride( int iExcludeOverride );
//this isn't a MultiRenderTarget texture, do nothing
virtual void AddDownsizedSubTarget( const char *pName, int iDownsizePow2, MaterialRenderTargetDepth_t depth ) {}
virtual void SetActiveSubTarget( const char *pName ) {}
void GetFilename( char *pOut, int maxLen ) const;
virtual void ReloadFilesInList( IFileList *pFilesToReload );
#ifdef _PS3
virtual void Ps3gcmRawBufferAlias( char const *pRTName );
#endif
virtual bool MarkAsTempExcluded( bool bSet, int nExcludedDimensionLimit );
virtual bool IsTempExcluded() const;
virtual bool CanBeTempExcluded() const;
virtual bool FinishAsyncDownload( AsyncTextureContext_t *pContext, void *pData, int nNumReadBytes, bool bAbort, float flMaxTimeMs );
virtual bool IsForceExcluded() const;
virtual bool ClearForceExclusion();
virtual bool IsAsyncDone() const;
protected:
bool IsDepthTextureFormat( ImageFormat fmt );
void ReconstructTexture( void *pSourceData = NULL, int nSourceDataSize = 0 );
void ReconstructPartialTexture( const Rect_t *pRect );
bool HasBeenAllocated() const;
void WriteDataToShaderAPITexture( int nFrameCount, int nFaceCount, int nFirstFace, int nMipCount, IVTFTexture *pVTFTexture, ImageFormat fmt );
// Initializes/shuts down the texture
void Init( int w, int h, int d, ImageFormat fmt, int iFlags, int iFrameCount );
void Shutdown();
// Sets the texture name
void SetName( const char* pName );
// Assigns/releases texture IDs for our animation frames
void AllocateTextureHandles();
void ReleaseTextureHandles();
// Calculates info about whether we can make the texture smaller and by how much
// Returns the number of skipped mip levels
int ComputeActualSize( bool bIgnorePicmip = false, IVTFTexture *pVTFTexture = NULL );
// Computes the actual format of the texture given a desired src format
ImageFormat ComputeActualFormat( ImageFormat srcFormat );
// Compute the actual mip count based on the actual size
int ComputeActualMipCount( ) const;
// Creates/releases the shader api texture
virtual bool AllocateShaderAPITextures();
virtual void FreeShaderAPITextures();
// Download bits
void DownloadTexture( Rect_t *pRect, void *pSourceData = NULL, int nSourceDataSize = 0 );
bool DownloadAsyncTexture( AsyncTextureContext_t *pContext, void *pSourceData, int nSourceDataSize, float flMaxTimeMs );
void ReconstructTextureBits( Rect_t *pRect );
// Gets us modifying a particular frame of our texture
void Modify( int iFrame );
// Sets the texture clamping state on the currently modified frame
void SetWrapState( );
// Sets the texture filtering state on the currently modified frame
void SetFilterState();
// Loads the texture bits from a file. Optionally provides absolute path
IVTFTexture *LoadTexttureBitsFromFileOrData( void *pSourceData, int nSourceDataSize, char **pResolvedFilename );
IVTFTexture *LoadTextureBitsFromFile( char *pCacheFileName, char **pResolvedFilename );
IVTFTexture *LoadTextureBitsFromData( char *pCacheFileName, void *pSourceData, int nSourceDataSize );
IVTFTexture *HandleFileLoadFailedTexture( IVTFTexture *pVTFTexture );
// Generates the procedural bits
IVTFTexture *ReconstructProceduralBits( );
IVTFTexture *ReconstructPartialProceduralBits( const Rect_t *pRect, Rect_t *pActualRect );
// Sets up debugging texture bits, if appropriate
bool SetupDebuggingTextures( IVTFTexture *pTexture );
// Generate a texture that shows the various mip levels
void GenerateShowMipLevelsTextures( IVTFTexture *pTexture );
// Generate a RGBA 128 128 128 255 gray texture
void GenerateGrayTexture( IVTFTexture *pTexture );
void Cleanup( void );
// Converts a source image read from disk into its actual format
bool ConvertToActualFormat( IVTFTexture *pTexture );
// Builds the low-res image from the texture
void LoadLowResTexture( IVTFTexture *pTexture );
void CopyLowResImageToTexture( IVTFTexture *pTexture );
void GetDownloadFaceCount( int &nFirstFace, int &nFaceCount );
void ComputeMipLevelSubRect( const Rect_t* pSrcRect, int nMipLevel, Rect_t *pSubRect );
IVTFTexture *GetScratchVTFTexture();
IVTFTexture *GetScratchVTFAsyncTexture();
int GetOptimalReadBuffer( FileHandle_t hFile, int nFileSize, CUtlBuffer &optimalBuffer );
void FreeOptimalReadBuffer( int nMaxSize );
void ApplyRenderTargetSizeMode( int &width, int &height, ImageFormat fmt );
virtual bool IsMultiRenderTarget( void ) { return false; }
void LoadResourceData( IVTFTexture *pTexture );
void FreeResourceData();
protected:
#ifdef _DEBUG
char *m_pDebugName;
#endif
// Reflectivity vector
Vector m_vecReflectivity;
CUtlSymbol m_Name;
CUtlSymbol m_ExcludedResolvedFileName;
CUtlSymbol m_ResolvedFileName;
FSAsyncControl_t m_hAsyncControl;
// What texture group this texture is in (winds up setting counters based on the group name,
// then the budget panel views the counters).
CUtlSymbol m_TextureGroupName;
unsigned int m_nFlags;
unsigned int m_nInternalFlags;
CInterlockedInt m_nRefCount;
// This is the *desired* image format, which may or may not represent reality
ImageFormat m_ImageFormat;
// mappingWidth/Height and actualWidth/Height only differ
// if g_config.skipMipLevels != 0, or if the card has a hard limit
// on the maximum texture size
// This is the iWidth/iHeight for the data that m_pImageData points to.
unsigned short m_nMappingWidth;
unsigned short m_nMappingHeight;
unsigned short m_nMappingDepth;
// This is the iWidth/iHeight for whatever is downloaded to the card.
unsigned short m_nActualWidth; // needed for procedural
unsigned short m_nActualHeight; // needed for procedural
unsigned short m_nActualDepth;
unsigned short m_nActualMipCount; // Mip count when it's actually used
unsigned short m_nFrameCount;
unsigned short m_nOriginalRTWidth; // The values they initially specified. We generated a different width
unsigned short m_nOriginalRTHeight; // and height based on screen size and the flags they specify.
unsigned char m_LowResImageWidth;
unsigned char m_LowResImageHeight;
short m_nDesiredDimensionLimit; // part of texture exclusion
short m_nDesiredTempDimensionLimit;
short m_nActualDimensionLimit; // value not necessarily accurate, but mismatch denotes dirty state
unsigned short m_nMipSkipCount;
// The set of texture ids for each animation frame
ShaderAPITextureHandle_t *m_pTextureHandles;
// a temporary copy of the texture handles used to support the temporary exclude feature
ShaderAPITextureHandle_t *m_pTempTextureHandles;
// lowresimage info - used for getting color data from a texture
// without having a huge system mem overhead.
// FIXME: We should keep this in compressed form. .is currently decompressed at load time.
#if !defined( _GAMECONSOLE )
unsigned char *m_pLowResImage;
#else
unsigned char m_LowResImageSample[4];
#endif
ITextureRegenerator *m_pTextureRegenerator;
// Used to help decide whether or not to recreate the render target if AA changes.
RenderTargetType_t m_nOriginalRenderTargetType;
RenderTargetSizeMode_t m_RenderTargetSizeMode;
// Fixed-size allocator
// DECLARE_FIXEDSIZE_ALLOCATOR( CTexture );
public:
void InitRenderTarget( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode,
ImageFormat fmt, RenderTargetType_t type, unsigned int textureFlags,
unsigned int renderTargetFlags );
virtual void DeleteIfUnreferenced();
#if defined( _GAMECONSOLE )
virtual bool ClearTexture( int r, int g, int b, int a );
#endif
#if defined( _X360 )
virtual bool CreateRenderTargetSurface( int width, int height, ImageFormat format, bool bSameAsTexture, RTMultiSampleCount360_t multiSampleCount = RT_MULTISAMPLE_NONE );
#endif
void FixupTexture( const void *pData, int nSize, LoaderError_t loaderError );
void SwapContents( ITexture *pOther );
protected:
// private data, generally from VTF resource extensions
struct DataChunk
{
void Allocate( unsigned int numBytes )
{
m_pvData = new unsigned char[ numBytes ];
m_numBytes = numBytes;
}
void Deallocate() const { delete [] m_pvData; }
unsigned int m_eType;
unsigned int m_numBytes;
unsigned char *m_pvData;
};
CUtlVector< DataChunk > m_arrDataChunks;
private:
bool ScheduleExcludeAsyncDownload();
bool ScheduleAsyncDownload();
};
//a render target that is actually multiple textures that can be swapped out depending on the situation. Mostly to support recursive water in portal
class CTexture_MultipleRenderTarget : public CTexture
{
public:
typedef CTexture BaseClass;
CTexture_MultipleRenderTarget() :
m_nActiveTarget( -1 ),
m_nQueuedActiveTarget( -1 )
{
}
virtual void Bind( Sampler_t sampler, TextureBindFlags_t nBindFlags )
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
Assert( m_nActiveTarget < m_Targets.Count() );
if( m_nActiveTarget < 0 )
return BaseClass::Bind( sampler, nBindFlags );
if( m_nActiveTarget < m_Targets.Count() )
{
g_pShaderAPI->BindTexture( sampler, nBindFlags, m_Targets[m_nActiveTarget].handle );
}
else
{
g_pShaderAPI->BindTexture( sampler, nBindFlags, INVALID_SHADERAPI_TEXTURE_HANDLE );
}
}
virtual void Bind( Sampler_t sampler1, TextureBindFlags_t nBindFlags, int nFrame, Sampler_t sampler2 = SHADER_SAMPLER_INVALID )
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
Assert( m_nActiveTarget < m_Targets.Count() );
if( m_nActiveTarget < 0 )
return BaseClass::Bind( sampler1, nBindFlags, nFrame, sampler2 );
if ( g_pShaderDevice->IsUsingGraphics() )
{
if( m_nActiveTarget < m_Targets.Count() )
{
g_pShaderAPI->BindTexture( sampler1, nBindFlags, m_Targets[m_nActiveTarget].handle );
}
else
{
g_pShaderAPI->BindTexture( sampler1, nBindFlags, INVALID_SHADERAPI_TEXTURE_HANDLE );
}
}
}
virtual ShaderAPITextureHandle_t GetTextureHandle( int nFrame, int nTextureChannel =0 )
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
Assert( m_nActiveTarget < m_Targets.Count() );
if( m_nActiveTarget < 0 )
return BaseClass::GetTextureHandle( nFrame, nTextureChannel );
if( m_nActiveTarget < m_Targets.Count() )
{
return m_Targets[m_nActiveTarget].handle;
}
else
{
return INVALID_SHADERAPI_TEXTURE_HANDLE;
}
}
virtual void AddDownsizedSubTarget( const char *szName, int iDownsizePow2, MaterialRenderTargetDepth_t depth )
{
// normalize and convert to a symbol
char szCleanName[MAX_PATH];
SubTarget_t temp;
temp.name = NormalizeTextureName( szName, szCleanName, sizeof( szCleanName ) );
temp.iDownSizePow2 = iDownsizePow2;
temp.handle = INVALID_SHADERAPI_TEXTURE_HANDLE;
temp.depthHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
temp.bHasSeparateDepth = (depth == MATERIAL_RT_DEPTH_SEPARATE) || (depth == MATERIAL_RT_DEPTH_ONLY);
if( IsX360() )
{
if( HasBeenAllocated() )
{
//need to initialize these handles now
extern int GetCreationFlags( int iTextureFlags, int iInternalTextureFlags, ImageFormat fmt ); //defined about 1000 lines down where it makes more logical sense to be
int nCreateFlags = GetCreationFlags( m_nFlags, m_nInternalFlags, m_ImageFormat );
// For depth only render target: adjust texture width/height
// Currently we just leave it the same size, will update with further testing
int nShaderApiCreateTextureDepth = ( ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) && ( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) ) ? 1 : m_nActualDepth;
// Create all animated texture frames in a single call
g_pShaderAPI->CreateTextures(
&temp.handle, 1,
m_nActualWidth / iDownsizePow2, m_nActualHeight / iDownsizePow2, nShaderApiCreateTextureDepth, m_ImageFormat, m_nActualMipCount,
1, nCreateFlags, GetName(), GetTextureGroupName() );
// Create the depth render target buffer
if ( temp.bHasSeparateDepth )
{
MEM_ALLOC_CREDIT();
char debugName[128];
sprintf( debugName, "%s_ZBuffer", GetName() );
temp.depthHandle = g_pShaderAPI->CreateDepthTexture(
m_ImageFormat,
m_nActualWidth / iDownsizePow2,
m_nActualHeight / iDownsizePow2,
debugName,
( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) );
}
#if defined( PLATFORM_X360 )
//if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) )
{
// RT surface is expected at end of array
temp.surfaceHandle = g_pShaderAPI->CreateRenderTargetSurface( m_nActualWidth / iDownsizePow2, m_nActualHeight / iDownsizePow2, m_ImageFormat, RT_MULTISAMPLE_NONE, GetName(), TEXTURE_GROUP_RENDER_TARGET_SURFACE );
}
#endif
}
}
else
{
Assert( HasBeenAllocated() );
}
m_Targets.AddToTail( temp );
}
virtual void SetActiveSubTarget( const char *szName )
{
ICallQueue *pCallQueue = materials->GetRenderContext()->GetCallQueue();
if ( pCallQueue )
{
m_nQueuedActiveTarget = -1;
if( szName == NULL )
{
return;
}
char szCleanName[MAX_PATH];
NormalizeTextureName( szName, szCleanName, sizeof( szCleanName ) );
for( int i = 0; i != m_Targets.Count(); ++i )
{
if( m_Targets[i].name == szCleanName )
{
m_nQueuedActiveTarget = i;
break;
}
}
pCallQueue->QueueCall( this, &CTexture_MultipleRenderTarget::SetActiveSubTarget, szName );
return;
}
else
{
m_nActiveTarget = -1;
if( szName == NULL )
{
return;
}
char szCleanName[MAX_PATH];
NormalizeTextureName( szName, szCleanName, sizeof( szCleanName ) );
for( int i = 0; i != m_Targets.Count(); ++i )
{
if( m_Targets[i].name == szCleanName )
{
m_nActiveTarget = i;
break;
}
}
}
}
virtual int GetActualWidth() const
{
int iDownSize = 1;
ICallQueue *pCallQueue = materials->GetRenderContext()->GetCallQueue();
if ( pCallQueue )
{
Assert( m_nQueuedActiveTarget < m_Targets.Count() );
if( (m_nQueuedActiveTarget >= 0) && (m_nQueuedActiveTarget < m_Targets.Count()) )
{
iDownSize = m_Targets[m_nQueuedActiveTarget].iDownSizePow2;
}
}
else
{
Assert( m_nActiveTarget < m_Targets.Count() );
if( (m_nActiveTarget >= 0) && (m_nActiveTarget < m_Targets.Count()) )
{
iDownSize = m_Targets[m_nActiveTarget].iDownSizePow2;
}
}
return BaseClass::GetActualWidth() / iDownSize;
}
virtual int GetActualHeight() const
{
int iDownSize = 1;
ICallQueue *pCallQueue = materials->GetRenderContext()->GetCallQueue();
if ( pCallQueue )
{
Assert( m_nQueuedActiveTarget < m_Targets.Count() );
if( (m_nQueuedActiveTarget >= 0) && (m_nQueuedActiveTarget < m_Targets.Count()) )
{
iDownSize = m_Targets[m_nQueuedActiveTarget].iDownSizePow2;
}
}
else
{
Assert( m_nActiveTarget < m_Targets.Count() );
if( (m_nActiveTarget >= 0) && (m_nActiveTarget < m_Targets.Count()) )
{
iDownSize = m_Targets[m_nActiveTarget].iDownSizePow2;
}
}
return BaseClass::GetActualHeight() / iDownSize;
}
virtual bool AllocateShaderAPITextures()
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
Assert( !HasBeenAllocated() );
if ( !BaseClass::AllocateShaderAPITextures() )
return false;
if( m_Targets.Count() == 0 )
return true;
extern int GetCreationFlags( int iTextureFlags, int iInternalTextureFlags, ImageFormat fmt ); //defined about 1000 lines down where it makes more logical sense to be
int nCreateFlags = GetCreationFlags( m_nFlags, m_nInternalFlags, m_ImageFormat );
// For depth only render target: adjust texture width/height
// Currently we just leave it the same size, will update with further testing
int nShaderApiCreateTextureDepth = ( ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) && ( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) ) ? 1 : m_nActualDepth;
for( int i = 0; i != m_Targets.Count(); ++i )
{
// Create all animated texture frames in a single call
g_pShaderAPI->CreateTextures(
&m_Targets[i].handle, 1,
m_nActualWidth / m_Targets[i].iDownSizePow2, m_nActualHeight / m_Targets[i].iDownSizePow2, nShaderApiCreateTextureDepth, m_ImageFormat, m_nActualMipCount,
1, nCreateFlags, GetName(), GetTextureGroupName() );
// Create the depth render target buffer
if ( m_Targets[i].bHasSeparateDepth )
{
MEM_ALLOC_CREDIT();
char debugName[128];
sprintf( debugName, "%s_ZBuffer", GetName() );
m_Targets[i].depthHandle = g_pShaderAPI->CreateDepthTexture(
m_ImageFormat,
m_nActualWidth / m_Targets[i].iDownSizePow2,
m_nActualHeight / m_Targets[i].iDownSizePow2,
debugName,
( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) );
}
#if defined( PLATFORM_X360 )
//if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) )
{
// RT surface is expected at end of array
m_Targets[i].surfaceHandle = g_pShaderAPI->CreateRenderTargetSurface( m_nActualWidth / m_Targets[i].iDownSizePow2, m_nActualHeight / m_Targets[i].iDownSizePow2, m_ImageFormat, RT_MULTISAMPLE_NONE, GetName(), TEXTURE_GROUP_RENDER_TARGET_SURFACE );
}
#endif
}
return true;
}
virtual void FreeShaderAPITextures()
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
for( int i = 0; i != m_Targets.Count(); ++i )
{
if ( g_pShaderAPI->IsTexture( m_Targets[i].handle ) )
{
g_pShaderAPI->DeleteTexture( m_Targets[i].handle );
m_Targets[i].handle = INVALID_SHADERAPI_TEXTURE_HANDLE;
}
if ( g_pShaderAPI->IsTexture( m_Targets[i].depthHandle ) )
{
g_pShaderAPI->DeleteTexture( m_Targets[i].depthHandle );
m_Targets[i].depthHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
}
#if defined( PLATFORM_X360 )
if ( g_pShaderAPI->IsTexture( m_Targets[i].surfaceHandle ) )
{
g_pShaderAPI->DeleteTexture( m_Targets[i].surfaceHandle );
m_Targets[i].surfaceHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
}
#endif
}
BaseClass::FreeShaderAPITextures();
}
//-----------------------------------------------------------------------------
// Set this texture as a render target
//-----------------------------------------------------------------------------
virtual bool SetRenderTarget( int nRenderTargetID )
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
return SetRenderTarget( nRenderTargetID, NULL );
}
//-----------------------------------------------------------------------------
// Set this texture as a render target
// Optionally bind pDepthTexture as depth buffer
//-----------------------------------------------------------------------------
bool SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture )
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
Assert( m_nActiveTarget < m_Targets.Count() );
if( (m_nActiveTarget < 0) || (m_nActiveTarget >= m_Targets.Count()) )
return BaseClass::SetRenderTarget( nRenderTargetID, pDepthTexture );
if ( ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) == 0 )
return false;
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() );
ShaderAPITextureHandle_t textureHandle;
#if !defined( PLATFORM_X360 )
{
textureHandle = m_Targets[m_nActiveTarget].handle;
}
#else
{
textureHandle = m_Targets[m_nActiveTarget].surfaceHandle;
}
#endif
ShaderAPITextureHandle_t depthTextureHandle = (unsigned int)SHADER_RENDERTARGET_DEPTHBUFFER;
if ( m_Targets[m_nActiveTarget].bHasSeparateDepth )
{
depthTextureHandle = m_Targets[m_nActiveTarget].depthHandle;
}
else if ( m_nFlags & TEXTUREFLAGS_NODEPTHBUFFER )
{
// GR - render target without depth buffer
depthTextureHandle = (unsigned int)SHADER_RENDERTARGET_NONE;
}
if ( pDepthTexture)
{
depthTextureHandle = static_cast<ITextureInternal *>(pDepthTexture)->GetTextureHandle(0);
}
g_pShaderAPI->SetRenderTargetEx( nRenderTargetID, textureHandle, depthTextureHandle );
return true;
}
// Stretch blit the framebuffer into this texture.
virtual void CopyFrameBufferToMe( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL )
{
Assert( materials->GetRenderContext()->GetCallQueue() == NULL );
Assert( m_nActiveTarget < m_Targets.Count() );
if( (m_nActiveTarget < 0) || (m_nActiveTarget >= m_Targets.Count()) )
return BaseClass::CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect );
Assert( m_pTextureHandles && m_nFrameCount >= 1 );
if ( IsX360() &&
( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET ) &&
!HasBeenAllocated() )
{
//need to create the texture bits now
//to avoid creating the texture bits previously, we simply skipped this step
if ( !AllocateShaderAPITextures() )
return;
}
if ( m_pTextureHandles && m_nFrameCount >= 1 )
{
g_pShaderAPI->CopyRenderTargetToTextureEx( m_Targets[m_nActiveTarget].handle, nRenderTargetID, pSrcRect, pDstRect );
}
}
virtual bool IsMultiRenderTarget( void ) { return true; }
struct SubTarget_t
{
CUtlSymbol name;
int iDownSizePow2;
ShaderAPITextureHandle_t handle;
ShaderAPITextureHandle_t depthHandle;
#if defined( PLATFORM_X360 )
ShaderAPITextureHandle_t surfaceHandle;
#endif
bool bHasSeparateDepth;
};
CUtlVector< SubTarget_t > m_Targets;
int m_nActiveTarget;
int m_nQueuedActiveTarget;
};
//////////////////////////////////////////////////////////////////////////
//
// CReferenceToHandleTexture is a special implementation of ITexture
// to be used solely for binding the texture handle when rendering.
// It is used when a D3D texture handle is available, but should be used
// at a higher level of abstraction requiring an ITexture or ITextureInternal.
//
//////////////////////////////////////////////////////////////////////////
class CReferenceToHandleTexture : public ITextureInternal
{
public:
CReferenceToHandleTexture();
virtual ~CReferenceToHandleTexture();
virtual const char *GetName( void ) const { return m_Name.String(); }
const char *GetTextureGroupName( void ) const { return m_TextureGroupName.String(); }
// Stats about the texture itself
virtual ImageFormat GetImageFormat() const { return IMAGE_FORMAT_UNKNOWN; }
virtual int GetMappingWidth() const { return 1; }
virtual int GetMappingHeight() const { return 1; }
virtual int GetActualWidth() const { return m_nActualWidth; }
virtual int GetActualHeight() const { return m_nActualHeight; }
virtual int GetNumAnimationFrames() const { return 1; }
virtual bool IsTranslucent() const { return false; }
virtual void GetReflectivity( Vector& reflectivity ) { reflectivity.Zero(); }
// Reference counting
virtual void IncrementReferenceCount( ) { ++ m_nRefCount; }
virtual void DecrementReferenceCount( ) { -- m_nRefCount; }
virtual int GetReferenceCount( ) const { return m_nRefCount; }
// Used to modify the texture bits (procedural textures only)
virtual void SetTextureRegenerator( ITextureRegenerator *pTextureRegen, bool releaseExisting = true ) { NULL; }
// Little helper polling methods
virtual bool IsNormalMap( ) const { return false; }
virtual bool IsCubeMap( void ) const { return false; }
virtual bool IsRenderTarget( ) const { return false; }
virtual bool IsTempRenderTarget( void ) const { return false; }
virtual bool IsProcedural() const { return true; }
virtual bool IsMipmapped() const { return false; }
virtual bool IsError() const { return false; }
virtual bool IsDefaultPool() const { return false; }
// For volume textures
virtual bool IsVolumeTexture() const { return false; }
virtual int GetMappingDepth() const { return 1; }
virtual int GetActualDepth() const { return 1; }
// Releases the texture's hw memory
void Release() { NULL; }
virtual void OnRestore() { NULL; }
// Sets the filtering modes on the texture we're modifying
void SetFilteringAndClampingMode() { NULL; }
void Download( Rect_t *pRect = NULL, int nAdditionalCreationFlags = 0 ) { NULL; }
// Loads up information about the texture
virtual void Precache() { NULL; }
// FIXME: Bogus methods... can we please delete these?
virtual void GetLowResColorSample( float s, float t, float *color ) const { NULL; }
// Gets texture resource data of the specified type.
// Params:
// eDataType type of resource to retrieve.
// pnumBytes on return is the number of bytes available in the read-only data buffer or is undefined
// Returns:
// pointer to the resource data, or NULL. Note that the data from this pointer can disappear when
// the texture goes away - you want to copy this data!
virtual void *GetResourceData( uint32 eDataType, size_t *pNumBytes ) const { return NULL; }
virtual int GetApproximateVidMemBytes( void ) const { return 32; }
// Stretch blit the framebuffer into this texture.
virtual void CopyFrameBufferToMe( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL ) { NULL; }
virtual void CopyMeToFrameBuffer( int nRenderTargetID = 0, Rect_t *pSrcRect = NULL, Rect_t *pDstRect = NULL ) { NULL; }
virtual ITexture *GetEmbeddedTexture( int nIndex ) { return ( nIndex == 0 ) ? this : NULL; }
// Get the shaderapi texture handle associated w/ a particular frame
virtual ShaderAPITextureHandle_t GetTextureHandle( int nFrame, int nTextureChannel = 0 ) { return m_hTexture; }
// Bind the texture
virtual void Bind( Sampler_t sampler, TextureBindFlags_t nBindFlags );
virtual void Bind( Sampler_t sampler1, TextureBindFlags_t nBindFlags, int nFrame, Sampler_t sampler2 = SHADER_SAMPLER_INVALID );
virtual void BindVertexTexture( VertexTextureSampler_t stage, int nFrame );
// Set this texture as a render target
bool SetRenderTarget( int nRenderTargetID ) { return SetRenderTarget( nRenderTargetID, NULL ); }
// Set this texture as a render target (optionally set depth texture as depth buffer as well)
bool SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture) { return false; }
virtual void MarkAsPreloaded( bool bSet ) { NULL; }
virtual bool IsPreloaded() const { return true; }
virtual void MarkAsExcluded( bool bSet, int nDimensionsLimit, bool bMarkAsTrumpedExclude ) { NULL; }
virtual bool UpdateExcludedState() { return true; }
// Retrieve the vtf flags mask
virtual unsigned int GetFlags( void ) const { return 0; }
virtual void ForceLODOverride( int iNumLodsOverrideUpOrDown ) { NULL; }
virtual void ForceExcludeOverride( int iExcludeOverride ) { NULL; };
virtual void ReloadFilesInList( IFileList *pFilesToReload ) {}
#ifdef _PS3
virtual void Ps3gcmRawBufferAlias( char const *pRTName ) {}
#endif
virtual void AddDownsizedSubTarget( const char *szName, int iDownsizePow2, MaterialRenderTargetDepth_t depth ) { NULL; }
virtual void SetActiveSubTarget( const char *szName ) { NULL; }
virtual bool IsMultiRenderTarget( void ) { return false; }
virtual bool MarkAsTempExcluded( bool bSet, int nExcludedDimensionLimit ) { return false; }
virtual bool IsTempExcluded() const { return false; }
virtual bool CanBeTempExcluded() const { return false; }
virtual bool FinishAsyncDownload( AsyncTextureContext_t *pContext, void *pData, int nNumReadBytes, bool bAbort, float flMaxTimeMs ) { return true; }
virtual bool IsForceExcluded() const { return false; }
virtual bool ClearForceExclusion() { return false; }
virtual bool IsAsyncDone() const { return true; }
protected:
#ifdef _DEBUG
char *m_pDebugName;
#endif
CUtlSymbol m_Name;
// What texture group this texture is in (winds up setting counters based on the group name,
// then the budget panel views the counters).
CUtlSymbol m_TextureGroupName;
// The set of texture ids for each animation frame
ShaderAPITextureHandle_t m_hTexture;
// Refcount
int m_nRefCount;
int m_nActualWidth;
int m_nActualHeight;
int m_nActualDepth;
public:
virtual void DeleteIfUnreferenced();
#if defined( _GAMECONSOLE )
virtual bool ClearTexture( int r, int g, int b, int a ) { return false; }
#endif
#if defined( _X360 )
virtual bool CreateRenderTargetSurface( int width, int height, ImageFormat format, bool bSameAsTexture, RTMultiSampleCount360_t multiSampleCount = RT_MULTISAMPLE_NONE ) { return false; }
#endif
void FixupTexture( const void *pData, int nSize, LoaderError_t loaderError ) { NULL; }
void SwapContents( ITexture *pOther ) { NULL; }
public:
void SetName( char const *szName );
void InitFromHandle(
const char *pTextureName,
const char *pTextureGroupName,
ShaderAPITextureHandle_t hTexture );
};
CReferenceToHandleTexture::CReferenceToHandleTexture() :
m_hTexture( INVALID_SHADERAPI_TEXTURE_HANDLE ),
#ifdef _DEBUG
m_pDebugName( NULL ),
#endif
m_nRefCount( 0 ),
m_nActualWidth( 0 ),
m_nActualHeight( 0 ),
m_nActualDepth( 1 )
{
NULL;
}
CReferenceToHandleTexture::~CReferenceToHandleTexture()
{
#ifdef _DEBUG
if ( m_nRefCount != 0 )
{
Warning( "Reference Count(%d) != 0 in ~CReferenceToHandleTexture for texture \"%s\"\n", m_nRefCount, m_Name.String() );
}
if ( m_pDebugName )
{
delete [] m_pDebugName;
}
#endif
}
void CReferenceToHandleTexture::SetName( char const *szName )
{
// normalize and convert to a symbol
char szCleanName[MAX_PATH];
m_Name = NormalizeTextureName( szName, szCleanName, sizeof( szCleanName ) );
#ifdef _DEBUG
if ( m_pDebugName )
{
delete [] m_pDebugName;
}
int nLen = V_strlen( szCleanName ) + 1;
m_pDebugName = new char[nLen];
V_memcpy( m_pDebugName, szCleanName, nLen );
#endif
}
void CReferenceToHandleTexture::InitFromHandle( const char *pTextureName, const char *pTextureGroupName, ShaderAPITextureHandle_t hTexture )
{
SetName( pTextureName );
m_TextureGroupName = pTextureGroupName;
m_hTexture = hTexture;
g_pShaderAPI->GetTextureDimensions( hTexture, m_nActualWidth, m_nActualHeight, m_nActualDepth );
}
void CReferenceToHandleTexture::Bind( Sampler_t sampler, TextureBindFlags_t nBindFlags )
{
if ( g_pShaderDevice->IsUsingGraphics() )
{
g_pShaderAPI->BindTexture( sampler, nBindFlags, m_hTexture );
}
}
void CReferenceToHandleTexture::Bind( Sampler_t sampler1, TextureBindFlags_t nBindFlags, int nFrame, Sampler_t sampler2 /* = -1 */ )
{
if ( g_pShaderDevice->IsUsingGraphics() )
{
g_pShaderAPI->BindTexture( sampler1, nBindFlags, m_hTexture );
}
}
void CReferenceToHandleTexture::BindVertexTexture( VertexTextureSampler_t sampler, int nFrame )
{
if ( g_pShaderDevice->IsUsingGraphics() )
{
g_pShaderAPI->BindVertexTexture( sampler, m_hTexture );
}
}
void CReferenceToHandleTexture::DeleteIfUnreferenced()
{
if ( m_nRefCount > 0 )
return;
TextureManager()->RemoveTexture( this );
}
//-----------------------------------------------------------------------------
// Fixed-size allocator
//-----------------------------------------------------------------------------
//DEFINE_FIXEDSIZE_ALLOCATOR( CTexture, 1024, true );
//-----------------------------------------------------------------------------
// Static instance of VTF texture
//-----------------------------------------------------------------------------
static IVTFTexture *s_pVTFTexture = NULL;
static IVTFTexture *s_pVTFAsyncTexture = NULL;
static void *s_pOptimalReadBuffer = NULL;
static int s_nOptimalReadBufferSize = 0;
//-----------------------------------------------------------------------------
// Class factory methods
//-----------------------------------------------------------------------------
ITextureInternal *ITextureInternal::CreateFileTexture( const char *pFileName, const char *pTextureGroupName )
{
CTexture *pTex = new CTexture;
pTex->InitFileTexture( pFileName, pTextureGroupName );
return pTex;
}
ITextureInternal *ITextureInternal::CreateReferenceTextureFromHandle(
const char *pTextureName,
const char *pTextureGroupName,
ShaderAPITextureHandle_t hTexture )
{
CReferenceToHandleTexture *pTex = new CReferenceToHandleTexture;
pTex->InitFromHandle( pTextureName, pTextureGroupName, hTexture );
return pTex;
}
ITextureInternal *ITextureInternal::CreateProceduralTexture(
const char *pTextureName,
const char *pTextureGroupName,
int w,
int h,
int d,
ImageFormat fmt,
int nFlags )
{
CTexture *pTex = new CTexture;
pTex->InitProceduralTexture( pTextureName, pTextureGroupName, w, h, d, fmt, nFlags );
pTex->IncrementReferenceCount();
return pTex;
}
// GR - named RT
ITextureInternal *ITextureInternal::CreateRenderTarget(
const char *pRTName,
int w,
int h,
RenderTargetSizeMode_t sizeMode,
ImageFormat fmt,
RenderTargetType_t type,
unsigned int textureFlags,
unsigned int renderTargetFlags,
bool bMultipleTargets )
{
CTexture *pTex = bMultipleTargets ? new CTexture_MultipleRenderTarget : new CTexture;
pTex->InitRenderTarget( pRTName, w, h, sizeMode, fmt, type, textureFlags, renderTargetFlags );
return pTex;
}
//-----------------------------------------------------------------------------
// Rebuild and exisiting render target in place.
//-----------------------------------------------------------------------------
void ITextureInternal::ChangeRenderTarget(
ITextureInternal *pTex,
int w,
int h,
RenderTargetSizeMode_t sizeMode,
ImageFormat fmt,
RenderTargetType_t type,
unsigned int textureFlags,
unsigned int renderTargetFlags )
{
pTex->Release();
dynamic_cast< CTexture * >(pTex)->InitRenderTarget( pTex->GetName(), w, h, sizeMode, fmt, type, textureFlags, renderTargetFlags );
}
void ITextureInternal::Destroy( ITextureInternal *pTex )
{
delete pTex;
}
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CTexture::CTexture() : m_ImageFormat( IMAGE_FORMAT_UNKNOWN )
{
m_nActualMipCount = 0;
m_nMappingWidth = 0;
m_nMappingHeight = 0;
m_nMappingDepth = 1;
m_nActualWidth = 0;
m_nActualHeight = 0;
m_nActualDepth = 1;
m_nRefCount = 0;
m_nFlags = 0;
m_nInternalFlags = 0;
m_pTextureHandles = NULL;
m_pTempTextureHandles = NULL;
m_nFrameCount = 0;
VectorClear( m_vecReflectivity );
m_pTextureRegenerator = NULL;
m_nOriginalRenderTargetType = NO_RENDER_TARGET;
m_RenderTargetSizeMode = RT_SIZE_NO_CHANGE;
m_nOriginalRTWidth = m_nOriginalRTHeight = 1;
m_LowResImageWidth = 0;
m_LowResImageHeight = 0;
#if !defined( _GAMECONSOLE )
m_pLowResImage = NULL;
#else
*(unsigned int *)m_LowResImageSample = 0;
#endif
m_nDesiredDimensionLimit = 0;
m_nDesiredTempDimensionLimit = 0;
m_nActualDimensionLimit = 0;
m_hAsyncControl = NULL;
m_nMipSkipCount = 0;
#ifdef _DEBUG
m_pDebugName = NULL;
#endif
}
CTexture::~CTexture()
{
#ifdef _DEBUG
if ( m_nRefCount != 0 )
{
Warning( "Reference Count(%d) != 0 in ~CTexture for texture \"%s\"\n", (int)m_nRefCount, m_Name.String() );
}
if ( m_pDebugName )
{
delete [] m_pDebugName;
}
#endif
Shutdown();
// Deliberately stomp our VTable so that we can detect cases where code tries to access freed materials.
int *p = (int *)this;
*p = 0xdeadbeef;
}
//-----------------------------------------------------------------------------
// Initializes the texture
//-----------------------------------------------------------------------------
void CTexture::Init( int w, int h, int d, ImageFormat fmt, int iFlags, int iFrameCount )
{
Assert( iFrameCount > 0 );
// This is necessary to prevent blowing away the allocated state,
// which is necessary for the ReleaseTextureHandles call below to work.
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_ERROR;
// free and release previous data
// cannot change to new intialization parameters yet
FreeShaderAPITextures();
ReleaseTextureHandles();
// update to new initialization parameters
// these are the *desired* new values
m_nMappingWidth = w;
m_nMappingHeight = h;
m_nMappingDepth = d;
m_ImageFormat = fmt;
m_nFrameCount = iFrameCount;
// We don't know the actual width and height until we get it ready to render
m_nActualWidth = m_nActualHeight = 0;
m_nActualDepth = 1;
m_nActualMipCount = 0;
m_nFlags = iFlags;
m_nMipSkipCount = 0;
AllocateTextureHandles();
}
//-----------------------------------------------------------------------------
// Shuts down the texture
//-----------------------------------------------------------------------------
void CTexture::Shutdown()
{
// Clean up the low-res texture
#if !defined( _GAMECONSOLE )
delete[] m_pLowResImage;
m_pLowResImage = 0;
#endif
FreeResourceData();
// Frees the texture regen class
if ( m_pTextureRegenerator )
{
m_pTextureRegenerator->Release();
m_pTextureRegenerator = NULL;
}
// This deletes the textures
FreeShaderAPITextures();
ReleaseTextureHandles();
}
void CTexture::Release()
{
FreeShaderAPITextures();
}
IVTFTexture *CTexture::GetScratchVTFTexture()
{
if ( !s_pVTFTexture )
{
s_pVTFTexture = CreateVTFTexture();
}
return s_pVTFTexture;
}
IVTFTexture *CTexture::GetScratchVTFAsyncTexture()
{
if (!s_pVTFAsyncTexture)
{
s_pVTFAsyncTexture = CreateVTFTexture();
}
return s_pVTFAsyncTexture;
}
//-----------------------------------------------------------------------------
// Get an optimal read buffer, persists and avoids excessive allocations
//-----------------------------------------------------------------------------
int CTexture::GetOptimalReadBuffer( FileHandle_t hFile, int nSize, CUtlBuffer &optimalBuffer )
{
// get an optimal read buffer, only resize if necessary
int minSize = IsGameConsole() ? 0 : 2 * 1024 * 1024; // 360 has no min, PC uses 2MB min to avoid fragmentation
nSize = MAX(nSize, minSize);
int nBytesOptimalRead = g_pFullFileSystem->GetOptimalReadSize( hFile, nSize );
if ( nBytesOptimalRead > s_nOptimalReadBufferSize )
{
FreeOptimalReadBuffer( 0 );
s_nOptimalReadBufferSize = nBytesOptimalRead;
s_pOptimalReadBuffer = g_pFullFileSystem->AllocOptimalReadBuffer( hFile, nSize );
if ( mat_spewalloc.GetBool() )
{
Msg( "Allocated optimal read buffer of %d bytes @ 0x%p\n", s_nOptimalReadBufferSize, s_pOptimalReadBuffer );
}
}
// set external buffer and reset to empty
optimalBuffer.SetExternalBuffer( s_pOptimalReadBuffer, s_nOptimalReadBufferSize, 0, CUtlBuffer::READ_ONLY );
// return the optimal read size
return nBytesOptimalRead;
}
//-----------------------------------------------------------------------------
// Free the optimal read buffer if it grows too large
//-----------------------------------------------------------------------------
void CTexture::FreeOptimalReadBuffer( int nMaxSize )
{
if ( s_pOptimalReadBuffer && s_nOptimalReadBufferSize >= nMaxSize )
{
if ( mat_spewalloc.GetBool() )
{
Msg( "Freeing optimal read buffer of %d bytes @ 0x%p\n", s_nOptimalReadBufferSize, s_pOptimalReadBuffer );
}
g_pFullFileSystem->FreeOptimalReadBuffer( s_pOptimalReadBuffer );
s_pOptimalReadBuffer = NULL;
s_nOptimalReadBufferSize = 0;
}
}
//-----------------------------------------------------------------------------
//
// Various initialization methods
//
//-----------------------------------------------------------------------------
void CTexture::ApplyRenderTargetSizeMode( int &width, int &height, ImageFormat fmt )
{
width = m_nOriginalRTWidth;
height = m_nOriginalRTHeight;
switch ( m_RenderTargetSizeMode )
{
case RT_SIZE_FULL_FRAME_BUFFER:
{
MaterialSystem()->GetBackBufferDimensions( width, height );
}
break;
case RT_SIZE_FULL_FRAME_BUFFER_ROUNDED_UP:
{
MaterialSystem()->GetBackBufferDimensions( width, height );
}
break;
case RT_SIZE_PICMIP:
{
int fbWidth, fbHeight;
MaterialSystem()->GetBackBufferDimensions( fbWidth, fbHeight );
int picmip = g_config.skipMipLevels;
while( picmip > 0 )
{
width >>= 1;
height >>= 1;
picmip--;
}
while( width > fbWidth )
{
width >>= 1;
}
while( height > fbHeight )
{
height >>= 1;
}
}
break;
case RT_SIZE_DEFAULT:
{
// Assume that the input is pow2.
Assert( ( width & ( width - 1 ) ) == 0 );
Assert( ( height & ( height - 1 ) ) == 0 );
int fbWidth, fbHeight;
MaterialSystem()->GetBackBufferDimensions( fbWidth, fbHeight );
while( width > fbWidth )
{
width >>= 1;
}
while( height > fbHeight )
{
height >>= 1;
}
}
break;
case RT_SIZE_HDR:
{
MaterialSystem()->GetBackBufferDimensions( width, height );
width = width / 4;
height = height / 4;
}
break;
case RT_SIZE_OFFSCREEN:
{
int fbWidth, fbHeight;
MaterialSystem()->GetBackBufferDimensions( fbWidth, fbHeight );
// On 360, don't do this resizing for formats related to the shadow depth texture
#if defined( _GAMECONSOLE )
if ( !( (fmt == IMAGE_FORMAT_D16) || (fmt == IMAGE_FORMAT_D24S8) || (fmt == IMAGE_FORMAT_D24FS8) || (fmt == IMAGE_FORMAT_BGR565) || (fmt == IMAGE_FORMAT_D24X8_SHADOW) || (fmt == IMAGE_FORMAT_D16_SHADOW) ) )
#endif
{
// Shrink the buffer if it's bigger than back buffer. Otherwise, don't mess with it.
while( (width > fbWidth) || (height > fbHeight) )
{
width >>= 1;
height >>= 1;
}
}
}
break;
default:
{
Assert( m_RenderTargetSizeMode == RT_SIZE_NO_CHANGE );
// Cannot use RT_SIZE_NO_CHANGE if they are sharing the depth buffer.
Assert( m_nOriginalRenderTargetType != RENDER_TARGET );
}
break;
}
}
//-----------------------------------------------------------------------------
// Creates named render target texture
//-----------------------------------------------------------------------------
void CTexture::InitRenderTarget(
const char *pRTName,
int w,
int h,
RenderTargetSizeMode_t sizeMode,
ImageFormat fmt,
RenderTargetType_t type,
unsigned int textureFlags,
unsigned int renderTargetFlags )
{
if ( pRTName )
{
SetName( pRTName );
}
else
{
static int id = 0;
char pName[128];
Q_snprintf( pName, sizeof( pName ), "__render_target_%d", id );
++id;
SetName( pName );
}
if ( renderTargetFlags & CREATERENDERTARGETFLAGS_HDR )
{
if ( HardwareConfig()->GetHDRType() == HDR_TYPE_FLOAT )
{
// slam the format
fmt = IMAGE_FORMAT_RGBA16161616F;
}
}
int nFrameCount = 1;
int nFlags = TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_RENDERTARGET;
nFlags |= textureFlags;
if ( type == RENDER_TARGET_NO_DEPTH )
{
nFlags |= TEXTUREFLAGS_NODEPTHBUFFER;
}
else if ( type == RENDER_TARGET_WITH_DEPTH || type == RENDER_TARGET_ONLY_DEPTH || g_pShaderAPI->DoRenderTargetsNeedSeparateDepthBuffer() )
{
nFlags |= TEXTUREFLAGS_DEPTHRENDERTARGET;
++nFrameCount;
}
if ( IsX360() )
{
// 360 RT needs its coupled surface, expected at [nFrameCount-1]
++nFrameCount;
}
if ( renderTargetFlags & CREATERENDERTARGETFLAGS_TEMP )
{
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET;
}
m_nOriginalRenderTargetType = type;
m_RenderTargetSizeMode = sizeMode;
m_nOriginalRTWidth = w;
m_nOriginalRTHeight = h;
if ( ImageLoader::ImageFormatInfo(fmt).m_nNumAlphaBits > 1 )
{
nFlags |= TEXTUREFLAGS_EIGHTBITALPHA;
}
else if ( ImageLoader::ImageFormatInfo(fmt).m_nNumAlphaBits == 1 )
{
nFlags |= TEXTUREFLAGS_ONEBITALPHA;
}
#ifdef _X360
if ( renderTargetFlags & CREATERENDERTARGETFLAGS_ALIASCOLORANDDEPTHSURFACES )
{
nFlags |= TEXTUREFLAGS_ALIAS_COLOR_AND_DEPTH_SURFACES;
}
#endif
ApplyRenderTargetSizeMode( w, h, fmt );
Init( w, h, 1, fmt, nFlags, nFrameCount );
m_TextureGroupName = TEXTURE_GROUP_RENDER_TARGET;
}
void CTexture::OnRestore()
{
// May have to change whether or not we have a depth buffer.
// Are we a render target?
if ( IsPC() && ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) )
{
// Did they not ask for a depth buffer?
if ( m_nOriginalRenderTargetType == RENDER_TARGET )
{
// But, did we force them to have one, or should we force them to have one this time around?
bool bShouldForce = g_pShaderAPI->DoRenderTargetsNeedSeparateDepthBuffer();
bool bDidForce = ((m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET) != 0);
if ( bShouldForce != bDidForce )
{
int nFlags = m_nFlags;
int iFrameCount = m_nFrameCount;
if ( bShouldForce )
{
Assert( !( nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) );
iFrameCount = 2;
nFlags |= TEXTUREFLAGS_DEPTHRENDERTARGET;
}
else
{
Assert( ( nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) );
iFrameCount = 1;
nFlags &= ~TEXTUREFLAGS_DEPTHRENDERTARGET;
}
Shutdown();
int newWidth, newHeight;
ApplyRenderTargetSizeMode( newWidth, newHeight, m_ImageFormat );
Init( newWidth, newHeight, 1, m_ImageFormat, nFlags, iFrameCount );
return;
}
}
// If we didn't recreate it up above, then we may need to resize it anyway if the framebuffer
// got smaller than we are.
int newWidth, newHeight;
ApplyRenderTargetSizeMode( newWidth, newHeight, m_ImageFormat );
if ( newWidth != m_nMappingWidth || newHeight != m_nMappingHeight )
{
Shutdown();
Init( newWidth, newHeight, 1, m_ImageFormat, m_nFlags, m_nFrameCount );
return;
}
}
}
//-----------------------------------------------------------------------------
// Creates a procedural texture
//-----------------------------------------------------------------------------
void CTexture::InitProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, int d, ImageFormat fmt, int nFlags )
{
// Compressed textures aren't allowed for procedural textures, except the runtime ones
Assert( !ImageLoader::IsCompressed( fmt ) || ImageLoader::IsRuntimeCompressed( fmt ) );
// We shouldn't be asking for render targets here
Assert( (nFlags & (TEXTUREFLAGS_RENDERTARGET | TEXTUREFLAGS_DEPTHRENDERTARGET)) == 0 );
SetName( pTextureName );
// Eliminate flags that are inappropriate...
nFlags &= ~TEXTUREFLAGS_HINT_DXT5 | TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA |
TEXTUREFLAGS_RENDERTARGET | TEXTUREFLAGS_DEPTHRENDERTARGET;
// Insert required flags
nFlags |= TEXTUREFLAGS_PROCEDURAL;
int nAlphaBits = ImageLoader::ImageFormatInfo(fmt).m_nNumAlphaBits;
if (nAlphaBits > 1)
{
nFlags |= TEXTUREFLAGS_EIGHTBITALPHA;
}
else if (nAlphaBits == 1)
{
nFlags |= TEXTUREFLAGS_ONEBITALPHA;
}
// Procedural textures are always one frame only
Init( w, h, d, fmt, nFlags, 1 );
m_TextureGroupName = pTextureGroupName;
}
//-----------------------------------------------------------------------------
// Creates a file texture
//-----------------------------------------------------------------------------
void CTexture::InitFileTexture( const char *pTextureFile, const char *pTextureGroupName )
{
// For files, we only really know about the file name
// At any time, the file contents could change, and we could have
// a different size, number of frames, etc.
SetName( pTextureFile );
m_TextureGroupName = pTextureGroupName;
}
//-----------------------------------------------------------------------------
// Assigns/releases texture IDs for our animation frames
//-----------------------------------------------------------------------------
void CTexture::AllocateTextureHandles()
{
Assert( !m_pTextureHandles );
if ( m_nFrameCount <= 0 )
{
AssertMsg( false, "CTexture::AllocateTextureHandles attempted to allocate 0 frames of texture handles!" );
Warning( "CTexture::AllocateTextureHandles \"%s\" attempted to allocate 0 frames of texture handles!", GetName() );
m_nFrameCount = 1;
}
m_pTextureHandles = new ShaderAPITextureHandle_t[m_nFrameCount];
if ( m_pTextureHandles == NULL )
{
MemOutOfMemory( sizeof(ShaderAPITextureHandle_t) * m_nFrameCount );
}
else
{
for( int i = 0; i != m_nFrameCount; ++i )
{
m_pTextureHandles[i] = INVALID_SHADERAPI_TEXTURE_HANDLE;
}
}
}
void CTexture::ReleaseTextureHandles()
{
if ( m_pTextureHandles )
{
delete[] m_pTextureHandles;
m_pTextureHandles = NULL;
}
}
int GetCreationFlags( int iTextureFlags, int iInternalTextureFlags, ImageFormat fmt )
{
int nCreateFlags = 0;
if ( iTextureFlags & TEXTUREFLAGS_ENVMAP )
{
nCreateFlags |= TEXTURE_CREATE_CUBEMAP;
}
bool bIsFloat = ( fmt == IMAGE_FORMAT_RGBA16161616F ) || ( fmt == IMAGE_FORMAT_R32F ) ||
( fmt == IMAGE_FORMAT_RGB323232F ) || ( fmt == IMAGE_FORMAT_RGBA32323232F );
// Don't do sRGB on floating point textures
if ( ( iTextureFlags & TEXTUREFLAGS_SRGB ) && !bIsFloat )
{
nCreateFlags |= TEXTURE_CREATE_SRGB; // for Posix/GL only
}
if ( iTextureFlags & TEXTUREFLAGS_ANISOTROPIC )
{
nCreateFlags |= TEXTURE_CREATE_ANISOTROPIC; // for Posix/GL only
}
if ( iTextureFlags & TEXTUREFLAGS_RENDERTARGET )
{
nCreateFlags |= TEXTURE_CREATE_RENDERTARGET;
}
else
{
// If it's not a render target, use the texture manager in dx
nCreateFlags |= TEXTURE_CREATE_MANAGED;
}
if ( iTextureFlags & TEXTUREFLAGS_DEFAULT_POOL )
{
// Needs to be created in default pool, and be marked as dynamic.
nCreateFlags &= ~TEXTURE_CREATE_MANAGED;
nCreateFlags |= TEXTURE_CREATE_DYNAMIC;
}
if ( iTextureFlags & TEXTUREFLAGS_POINTSAMPLE )
{
nCreateFlags |= TEXTURE_CREATE_UNFILTERABLE_OK;
}
if ( iTextureFlags & TEXTUREFLAGS_VERTEXTEXTURE )
{
nCreateFlags |= TEXTURE_CREATE_VERTEXTEXTURE;
}
if ( IsGameConsole() )
{
if ( iInternalTextureFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD )
{
// queued load, no d3d bits until data arrival
nCreateFlags |= TEXTURE_CREATE_NOD3DMEMORY;
}
if ( iInternalTextureFlags & TEXTUREFLAGSINTERNAL_REDUCED )
{
// propagate this information
nCreateFlags |= TEXTURE_CREATE_REDUCED;
}
if ( iInternalTextureFlags & TEXTUREFLAGSINTERNAL_ERROR )
{
// propagate this information
nCreateFlags |= TEXTURE_CREATE_ERROR;
}
if ( iInternalTextureFlags & ( TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE | TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE ) )
{
// propagate this information
nCreateFlags |= TEXTURE_CREATE_EXCLUDED;
}
if ( IsPS3() )
{
if ( iTextureFlags & TEXTUREFLAGS_PROCEDURAL )
{
nCreateFlags |= TEXTURE_CREATE_DYNAMIC;
}
}
if ( IsX360() )
{
if ( iTextureFlags & TEXTUREFLAGS_PROCEDURAL )
{
nCreateFlags |= TEXTURE_CREATE_CANCONVERTFORMAT;
}
if ( iTextureFlags & TEXTUREFLAGS_PWL_CORRECTED )
{
nCreateFlags |= TEXTURE_CREATE_PWLCORRECTED;
}
if ( iInternalTextureFlags & TEXTUREFLAGSINTERNAL_CACHEABLE )
{
nCreateFlags |= TEXTURE_CREATE_CACHEABLE;
}
}
}
return nCreateFlags;
}
//-----------------------------------------------------------------------------
// Creates the texture
//-----------------------------------------------------------------------------
bool CTexture::AllocateShaderAPITextures()
{
Assert( !HasBeenAllocated() );
if ( !g_pShaderAPI->CanDownloadTextures() )
return false;
int nCreateFlags = GetCreationFlags( m_nFlags, m_nInternalFlags, m_ImageFormat );
int nCount = m_nFrameCount;
if ( m_nFlags & TEXTUREFLAGS_RENDERTARGET )
{
// This here is simply so we can use a different call to
// create the depth texture below
// nCount must be 2 on pc/ps3, must be 3 on 360
if ( ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) &&
( ( ( IsPC() || IsPS3() ) && (nCount == 2)) || (IsX360() && (nCount == 3)) ) )
{
--nCount;
}
}
int nCopies = 1;
if ( IsProcedural() )
{
// This is sort of hacky... should we store the # of copies in the VTF?
if ( !( m_nFlags & TEXTUREFLAGS_SINGLECOPY ) )
{
// FIXME: That 6 there is heuristically what I came up with what I
// need to get eyes not to stall on map alyx3. We need a better way
// of determining how many copies of the texture we should store.
nCopies = 6;
}
}
if ( IsGameConsole() )
{
if ( IsX360() && ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) )
{
// 360 render targets allocates one additional handle for optional EDRAM surface
--nCount;
m_pTextureHandles[m_nFrameCount - 1] = INVALID_SHADERAPI_TEXTURE_HANDLE;
}
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD )
{
// Artificially increment reference count (per frame) to ensure
// a queued texture stays resident until it's wholly finalized.
m_nRefCount += nCount;
}
}
// For depth only render target: adjust texture width/height
// Currently we just leave it the same size, will update with further testing
int nShaderApiCreateTextureDepth = ( ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET ) && ( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ) ) ? 1 : m_nActualDepth;
if ( m_pTempTextureHandles )
{
// send the prior handles (should be available) for expected reuse
nCreateFlags |= TEXTURE_CREATE_REUSEHANDLES;
for ( int i = 0; i < m_nFrameCount; i++ )
{
m_pTextureHandles[i] = m_pTempTextureHandles[i];
}
}
// Create all animated texture frames in a single call
g_pShaderAPI->CreateTextures(
m_pTextureHandles, nCount,
m_nActualWidth, m_nActualHeight, nShaderApiCreateTextureDepth, m_ImageFormat, m_nActualMipCount,
nCopies, nCreateFlags, GetName(), GetTextureGroupName() );
// Create the depth render target buffer
if ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET )
{
MEM_ALLOC_CREDIT();
Assert( nCount == 1 );
char debugName[128];
sprintf( debugName, "%s_ZBuffer", GetName() );
bool bAliasColorAndDepthSurfaces360 = false;
#ifdef _X360
bAliasColorAndDepthSurfaces360 = ( m_nFlags & TEXTUREFLAGS_ALIAS_COLOR_AND_DEPTH_SURFACES ) != 0;
#endif
m_pTextureHandles[1] = g_pShaderAPI->CreateDepthTexture(
m_ImageFormat,
m_nActualWidth,
m_nActualHeight,
debugName,
( m_nOriginalRenderTargetType == RENDER_TARGET_ONLY_DEPTH ),
bAliasColorAndDepthSurfaces360 );
}
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ALLOCATED;
return true;
}
//-----------------------------------------------------------------------------
// Releases the texture's hardware memory
//-----------------------------------------------------------------------------
void CTexture::FreeShaderAPITextures()
{
if ( m_pTextureHandles && HasBeenAllocated() )
{
// Release the frames
for ( int i = m_nFrameCount; --i >= 0; )
{
if ( g_pShaderAPI->IsTexture( m_pTextureHandles[i] ) )
{
#ifdef WIN32
Assert( _heapchk() == _HEAPOK );
#endif
g_pShaderAPI->DeleteTexture( m_pTextureHandles[i] );
m_pTextureHandles[i] = INVALID_SHADERAPI_TEXTURE_HANDLE;
}
}
}
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_ALLOCATED;
}
//-----------------------------------------------------------------------------
// Computes the actual format of the texture
//-----------------------------------------------------------------------------
ImageFormat CTexture::ComputeActualFormat( ImageFormat srcFormat )
{
ImageFormat dstFormat;
bool bIsCompressed = ImageLoader::IsCompressed( srcFormat );
if ( g_config.bCompressedTextures && bIsCompressed )
{
// for the runtime compressed formats the srcFormat won't equal the dstFormat, and we need to return srcFormat here
if ( ImageLoader::IsRuntimeCompressed( srcFormat ) )
{
return srcFormat;
}
// don't do anything since we are already in a compressed format.
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( srcFormat );
Assert( dstFormat == srcFormat );
return dstFormat;
}
if ( IsGameConsole() && ( srcFormat == IMAGE_FORMAT_A8 ) )
{
// these are the right alpha formats for xbox
return IMAGE_FORMAT_A8;
}
#if defined( _X360 )
if ( srcFormat == IMAGE_FORMAT_LINEAR_I8 )
{
return IMAGE_FORMAT_LINEAR_I8;
}
#endif
// NOTE: Below this piece of code is only called when compressed textures are
// turned off, or if the source texture is not compressed.
#ifdef DX_TO_GL_ABSTRACTION
if ( ( srcFormat == IMAGE_FORMAT_UVWQ8888 ) || ( srcFormat == IMAGE_FORMAT_UV88 ) || ( srcFormat == IMAGE_FORMAT_UVLX8888 ) )
{
// Danger, this is going to blow up on the Mac. You better know what you're
// doing with these exotic formats...which were introduced in 1999
Assert( 0 );
}
#endif
// We use the TEXTUREFLAGS_EIGHTBITALPHA and TEXTUREFLAGS_ONEBITALPHA flags
// to decide how many bits of alpha we need; vtex checks the alpha channel
// for all white, etc.
if( (srcFormat == IMAGE_FORMAT_UVWQ8888) || ( srcFormat == IMAGE_FORMAT_UV88 ) ||
( srcFormat == IMAGE_FORMAT_UVLX8888 ) || ( srcFormat == IMAGE_FORMAT_RGBA16161616 ) ||
( srcFormat == IMAGE_FORMAT_RGBA16161616F ) || ( srcFormat == IMAGE_FORMAT_RGBA32323232F ) ||
( srcFormat == IMAGE_FORMAT_R32F ) )
{
#ifdef DX_TO_GL_ABSTRACTION
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( srcFormat, false ); // Stupid HACK!
#else
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( srcFormat, true ); // Stupid HACK!
#endif
}
else if ( m_nFlags & ( TEXTUREFLAGS_EIGHTBITALPHA | TEXTUREFLAGS_ONEBITALPHA ) )
{
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( IMAGE_FORMAT_BGRA8888 );
}
else if ( srcFormat == IMAGE_FORMAT_I8 )
{
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( IMAGE_FORMAT_I8 );
}
else
{
dstFormat = g_pShaderAPI->GetNearestSupportedFormat( IMAGE_FORMAT_BGR888 );
}
return dstFormat;
}
//-----------------------------------------------------------------------------
// Compute the actual mip count based on the actual size
//-----------------------------------------------------------------------------
int CTexture::ComputeActualMipCount() const
{
bool bForceTextureAllMips = g_bForceTextureAllMips; // Init with global set from -forceallmips on the command line
// If the current hardware doesn't support mipped cubemaps, return 1
if ( ( m_nFlags & TEXTUREFLAGS_ENVMAP ) && ( !HardwareConfig()->SupportsMipmappedCubemaps() ) )
{
return 1;
}
// "nomip 1" - If the artists requested no mips in the .txt file of their source art, return 1
if ( m_nFlags & TEXTUREFLAGS_NOMIP )
{
return 1;
}
// "allmips 1" - If the artists requested all mips in the .txt file of their source art, load all mips on all platforms
if ( m_nFlags & TEXTUREFLAGS_ALL_MIPS )
{
bForceTextureAllMips = true;
}
// "mostmips 1" - If the artists requested most mips in the .txt file of their source art, don't load the bottom mips, ever
bool bMostMips = false;
if ( m_nFlags & TEXTUREFLAGS_MOST_MIPS )
{
bMostMips = true;
}
// OpenGL - Don't ever drop mips
if ( IsOpenGL() )
{
bForceTextureAllMips = true;
bMostMips = false;
}
// If on the PC and running a newer OS than WinXP, then don't drop mips.
// XP can crash if we run out of paged pool memory since each mip consumes ~1kb of paged pool memory.
#if defined( WIN32 ) && !defined( _GAMECONSOLE )
{
OSVERSIONINFOEX osvi;
ZeroMemory( &osvi, sizeof( OSVERSIONINFOEX ) );
osvi.dwOSVersionInfoSize = sizeof( OSVERSIONINFOEX );
if ( GetVersionEx( ( OSVERSIONINFO * )&osvi ) )
{
if ( osvi.dwMajorVersion >= 6 ) // Major version 6 is Windows Vista and Win7
{
// Windows Vista or newer, so it's safe to load all mips
bForceTextureAllMips = true;
}
}
}
#endif
if ( IsX360() )
{
bForceTextureAllMips = true;
}
bool bIsFlashlightTextureOnGL = false;
#ifdef DX_TO_GL_ABSTRACTION
// Hack to only recognize the border bit (for the purposes of truncating the mip chain) on "flashlight" textures on Mac
const char *pTexName = m_Name.String();
bIsFlashlightTextureOnGL = ( m_nFlags & TEXTUREFLAGS_BORDER ) && V_stristr( pTexName, "flashlight" );
#endif
// If we are not loading all mips, then count the number of mips we want to load
if ( ( !IsOpenGL() && !bForceTextureAllMips ) || bMostMips || bIsFlashlightTextureOnGL )
{
// Stop loading mips when width or height is < 32
int nMaxMipSize = 32; // Default for windows XP
if ( IsPS3() )
{
nMaxMipSize = 4;
}
if ( bMostMips )
{
// !!! This overrides all other settings !!!
nMaxMipSize = 32;
}
int nNumMipLevels = 1;
int h = m_nActualWidth;
int w = m_nActualHeight;
while ( MIN( w, h ) > nMaxMipSize )
{
nNumMipLevels++;
w >>= 1;
h >>= 1;
}
return nNumMipLevels;
}
else
{
// Load all mips
return ImageLoader::GetNumMipMapLevels( m_nActualWidth, m_nActualHeight, m_nActualDepth );
}
}
//-----------------------------------------------------------------------------
// Calculates info about whether we can make the texture smaller and by how much
//-----------------------------------------------------------------------------
int CTexture::ComputeActualSize( bool bIgnorePicmip, IVTFTexture *pVTFTexture )
{
// Must skip mip levels if the texture is too large for our board to handle
m_nActualWidth = m_nMappingWidth;
m_nActualHeight = m_nMappingHeight;
m_nActualDepth = m_nMappingDepth;
int nClampX = m_nActualWidth; // no clamping (clamp to texture dimensions)
int nClampY = m_nActualHeight;
int nClampZ = m_nActualDepth;
//
// PC:
// Fetch clamping dimensions from special LOD control settings block
// or runtime texture lod override.
//
if ( IsPC() )
{
// Fetch LOD settings from the VTF if available
TextureLODControlSettings_t lcs;
memset( &lcs, 0, sizeof( lcs ) );
TextureLODControlSettings_t const *pLODInfo = NULL;
if ( pVTFTexture )
{
pLODInfo = reinterpret_cast<TextureLODControlSettings_t const *> (
pVTFTexture->GetResourceData( VTF_RSRC_TEXTURE_LOD_SETTINGS, NULL ) );
if ( pLODInfo )
lcs = *pLODInfo;
}
// Prepare the default LOD settings (that essentially result in no clamping)
TextureLODControlSettings_t default_lod_settings;
memset( &default_lod_settings, 0, sizeof( default_lod_settings ) );
{
for ( int w = m_nActualWidth; w > 1; w >>= 1 )
++ default_lod_settings.m_ResolutionClampX;
for ( int h = m_nActualHeight; h > 1; h >>= 1 )
++ default_lod_settings.m_ResolutionClampY;
}
// Check for LOD control override
{
TextureLodOverride::OverrideInfo oi = TextureLodOverride::Get( GetName() );
if ( oi.x && oi.y && !pLODInfo ) // If overriding texture that doesn't have lod info yet, then use default
lcs = default_lod_settings;
lcs.m_ResolutionClampX += oi.x;
lcs.m_ResolutionClampY += oi.y;
if ( int8( lcs.m_ResolutionClampX ) < 0 )
lcs.m_ResolutionClampX = 0;
if ( int8( lcs.m_ResolutionClampY ) < 0 )
lcs.m_ResolutionClampY = 0;
}
// Compute the requested mip0 dimensions
if ( lcs.m_ResolutionClampX && lcs.m_ResolutionClampY )
{
nClampX = (1 << lcs.m_ResolutionClampX );
nClampY = (1 << lcs.m_ResolutionClampY );
}
// Check for exclude settings
{
int iExclude = TextureLodExclude::Get( GetName() );
if ( iExclude > 0 )
{
// Mip request by exclude rules
nClampX = MIN( iExclude, nClampX );
nClampY = MIN( iExclude, nClampY );
}
else if ( iExclude == 0 )
{
// Texture should be excluded completely
// we cannot actually exclude it, we need
// to clamp it down to 4x4 for dxt to work.
// The texture will never be loaded when honoring
// the real exclude list rules.
nClampX = MIN( 4, nClampX );
nClampY = MIN( 4, nClampY );
}
}
// In case clamp values exceed texture dimensions, then fix up
// the clamping values
nClampX = MIN( nClampX, m_nActualWidth );
nClampY = MIN( nClampY, m_nActualHeight );
}
//
// Honor dimension limit restrictions
//
int nDimensionLimit = 0;
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE )
{
nDimensionLimit = m_nDesiredTempDimensionLimit;
}
else
{
nDimensionLimit = m_nDesiredDimensionLimit;
}
if ( nDimensionLimit < 0 )
{
nDimensionLimit = 0;
}
if ( IsGameConsole() )
{
// limiting large textures
static int s_nMaxDimensionLimit = 0;
if ( !s_nMaxDimensionLimit )
{
bool bNo256 = ( CommandLine()->FindParm( "-no256" ) != 0 );
bool bNo512 = ( CommandLine()->FindParm( "-no512" ) != 0 );
bool bNo1024 = CommandLine()->FindParm( "-no1024" ) && !CommandLine()->FindParm( "-allow1024" );
if ( bNo256 )
{
s_nMaxDimensionLimit = 128;
}
else if ( bNo512 )
{
s_nMaxDimensionLimit = 256;
}
else if ( g_pFullFileSystem->IsDVDHosted() || bNo1024 )
{
s_nMaxDimensionLimit = 512;
}
else
{
s_nMaxDimensionLimit = 1024;
}
}
if ( nDimensionLimit > 0 )
{
nDimensionLimit = MIN( nDimensionLimit, s_nMaxDimensionLimit );
}
else if ( !( m_nFlags & (TEXTUREFLAGS_NOLOD|TEXTUREFLAGS_NOMIP|TEXTUREFLAGS_PROCEDURAL|TEXTUREFLAGS_RENDERTARGET|TEXTUREFLAGS_DEPTHRENDERTARGET) ) )
{
nDimensionLimit = s_nMaxDimensionLimit;
}
}
else if ( IsPlatformOSX() )
{
// limiting large textures on OSX to 1024, override with -allow2048 on cl
static int s_nMaxDimensionLimit = 0;
if (!s_nMaxDimensionLimit)
{
bool bAllow2048 = !!CommandLine()->FindParm( "-allow2048" );
if ( !bAllow2048 && !( m_nFlags & (TEXTUREFLAGS_NOLOD | TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_PROCEDURAL | TEXTUREFLAGS_RENDERTARGET | TEXTUREFLAGS_DEPTHRENDERTARGET) ) )
{
s_nMaxDimensionLimit = 1024;
}
}
if ( !( m_nFlags & (TEXTUREFLAGS_NOLOD | TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_PROCEDURAL | TEXTUREFLAGS_RENDERTARGET | TEXTUREFLAGS_DEPTHRENDERTARGET) ) )
{
nDimensionLimit = s_nMaxDimensionLimit;
}
}
// Special case: If the top mipmap level is <= 128KB, and the width is really wide (2048), and its height is <= 64, and we know it's mipmapped, then allow one axis to be > 1024, otherwise just restrict to 1024.
// This purposely convoluted logic is useful on things like the confetti particle effect's texture (used in sp_a2_column_blocker), which is 2048x64, and is very noticeable when it's cut down to 1024x32.
if ( nDimensionLimit == 1024 )
{
if ( ( ImageLoader::GetMemRequired( m_nActualWidth, m_nActualHeight, 1, m_ImageFormat, false ) <= 128 * 1024 ) &&
( m_nActualWidth == 2048 ) && ( m_nActualHeight <= 64 ) &&
( pVTFTexture ) && ( pVTFTexture->MipCount() > 1 ) )
{
nDimensionLimit = 2048;
}
}
//
// Unless ignoring picmip, reflect the global picmip level in clamp dimensions
//
if ( !bIgnorePicmip )
{
// If picmip requests texture degradation, then honor it
// for loddable textures only
if ( !( m_nFlags & TEXTUREFLAGS_NOLOD ) &&
( g_config.skipMipLevels > 0 ) )
{
for ( int iDegrade = 0; iDegrade < g_config.skipMipLevels; ++ iDegrade )
{
// don't go lower than 4, or dxt textures won't work properly
if ( nClampX > 4 &&
nClampY > 4 )
{
nClampX >>= 1;
nClampY >>= 1;
}
}
}
// If picmip requests quality upgrade, then always honor it
if ( g_config.skipMipLevels < 0 )
{
for ( int iUpgrade = 0; iUpgrade < - g_config.skipMipLevels; ++ iUpgrade )
{
if ( nClampX < m_nActualWidth &&
nClampY < m_nActualHeight )
{
nClampX <<= 1;
nClampY <<= 1;
}
else
break;
}
}
}
// honor dimension limit after picmip downgrade/upgrade
if ( nDimensionLimit > 0 )
{
while ( nClampX > nDimensionLimit ||
nClampY > nDimensionLimit )
{
nClampX >>= 1;
nClampY >>= 1;
}
}
//
// Now use hardware settings to clamp our "clamping dimensions"
//
int iHwWidth = HardwareConfig()->MaxTextureWidth();
int iHwHeight = HardwareConfig()->MaxTextureHeight();
int iHwDepth = HardwareConfig()->MaxTextureDepth();
nClampX = MIN( nClampX, MAX( iHwWidth, 4 ) );
nClampY = MIN( nClampY, MAX( iHwHeight, 4 ) );
nClampZ = MIN( nClampZ, MAX( iHwDepth, 1 ) );
Assert( nClampZ >= 1 );
// In case clamp values exceed texture dimensions, then fix up
// the clamping values.
nClampX = MIN( nClampX, m_nActualWidth );
nClampY = MIN( nClampY, m_nActualHeight );
nClampZ = MIN( nClampZ, m_nActualDepth );
//
// Clamp to the determined dimensions
//
int numMipsSkipped = 0; // will compute now when clamping how many mips we drop
while ( ( m_nActualWidth > nClampX ) ||
( m_nActualHeight > nClampY ) ||
( m_nActualDepth > nClampZ ) )
{
m_nActualWidth >>= 1;
m_nActualHeight >>= 1;
m_nActualDepth >>= 1;
if ( m_nActualDepth < 1 )
m_nActualDepth = 1;
++ numMipsSkipped;
}
Assert( m_nActualWidth > 0 && m_nActualHeight > 0 && m_nActualDepth > 0 );
// Now that we've got the actual size, we can figure out the mip count
m_nActualMipCount = ComputeActualMipCount();
// Returns the number we skipped
return numMipsSkipped;
}
//-----------------------------------------------------------------------------
// Used to modify the texture bits (procedural textures only)
//-----------------------------------------------------------------------------
void CTexture::SetTextureRegenerator( ITextureRegenerator *pTextureRegen, bool releaseExisting )
{
// NOTE: These can only be used by procedural textures
Assert( IsProcedural() );
if ( m_pTextureRegenerator && releaseExisting )
{
m_pTextureRegenerator->Release();
}
m_pTextureRegenerator = pTextureRegen;
}
//-----------------------------------------------------------------------------
// Gets us modifying a particular frame of our texture
//-----------------------------------------------------------------------------
void CTexture::Modify( int iFrame )
{
Assert( iFrame >= 0 && iFrame < m_nFrameCount );
Assert( HasBeenAllocated() );
g_pShaderAPI->ModifyTexture( m_pTextureHandles[iFrame] );
}
//-----------------------------------------------------------------------------
// Sets the texture clamping state on the currently modified frame
//-----------------------------------------------------------------------------
void CTexture::SetWrapState( )
{
// Border clamp applies to all texture coordinates
if ( m_nFlags & TEXTUREFLAGS_BORDER )
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_BORDER );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_BORDER );
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_BORDER );
return;
}
// Clamp mode in S
if ( m_nFlags & TEXTUREFLAGS_CLAMPS )
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP );
}
else
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_REPEAT );
}
// Clamp mode in T
if ( m_nFlags & TEXTUREFLAGS_CLAMPT )
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP );
}
else
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_REPEAT );
}
// Clamp mode in U
if ( m_nFlags & TEXTUREFLAGS_CLAMPU )
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
}
else
{
g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_REPEAT );
}
}
//-----------------------------------------------------------------------------
// Sets the texture filtering state on the currently modified frame
//-----------------------------------------------------------------------------
void CTexture::SetFilterState()
{
// Turns off filtering when we're point sampling
if( m_nFlags & TEXTUREFLAGS_POINTSAMPLE )
{
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_NEAREST );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_NEAREST );
return;
}
// NOTE: config.bMipMapTextures and config.bFilterTextures is handled in ShaderAPIDX8
bool bEnableMipmapping = ( m_nFlags & TEXTUREFLAGS_NOMIP ) ? false : true;
if( !bEnableMipmapping )
{
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
return;
}
// Determing the filtering mode
bool bIsAnisotropic = false; bool bIsTrilinear = false;
if ( (g_config.m_nForceAnisotropicLevel > 1) && (HardwareConfig()->MaximumAnisotropicLevel() > 1) )
{
bIsAnisotropic = true;
}
else
{
bIsAnisotropic = (( m_nFlags & TEXTUREFLAGS_ANISOTROPIC ) != 0) && (HardwareConfig()->MaximumAnisotropicLevel() > 1);
bIsTrilinear = ( g_config.m_nForceAnisotropicLevel == 1 ) || ( ( m_nFlags & TEXTUREFLAGS_TRILINEAR ) != 0 );
}
if ( bIsAnisotropic )
{
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_ANISOTROPIC );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_ANISOTROPIC );
}
else
{
if ( bIsTrilinear )
{
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR_MIPMAP_LINEAR );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
}
else
{
g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR_MIPMAP_NEAREST );
g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR );
}
}
}
//-----------------------------------------------------------------------------
// Download bits main entry point!!
//-----------------------------------------------------------------------------
void CTexture::DownloadTexture( Rect_t *pRect, void *pSourceData, int nSourceDataSize )
{
// No downloading necessary if there's no graphics
if ( !g_pShaderDevice->IsUsingGraphics() )
return;
if ( m_nInternalFlags & ( TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE|TEXTUREFLAGSINTERNAL_TEMPEXCLUDED|TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE ) )
{
// temp exclusions are allowed to occur anytime during gameplay
// for expected stability, the ShaderAPITextureHandle_t must stay as-is
// store them off prior to their expected release, so they can be sent back down as a hint to the allocator for the expected re-allocation
// this allows the underlying d3d bits to be changed, but other system that have stored off the prior handles need not be aware
if ( m_nFrameCount > 0 )
{
m_pTempTextureHandles = new ShaderAPITextureHandle_t[m_nFrameCount];
for ( int i = 0; i != m_nFrameCount; ++i )
{
m_pTempTextureHandles[i] = m_pTextureHandles[i];
}
}
}
// We don't know the actual size of the texture at this stage...
if ( !pRect )
{
ReconstructTexture( pSourceData, nSourceDataSize );
}
else
{
ReconstructPartialTexture( pRect );
}
// Iterate over all the frames and set the appropriate wrapping + filtering state
SetFilteringAndClampingMode();
// texture bits have been updated, update the exclusion state
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE )
{
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_EXCLUDED;
}
else
{
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_EXCLUDED;
}
// texture bits have been picmipped, update the picmip state
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE )
{
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_TEMPEXCLUDED;
m_nActualDimensionLimit = m_nDesiredTempDimensionLimit;
}
else
{
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_TEMPEXCLUDED;
m_nActualDimensionLimit = m_nDesiredDimensionLimit;
}
// any possible temp exclude update is finished
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE;
if ( m_pTempTextureHandles )
{
// check for handle stability
// the handles MUST stay the same across a ReconstructTexture(), various threaded systems have already cached/queued off the handles
for ( int i = 0; i < m_nFrameCount; i++ )
{
if ( m_pTextureHandles[i] != m_pTempTextureHandles[i] )
{
// crash will be imminent, the handles have changed and they should not have
// shaderapi will crash on next texture access because stored handles reference the freed texture handles, not the valid allocated ones
Assert( 0 );
Warning( "ERROR! - Crash Expected. DownloadTexture(): Texture Handle Difference: %d expected:0x%8.8x actual:0x%8.8x\n", i, m_pTempTextureHandles[i], m_pTextureHandles[i] );
}
}
delete[] m_pTempTextureHandles;
m_pTempTextureHandles = NULL;
}
}
//-----------------------------------------------------------------------------
// Download bits main entry point for async textures (based on CTexture::DownloadTexture)
// Very controlled environment: no procedural textures, no render target, console not supported
// The download is done is 2 parts:
// * Generating the VTF
// * Using VTF to create the shader api texture (effectively the corresponding d3d resource)
// In order to reduce spikes on the main thread (cf CMaterialSystem::ServiceAsyncTextureLoads), the flMaxTimeMs
// limit has been introduced => you can safely exit after generating the VTF and resume it at a later date
// Note that async textures are sharing the same scratch VTF therefore, if the download of an async texture
// has been interuped, it is important not to start downloading a new async texture (that would effectively invalidate
// the VTF of the other texture) - Done in CMaterialSystem::ServiceAsyncTextureLoads)
// Returns true if the download has been completed (ie interrupted after generating the VTF), false otherwise
//-----------------------------------------------------------------------------
bool CTexture::DownloadAsyncTexture( AsyncTextureContext_t *pContext, void *pSourceData, int nSourceDataSize, float flMaxTimeMs )
{
// No downloading necessary if there's no graphics
if (!g_pShaderDevice->IsUsingGraphics())
return true;
Assert( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD );
Assert( !IsGameConsole() );
Assert( !IsRenderTarget() );
Assert( !IsTempRenderTarget() );
Assert( !IsProcedural() );
if ( !pContext->m_pVTFTexture )
{
double flStartTime = Plat_FloatTime();
int oldWidth = m_nActualWidth;
int oldHeight = m_nActualHeight;
int oldDepth = m_nActualDepth;
int oldMipCount = m_nActualMipCount;
int oldFrameCount = m_nFrameCount;
pContext->m_pVTFTexture = LoadTexttureBitsFromFileOrData( pSourceData, nSourceDataSize, NULL );
if (!HasBeenAllocated() ||
m_nActualWidth != oldWidth ||
m_nActualHeight != oldHeight ||
m_nActualDepth != oldDepth ||
m_nActualMipCount != oldMipCount ||
m_nFrameCount != oldFrameCount)
{
if (HasBeenAllocated())
{
// This is necessary for the reload case, we may discover there
// are more frames of a texture animation, for example, which means
// we can't rely on having the same number of texture frames.
FreeShaderAPITextures();
}
// Create the shader api textures
if (!AllocateShaderAPITextures())
return true;
}
// Safe point to interrupt teh texture download
float flElapsedMs = (Plat_FloatTime() - flStartTime) * 1000.0f;
if (flElapsedMs > flMaxTimeMs)
{
// Running out of time - the shader api texture will be created later (most probably on the next frame)
return false;
}
}
// Blit down the texture faces, frames, and mips into the board memory
int nFirstFace, nFaceCount;
GetDownloadFaceCount( nFirstFace, nFaceCount );
WriteDataToShaderAPITexture( m_nFrameCount, nFaceCount, nFirstFace, m_nActualMipCount, pContext->m_pVTFTexture, m_ImageFormat );
// Iterate over all the frames and set the appropriate wrapping + filtering state
SetFilteringAndClampingMode();
pContext->m_pVTFTexture = NULL;
return true;
}
void CTexture::Download( Rect_t *pRect, int nAdditionalCreationFlags /* = 0 */ )
{
if ( nAdditionalCreationFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD )
{
m_nFlags |= nAdditionalCreationFlags;
if ( ScheduleAsyncDownload() )
{
return;
}
else
{
// failed to find file so remove async download flag
m_nFlags &= ~TEXTUREFLAGS_ASYNC_DOWNLOAD;
// and intentionally fall through to normal Download() which will use the error texture
}
}
if ( g_pShaderAPI->CanDownloadTextures() ) // Only download the bits if we can...
{
MaterialLock_t hLock = MaterialSystem()->Lock();
m_nFlags |= nAdditionalCreationFlags; // Path to let stdshaders drive settings like sRGB-ness at creation time
DownloadTexture( pRect );
MaterialSystem()->Unlock( hLock );
}
}
#ifdef _PS3
void CTexture::Ps3gcmRawBufferAlias( char const *pRTName )
{
ComputeActualSize( true );
m_nActualDimensionLimit = m_nDesiredDimensionLimit;
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ALLOCATED;
extern ShaderAPITextureHandle_t Ps3gcmGetArtificialTextureHandle( int iHandle );
if ( !Q_strcmp( pRTName, "^PS3^BACKBUFFER" ) )
m_pTextureHandles[0] = Ps3gcmGetArtificialTextureHandle( PS3GCM_ARTIFICIAL_TEXTURE_HANDLE_INDEX_BACKBUFFER );
else if ( !Q_strcmp( pRTName, "^PS3^DEPTHBUFFER" ) )
m_pTextureHandles[0] = Ps3gcmGetArtificialTextureHandle( PS3GCM_ARTIFICIAL_TEXTURE_HANDLE_INDEX_DEPTHBUFFER );
else
Error( "<vitaliy> Unexpected raw buffer alias: %s!\n", pRTName );
}
#endif
void CTexture::Bind( Sampler_t sampler, TextureBindFlags_t nBindFlags )
{
Bind( sampler, nBindFlags, 0 );
}
//-----------------------------------------------------------------------------
// Binds a particular texture
//-----------------------------------------------------------------------------
void CTexture::Bind( Sampler_t sampler1, TextureBindFlags_t nBindFlags, int nFrame, Sampler_t sampler2 /* = -1 */ )
{
if ( g_pShaderDevice->IsUsingGraphics() )
{
if ( nFrame < 0 || nFrame >= m_nFrameCount )
{
// FIXME: Use the well-known 'error' id instead of frame 0
nFrame = 0;
// Assert(0);
}
// Make sure we've actually allocated the texture handle
if ( HasBeenAllocated() )
{
g_pShaderAPI->BindTexture( sampler1, nBindFlags, m_pTextureHandles[nFrame] );
}
else
{
Warning( "Trying to bind texture %s, but texture handles are not valid. Binding a white texture!", GetName() );
g_pShaderAPI->BindStandardTexture( sampler1, nBindFlags, TEXTURE_WHITE );
}
}
}
void CTexture::BindVertexTexture( VertexTextureSampler_t sampler, int nFrame )
{
if ( g_pShaderDevice->IsUsingGraphics() )
{
if ( nFrame < 0 || nFrame >= m_nFrameCount )
{
// FIXME: Use the well-known 'error' id instead of frame 0
nFrame = 0;
// Assert(0);
}
// Make sure we've actually allocated the texture
Assert( HasBeenAllocated() );
g_pShaderAPI->BindVertexTexture( sampler, m_pTextureHandles[nFrame] );
}
}
//-----------------------------------------------------------------------------
// Set this texture as a render target
//-----------------------------------------------------------------------------
bool CTexture::SetRenderTarget( int nRenderTargetID )
{
return SetRenderTarget( nRenderTargetID, NULL );
}
//-----------------------------------------------------------------------------
// Set this texture as a render target
// Optionally bind pDepthTexture as depth buffer
//-----------------------------------------------------------------------------
bool CTexture::SetRenderTarget( int nRenderTargetID, ITexture *pDepthTexture )
{
if ( ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) == 0 )
return false;
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() );
ShaderAPITextureHandle_t textureHandle;
if ( !IsX360() )
{
textureHandle = m_pTextureHandles[0];
}
else
{
Assert( m_nFrameCount > 1 );
textureHandle = m_pTextureHandles[m_nFrameCount-1];
}
ShaderAPITextureHandle_t depthTextureHandle = (ShaderAPITextureHandle_t)SHADER_RENDERTARGET_DEPTHBUFFER;
if ( m_nFlags & TEXTUREFLAGS_DEPTHRENDERTARGET )
{
Assert( m_nFrameCount >= 2 );
depthTextureHandle = m_pTextureHandles[1];
}
else if ( m_nFlags & TEXTUREFLAGS_NODEPTHBUFFER )
{
// GR - render target without depth buffer
depthTextureHandle = (ShaderAPITextureHandle_t)SHADER_RENDERTARGET_NONE;
}
if ( pDepthTexture)
{
depthTextureHandle = static_cast<ITextureInternal *>(pDepthTexture)->GetTextureHandle(0);
}
g_pShaderAPI->SetRenderTargetEx( nRenderTargetID, textureHandle, depthTextureHandle );
return true;
}
//-----------------------------------------------------------------------------
// Reference counting
//-----------------------------------------------------------------------------
void CTexture::IncrementReferenceCount( void )
{
++m_nRefCount;
}
void CTexture::DecrementReferenceCount( void )
{
--m_nRefCount;
/* FIXME: Probably have to remove this from the texture manager too..?
if (IsProcedural() && (m_nRefCount < 0))
delete this;
*/
}
int CTexture::GetReferenceCount() const
{
return m_nRefCount;
}
//-----------------------------------------------------------------------------
// Various accessor methods
//-----------------------------------------------------------------------------
const char* CTexture::GetName( ) const
{
return m_Name.String();
}
const char* CTexture::GetTextureGroupName( ) const
{
return m_TextureGroupName.String();
}
void CTexture::SetName( const char* pName )
{
// normalize and convert to a symbol
char szCleanName[MAX_PATH];
m_Name = NormalizeTextureName( pName, szCleanName, sizeof( szCleanName ) );
#ifdef _DEBUG
if ( m_pDebugName )
{
delete [] m_pDebugName;
}
int nLen = V_strlen( szCleanName ) + 1;
m_pDebugName = new char[nLen];
V_memcpy( m_pDebugName, szCleanName, nLen );
#endif
}
ImageFormat CTexture::GetImageFormat() const
{
return m_ImageFormat;
}
int CTexture::GetMappingWidth() const
{
return m_nMappingWidth;
}
int CTexture::GetMappingHeight() const
{
return m_nMappingHeight;
}
int CTexture::GetMappingDepth() const
{
return m_nMappingDepth;
}
int CTexture::GetActualWidth() const
{
return m_nActualWidth;
}
int CTexture::GetActualHeight() const
{
return m_nActualHeight;
}
int CTexture::GetActualDepth() const
{
return m_nActualDepth;
}
int CTexture::GetNumAnimationFrames() const
{
return m_nFrameCount;
}
void CTexture::GetReflectivity( Vector& reflectivity )
{
Precache();
VectorCopy( m_vecReflectivity, reflectivity );
}
//-----------------------------------------------------------------------------
// Little helper polling methods
//-----------------------------------------------------------------------------
bool CTexture::IsTranslucent() const
{
return ( m_nFlags & (TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA) ) != 0;
}
bool CTexture::IsNormalMap( void ) const
{
return ( ( m_nFlags & TEXTUREFLAGS_NORMAL ) != 0 );
}
bool CTexture::IsCubeMap( void ) const
{
return ( ( m_nFlags & TEXTUREFLAGS_ENVMAP ) != 0 );
}
bool CTexture::IsRenderTarget( void ) const
{
return ( ( m_nFlags & TEXTUREFLAGS_RENDERTARGET ) != 0 );
}
bool CTexture::IsTempRenderTarget( void ) const
{
return ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET ) != 0 );
}
bool CTexture::IsProcedural() const
{
return ( (m_nFlags & TEXTUREFLAGS_PROCEDURAL) != 0 );
}
bool CTexture::IsMipmapped() const
{
return ( (m_nFlags & TEXTUREFLAGS_NOMIP) == 0 );
}
unsigned int CTexture::GetFlags() const
{
return m_nFlags;
}
void CTexture::ForceLODOverride( int iNumLodsOverrideUpOrDown )
{
if ( IsGameConsole() )
{
// not supporting
Assert( 0 );
return;
}
TextureLodOverride::OverrideInfo oi( iNumLodsOverrideUpOrDown, iNumLodsOverrideUpOrDown );
TextureLodOverride::Add( GetName(), oi );
Download( NULL );
}
void CTexture::ForceExcludeOverride( int iExcludeOverride )
{
if ( IsGameConsole() )
{
Assert( 0 );
return;
}
TextureLodExclude::Add( GetName(), iExcludeOverride );
Download( NULL );
}
bool CTexture::IsError() const
{
return ( (m_nInternalFlags & TEXTUREFLAGSINTERNAL_ERROR) != 0 );
}
bool CTexture::IsDefaultPool() const
{
return ( ( m_nFlags & TEXTUREFLAGS_DEFAULT_POOL ) != 0 );
}
bool CTexture::HasBeenAllocated() const
{
return ( (m_nInternalFlags & TEXTUREFLAGSINTERNAL_ALLOCATED) != 0 );
}
bool CTexture::IsVolumeTexture() const
{
return (m_nMappingDepth > 1);
}
//-----------------------------------------------------------------------------
// Sets the filtering + clamping modes on the texture
//-----------------------------------------------------------------------------
void CTexture::SetFilteringAndClampingMode()
{
if( !HasBeenAllocated() )
return;
int nCount = m_nFrameCount;
if ( IsX360() && IsRenderTarget() )
{
// 360 render targets have a reserved surface
nCount--;
}
for ( int iFrame = 0; iFrame < nCount; ++iFrame )
{
Modify( iFrame ); // Indicate we're changing state with respect to a particular frame
SetWrapState(); // Send the appropriate wrap/clamping modes to the shaderapi.
SetFilterState(); // Set the filtering mode for the texture after downloading it.
// NOTE: Apparently, the filter state cannot be set until after download
}
}
//-----------------------------------------------------------------------------
// Loads up the non-fallback information about the texture
//-----------------------------------------------------------------------------
void CTexture::Precache()
{
int nHackExtraFlags = 0;
// We only have to do something in the case of a file texture
if ( IsRenderTarget() || IsProcedural() )
return;
if ( HasBeenAllocated() )
return;
// Blow off env_cubemap too...
if ( !Q_strnicmp( m_Name.String(), "env_cubemap", 12 ))
return;
if ( IsGameConsole() && m_nFlags )
{
// 360 can be assured that precaching has already been done
return;
}
IVTFTexture *pVTFTexture = GetScratchVTFTexture();
// The texture name doubles as the relative file name
// It's assumed to have already been set by this point
// Compute the cache name
char pCacheFileName[MATERIAL_MAX_PATH];
Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s" TEXTURE_FNAME_EXTENSION, m_Name.String() );
#if defined( _GAMECONSOLE )
// generate native texture
pVTFTexture->UpdateOrCreate( pCacheFileName );
#endif
int nVersion = -1;
if ( IsPC() )
nVersion = VTF_MAJOR_VERSION;
else if ( IsX360() )
nVersion = VTF_X360_MAJOR_VERSION;
else if ( IsPS3() )
nVersion = VTF_PS3_MAJOR_VERSION;
int nHeaderSize = VTFFileHeaderSize( nVersion );
unsigned char *pMem = (unsigned char *)stackalloc( nHeaderSize );
CUtlBuffer buf( pMem, nHeaderSize );
if ( !g_pFullFileSystem->ReadFile( pCacheFileName, NULL, buf, nHeaderSize ) )
{
goto precacheFailed;
}
// Unserialize the header only
#if !defined( _GAMECONSOLE )
if ( !pVTFTexture->Unserialize( buf, true ) )
#else
if ( !pVTFTexture->UnserializeFromBuffer( buf, true, true, true, 0 ) )
#endif
{
Warning( "Error reading material \"%s\"\n", pCacheFileName );
goto precacheFailed;
}
// FIXME: Hack for L4D
if ( !Q_strnicmp( pCacheFileName, "materials/graffiti/", 19 ) )
{
nHackExtraFlags = TEXTUREFLAGS_NOLOD;
}
// NOTE: Don't set the image format in case graphics are active
VectorCopy( pVTFTexture->Reflectivity(), m_vecReflectivity );
m_nMappingWidth = pVTFTexture->Width();
m_nMappingHeight = pVTFTexture->Height();
m_nMappingDepth = pVTFTexture->Depth();
m_nFlags = pVTFTexture->Flags() | nHackExtraFlags;
m_nFrameCount = pVTFTexture->FrameCount();
return;
precacheFailed:
m_vecReflectivity.Init( 0, 0, 0 );
m_nMappingWidth = 32;
m_nMappingHeight = 32;
m_nMappingDepth = 1;
m_nFlags = TEXTUREFLAGS_NOMIP;
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ERROR;
m_nFrameCount = 1;
}
//-----------------------------------------------------------------------------
// Loads the low-res image from the texture
//-----------------------------------------------------------------------------
void CTexture::LoadLowResTexture( IVTFTexture *pTexture )
{
#if !defined( _GAMECONSOLE )
delete [] m_pLowResImage;
m_pLowResImage = NULL;
#endif
if ( pTexture->LowResWidth() == 0 || pTexture->LowResHeight() == 0 )
{
m_LowResImageWidth = m_LowResImageHeight = 0;
return;
}
m_LowResImageWidth = pTexture->LowResWidth();
m_LowResImageHeight = pTexture->LowResHeight();
#if !defined( _GAMECONSOLE )
m_pLowResImage = new unsigned char[m_LowResImageWidth * m_LowResImageHeight * 3];
#ifdef _DEBUG
bool retVal =
#endif
ImageLoader::ConvertImageFormat( pTexture->LowResImageData(), pTexture->LowResFormat(),
m_pLowResImage, IMAGE_FORMAT_RGB888, m_LowResImageWidth, m_LowResImageHeight );
#ifdef _DEBUG
Assert( retVal );
#endif
#else
*(unsigned int*)m_LowResImageSample = *(unsigned int*)pTexture->LowResImageSample();
#endif
}
void *CTexture::GetResourceData( uint32 eDataType, size_t *pnumBytes ) const
{
for ( DataChunk const *pDataChunk = m_arrDataChunks.Base(),
*pDataChunkEnd = pDataChunk + m_arrDataChunks.Count();
pDataChunk < pDataChunkEnd; ++pDataChunk )
{
if ( ( pDataChunk->m_eType & ~RSRCF_MASK ) == eDataType )
{
if ( ( pDataChunk->m_eType & RSRCF_HAS_NO_DATA_CHUNK ) == 0 )
{
if ( pnumBytes)
*pnumBytes = pDataChunk->m_numBytes;
return pDataChunk->m_pvData;
}
else
{
if ( pnumBytes )
*pnumBytes = sizeof( pDataChunk->m_numBytes );
return ( void *)( &pDataChunk->m_numBytes );
}
}
}
if ( pnumBytes )
pnumBytes = 0;
return NULL;
}
void CTexture::FreeResourceData()
{
// Clean up the resources data
for ( DataChunk const *pDataChunk = m_arrDataChunks.Base(),
*pDataChunkEnd = pDataChunk + m_arrDataChunks.Count();
pDataChunk < pDataChunkEnd; ++pDataChunk )
{
pDataChunk->Deallocate();
}
m_arrDataChunks.RemoveAll();
}
void CTexture::LoadResourceData( IVTFTexture *pVTFTexture )
{
// purge any prior resource data
FreeResourceData();
// Load the resources
if ( unsigned int uiRsrcCount = pVTFTexture->GetResourceTypes( NULL, 0 ) )
{
uint32 *arrRsrcTypes = ( uint32 * )stackalloc( uiRsrcCount * sizeof( unsigned int ) );
pVTFTexture->GetResourceTypes( arrRsrcTypes, uiRsrcCount );
m_arrDataChunks.EnsureCapacity( uiRsrcCount );
for ( uint32 *arrRsrcTypesEnd = arrRsrcTypes + uiRsrcCount;
arrRsrcTypes < arrRsrcTypesEnd; ++arrRsrcTypes )
{
switch ( *arrRsrcTypes )
{
case VTF_LEGACY_RSRC_LOW_RES_IMAGE:
case VTF_LEGACY_RSRC_IMAGE:
// These stock types use specific load routines
continue;
default:
{
DataChunk dc;
dc.m_eType = *arrRsrcTypes;
dc.m_eType &= ~RSRCF_MASK;
size_t numBytes;
if ( void *pvData = pVTFTexture->GetResourceData( dc.m_eType, &numBytes ) )
{
Assert( numBytes >= sizeof( uint32 ) );
if ( numBytes == sizeof( dc.m_numBytes ) )
{
dc.m_eType |= RSRCF_HAS_NO_DATA_CHUNK;
dc.m_pvData = NULL;
memcpy( &dc.m_numBytes, pvData, numBytes );
}
else
{
dc.Allocate( numBytes );
memcpy( dc.m_pvData, pvData, numBytes );
}
m_arrDataChunks.AddToTail( dc );
}
}
}
}
}
}
#pragma pack(1)
struct DXTColBlock
{
unsigned short col0;
unsigned short col1;
// no bit fields - use bytes
unsigned char row[4];
};
struct DXTAlphaBlock3BitLinear
{
unsigned char alpha0;
unsigned char alpha1;
unsigned char stuff[6];
};
#pragma pack()
static void FillCompressedTextureWithSingleColor( int red, int green, int blue, int alpha, unsigned char *pImageData,
int width, int height, int depth, ImageFormat imageFormat )
{
Assert( ( width < 4 ) || !( width % 4 ) );
Assert( ( height < 4 ) || !( height % 4 ) );
Assert( ( depth < 4 ) || !( depth % 4 ) );
if ( width < 4 && width > 0 )
{
width = 4;
}
if ( height < 4 && height > 0 )
{
height = 4;
}
if ( depth < 4 && depth > 1 )
{
depth = 4;
}
int numBlocks = ( width * height ) >> 4;
numBlocks *= depth;
DXTColBlock colorBlock;
memset( &colorBlock, 0, sizeof( colorBlock ) );
( ( BGR565_t * )&( colorBlock.col0 ) )->Set( red, green, blue );
( ( BGR565_t * )&( colorBlock.col1 ) )->Set( red, green, blue );
switch( imageFormat )
{
case IMAGE_FORMAT_DXT1:
case IMAGE_FORMAT_ATI1N: // Invalid block data, but correct memory footprint
{
int i;
for( i = 0; i < numBlocks; i++ )
{
memcpy( pImageData + i * 8, &colorBlock, sizeof( colorBlock ) );
}
}
break;
case IMAGE_FORMAT_DXT5:
case IMAGE_FORMAT_ATI2N:
{
int i;
for( i = 0; i < numBlocks; i++ )
{
// memset( pImageData + i * 16, 0, 16 );
memcpy( pImageData + i * 16 + 8, &colorBlock, sizeof( colorBlock ) );
// memset( pImageData + i * 16 + 8, 0xffff, 8 ); // alpha block
}
}
break;
default:
Assert( 0 );
break;
}
}
//-----------------------------------------------------------------------------
// Generate a gray texture
//-----------------------------------------------------------------------------
void CTexture::GenerateGrayTexture( IVTFTexture *pTexture )
{
if( pTexture->FaceCount() > 1 )
return;
if( pTexture->IsCubeMap() )
return;
switch( pTexture->Format() )
{
// These are formats that we don't bother with
case IMAGE_FORMAT_RGBA16161616F:
case IMAGE_FORMAT_R32F:
case IMAGE_FORMAT_RGB323232F:
case IMAGE_FORMAT_RGBA32323232F:
case IMAGE_FORMAT_UV88:
break;
default:
for (int iFrame = 0; iFrame < pTexture->FrameCount(); ++iFrame )
{
for (int iFace = 0; iFace < pTexture->FaceCount(); ++iFace )
{
for (int iMip = 0; iMip < pTexture->MipCount(); ++iMip )
{
int green = 128;
int red = 128;
int blue = 128;
int nWidth, nHeight, nDepth;
pTexture->ComputeMipLevelDimensions( iMip, &nWidth, &nHeight, &nDepth );
if( pTexture->Format() == IMAGE_FORMAT_DXT1 || pTexture->Format() == IMAGE_FORMAT_DXT5 ||
pTexture->Format() == IMAGE_FORMAT_ATI1N || pTexture->Format() == IMAGE_FORMAT_ATI2N )
{
unsigned char *pImageData = pTexture->ImageData( iFrame, iFace, iMip, 0, 0, 0 );
FillCompressedTextureWithSingleColor( red, green, blue, 255, pImageData, nWidth, nHeight, nDepth, pTexture->Format() );
}
else
{
for ( int z = 0; z < nDepth; ++z )
{
CPixelWriter pixelWriter;
pixelWriter.SetPixelMemory( pTexture->Format(),
pTexture->ImageData( iFrame, iFace, iMip, 0, 0, z ), pTexture->RowSizeInBytes( iMip ) );
for (int y = 0; y < nHeight; ++y)
{
pixelWriter.Seek( 0, y );
for (int x = 0; x < nWidth; ++x)
{
pixelWriter.WritePixel( red, green, blue, 255 );
}
}
}
}
}
}
}
break;
}
}
//-----------------------------------------------------------------------------
// Generate a texture that shows the various mip levels
//-----------------------------------------------------------------------------
void CTexture::GenerateShowMipLevelsTextures( IVTFTexture *pTexture )
{
if( pTexture->FaceCount() > 1 )
return;
switch( pTexture->Format() )
{
// These are formats that we don't bother with for generating mip level textures.
case IMAGE_FORMAT_RGBA16161616F:
case IMAGE_FORMAT_R32F:
case IMAGE_FORMAT_RGB323232F:
case IMAGE_FORMAT_RGBA32323232F:
case IMAGE_FORMAT_UV88:
break;
default:
for (int iFrame = 0; iFrame < pTexture->FrameCount(); ++iFrame )
{
for (int iFace = 0; iFace < pTexture->FaceCount(); ++iFace )
{
for (int iMip = 0; iMip < pTexture->MipCount(); ++iMip )
{
int green = ( ( iMip + 1 ) & 1 ) ? 255 : 0;
int red = ( ( iMip + 1 ) & 2 ) ? 255 : 0;
int blue = ( ( iMip + 1 ) & 4 ) ? 255 : 0;
int nWidth, nHeight, nDepth;
pTexture->ComputeMipLevelDimensions( iMip, &nWidth, &nHeight, &nDepth );
if( pTexture->Format() == IMAGE_FORMAT_DXT1 || pTexture->Format() == IMAGE_FORMAT_DXT5 ||
pTexture->Format() == IMAGE_FORMAT_ATI1N || pTexture->Format() == IMAGE_FORMAT_ATI2N )
{
unsigned char *pImageData = pTexture->ImageData( iFrame, iFace, iMip, 0, 0, 0 );
int alpha = 255;
FillCompressedTextureWithSingleColor( red, green, blue, alpha, pImageData, nWidth, nHeight, nDepth, pTexture->Format() );
}
else
{
for ( int z = 0; z < nDepth; ++z )
{
CPixelWriter pixelWriter;
pixelWriter.SetPixelMemory( pTexture->Format(),
pTexture->ImageData( iFrame, iFace, iMip, 0, 0, z ), pTexture->RowSizeInBytes( iMip ) );
for (int y = 0; y < nHeight; ++y)
{
pixelWriter.Seek( 0, y );
for (int x = 0; x < nWidth; ++x)
{
pixelWriter.WritePixel( red, green, blue, 255 );
}
}
}
}
}
}
}
break;
}
}
//-----------------------------------------------------------------------------
// Generate a texture that shows the various mip levels
//-----------------------------------------------------------------------------
void CTexture::CopyLowResImageToTexture( IVTFTexture *pTexture )
{
int nFlags = pTexture->Flags();
nFlags |= TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_POINTSAMPLE;
nFlags &= ~(TEXTUREFLAGS_TRILINEAR | TEXTUREFLAGS_ANISOTROPIC | TEXTUREFLAGS_HINT_DXT5);
nFlags &= ~(TEXTUREFLAGS_NORMAL | TEXTUREFLAGS_ENVMAP);
nFlags &= ~(TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA);
Assert( pTexture->FrameCount() == 1 );
Init( pTexture->Width(), pTexture->Height(), 1, IMAGE_FORMAT_BGR888, nFlags, 1 );
pTexture->Init( m_LowResImageWidth, m_LowResImageHeight, 1, IMAGE_FORMAT_BGR888, nFlags, 1 );
// Don't bother computing the actual size; it's actually equal to the low-res size
// With only one mip level
m_nActualWidth = m_LowResImageWidth;
m_nActualHeight = m_LowResImageHeight;
m_nActualDepth = 1;
m_nActualMipCount = 1;
// Copy the row-res image into the VTF Texture
CPixelWriter pixelWriter;
pixelWriter.SetPixelMemory( pTexture->Format(),
pTexture->ImageData( 0, 0, 0 ), pTexture->RowSizeInBytes( 0 ) );
#if !defined( _GAMECONSOLE )
unsigned char *pLowResImage = m_pLowResImage;
#else
unsigned char *pLowResImage = m_LowResImageSample;
#endif
for ( int y = 0; y < m_LowResImageHeight; ++y )
{
pixelWriter.Seek( 0, y );
for ( int x = 0; x < m_LowResImageWidth; ++x )
{
int red = pLowResImage[0];
int green = pLowResImage[1];
int blue = pLowResImage[2];
pLowResImage += 3;
pixelWriter.WritePixel( red, green, blue, 255 );
}
}
}
//-----------------------------------------------------------------------------
// Sets up debugging texture bits, if appropriate
//-----------------------------------------------------------------------------
bool CTexture::SetupDebuggingTextures( IVTFTexture *pVTFTexture )
{
if ( IsGameConsole() )
{
// not supporting
return false;
}
if ( pVTFTexture->Flags() & TEXTUREFLAGS_NODEBUGOVERRIDE )
return false;
if ( g_config.bDrawGray )
{
GenerateGrayTexture( pVTFTexture );
return true;
}
if ( g_config.nShowMipLevels )
{
// mat_showmiplevels 1 means don't do normal maps
if ( ( g_config.nShowMipLevels == 1 ) && ( pVTFTexture->Flags() & ( TEXTUREFLAGS_NORMAL | TEXTUREFLAGS_SSBUMP ) ) )
return false;
// mat_showmiplevels 2 means don't do base textures
if ( ( g_config.nShowMipLevels == 2 ) && !( pVTFTexture->Flags() & ( TEXTUREFLAGS_NORMAL | TEXTUREFLAGS_SSBUMP ) ) )
return false;
// This mode shows the mip levels as different colors
GenerateShowMipLevelsTextures( pVTFTexture );
return true;
}
else if ( g_config.bShowLowResImage && pVTFTexture->FrameCount() == 1 &&
pVTFTexture->FaceCount() == 1 && ((pVTFTexture->Flags() & TEXTUREFLAGS_NORMAL) == 0) &&
m_LowResImageWidth != 0 && m_LowResImageHeight != 0 )
{
// This mode just uses the low res texture
CopyLowResImageToTexture( pVTFTexture );
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Converts the texture to the actual format
// Returns true if conversion applied, false otherwise
//-----------------------------------------------------------------------------
bool CTexture::ConvertToActualFormat( IVTFTexture *pVTFTexture )
{
if ( !g_pShaderDevice->IsUsingGraphics() )
return false;
bool bConverted = false;
ImageFormat fmt = m_ImageFormat;
ImageFormat dstFormat = ComputeActualFormat( pVTFTexture->Format() );
#ifdef PLATFORM_OSX
if ( IsVolumeTexture() && ImageLoader::IsCompressed( dstFormat ) )
{
// OSX does not support compressed 3d textures
dstFormat = IMAGE_FORMAT_RGBA8888;
}
#endif
if ( fmt != dstFormat )
{
Assert( !IsGameConsole() );
pVTFTexture->ConvertImageFormat( dstFormat, false );
m_ImageFormat = dstFormat;
bConverted = true;
}
#ifndef _PS3
// No reason to do this conversion on PS3
else if ( HardwareConfig()->GetHDRType() == HDR_TYPE_INTEGER &&
fmt == dstFormat && dstFormat == IMAGE_FORMAT_RGBA16161616F )
{
// This is to force at most the precision of int16 for fp16 texture when running the integer path.
pVTFTexture->ConvertImageFormat( IMAGE_FORMAT_RGBA16161616, false );
pVTFTexture->ConvertImageFormat( IMAGE_FORMAT_RGBA16161616F, false );
bConverted = true;
}
#endif // !_PS3
return bConverted;
}
void CTexture::GetFilename( char *pOut, int maxLen ) const
{
const char *pName = m_Name.String();
bool bIsUNCName = ( pName[0] == '/' && pName[1] == '/' && pName[2] != '/' );
if ( !bIsUNCName )
{
Q_snprintf( pOut, maxLen,
"materials/%s" TEXTURE_FNAME_EXTENSION, pName );
}
else
{
Q_snprintf( pOut, maxLen, "%s" TEXTURE_FNAME_EXTENSION, pName );
}
}
void CTexture::ReloadFilesInList( IFileList *pFilesToReload )
{
if ( IsProcedural() || IsRenderTarget() )
return;
char filename[MAX_PATH];
GetFilename( filename, sizeof( filename ) );
if ( pFilesToReload->IsFileInList( filename ) )
{
Download();
}
}
//-----------------------------------------------------------------------------
// Loads the texture bits from a file or data.
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::LoadTexttureBitsFromFileOrData( void *pSourceData, int nSourceDataSize, char **pResolvedFilename )
{
char pCacheFileName[MATERIAL_MAX_PATH] = { 0 };
const char *pName;
if (m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE)
{
#if !defined( _CERT )
// excluded texture should not be visible, want these to be found during testing
// use the green checkerboard
pName = "dev/dev_exclude_error";
#else
// for shipping (in case it happens) better to use the version meant for momentary rendering
pName = "dev/dev_temp_exclude";
#endif
}
else if ((m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE) && m_nDesiredTempDimensionLimit <= 0)
{
pName = "dev/dev_temp_exclude";
}
else
{
pName = m_Name.String();
}
bool bIsUNCName = (pName[0] == '/' && pName[1] == '/' && pName[2] != '/');
if (!bIsUNCName)
{
Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s" TEXTURE_FNAME_EXTENSION, pName );
}
else
{
Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "%s" TEXTURE_FNAME_EXTENSION, pName );
}
if (!pSourceData || !nSourceDataSize)
{
// Get the data from disk...
// NOTE: Reloading the texture bits can cause the texture size, frames, format, pretty much *anything* can change.
return LoadTextureBitsFromFile( pCacheFileName, pResolvedFilename );
}
else
{
// use the data provided
return LoadTextureBitsFromData( pCacheFileName, pSourceData, nSourceDataSize );
}
}
//-----------------------------------------------------------------------------
// Loads the texture bits from a file.
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::LoadTextureBitsFromFile( char *pCacheFileName, char **ppResolvedFilename )
{
int nHeaderSize;
int nFileSize;
IVTFTexture *pVTFTexture = ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD ) ? GetScratchVTFAsyncTexture() : GetScratchVTFTexture();
bool bIsCombinedImage = ( pCacheFileName[ 0 ] == '!' ) && g_pMDLCache != NULL;
CUtlBuffer buf;
FileHandle_t fileHandle = FILESYSTEM_INVALID_HANDLE;
int nBytesOptimalRead; // GCC needs this extra newline due to goto
int nBytesRead; // GCC needs this extra newline due to goto
if ( bIsCombinedImage )
{
int nSize;
void *pBuffer = g_pMDLCache->GetCombinedInternalAsset( COMBINED_ASSET_TEXTURE, pCacheFileName, &nSize );
// buf will not own the memory and thus will not try to dealloc it
buf.SetExternalBuffer( pBuffer, nSize, nSize );
}
else
{
while ( fileHandle == FILESYSTEM_INVALID_HANDLE ) // run until found a file or out of rules
{
#if defined( _GAMECONSOLE )
// generate native texture
pVTFTexture->UpdateOrCreate( pCacheFileName );
#endif
fileHandle = g_pFullFileSystem->OpenEx( pCacheFileName, "rb", 0, MaterialSystem()->GetForcedTextureLoadPathID(), ppResolvedFilename );
if ( fileHandle == FILESYSTEM_INVALID_HANDLE )
{
// try any fallbacks.
char *pHdrExt = Q_stristr( pCacheFileName, ".hdr" TEXTURE_FNAME_EXTENSION );
if ( pHdrExt )
{
//DevWarning( "A custom HDR cubemap \"%s\": cannot be found on disk.\n"
// "This really should have a HDR version, trying a fall back to a non-HDR version.\n", pCacheFileName );
strcpy( pHdrExt, TEXTURE_FNAME_EXTENSION );
}
else
{
// no more fallbacks
break;
}
}
}
if ( fileHandle == FILESYSTEM_INVALID_HANDLE )
{
if ( !StringHasPrefix( m_Name.String(), "env_cubemap" ) )
{
if ( IsOSX() )
{
printf("\n ##### CTexture::LoadTextureBitsFromFile couldn't find %s",pCacheFileName );
}
DevWarning( "\"%s\": can't be found on disk\n", pCacheFileName );
}
return HandleFileLoadFailedTexture( pVTFTexture );
}
int nVersion = -1;
if ( IsPC() )
nVersion = VTF_MAJOR_VERSION;
else if ( IsX360() )
nVersion = VTF_X360_MAJOR_VERSION;
else if ( IsPS3() )
nVersion = VTF_PS3_MAJOR_VERSION;
nHeaderSize = VTFFileHeaderSize( nVersion );
// restrict read to the header only!
// header provides info to avoid reading the entire file
nBytesOptimalRead = GetOptimalReadBuffer( fileHandle, nHeaderSize, buf );
nBytesRead = g_pFullFileSystem->ReadEx( buf.Base(), nBytesOptimalRead, Min( nHeaderSize, (int)g_pFullFileSystem->Size(fileHandle) ), fileHandle ); // only read as much as the file has
nBytesRead = nHeaderSize = ((VTFFileBaseHeader_t *)buf.Base())->headerSize;
g_pFullFileSystem->Seek( fileHandle, nHeaderSize, FILESYSTEM_SEEK_HEAD );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead );
}
// Unserialize the header only
// need the header first to determine remainder of data
#if !defined( _GAMECONSOLE )
if ( !pVTFTexture->Unserialize( buf, true ) )
#else
if ( !pVTFTexture->UnserializeFromBuffer( buf, true, true, true, 0 ) )
#endif
{
Warning( "Error reading texture header \"%s\"\n", pCacheFileName );
g_pFullFileSystem->Close( fileHandle );
return HandleFileLoadFailedTexture( pVTFTexture );
}
// FIXME: Hack for L4D
int nHackExtraFlags = 0;
if ( !Q_strnicmp( pCacheFileName, "materials/graffiti/", 19 ) )
{
nHackExtraFlags = TEXTUREFLAGS_NOLOD;
}
// OSX hackery
if ( m_nFlags & TEXTUREFLAGS_SRGB )
{
nHackExtraFlags |= TEXTUREFLAGS_SRGB;
}
// Set from stdshaders cpp code
if ( m_nFlags & TEXTUREFLAGS_ANISOTROPIC )
{
nHackExtraFlags |= TEXTUREFLAGS_ANISOTROPIC;
}
// Seek the reading back to the front of the buffer
buf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 );
// Initialize the texture class with vtf header data before operations
Init(
#if !defined( _GAMECONSOLE )
pVTFTexture->Width(),
pVTFTexture->Height(),
pVTFTexture->Depth(),
#else
// 360 texture might be pre-picmipped, setup as it's original dimensions
// so picmipping logic calculates correctly, and then fixup
pVTFTexture->MappingWidth(),
pVTFTexture->MappingHeight(),
pVTFTexture->MappingDepth(),
#endif
pVTFTexture->Format(),
pVTFTexture->Flags() | nHackExtraFlags,
pVTFTexture->FrameCount() );
VectorCopy( pVTFTexture->Reflectivity(), m_vecReflectivity );
#if defined( _GAMECONSOLE )
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_QUEUEDLOAD;
if ( !g_pQueuedLoader->IsMapLoading() || ( m_nFlags & ( TEXTUREFLAGS_PROCEDURAL|TEXTUREFLAGS_RENDERTARGET|TEXTUREFLAGS_DEPTHRENDERTARGET ) ) )
{
// explicitly disabled or not appropriate for texture type
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_QUEUEDLOAD;
}
else
{
if ( pVTFTexture->FileSize( true, 0 ) >= pVTFTexture->FileSize( false, 0 ) )
{
// texture is a dwarf, entirely in preload, loads normally
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_QUEUEDLOAD;
}
}
#endif
// Compute the actual texture dimensions
int nMipSkipCount = ComputeActualSize( false, pVTFTexture );
#if defined( _GAMECONSOLE )
bool bQueuedLoad = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD ) != 0;
nMipSkipCount -= pVTFTexture->MipSkipCount();
if ( nMipSkipCount < 0 || ( nMipSkipCount >= pVTFTexture->MipCount() ) )
{
// the 360 texture was already pre-picmipped or can't be picmipped
// clamp to the available dimensions
m_nActualWidth = pVTFTexture->Width();
m_nActualHeight = pVTFTexture->Height();
m_nActualDepth = pVTFTexture->Depth();
m_nActualMipCount = ComputeActualMipCount();
nMipSkipCount = 0;
}
if ( IsX360() && g_config.skipMipLevels == 0 && m_nActualMipCount > 1 && m_nFrameCount == 1 && !( m_nFlags & ( TEXTUREFLAGS_PROCEDURAL|TEXTUREFLAGS_RENDERTARGET|TEXTUREFLAGS_DEPTHRENDERTARGET ) ) )
{
// this file based texture is a good candidate for cacheing
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_CACHEABLE;
}
if ( nMipSkipCount )
{
// track which textures had their dimensions forcefully reduced
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_REDUCED;
}
#endif
m_nMipSkipCount = nMipSkipCount;
#if !defined( _GAMECONSOLE )
// Determine how much of the file to read in
nFileSize = pVTFTexture->FileSize( nMipSkipCount );
#else
// A queued loading texture just gets the preload section
// and does NOT unserialize the texture bits here
nFileSize = pVTFTexture->FileSize( bQueuedLoad, nMipSkipCount );
#endif
// Read only the portion of the file that we care about
g_pFullFileSystem->Seek( fileHandle, 0, FILESYSTEM_SEEK_HEAD );
nBytesOptimalRead = GetOptimalReadBuffer( fileHandle, nFileSize, buf );
nBytesRead = g_pFullFileSystem->ReadEx( buf.Base(), nBytesOptimalRead, nFileSize, fileHandle );
g_pFullFileSystem->Close( fileHandle );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead );
// NOTE: Skipping mip levels here will cause the size to be changed...
#if !defined( _GAMECONSOLE )
if ( !pVTFTexture->Unserialize( buf, false, nMipSkipCount ) )
#else
if ( !pVTFTexture->UnserializeFromBuffer( buf, true, false, bQueuedLoad, nMipSkipCount ) )
#endif
{
Warning( "Error reading material data \"%s\"\n", pCacheFileName );
return HandleFileLoadFailedTexture( pVTFTexture );
}
// Build the low-res texture
LoadLowResTexture( pVTFTexture );
// load resources
LoadResourceData( pVTFTexture );
// Try to set up debugging textures, if we're in a debugging mode
if ( !IsProcedural() && !IsGameConsole() )
{
SetupDebuggingTextures( pVTFTexture );
}
if ( ConvertToActualFormat( pVTFTexture ) )
{
if ( IsGameConsole() )
{
// 360 vtf are baked in final formats, no format conversion can or should have occurred
// otherwise track offender and ensure files are baked correctly
Error( "\"%s\" not in native format\n", pCacheFileName );
}
}
return pVTFTexture;
}
//-----------------------------------------------------------------------------
// Loads the texture bits from provided data.
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::LoadTextureBitsFromData( char *pCacheFileName, void *pSourceData, int nSourceDataSize )
{
IVTFTexture *pVTFTexture = ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD ) ? GetScratchVTFAsyncTexture() : GetScratchVTFTexture();
CUtlBuffer buf;
buf.SetExternalBuffer( pSourceData, nSourceDataSize, nSourceDataSize, CUtlBuffer::READ_ONLY );
int nVersion = -1;
if ( IsPC() )
nVersion = VTF_MAJOR_VERSION;
else if ( IsX360() )
nVersion = VTF_X360_MAJOR_VERSION;
else if ( IsPS3() )
nVersion = VTF_PS3_MAJOR_VERSION;
int nHeaderSize = VTFFileHeaderSize( nVersion );
if ( nSourceDataSize < nHeaderSize )
{
Warning( "Error reading texture header \"%s\"\n", pCacheFileName );
return HandleFileLoadFailedTexture( pVTFTexture );
}
// Unserialize the header only
// need the header first to determine remainder of data
#if !defined( _GAMECONSOLE )
if ( !pVTFTexture->Unserialize( buf, true ) )
#else
if ( !pVTFTexture->UnserializeFromBuffer( buf, true, true, true, 0 ) )
#endif
{
Warning( "Error reading texture header \"%s\"\n", pCacheFileName );
return HandleFileLoadFailedTexture( pVTFTexture );
}
// FIXME: Hack for L4D
int nHackExtraFlags = 0;
if ( !Q_strnicmp( pCacheFileName, "materials/graffiti/", 19 ) )
{
nHackExtraFlags = TEXTUREFLAGS_NOLOD;
}
// OSX hackery
if ( m_nFlags & TEXTUREFLAGS_SRGB )
{
nHackExtraFlags |= TEXTUREFLAGS_SRGB;
}
// Set from stdshaders cpp code
if ( m_nFlags & TEXTUREFLAGS_ANISOTROPIC )
{
nHackExtraFlags |= TEXTUREFLAGS_ANISOTROPIC;
}
if ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD )
{
nHackExtraFlags |= TEXTUREFLAGS_ASYNC_DOWNLOAD;
}
// Seek the reading back to the front of the buffer
buf.SeekGet( CUtlBuffer::SEEK_HEAD, 0 );
// Initialize the texture class with vtf header data before operations
Init(
#if !defined( _GAMECONSOLE )
pVTFTexture->Width(),
pVTFTexture->Height(),
pVTFTexture->Depth(),
#else
// 360 texture might be pre-picmipped, setup as it's original dimensions
// so picmipping logic calculates correctly, and then fixup
pVTFTexture->MappingWidth(),
pVTFTexture->MappingHeight(),
pVTFTexture->MappingDepth(),
#endif
pVTFTexture->Format(),
pVTFTexture->Flags() | nHackExtraFlags,
pVTFTexture->FrameCount() );
VectorCopy( pVTFTexture->Reflectivity(), m_vecReflectivity );
// Compute the actual texture dimensions
int nMipSkipCount = ComputeActualSize( false, pVTFTexture );
#if defined( _GAMECONSOLE )
bool bQueuedLoad = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD ) != 0;
nMipSkipCount -= pVTFTexture->MipSkipCount();
if ( nMipSkipCount < 0 || ( nMipSkipCount >= pVTFTexture->MipCount() ) )
{
// the 360 texture was already pre-picmipped or can't be picmipped
// clamp to the available dimensions
m_nActualWidth = pVTFTexture->Width();
m_nActualHeight = pVTFTexture->Height();
m_nActualDepth = pVTFTexture->Depth();
m_nActualMipCount = ComputeActualMipCount();
nMipSkipCount = 0;
}
if ( IsX360() && g_config.skipMipLevels == 0 && m_nActualMipCount > 1 && m_nFrameCount == 1 && !( m_nFlags & ( TEXTUREFLAGS_PROCEDURAL|TEXTUREFLAGS_RENDERTARGET|TEXTUREFLAGS_DEPTHRENDERTARGET ) ) )
{
// this file based texture is a good candidate for cacheing
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_CACHEABLE;
}
if ( nMipSkipCount )
{
// track which textures had their dimensions forcefully reduced
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_REDUCED;
}
#endif
m_nMipSkipCount = nMipSkipCount;
// NOTE: Skipping mip levels here will cause the size to be changed...
#if !defined( _GAMECONSOLE )
if ( !pVTFTexture->Unserialize( buf, false, nMipSkipCount ) )
#else
if ( !pVTFTexture->UnserializeFromBuffer( buf, true, false, bQueuedLoad, nMipSkipCount ) )
#endif
{
Warning( "Error reading texture data \"%s\"\n", pCacheFileName );
return HandleFileLoadFailedTexture( pVTFTexture );
}
// Build the low-res texture
LoadLowResTexture( pVTFTexture );
// Load the resources
LoadResourceData( pVTFTexture );
// Try to set up debugging textures, if we're in a debugging mode
if ( !IsProcedural() && !IsGameConsole() )
{
SetupDebuggingTextures( pVTFTexture );
}
if ( ConvertToActualFormat( pVTFTexture ) )
{
if ( IsGameConsole() )
{
// 360 vtf are baked in final formats, no format conversion can or should have occurred
// otherwise track offender and ensure files are baked correctly
Error( "\"%s\" not in native format\n", pCacheFileName );
}
}
return pVTFTexture;
}
IVTFTexture *CTexture::HandleFileLoadFailedTexture( IVTFTexture *pVTFTexture )
{
// create the error texture
#if defined( _GAMECONSOLE )
// reset botched vtf, ensure checkerboard error texture is created now and maintains bgra8888 format
pVTFTexture->ReleaseImageMemory();
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_QUEUEDLOAD;
m_nFlags |= TEXTUREFLAGS_EIGHTBITALPHA;
#endif
// This will make a checkerboard texture to indicate failure
pVTFTexture->Init( 32, 32, 1, IMAGE_FORMAT_BGRA8888, m_nFlags, 1 );
Init( pVTFTexture->Width(), pVTFTexture->Height(), pVTFTexture->Depth(), pVTFTexture->Format(),
pVTFTexture->Flags(), pVTFTexture->FrameCount() );
m_vecReflectivity.Init( 0.5f, 0.5f, 0.5f );
// NOTE: For mat_picmip to work, we must use the same size (32x32)
// Which should work since every card can handle textures of that size
m_nActualWidth = pVTFTexture->Width();
m_nActualHeight = pVTFTexture->Height();
m_nActualMipCount = 1;
// generate the checkerboard
TextureManager()->GenerateErrorTexture( this, pVTFTexture );
ConvertToActualFormat( pVTFTexture );
// Deactivate procedural texture...
m_nFlags &= ~TEXTUREFLAGS_PROCEDURAL;
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ERROR;
return pVTFTexture;
}
//-----------------------------------------------------------------------------
// Computes subrect for a particular miplevel
//-----------------------------------------------------------------------------
void CTexture::ComputeMipLevelSubRect( const Rect_t* pSrcRect, int nMipLevel, Rect_t *pSubRect )
{
if (nMipLevel == 0)
{
*pSubRect = *pSrcRect;
return;
}
float flInvShrink = 1.0f / (float)(1 << nMipLevel);
pSubRect->x = pSrcRect->x * flInvShrink;
pSubRect->y = pSrcRect->y * flInvShrink;
pSubRect->width = (int)ceil( (pSrcRect->x + pSrcRect->width) * flInvShrink ) - pSubRect->x;
pSubRect->height = (int)ceil( (pSrcRect->y + pSrcRect->height) * flInvShrink ) - pSubRect->y;
}
//-----------------------------------------------------------------------------
// Computes the face count + first face
//-----------------------------------------------------------------------------
void CTexture::GetDownloadFaceCount( int &nFirstFace, int &nFaceCount )
{
nFaceCount = 1;
nFirstFace = 0;
if ( IsCubeMap() )
{
nFaceCount = CUBEMAP_FACE_COUNT;
}
}
//-----------------------------------------------------------------------------
// Fixup a queue loaded texture with the delayed hi-res data
//-----------------------------------------------------------------------------
void CTexture::FixupTexture( const void *pData, int nSize, LoaderError_t loaderError )
{
if ( loaderError != LOADERERROR_NONE )
{
// mark as invalid
nSize = 0;
}
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_QUEUEDLOAD;
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() );
#if defined( _GAMECONSOLE )
// hand off the hires data down to the shaderapi to upload directly
// Purposely bypassing downloading through material system, which is non-reentrant
// for that operation, to avoid mutexing.
// NOTE: Strange refcount work here to keep it threadsafe
int nRefCount = m_nRefCount;
int nRefCountOld = nRefCount;
g_pShaderAPI->PostQueuedTexture(
pData,
nSize,
m_pTextureHandles,
m_nFrameCount,
m_nActualWidth,
m_nActualHeight,
m_nActualDepth,
m_nActualMipCount,
&nRefCount );
int nDelta = nRefCount - nRefCountOld;
m_nRefCount += nDelta;
#endif
}
static void QueuedLoaderCallback( void *pContext, void *pContext2, const void *pData, int nSize, LoaderError_t loaderError )
{
reinterpret_cast< CTexture * >( pContext )->FixupTexture( pData, nSize, loaderError );
}
//-----------------------------------------------------------------------------
// Generates the procedural bits
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::ReconstructPartialProceduralBits( const Rect_t *pRect, Rect_t *pActualRect )
{
// Figure out the actual size for this texture based on the current mode
ComputeActualSize();
// Figure out how many mip levels we're skipping...
int nSizeFactor = 1;
int nWidth = GetActualWidth();
if ( nWidth != 0 )
{
nSizeFactor = GetMappingWidth() / nWidth;
}
int nMipSkipCount = 0;
while (nSizeFactor > 1)
{
nSizeFactor >>= 1;
++nMipSkipCount;
}
// Determine a rectangle appropriate for the actual size...
// It must bound all partially-covered pixels..
ComputeMipLevelSubRect( pRect, nMipSkipCount, pActualRect );
if ( IsGameConsole() && !IsDebug() && !m_pTextureRegenerator )
{
// no checkerboards in 360 release
return NULL;
}
bool bUsePreallocatedScratchTexture = m_pTextureRegenerator && m_pTextureRegenerator->HasPreallocatedScratchTexture();
// Create the texture
IVTFTexture *pVTFTexture = bUsePreallocatedScratchTexture ? m_pTextureRegenerator->GetPreallocatedScratchTexture() : GetScratchVTFTexture();
// Initialize the texture
pVTFTexture->Init( m_nActualWidth, m_nActualHeight, m_nActualDepth,
ComputeActualFormat( m_ImageFormat ), m_nFlags, m_nFrameCount );
// Generate the bits from the installed procedural regenerator
if ( m_pTextureRegenerator )
{
m_pTextureRegenerator->RegenerateTextureBits( this, pVTFTexture, pActualRect );
}
else
{
// In this case, we don't have one, so just use a checkerboard...
TextureManager()->GenerateErrorTexture( this, pVTFTexture );
}
return pVTFTexture;
}
//-----------------------------------------------------------------------------
// Regenerates the bits of a texture within a particular rectangle
//-----------------------------------------------------------------------------
void CTexture::ReconstructPartialTexture( const Rect_t *pRect )
{
// FIXME: for now, only procedural textures can handle sub-rect specification.
Assert( IsProcedural() );
// Also, we need procedural textures that have only a single copy!!
// Otherwise this partial upload will not occur on all copies
Assert( m_nFlags & TEXTUREFLAGS_SINGLECOPY );
Rect_t vtfRect;
IVTFTexture *pVTFTexture = ReconstructPartialProceduralBits( pRect, &vtfRect );
// FIXME: for now, depth textures do not work with this.
Assert( pVTFTexture->Depth() == 1 );
// Make sure we've allocated the API textures
if ( !HasBeenAllocated() )
{
if ( !AllocateShaderAPITextures() )
return;
}
if ( IsGameConsole() && !pVTFTexture )
{
// 360 inhibited procedural generation
return;
}
int nFaceCount, nFirstFace;
GetDownloadFaceCount( nFirstFace, nFaceCount );
// Blit down portions of the various VTF frames into the board memory
int nStride;
Rect_t mipRect;
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
{
Modify( iFrame );
for ( int iFace = 0; iFace < nFaceCount; ++iFace )
{
for ( int iMip = 0; iMip < m_nActualMipCount; ++iMip )
{
pVTFTexture->ComputeMipLevelSubRect( &vtfRect, iMip, &mipRect );
nStride = pVTFTexture->RowSizeInBytes( iMip );
unsigned char *pBits = pVTFTexture->ImageData( iFrame, iFace + nFirstFace, iMip, mipRect.x, mipRect.y, 0 );
g_pShaderAPI->TexSubImage2D(
iMip,
iFace,
mipRect.x,
mipRect.y,
0,
mipRect.width,
mipRect.height,
pVTFTexture->Format(),
nStride,
#if defined( _GAMECONSOLE )
pVTFTexture->IsPreTiled(),
#else
false,
#endif
pBits );
}
}
}
#if defined( _GAMECONSOLE )
if ( IsProcedural() && m_pTextureRegenerator && m_pTextureRegenerator->HasPreallocatedScratchTexture() )
{
// nothing to free; we used the pre-allocated scratch texture
}
else
{
// hint the vtf system to release memory associated with its load
pVTFTexture->ReleaseImageMemory();
}
#endif
}
//-----------------------------------------------------------------------------
// Generates the procedural bits
//-----------------------------------------------------------------------------
IVTFTexture *CTexture::ReconstructProceduralBits()
{
// Figure out the actual size for this texture based on the current mode
ComputeActualSize();
if ( IsGameConsole() && !IsDebug() && !m_pTextureRegenerator )
{
// no checkerboards in 360 release
return NULL;
}
bool bUsePreallocatedScratchTexture = m_pTextureRegenerator && m_pTextureRegenerator->HasPreallocatedScratchTexture();
// Create the texture
IVTFTexture *pVTFTexture = bUsePreallocatedScratchTexture ? m_pTextureRegenerator->GetPreallocatedScratchTexture() : GetScratchVTFTexture();
// Initialize the texture
pVTFTexture->Init( m_nActualWidth, m_nActualHeight, m_nActualDepth,
ComputeActualFormat( m_ImageFormat ), m_nFlags, m_nFrameCount );
// Generate the bits from the installed procedural regenerator
if ( m_pTextureRegenerator )
{
Rect_t rect;
rect.x = 0; rect.y = 0;
rect.width = m_nActualWidth;
rect.height = m_nActualHeight;
m_pTextureRegenerator->RegenerateTextureBits( this, pVTFTexture, &rect );
}
else if ( !ImageLoader::IsFloatFormat( m_ImageFormat ) && !ImageLoader::IsRuntimeCompressed( m_ImageFormat ) )
{
// In this case, we don't have one, so just use a checkerboard...
TextureManager()->GenerateErrorTexture( this, pVTFTexture );
}
return pVTFTexture;
}
void CTexture::WriteDataToShaderAPITexture( int nFrameCount, int nFaceCount, int nFirstFace, int nMipCount, IVTFTexture *pVTFTexture, ImageFormat fmt )
{
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
{
Modify( iFrame );
for ( int iFace = 0; iFace < nFaceCount; ++iFace )
{
for ( int iMip = 0; iMip < nMipCount; ++iMip )
{
unsigned char *pBits;
int nWidth, nHeight, nDepth;
pVTFTexture->ComputeMipLevelDimensions( iMip, &nWidth, &nHeight, &nDepth );
for ( int z = 0; z < nDepth; ++z )
{
pBits = pVTFTexture->ImageData( iFrame, iFace + nFirstFace, iMip, 0, 0, z );
g_pShaderAPI->TexImage2D( iMip, iFace, fmt, z, nWidth, nHeight, pVTFTexture->Format(), false, pBits );
}
}
}
}
}
bool CTexture::IsDepthTextureFormat( ImageFormat fmt )
{
return ( ( m_ImageFormat == IMAGE_FORMAT_D16_SHADOW ) ||
( m_ImageFormat == IMAGE_FORMAT_D24X8_SHADOW ) ||
( m_ImageFormat == IMAGE_FORMAT_D24S8 ) );
}
//-----------------------------------------------------------------------------
// Sets or updates the texture bits
//-----------------------------------------------------------------------------
void CTexture::ReconstructTexture( void *pSourceData, int nSourceDataSize )
{
int oldWidth = m_nActualWidth;
int oldHeight = m_nActualHeight;
int oldDepth = m_nActualDepth;
int oldMipCount = m_nActualMipCount;
int oldFrameCount = m_nFrameCount;
// FIXME: Should RenderTargets be a special case of Procedural?
char *pResolvedFilename = NULL;
IVTFTexture *pVTFTexture = NULL;
if ( IsProcedural() )
{
// This will call the installed texture bit regeneration interface
pVTFTexture = ReconstructProceduralBits();
}
else if ( IsRenderTarget() )
{
// Compute the actual size + format based on the current mode
ComputeActualSize( true );
}
else
{
pVTFTexture = LoadTexttureBitsFromFileOrData( pSourceData, nSourceDataSize, &pResolvedFilename );
}
if ( !HasBeenAllocated() ||
m_nActualWidth != oldWidth ||
m_nActualHeight != oldHeight ||
m_nActualDepth != oldDepth ||
m_nActualMipCount != oldMipCount ||
m_nFrameCount != oldFrameCount )
{
if ( HasBeenAllocated() )
{
// This is necessary for the reload case, we may discover there
// are more frames of a texture animation, for example, which means
// we can't rely on having the same number of texture frames.
FreeShaderAPITextures();
}
// Create the shader api textures, except temp render targets on 360.
if ( !( IsX360() && IsTempRenderTarget() ) )
{
if ( !AllocateShaderAPITextures() )
return;
}
}
// Render Targets just need to be cleared, they have no upload
if ( IsRenderTarget() )
{
// Clear the render target to opaque black
#if !defined( _GAMECONSOLE )
// Only clear if we're not a depth-stencil texture
if ( !IsDepthTextureFormat( m_ImageFormat ) )
{
CMatRenderContextPtr pRenderContext( MaterialSystem() );
ITexture *pThisTexture = GetEmbeddedTexture( 0 );
pRenderContext->PushRenderTargetAndViewport( pThisTexture ); // Push this texture on the stack
g_pShaderAPI->ClearColor4ub( 0, 0, 0, 0xFF ); // Set the clear color to opaque black
g_pShaderAPI->ClearBuffers( true, false, false, m_nActualWidth, m_nActualHeight ); // Clear the target
pRenderContext->PopRenderTargetAndViewport(); // Pop back to previous target
}
#else
// 360 may not have RT surface during init time
// avoid complex conditionalizing, just cpu clear it, which always works
ClearTexture( 0, 0, 0, 0xFF );
#endif
// no upload
return;
}
if ( IsGameConsole() && IsProcedural() && !pVTFTexture )
{
// 360 explicitly inhibited this texture's procedural generation, so no upload needed
return;
}
// Blit down the texture faces, frames, and mips into the board memory
int nFirstFace, nFaceCount;
GetDownloadFaceCount( nFirstFace, nFaceCount );
if ( IsPC() )
{
WriteDataToShaderAPITexture( m_nFrameCount, nFaceCount, nFirstFace, m_nActualMipCount, pVTFTexture, m_ImageFormat );
}
#if defined( _GAMECONSOLE )
bool bDoUpload = true;
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD )
{
// the vtf didn't load any d3d bits, the hires bits will arrive before gameplay
bDoUpload = false;
}
if ( bDoUpload )
{
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
{
Modify( iFrame );
for ( int iFace = 0; iFace < nFaceCount; ++iFace )
{
for ( int iMip = 0; iMip < m_nActualMipCount; ++iMip )
{
unsigned char *pBits;
int nWidth, nHeight, nDepth;
pVTFTexture->ComputeMipLevelDimensions( iMip, &nWidth, &nHeight, &nDepth );
#ifdef _PS3
// PS3 textures are pre-swizzled at tool time
pBits = pVTFTexture->ImageData( iFrame, iFace + nFirstFace, iMip, 0, 0, 0 );
g_pShaderAPI->TexImage2D( iMip, iFace, m_ImageFormat, nDepth > 1 ? nDepth : 0, nWidth, nHeight,
pVTFTexture->Format(), false, pBits );
#else // _PS3
pBits = pVTFTexture->ImageData( iFrame, iFace + nFirstFace, iMip, 0, 0, 0 );
g_pShaderAPI->TexImage2D( iMip, iFace, m_ImageFormat, 0, nWidth, nHeight,
pVTFTexture->Format(), pVTFTexture->IsPreTiled(), pBits );
#endif // !_PS3
}
}
}
}
#ifdef _X360
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_CACHEABLE )
{
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() );
// a cacheing texture needs to know how to get its bits back
g_pShaderAPI->SetCacheableTextureParams( m_pTextureHandles, m_nFrameCount, pResolvedFilename, m_nMipSkipCount );
}
#endif // _X360
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD )
{
// the empty hires version was setup
// the hires d3d bits will be delivered before gameplay (or render)
LoaderPriority_t priority = LOADERPRIORITY_BEFOREPLAY;
// add the job
LoaderJob_t loaderJob;
loaderJob.m_pFilename = pResolvedFilename;
loaderJob.m_pCallback = QueuedLoaderCallback;
loaderJob.m_pContext = (void *)this;
loaderJob.m_Priority = priority;
g_pQueuedLoader->AddJob( &loaderJob );
}
if ( IsProcedural() && m_pTextureRegenerator && m_pTextureRegenerator->HasPreallocatedScratchTexture() )
{
// nothing to free; we used the pre-allocated scratch texture
}
else
{
// hint the vtf system to release memory associated with its load
pVTFTexture->ReleaseImageMemory();
}
#endif // _GAMECONSOLE
delete [] pResolvedFilename;
// the 360 does not persist a large buffer
// the pc can afford to persist a large buffer
FreeOptimalReadBuffer( IsGameConsole() ? 32*1024 : 6*1024*1024 );
}
// Get the shaderapi texture handle associated w/ a particular frame
ShaderAPITextureHandle_t CTexture::GetTextureHandle( int nFrame, int nTextureChannel )
{
if ( nFrame < 0 )
{
nFrame = 0;
Warning( "CTexture::GetTextureHandle(): nFrame is < 0!\n" );
}
if ( nFrame >= m_nFrameCount )
{
// NOTE: This can happen during alt-tab. If you alt-tab while loading a level then the first local cubemap bind will do this, for example.
Assert( nFrame < m_nFrameCount );
return INVALID_SHADERAPI_TEXTURE_HANDLE;
}
Assert( nTextureChannel < 2 );
// Make sure we've actually allocated the texture handles
Assert( HasBeenAllocated() );
if ( m_pTextureHandles == NULL || !HasBeenAllocated() )
{
return INVALID_SHADERAPI_TEXTURE_HANDLE;
}
return m_pTextureHandles[nFrame];
}
void CTexture::GetLowResColorSample( float s, float t, float *color ) const
{
if ( m_LowResImageWidth <= 0 || m_LowResImageHeight <= 0 )
{
// Warning( "Programming error: GetLowResColorSample \"%s\": %dx%d\n", m_pName, ( int )m_LowResImageWidth, ( int )m_LowResImageHeight );
return;
}
#if !defined( _GAMECONSOLE )
// force s and t into [0,1)
if ( s < 0.0f )
{
s = ( 1.0f - ( float )( int )s ) + s;
}
if ( t < 0.0f )
{
t = ( 1.0f - ( float )( int )t ) + t;
}
s = s - ( float )( int )s;
t = t - ( float )( int )t;
s *= m_LowResImageWidth;
t *= m_LowResImageHeight;
int wholeS, wholeT;
wholeS = ( int )s;
wholeT = ( int )t;
float fracS, fracT;
fracS = s - ( float )( int )s;
fracT = t - ( float )( int )t;
// filter twice in the s dimension.
float sColor[2][3];
int wholeSPlusOne = ( wholeS + 1 ) % m_LowResImageWidth;
int wholeTPlusOne = ( wholeT + 1 ) % m_LowResImageHeight;
sColor[0][0] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeT * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) );
sColor[0][1] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeT * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) );
sColor[0][2] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeT * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) );
sColor[0][0] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeT * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) );
sColor[0][1] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeT * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) );
sColor[0][2] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeT * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) );
sColor[1][0] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeTPlusOne * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) );
sColor[1][1] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeTPlusOne * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) );
sColor[1][2] = ( 1.0f - fracS ) * ( m_pLowResImage[( wholeS + wholeTPlusOne * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) );
sColor[1][0] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeTPlusOne * m_LowResImageWidth ) * 3 + 0] * ( 1.0f / 255.0f ) );
sColor[1][1] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeTPlusOne * m_LowResImageWidth ) * 3 + 1] * ( 1.0f / 255.0f ) );
sColor[1][2] += fracS * ( m_pLowResImage[( wholeSPlusOne + wholeTPlusOne * m_LowResImageWidth ) * 3 + 2] * ( 1.0f / 255.0f ) );
color[0] = sColor[0][0] * ( 1.0f - fracT ) + sColor[1][0] * fracT;
color[1] = sColor[0][1] * ( 1.0f - fracT ) + sColor[1][1] * fracT;
color[2] = sColor[0][2] * ( 1.0f - fracT ) + sColor[1][2] * fracT;
#else
color[0] = (float)m_LowResImageSample[0] * 1.0f/255.0f;
color[1] = (float)m_LowResImageSample[1] * 1.0f/255.0f;
color[2] = (float)m_LowResImageSample[2] * 1.0f/255.0f;
#endif
}
int CTexture::GetApproximateVidMemBytes( void ) const
{
ImageFormat format = GetImageFormat();
int width = GetActualWidth();
int height = GetActualHeight();
int depth = GetActualDepth();
int numFrames = GetNumAnimationFrames();
bool isMipmapped = IsMipmapped();
return numFrames * ImageLoader::GetMemRequired( width, height, depth, format, isMipmapped );
}
void CTexture::CopyFrameBufferToMe( int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect )
{
Assert( m_pTextureHandles && m_nFrameCount >= 1 );
if ( IsX360() &&
( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET ) &&
!HasBeenAllocated() )
{
//need to create the texture bits now
//to avoid creating the texture bits previously, we simply skipped this step
if ( !AllocateShaderAPITextures() )
return;
}
if ( m_pTextureHandles && m_nFrameCount >= 1 )
{
g_pShaderAPI->CopyRenderTargetToTextureEx( m_pTextureHandles[0], nRenderTargetID, pSrcRect, pDstRect );
}
}
void CTexture::CopyMeToFrameBuffer( int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect )
{
Assert( m_pTextureHandles && m_nFrameCount >= 1 );
if ( IsX360() &&
( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPRENDERTARGET ) &&
!HasBeenAllocated() )
{
//need to create the texture bits now
//to avoid creating the texture bits previously, we simply skipped this step
if ( !AllocateShaderAPITextures() )
return;
}
if ( m_pTextureHandles && m_nFrameCount >= 1 )
{
g_pShaderAPI->CopyTextureToRenderTargetEx( nRenderTargetID, m_pTextureHandles[0], pSrcRect, pDstRect );
}
}
ITexture *CTexture::GetEmbeddedTexture( int nIndex )
{
return ( nIndex == 0 ) ? this : NULL;
}
//-----------------------------------------------------------------------------
// Helper method to initialize texture bits in desired state.
//-----------------------------------------------------------------------------
#if defined( _GAMECONSOLE )
bool CTexture::ClearTexture( int r, int g, int b, int a )
{
Assert( IsProcedural() || IsRenderTarget() );
if( !HasBeenAllocated() )
return false;
if ( m_ImageFormat == IMAGE_FORMAT_D16 || m_ImageFormat == IMAGE_FORMAT_D24S8 || m_ImageFormat == IMAGE_FORMAT_D24FS8 || m_ImageFormat == IMAGE_FORMAT_R32F )
{
// not supporting non-rgba textures
return true;
}
CPixelWriter writer;
g_pShaderAPI->ModifyTexture( m_pTextureHandles[0] );
if ( !g_pShaderAPI->TexLock( 0, 0, 0, 0, m_nActualWidth, m_nActualHeight, writer ) )
return false;
writer.Seek( 0, 0 );
for ( int j = 0; j < m_nActualHeight; ++j )
{
for ( int k = 0; k < m_nActualWidth; ++k )
{
writer.WritePixel( r, g, b, a );
}
}
g_pShaderAPI->TexUnlock();
return true;
}
#endif
#if defined( _X360 )
bool CTexture::CreateRenderTargetSurface( int width, int height, ImageFormat format, bool bSameAsTexture, RTMultiSampleCount360_t multiSampleCount )
{
Assert( IsRenderTarget() && m_nFrameCount > 1 );
if ( bSameAsTexture )
{
// use RT texture configuration
width = m_nActualWidth;
height = m_nActualHeight;
format = m_ImageFormat;
}
// RT surface is expected at end of array
m_pTextureHandles[m_nFrameCount-1] = g_pShaderAPI->CreateRenderTargetSurface( width, height, format, multiSampleCount, GetName(), TEXTURE_GROUP_RENDER_TARGET_SURFACE );
return ( m_pTextureHandles[m_nFrameCount-1] != INVALID_SHADERAPI_TEXTURE_HANDLE );
}
#endif
void CTexture::DeleteIfUnreferenced()
{
if ( m_nRefCount > 0 )
return;
TextureManager()->RemoveTexture( this );
}
//Swap everything about a texture except the name. Created to support Portal mod's need for swapping out water render targets in recursive stencil views
void CTexture::SwapContents( ITexture *pOther )
{
if( (pOther == NULL) || (pOther == this) )
return;
ICallQueue *pCallQueue = materials->GetRenderContext()->GetCallQueue();
if ( pCallQueue )
{
pCallQueue->QueueCall( this, &CTexture::SwapContents, pOther );
return;
}
AssertMsg( dynamic_cast<CTexture *>(pOther) != NULL, "Texture swapping broken" );
CTexture *pOtherAsCTexture = (CTexture *)pOther;
CTexture *pTemp = (CTexture *)stackalloc( sizeof( CTexture ) );
//swap everything
memcpy( (void *)pTemp, (void *)this, sizeof( CTexture ) );
memcpy( (void *)this, (void *)pOtherAsCTexture, sizeof( CTexture ) );
memcpy( (void *)pOtherAsCTexture, (void *)pTemp, sizeof( CTexture ) );
//we have the other's name, give it back
memcpy( &pOtherAsCTexture->m_Name, &m_Name, sizeof( m_Name ) );
//pTemp still has our name
memcpy( &m_Name, &pTemp->m_Name, sizeof( m_Name ) );
}
void CTexture::MarkAsPreloaded( bool bSet )
{
if ( bSet )
{
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_PRELOADED;
}
else
{
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_PRELOADED;
}
}
bool CTexture::IsPreloaded() const
{
return ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_PRELOADED ) != 0 );
}
void CTexture::MarkAsExcluded( bool bSet, int nDimensionsLimit, bool bMarkAsTrumpedExclude )
{
if ( bSet )
{
// exclusion trumps picmipping
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE;
// unique exclusion state to identify maximum exclusion
m_nDesiredDimensionLimit = -1;
}
else
{
// not excluding, but can optionally picmip
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE;
m_nDesiredDimensionLimit = nDimensionsLimit;
}
if ( !bSet && nDimensionsLimit > 0 && bMarkAsTrumpedExclude )
{
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_FORCED_TO_EXCLUDE;
}
}
bool CTexture::IsTempExcluded() const
{
return ( ( m_nInternalFlags & ( TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE | TEXTUREFLAGSINTERNAL_TEMPEXCLUDED ) ) != 0 );
}
bool CTexture::CanBeTempExcluded() const
{
return ( m_nRefCount == 1 &&
m_nFrameCount == 1 &&
!IsError() &&
!IsRenderTarget() &&
!IsProcedural() &&
!IsCubeMap() );
}
bool CTexture::MarkAsTempExcluded( bool bSet, int nExcludedDimensionLimit )
{
if ( !CanBeTempExcluded() )
{
// not possible to temp exclude these
return false;
}
if ( bSet )
{
// temp exclusion can drive the texture to a smaller footprint
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE;
// unique exclusion state to identify exclusion
m_nDesiredTempDimensionLimit = nExcludedDimensionLimit > 0 ? nExcludedDimensionLimit : -1;
}
else
{
// no longer temp excluding, default to expected normal exclusion limit
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE;
m_nDesiredTempDimensionLimit = m_nDesiredDimensionLimit;
}
// temp excludes need to be tracked from normal excludes
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE;
return true;
}
bool CTexture::UpdateExcludedState()
{
bool bRequiresDownload = false;
// temp excludes
bool bDesiredTempExclude = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE ) != 0;
bool bActualTempExclude = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPEXCLUDED ) != 0;
if ( bDesiredTempExclude || bActualTempExclude )
{
if ( m_nActualDimensionLimit != m_nDesiredTempDimensionLimit )
{
bRequiresDownload = true;
}
else
{
// temp excludes trump any normal exclude, and normal excludes are ignored until the temp state is cleared
return false;
}
}
// normal excludes
if ( m_nActualDimensionLimit != m_nDesiredDimensionLimit )
{
bRequiresDownload = true;
}
if ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_QUEUEDLOAD )
{
// already scheduled by the queued loader, the QL wins
// a fixup will occur later once the QL finishes
return false;
}
if ( bRequiresDownload )
{
if ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE ) && g_MaterialSystem.IsLevelLoadingComplete() && mat_exclude_async_update.GetBool() )
{
// temp excludes are async downloaded ONLY in the middle of gameplay, otherwise they do the normal sync download
// the async download path is !!!ONLY!!! wired for highly constrained temp exclusions, not for general purpose texture downloading
ScheduleExcludeAsyncDownload();
}
else
{
// force the texture to re-download, causes the texture bits to match its desired exclusion state
Download();
}
}
return bRequiresDownload;
}
bool CTexture::IsForceExcluded() const
{
return ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_FORCED_TO_EXCLUDE ) != 0 );
}
bool CTexture::ClearForceExclusion()
{
if ( !IsForceExcluded() )
return false;
// clear the forced exclusion state
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_FORCED_TO_EXCLUDE;
m_nDesiredDimensionLimit = 0;
return UpdateExcludedState();
}
bool CTexture::IsAsyncDone() const
{
// we only check for async completion on textures that were async downloaded
// this function gets called on textures that might be loaded normally sometimes, so it needs to handle that case
if ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD )
{
return ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_ASYNC_DONE ) != 0 );
}
return true;
}
static void IOAsyncCallbackTexture( const FileAsyncRequest_t &asyncRequest, int numReadBytes, FSAsyncStatus_t asyncStatus )
{
// interpret the async error
AsyncTextureLoadError_t loaderError;
switch ( asyncStatus )
{
case FSASYNC_OK:
loaderError = ASYNCTEXTURE_LOADERROR_NONE;
break;
case FSASYNC_ERR_FILEOPEN:
loaderError = ASYNCTEXTURE_LOADERROR_FILEOPEN;
break;
default:
loaderError = ASYNCTEXTRUE_LOADERROR_READING;
}
g_MaterialSystem.OnAsyncTextureDataComplete( (AsyncTextureContext_t *)asyncRequest.pContext, asyncRequest.pData, numReadBytes, loaderError );
}
bool CTexture::ScheduleAsyncDownload()
{
if ( !( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD ) )
{
// only textures flagged of Async Download can be Async downloaded
Assert( 0 );
return false;
}
if ( m_hAsyncControl )
{
// already scheduled
// this atomically marks when it can be rescheduled
return false;
}
const char *pName;
pName = m_Name.String();
char cacheFileName[MATERIAL_MAX_PATH];
// resolve the relative texture filename to its absolute path
bool bIsUNCName = ( pName[0] == '/' && pName[1] == '/' && pName[2] != '/' );
if ( !bIsUNCName )
{
Q_snprintf( cacheFileName, sizeof( cacheFileName ), "materials/%s" TEXTURE_FNAME_EXTENSION, pName );
}
else
{
Q_snprintf( cacheFileName, sizeof( cacheFileName ), "%s" TEXTURE_FNAME_EXTENSION, pName );
}
bool bExists = g_pFullFileSystem->FileExists( cacheFileName, MaterialSystem()->GetForcedTextureLoadPathID() );
if ( !bExists )
{
// unexpected failure, file should have existed and was pre-qualified
// this texture cannot be async downloaded
return false;
}
pName = cacheFileName;
m_ResolvedFileName = cacheFileName;
// send down a context that identifies the texture state
// a texture can only have one outstanding async download operation in flight
AsyncTextureContext_t *pContext = new AsyncTextureContext_t;
pContext->m_pTexture = this;
pContext->m_nInternalFlags = m_nInternalFlags;
pContext->m_nDesiredTempDimensionLimit = m_nActualDimensionLimit;
pContext->m_nActualDimensionLimit = m_nActualDimensionLimit;
pContext->m_pVTFTexture = NULL;
// schedule the async using what should be the absolute path to the file
FileAsyncRequest_t asyncRequest;
asyncRequest.pszFilename = pName;
asyncRequest.priority = -1;
asyncRequest.flags = FSASYNC_FLAGS_ALLOCNOFREE;
asyncRequest.pContext = (void *)pContext;
asyncRequest.pfnCallback = IOAsyncCallbackTexture;
g_pFullFileSystem->AsyncRead( asyncRequest, &m_hAsyncControl );
return true;
}
bool CTexture::ScheduleExcludeAsyncDownload()
{
if ( !( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE ) )
{
// NOOOOO!!!!! This cannot be used for any textures except highly constrained temp excludes that have been properly qualified.
// It cannot be re-purposed into pushing textures in.
Assert( 0 );
return false;
}
if ( m_hAsyncControl )
{
// already scheduled
// this atomically marks when it can be rescheduled
// the data delivery will adhere to the current desired exclude state (that may change before the data arrives multiple times)
return false;
}
// want to use the prior resolved absolute filename, this causes an i/o penalty hitch once the first time the filesystem search path resolves
// each additional operation avoids the SP penalty
const char *pName;
bool bResolved = false;
bool bExcluding = false;
if ( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDEXCLUDE ) ||
( ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE ) && m_nDesiredTempDimensionLimit <= 0 ) )
{
bExcluding = true;
if ( m_ExcludedResolvedFileName.IsValid() )
{
pName = m_ExcludedResolvedFileName.String();
bResolved = true;
}
else
{
// The replacement texture for an excluded resource is solid black.
// The better thing would be to have unique 8x8 representations.
// Can cheap out on this because a temp excluded resource (weapon) is not supposed to be rendering
// for any more than a few frames before it's restored data appears.
pName = "dev/dev_temp_exclude";
}
}
else
{
if ( m_ResolvedFileName.IsValid() )
{
pName = m_ResolvedFileName.String();
bResolved = true;
}
else
{
pName = m_Name.String();
}
}
char fullPath[MAX_PATH];
char cacheFileName[MATERIAL_MAX_PATH];
if ( !bResolved )
{
// resolve the relative texture filename to its absolute path
bool bIsUNCName = ( pName[0] == '/' && pName[1] == '/' && pName[2] != '/' );
if ( !bIsUNCName )
{
Q_snprintf( cacheFileName, sizeof( cacheFileName ), "materials/%s" TEXTURE_FNAME_EXTENSION, pName );
}
else
{
Q_snprintf( cacheFileName, sizeof( cacheFileName ), "%s" TEXTURE_FNAME_EXTENSION, pName );
}
// all 360 files are expected to be in zip, no need to search outside of zip
g_pFullFileSystem->RelativePathToFullPath( cacheFileName, MaterialSystem()->GetForcedTextureLoadPathID(), fullPath, sizeof( fullPath ), ( IsX360() ? FILTER_CULLNONPACK : FILTER_NONE ) );
bool bExists = V_IsAbsolutePath( fullPath );
if ( !bExists )
{
// unexpected failure, file should have existed and was pre-qualified
// this texture cannot be async downloaded
return false;
}
pName = fullPath;
if ( bExcluding )
{
m_ExcludedResolvedFileName = fullPath;
}
else
{
m_ResolvedFileName = fullPath;
}
}
// send down a context that identifies the texture state
// the latent async delivery will need to match the state that may have changed
// a texture can only have one outstanding async download operation in flight
// although the texture state may thrash, the actual i/o will not
AsyncTextureContext_t *pContext = new AsyncTextureContext_t;
pContext->m_pTexture = this;
pContext->m_nInternalFlags = m_nInternalFlags;
pContext->m_nDesiredTempDimensionLimit = m_nDesiredTempDimensionLimit;
pContext->m_nActualDimensionLimit = m_nActualDimensionLimit;
pContext->m_pVTFTexture = NULL;
// schedule the async using what should be the absolute path to the file
FileAsyncRequest_t asyncRequest;
asyncRequest.pszFilename = pName;
asyncRequest.priority = -1;
asyncRequest.flags = FSASYNC_FLAGS_ALLOCNOFREE;
asyncRequest.pContext = (void *)pContext;
asyncRequest.pfnCallback = IOAsyncCallbackTexture;
g_pFullFileSystem->AsyncRead( asyncRequest, &m_hAsyncControl );
return true;
}
//-----------------------------------------------------------------------------
// Note for async texture:
// -----------------------
// The download is done is 2 parts:
// * Generating the VTF
// * Using VTF to create the shader api texture (effectively the corresponding d3d resource)
// In order to reduce spikes on the main thread (cf CMaterialSystem::ServiceAsyncTextureLoads), the flMaxTimeMs
// limit has been introduced => you can safely exit after generating the VTF and resume it at a later date
//-----------------------------------------------------------------------------
bool CTexture::FinishAsyncDownload( AsyncTextureContext_t *pContext, void *pData, int nNumReadBytes, bool bAbort, float flMaxTimeMs )
{
// The temp exclusions/restores are expected/desgined to be serviced at the only safe interval at the end of the frame
// and end of any current QMS jobs before QMS queues and start on it's next frame. Texture downloading is not thead safe
// and does not need to be made so. Instead, while the texture access pattens are quiescent and stable, the download
// (expected to be few in number) is deferred to this safe interval.
Assert( ThreadInMainThread() );
// For non-exclude async downloads, never abort
if ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD )
{
bAbort = false;
}
// aborting just discards the data
// whatever state the texture bits were in, they stay that way
bool bDownloadCompleted = true;
if ( !bAbort && g_pShaderAPI->CanDownloadTextures() )
{
// the delayed async nature of this download may have invalidated the original/expected state at the moment of queuing
// prevent an update of the texture to the wrong state
// the temp exclusion monitor is responsible for rescheduling
if ( ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD ) || // general async download (non-exclude)
( ( ( pContext->m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE ) == ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE ) ) &&
( pContext->m_nDesiredTempDimensionLimit == m_nDesiredTempDimensionLimit ) ) )
{
// the download will put the texture in the expected state
MaterialLock_t hLock = MaterialSystem()->Lock();
if ( m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD )
{
bDownloadCompleted = DownloadAsyncTexture( pContext, pData, nNumReadBytes, flMaxTimeMs );
}
else
{
DownloadTexture( NULL, pData, nNumReadBytes );
}
MaterialSystem()->Unlock( hLock );
}
else
{
// the texture wants to be in a different state than this download can achieve
bool bDesiredTempExclude = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_SHOULDTEMPEXCLUDE ) != 0;
bool bActualTempExclude = ( m_nInternalFlags & TEXTUREFLAGSINTERNAL_TEMPEXCLUDED ) != 0;
if ( bDesiredTempExclude == bActualTempExclude && m_nDesiredTempDimensionLimit == m_nActualDimensionLimit )
{
// the current desired temp exclude state now matches the actual
// the discarded download does not need to happen
m_nInternalFlags &= ~TEXTUREFLAGSINTERNAL_TEMPEXCLUDE_UPDATE;
}
}
}
if ( bDownloadCompleted )
{
// ownership of the data is expected to have been handed off
g_pFullFileSystem->FreeOptimalReadBuffer( pData );
g_pFullFileSystem->AsyncRelease( m_hAsyncControl );
// texture can be rescheduled
m_hAsyncControl = NULL;
delete pContext;
if (m_nFlags & TEXTUREFLAGS_ASYNC_DOWNLOAD)
{
m_nInternalFlags |= TEXTUREFLAGSINTERNAL_ASYNC_DONE; // signal we're done
m_nFlags &= ~TEXTUREFLAGS_ASYNC_DOWNLOAD; // no longer want this flag
}
}
return bDownloadCompleted;
}
//////////////////////////////////////////////////////////////////////////
//
// Saving all the texture LOD modifications to content
//
//////////////////////////////////////////////////////////////////////////
#ifdef IS_WINDOWS_PC
static bool SetBufferValue( char *chTxtFileBuffer, char const *szLookupKey, char const *szNewValue )
{
bool bResult = false;
size_t lenTmp = strlen( szNewValue );
size_t nTxtFileBufferLen = strlen( chTxtFileBuffer );
for ( char *pch = chTxtFileBuffer;
( NULL != ( pch = strstr( pch, szLookupKey ) ) );
++ pch )
{
char *val = pch + strlen( szLookupKey );
if ( !V_isspace( *val ) )
continue;
else
++ val;
char *pValStart = val;
// Okay, here comes the value
while ( *val && V_isspace( *val ) )
++ val;
while ( *val && !V_isspace( *val ) )
++ val;
char *pValEnd = val; // Okay, here ends the value
memmove( pValStart + lenTmp, pValEnd, chTxtFileBuffer + nTxtFileBufferLen + 1 - pValEnd );
memcpy( pValStart, szNewValue, lenTmp );
nTxtFileBufferLen += ( lenTmp - ( pValEnd - pValStart ) );
bResult = true;
}
if ( !bResult )
{
char *pchAdd = chTxtFileBuffer + nTxtFileBufferLen;
strcpy( pchAdd + strlen( pchAdd ), "\n" );
strcpy( pchAdd + strlen( pchAdd ), szLookupKey );
strcpy( pchAdd + strlen( pchAdd ), " " );
strcpy( pchAdd + strlen( pchAdd ), szNewValue );
strcpy( pchAdd + strlen( pchAdd ), "\n" );
bResult = true;
}
return bResult;
}
// Replaces the first occurrence of "szFindData" with "szNewData"
// Returns the remaining buffer past the replaced data or NULL if
// no replacement occurred.
static char * BufferReplace( char *buf, char const *szFindData, char const *szNewData )
{
size_t len = strlen( buf ), lFind = strlen( szFindData ), lNew = strlen( szNewData );
if ( char *pBegin = strstr( buf, szFindData ) )
{
memmove( pBegin + lNew, pBegin + lFind, buf + len - ( pBegin + lFind ) );
memmove( pBegin, szNewData, lNew );
return pBegin + lNew;
}
return NULL;
}
class CP4Requirement
{
public:
CP4Requirement();
~CP4Requirement();
protected:
bool m_bLoadedModule;
CSysModule *m_pP4Module;
};
CP4Requirement::CP4Requirement() :
m_bLoadedModule( false ),
m_pP4Module( NULL )
{
if ( p4 )
return;
// load the p4 lib
m_pP4Module = Sys_LoadModule( "p4lib" );
m_bLoadedModule = true;
if ( m_pP4Module )
{
CreateInterfaceFn factory = Sys_GetFactory( m_pP4Module );
if ( factory )
{
p4 = ( IP4 * )factory( P4_INTERFACE_VERSION, NULL );
if ( p4 )
{
extern CreateInterfaceFn g_fnMatSystemConnectCreateInterface;
p4->Connect( g_fnMatSystemConnectCreateInterface );
p4->Init();
}
}
}
if ( !p4 )
{
Warning( "Can't load p4lib.dll\n" );
}
}
CP4Requirement::~CP4Requirement()
{
if ( m_bLoadedModule && m_pP4Module )
{
if ( p4 )
{
p4->Shutdown();
p4->Disconnect();
}
Sys_UnloadModule( m_pP4Module );
m_pP4Module = NULL;
p4 = NULL;
}
}
static ConVar mat_texture_list_content_path( "mat_texture_list_content_path", "", FCVAR_ARCHIVE, "The content path to the materialsrc directory. If left unset, it'll assume your content directory is next to the currently running game dir." );
CON_COMMAND_F( mat_texture_list_txlod_sync, "'reset' - resets all run-time changes to LOD overrides, 'save' - saves all changes to material content files", FCVAR_DONTRECORD )
{
using namespace TextureLodOverride;
if ( args.ArgC() != 2 )
goto usage;
char const *szCmd = args.Arg( 1 );
Msg( "mat_texture_list_txlod_sync %s...\n", szCmd );
if ( !stricmp( szCmd, "reset" ) )
{
for ( int k = 0; k < s_OverrideMap.GetNumStrings(); ++ k )
{
char const *szTx = s_OverrideMap.String( k );
s_OverrideMap[ k ] = OverrideInfo(); // Reset the override info
// Force the texture LOD override to get re-processed
if ( ITexture *pTx = materials->FindTexture( szTx, "" ) )
pTx->ForceLODOverride( 0 );
else
Warning( " mat_texture_list_txlod_sync reset - texture '%s' no longer found.\n", szTx );
}
s_OverrideMap.Purge();
Msg("mat_texture_list_txlod_sync reset : completed.\n");
return;
}
else if ( !stricmp( szCmd, "save" ) )
{
CP4Requirement p4req;
if ( !p4 )
g_p4factory->SetDummyMode( true );
for ( int k = 0; k < s_OverrideMap.GetNumStrings(); ++ k )
{
char const *szTx = s_OverrideMap.String( k );
OverrideInfo oi = s_OverrideMap[ k ];
ITexture *pTx = materials->FindTexture( szTx, "" );
if ( !oi.x || !oi.y )
continue;
if ( !pTx )
{
Warning( " mat_texture_list_txlod_sync save - texture '%s' no longer found.\n", szTx );
continue;
}
int iMaxWidth = pTx->GetActualWidth(), iMaxHeight = pTx->GetActualHeight();
// Save maxwidth and maxheight
char chMaxWidth[20], chMaxHeight[20];
sprintf( chMaxWidth, "%d", iMaxWidth ), sprintf( chMaxHeight, "%d", iMaxHeight );
// We have the texture and path to its content
char chResolveName[ MAX_PATH ] = {0}, chResolveNameArg[ MAX_PATH ] = {0};
Q_snprintf( chResolveNameArg, sizeof( chResolveNameArg ) - 1, "materials/%s" TEXTURE_FNAME_EXTENSION, szTx );
char *szTextureContentPath;
if ( !mat_texture_list_content_path.GetString()[0] )
{
szTextureContentPath = const_cast< char * >( g_pFullFileSystem->RelativePathToFullPath( chResolveNameArg, "game", chResolveName, sizeof( chResolveName ) - 1 ) );
if ( !szTextureContentPath )
{
Warning( " mat_texture_list_txlod_sync save - texture '%s' is not loaded from file system.\n", szTx );
continue;
}
if ( !BufferReplace( szTextureContentPath, "\\game\\", "\\content\\" ) ||
!BufferReplace( szTextureContentPath, "\\materials\\", "\\materialsrc\\" ) )
{
Warning( " mat_texture_list_txlod_sync save - texture '%s' cannot be mapped to content directory.\n", szTx );
continue;
}
}
else
{
V_strncpy( chResolveName, mat_texture_list_content_path.GetString(), MAX_PATH );
V_strncat( chResolveName, "/", MAX_PATH );
V_strncat( chResolveName, szTx, MAX_PATH );
V_strncat( chResolveName, TEXTURE_FNAME_EXTENSION, MAX_PATH );
szTextureContentPath = chResolveName;
}
// Figure out what kind of source content is there:
// 1. look for TGA - if found, get the txt file (if txt file missing, create one)
// 2. otherwise look for PSD - affecting psdinfo
// 3. else error
char *pExtPut = szTextureContentPath + strlen( szTextureContentPath ) - strlen( TEXTURE_FNAME_EXTENSION ); // compensating the TEXTURE_FNAME_EXTENSION(.vtf) extension
// 1.tga
sprintf( pExtPut, ".tga" );
if ( g_pFullFileSystem->FileExists( szTextureContentPath ) )
{
// Have tga - pump in the txt file
sprintf( pExtPut, ".txt" );
CUtlBuffer bufTxtFileBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER );
g_pFullFileSystem->ReadFile( szTextureContentPath, 0, bufTxtFileBuffer );
for ( int k = 0; k < 1024; ++ k ) bufTxtFileBuffer.PutChar( 0 );
// Now fix maxwidth/maxheight settings
SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxwidth", chMaxWidth );
SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxheight", chMaxHeight );
bufTxtFileBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, strlen( ( char * ) bufTxtFileBuffer.Base() ) );
// Check out or add the file
g_p4factory->SetOpenFileChangeList( "Texture LOD Autocheckout" );
CP4AutoEditFile autop4_edit( szTextureContentPath );
// Save the file contents
if ( g_pFullFileSystem->WriteFile( szTextureContentPath, 0, bufTxtFileBuffer ) )
{
Msg(" '%s' : saved.\n", szTextureContentPath );
CP4AutoAddFile autop4_add( szTextureContentPath );
}
else
{
Warning( " '%s' : failed to save - set \"maxwidth %d maxheight %d\" manually.\n",
szTextureContentPath, iMaxWidth, iMaxHeight );
}
continue;
}
// 2.psd
sprintf( pExtPut, ".psd" );
if ( g_pFullFileSystem->FileExists( szTextureContentPath ) )
{
char chCommand[MAX_PATH];
char szTxtFileName[MAX_PATH] = {0};
GetModSubdirectory( "tmp_lod_psdinfo.txt", szTxtFileName, sizeof( szTxtFileName ) );
sprintf( chCommand, "/C psdinfo \"%s\" > \"%s\"", szTextureContentPath, szTxtFileName);
ShellExecute( NULL, NULL, "cmd.exe", chCommand, NULL, SW_HIDE );
Sleep( 200 );
CUtlBuffer bufTxtFileBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER );
g_pFullFileSystem->ReadFile( szTxtFileName, 0, bufTxtFileBuffer );
for ( int k = 0; k < 1024; ++ k ) bufTxtFileBuffer.PutChar( 0 );
// Now fix maxwidth/maxheight settings
SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxwidth", chMaxWidth );
SetBufferValue( ( char * ) bufTxtFileBuffer.Base(), "maxheight", chMaxHeight );
bufTxtFileBuffer.SeekPut( CUtlBuffer::SEEK_HEAD, strlen( ( char * ) bufTxtFileBuffer.Base() ) );
// Check out or add the file
// Save the file contents
if ( g_pFullFileSystem->WriteFile( szTxtFileName, 0, bufTxtFileBuffer ) )
{
g_p4factory->SetOpenFileChangeList( "Texture LOD Autocheckout" );
CP4AutoEditFile autop4_edit( szTextureContentPath );
sprintf( chCommand, "/C psdinfo -write \"%s\" < \"%s\"", szTextureContentPath, szTxtFileName );
Sleep( 200 );
ShellExecute( NULL, NULL, "cmd.exe", chCommand, NULL, SW_HIDE );
Sleep( 200 );
Msg(" '%s' : saved.\n", szTextureContentPath );
CP4AutoAddFile autop4_add( szTextureContentPath );
}
else
{
Warning( " '%s' : failed to save - set \"maxwidth %d maxheight %d\" manually.\n",
szTextureContentPath, iMaxWidth, iMaxHeight );
}
continue;
}
// 3. - error
sprintf( pExtPut, "" );
{
Warning( " '%s' : doesn't specify a valid TGA or PSD file!\n", szTextureContentPath );
continue;
}
}
Msg("mat_texture_list_txlod_sync save : completed.\n");
return;
}
else
goto usage;
return;
usage:
Warning(
"Usage:\n"
" mat_texture_list_txlod_sync reset - resets all run-time changes to LOD overrides;\n"
" mat_texture_list_txlod_sync save - saves all changes to material content files.\n"
);
}
ConVar mat_texture_list_exclude_editing( "mat_texture_list_exclude_editing", "0" );
CON_COMMAND_F( mat_texture_list_exclude, "'load' - loads the exclude list file, 'reset' - resets all loaded exclude information, 'save' - saves exclude list file", FCVAR_DONTRECORD )
{
using namespace TextureLodOverride;
using namespace TextureLodExclude;
if ( args.ArgC() < 2 )
goto usage;
char const *szCmd = args.Arg( 1 );
if ( !stricmp( szCmd, "load" ) )
{
if ( args.ArgC() < 3 )
goto usage;
char const *szFile = args.Arg( 2 );
Msg( "mat_texture_list_exclude loading '%s'...\n", szFile );
// Read the file buffer
CUtlInplaceBuffer bufFile( 0, 0, CUtlBuffer::TEXT_BUFFER );
if ( !g_pFullFileSystem->ReadFile( szFile, NULL, bufFile ) )
{
Warning( "Error: failed to load exclude file '%s'!\n", szFile );
return;
}
// Process the file
while ( char *pszLine = bufFile.InplaceGetLinePtr() )
{
// Skip empty lines
if ( !*pszLine || V_isspace( *pszLine ) ||
!V_isalnum( *pszLine ) )
continue;
// If the line starts with a digit, then it's LOD override
int nLodOverride = atoi( pszLine );
while ( V_isdigit( *pszLine ) )
++ pszLine;
while ( V_isspace( *pszLine ) )
++ pszLine;
// Skip malformed lines
if ( !V_isalpha( *pszLine ) )
continue;
// Record the exclude element
TextureLodExclude::Add( pszLine, nLodOverride );
}
for ( int k = 0; k < s_ExcludeMap.GetNumStrings(); ++ k )
{
char const *szTx = s_ExcludeMap.String( k );
// Force the texture LOD override to get re-processed
if ( ITexture *pTx = materials->FindTexture( szTx, "" ) )
pTx->Download( NULL );
}
Msg( "mat_texture_list_exclude loaded '%s'.\n", szFile );
// Set the var to designate exclude mode
int iMode = mat_texture_list_exclude_editing.GetInt();
mat_texture_list_exclude_editing.SetValue( MAX( 0, iMode ) + 1 );
return;
}
else if ( !stricmp( szCmd, "reset" ) )
{
Msg( "mat_texture_list_exclude reset...\n" );
CUtlStringMap< int > lstReload;
for ( int k = 0; k < s_OverrideMap.GetNumStrings(); ++ k )
{
char const *szTx = s_OverrideMap.String( k );
lstReload[ szTx ] = 1;
}
s_OverrideMap.Purge();
for ( int k = 0; k < s_ExcludeMap.GetNumStrings(); ++ k )
{
char const *szTx = s_ExcludeMap.String( k );
lstReload[ szTx ] = 1;
}
s_ExcludeMap.Purge();
for ( int k = 0; k < lstReload.GetNumStrings(); ++ k )
{
char const *szTx = lstReload.String( k );
// Force the texture LOD override to get re-processed
if ( ITexture *pTx = materials->FindTexture( szTx, "" ) )
pTx->Download( NULL );
}
Msg( "mat_texture_list_exclude reset : completed.\n" );
mat_texture_list_exclude_editing.SetValue( 0 );
return;
}
else if ( !stricmp( szCmd, "save" ) )
{
if ( args.ArgC() < 3 )
goto usage;
char const *szFile = args.Arg( 2 );
Msg( "mat_texture_list_exclude saving '%s'...\n", szFile );
// Read the file buffer
CUtlInplaceBuffer bufFile( 0, 0, CUtlBuffer::TEXT_BUFFER );
// Write the buffer file (full excludes)
for ( int k = 0; k < s_ExcludeMap.GetNumStrings(); ++ k )
{
char const *szTx = s_ExcludeMap.String( k );
int x = s_ExcludeMap[ k ];
if ( !( x == 0 ) ) continue; // first pass, skip mips
bufFile.Printf( "%s\n", szTx );
}
// empty line
bufFile.Printf( "\n" );
// Write the buffer file (mips)
for ( int k = 0; k < s_ExcludeMap.GetNumStrings(); ++ k )
{
char const *szTx = s_ExcludeMap.String( k );
int x = s_ExcludeMap[ k ];
if ( !( x > 0 ) ) continue;
bufFile.Printf( "%d %s\n", x, szTx );
}
// Save out the buffer to file
if ( !g_pFullFileSystem->WriteFile( szFile, NULL, bufFile ) )
{
Warning( "Error: failed to save exclude file '%s'!\n", szFile );
return;
}
Msg( "mat_texture_list_exclude saved '%s'.\n", szFile );
return;
}
return;
usage:
Warning(
"Usage:\n"
" mat_texture_list_exclude load excludelistfile.lst - loads exclude list file;\n"
" mat_texture_list_exclude reset - resets loaded exclude list information;\n"
" mat_texture_list_exclude save excludelistfile.lst - saves exclude list file.\n"
);
}
#endif
bool CTextureImpl_GetTextureInformation( char const *szTextureName, MaterialTextureInfo_t &info )
{
#ifdef IS_WINDOWS_PC
info.iExcludeInformation = TextureLodExclude::Get( szTextureName );
return true;
#else
return false;
#endif
}