csgo-2018-source/hammer/lpreview_thread.cpp
2021-07-24 21:11:47 -07:00

1367 lines
43 KiB
C++

>//===== Copyright © 1996-2006, Valve Corporation, All rights reserved. ======//
//
// Purpose: The thread which performs lighting preview
//
//===========================================================================//
#include "stdafx.h"
#include "lpreview_thread.h"
#define HAMMER_RAYTRACE
#include "raytrace.h"
#include "hammer.h"
#include "mainfrm.h"
#include "lprvwindow.h"
#include "threadtools.h"
#include "vstdlib/jobthread.h"
#include "mathlib/halton.h"
// memdbgon must be the last include file in a .cpp file!!!
#include <tier0/memdbgon.h>
#define LPREVIEW_MULTITHREAD 1
CInterlockedInt n_gbufs_queued;
CInterlockedInt n_result_bms_queued;
#define NUMBER_OF_LINES_TO_CALCULATE_PER_STEP 8
// the current lighting preview output, if we have one
Bitmap_t * g_pLPreviewOutputBitmap;
IThreadPool *s_pThreadPool;
static class CLightingPreviewThread *s_pThis;
static int s_nNumThreads;
enum IncrementalLightState
{
INCR_STATE_NO_RESULTS = 0, // we threw away the results for this light
INCR_STATE_PARTIAL_RESULTS = 1, // have done some but not all
INCR_STATE_NEW = 2, // we know nothing about this light
INCR_STATE_HAVE_FULL_RESULTS = 3, // we are done
};
class CLightingPreviewThread;
#define MAX_IMAGE_HEIGHT 1024
// attributes for result soa containers
#define RSLT_ATTR_DIFFUSE_RGB 0
#define RSLT_BUFFER_RSLT_RGB 3
#define GBUFFER_ATTR_POSITION 0
#define GBUFFER_ATTR_ALBEDO 1
#define GBUFFER_ATTR_NORMAL 2
class CIncrementalLightInfo
{
public:
CIncrementalLightInfo * m_pNext;
CLightingPreviewLightDescription * m_pLight;
// incremental lighting tracking information
int m_nObjectID;
int m_nNumLinesCalculated;
IncrementalLightState m_eIncrState;
CSOAContainer m_CalculatedContribution;
float m_fTotalContribution; // current magnitude of light effect
float m_flLastContribution; // the last amount added
int m_nBitmapGenerationCounter; // set on receive of new data from master
float m_fDistanceToEye;
int m_nMostRecentNonZeroContributionTimeStamp;
uint8 m_nCalculationLevel[MAX_IMAGE_HEIGHT]; // 0 = not calculated, 1 = calculated at 1:1, etc.
int m_nMaxCalculatedLine;
int m_nFirstCalculatedLine;
bool m_bCreatedIndirectLights;
bool m_bDisabled;
CIncrementalLightInfo( void )
{
m_bDisabled = false;
m_bCreatedIndirectLights = false;
m_nObjectID = - 1;
m_pNext = NULL;
m_eIncrState = INCR_STATE_NEW;
m_fTotalContribution = 0.;
m_flLastContribution = 0.;
m_nNumLinesCalculated = 0;
m_nMostRecentNonZeroContributionTimeStamp = 0;
m_nMaxCalculatedLine = -1;
m_nFirstCalculatedLine = INT_MAX;
memset( m_nCalculationLevel, 0, sizeof( m_nCalculationLevel ) );
}
float PredictedContribution( void ) const;
void SetContributionSize( int nWidth, int nHeight )
{
if ( ( m_CalculatedContribution.NumCols() != nWidth ) || ( m_CalculatedContribution.NumRows() != nHeight ) )
{
m_CalculatedContribution.Purge();
if ( nWidth && nHeight )
{
m_CalculatedContribution.SetAttributeType( RSLT_ATTR_DIFFUSE_RGB, ATTRDATATYPE_4V );
m_CalculatedContribution.AllocateData( nWidth, nHeight );
}
}
}
void DiscardResults( void )
{
m_bDisabled = false;
m_CalculatedContribution.Purge();
memset( m_nCalculationLevel, 0, sizeof( m_nCalculationLevel ) );
m_nMaxCalculatedLine = -1;
m_nFirstCalculatedLine = INT_MAX;
if ( m_eIncrState != INCR_STATE_NEW )
m_eIncrState = INCR_STATE_NO_RESULTS;
m_nNumLinesCalculated = 0;
}
void ClearIncremental( void )
{
m_eIncrState = INCR_STATE_NEW;
// free calculated lighting matrix
DiscardResults();
}
bool HasWorkToDo( void ) const
{
if ( m_bDisabled )
return false;
return ( m_eIncrState != INCR_STATE_HAVE_FULL_RESULTS );
}
bool IsLowerPriorityThan( CLightingPreviewThread * pLPV,
CIncrementalLightInfo const & other ) const;
bool IsHighPriority( CLightingPreviewThread * pLPV ) const;
};
#define N_INCREMENTAL_STEPS 32
class CLightingPreviewThread
{
public:
CUtlIntrusiveList< CLightingPreviewLightDescription > m_LightList;
CSOAContainer m_GBuffer;
CSOAContainer m_GBufferLowRes;
RayTracingEnvironment * m_pRtEnv;
CIncrementalLightInfo * m_pIncrementalLightInfoList;
bool m_bAccStructureBuilt;
Vector m_LastEyePosition;
bool m_bResultChangedSinceLastSend;
float m_fLastSendTime;
int m_nBitmapGenerationCounter;
int m_nContributionCounter;
// bounidng box of the rendered scene+ the eye
Vector m_MinViewCoords;
Vector m_MaxViewCoords;
// sets that we are doing the first update since a discard and should do more lights per pass
bool m_bFirstWork;
CLightingPreviewThread( void )
{
m_nBitmapGenerationCounter = - 1;
m_pRtEnv = NULL;
m_bAccStructureBuilt = false;
m_pIncrementalLightInfoList = NULL;
m_fLastSendTime = - 1.0e6;
m_bResultChangedSinceLastSend = false;
m_nContributionCounter = 1000000;
m_bFirstWork = true;
}
~CLightingPreviewThread( void )
{
m_LightList.Purge();
while ( m_pIncrementalLightInfoList )
{
CIncrementalLightInfo * n = m_pIncrementalLightInfoList->m_pNext;
delete m_pIncrementalLightInfoList;
m_pIncrementalLightInfoList = n;
}
}
// check if the master has new work for us to do, meaning we should abort rendering
bool ShouldAbort( void )
{
return g_HammerToLPreviewMsgQueue.MessageWaiting();
}
// main loop
void Run( void );
// handle new g-buffers from master
void HandleGBuffersMessage( MessageToLPreview & msg_in );
// accept triangle list from master
void HandleGeomMessage( MessageToLPreview & msg_in );
// send one of our output images back
void SendResultRendering( CSOAContainer &rsltBuffer );
// calculate m_MinViewCoords, m_MaxViewCoords - the bounding box of the rendered pixels+the eye
void CalculateSceneBounds( void );
// inner lighting loop. meant to be multithreaded on dual-core (or more)
void CalculateForLightTask( int nLineStart, int nLineEnd,
CLightingPreviewLightDescription *l,
float * fContributionOut,
CIncrementalLightInfo *pInfremental );
void CalculateForLight( CLightingPreviewLightDescription *l );
// send our current output back
void SendResult( void );
void UpdateIncrementalForNewLightList( void );
void DiscardResults( void )
{
// Warning(" invalidate\n" );
// invalidate all per light result data
for( CIncrementalLightInfo * i = m_pIncrementalLightInfoList; i; i = i->m_pNext )
{
i->DiscardResults();
}
// bump time stamp
m_nContributionCounter++;
// update distances to lights
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
CIncrementalLightInfo * l_info = l->m_pIncrementalInfo;
if ( l->m_Type == MATERIAL_LIGHT_DIRECTIONAL )
l_info->m_fDistanceToEye = 0; // high priority
else
l_info->m_fDistanceToEye = m_LastEyePosition.DistTo( l->m_Position );
}
m_bResultChangedSinceLastSend = true;
m_fLastSendTime = Plat_FloatTime() - 12; // force send
m_bFirstWork = true;
}
// handle a message. returns true if the thread shuold exit
bool HandleAMessage( void );
// returns whether or not there is useful work to do
bool AnyUsefulWorkToDo( void );
// do some work, like a rendering for one light
void DoWork( void );
Vector EstimatedUnshotAmbient( void )
{
// return Vector( 1,1,1 );
float sum_weights = 0.0001;
Vector sum_colors( sum_weights, sum_weights, sum_weights );
// calculate an ambient color based on light calculcated so far
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
CIncrementalLightInfo * l_info = l->m_pIncrementalInfo;
if ( l_info &&
( l_info->m_eIncrState == INCR_STATE_HAVE_FULL_RESULTS ) ||
( l_info->m_eIncrState == INCR_STATE_PARTIAL_RESULTS ) )
{
float flPredictedContribution = l_info->PredictedContribution();
sum_weights += flPredictedContribution;
sum_colors.x += flPredictedContribution * l->m_Color.x;
sum_colors.y += flPredictedContribution * l->m_Color.y;
sum_colors.z += flPredictedContribution * l->m_Color.z;
}
}
sum_colors.NormalizeInPlace();
sum_colors *= 0.05;
return sum_colors;
}
void AccumulateOuput( int nLineMask, CSOAContainer *pResult, CSOAContainer *pLowresResule );
void AddLowresResultToHires( CSOAContainer &lowres, CSOAContainer &hires );
};
bool CIncrementalLightInfo::IsHighPriority( CLightingPreviewThread * pLPV ) const
{
// is this lighjt prioirty-boosted in some way?
if ( m_eIncrState == INCR_STATE_NEW )
{
// uncalculated lights within the view range are highest priority
if ( m_pLight->m_Position.WithinAABox( pLPV->m_MinViewCoords,
pLPV->m_MaxViewCoords ) )
return true;
}
return false;
}
bool CIncrementalLightInfo::IsLowerPriorityThan( CLightingPreviewThread * pLPV,
CIncrementalLightInfo const & other ) const
{
// a NEW light within the view volume is highest priority
bool highpriority = IsHighPriority( pLPV );
bool other_highpriority = other.IsHighPriority( pLPV );
if ( highpriority && ( ! other_highpriority ) )
return false;
if ( other_highpriority && ( ! highpriority ) )
return true;
int state_combo = m_eIncrState + 16 * other.m_eIncrState;
switch ( state_combo )
{
case INCR_STATE_NEW + 16 * INCR_STATE_NEW:
{
// if both are new, closest to eye is best
return ( m_fDistanceToEye > other.m_fDistanceToEye );
}
case INCR_STATE_NEW + 16 * INCR_STATE_NO_RESULTS:
{
// new loses to something we know is probably going to contribute light
return ( other.m_fTotalContribution > 0 );
}
case INCR_STATE_NEW + 16 * INCR_STATE_PARTIAL_RESULTS:
{
return false;
}
case INCR_STATE_PARTIAL_RESULTS + 16 * INCR_STATE_NEW:
{
return true;
}
case INCR_STATE_NO_RESULTS + 16 * INCR_STATE_NEW:
{
// partial or discarded with no brightness loses to new
return ( m_fTotalContribution == 0 );
}
case INCR_STATE_PARTIAL_RESULTS + 16 * INCR_STATE_PARTIAL_RESULTS:
{
// if incrmental vs incremental, and no light from either, do most recently lit one
if ( ( m_fTotalContribution == 0.0 ) && ( other.m_fTotalContribution == 0.0 ) &&
( other.m_nMostRecentNonZeroContributionTimeStamp > m_nMostRecentNonZeroContributionTimeStamp ) )
return true;
int nMaxLines = max( m_nNumLinesCalculated, other.m_nNumLinesCalculated );
int nMinLines = min( m_nNumLinesCalculated, other.m_nNumLinesCalculated );
// if other is black, and ratios aren't extremely far off, keep this one
if ( nMaxLines <= 16 * nMinLines )
{
if ( ( other.m_fTotalContribution == 0.0 ) && ( m_fTotalContribution > 0 ) )
return false;
if ( ( m_fTotalContribution == 0.0 ) && ( other.m_fTotalContribution > 0 ) )
return true;
}
// if incremental states are close, do brightest
if ( nMaxLines <= 2 * nMinLines )
return ( PredictedContribution() < other.PredictedContribution() );
// else do least refined
return ( m_nNumLinesCalculated > other.m_nNumLinesCalculated );
}
case INCR_STATE_PARTIAL_RESULTS + 16 * INCR_STATE_NO_RESULTS:
{
if ( other.m_fTotalContribution )
return true;
if ( ( m_fTotalContribution == 0.0 ) && ( other.m_fTotalContribution == 0.0 ) )
return ( other.m_nMostRecentNonZeroContributionTimeStamp > m_nMostRecentNonZeroContributionTimeStamp );
return ( PredictedContribution() < other.PredictedContribution() );
}
case INCR_STATE_NO_RESULTS + 16 * INCR_STATE_PARTIAL_RESULTS:
{
if ( m_fTotalContribution )
return false;
if ( ( m_fTotalContribution == 0.0 ) && ( other.m_fTotalContribution == 0.0 ) )
return ( other.m_nMostRecentNonZeroContributionTimeStamp > m_nMostRecentNonZeroContributionTimeStamp );
return ( PredictedContribution() < other.PredictedContribution() );
}
case INCR_STATE_NO_RESULTS * 16 + INCR_STATE_NO_RESULTS:
{
// if incrmental vs discarded, brightest or most recently bright wins
if ( ( m_fTotalContribution == 0.0 ) && ( other.m_fTotalContribution == 0.0 ) )
return ( other.m_nMostRecentNonZeroContributionTimeStamp > m_nMostRecentNonZeroContributionTimeStamp );
return ( PredictedContribution() < other.PredictedContribution() );
}
}
return false;
}
float cg[3]={ 1, 0, 0};
float cr[3]={ 0, 1, 0 };
float cb[3]={ 0, 0, 1 };
void CLightingPreviewThread::HandleGeomMessage( MessageToLPreview & msg_in )
{
if ( m_pRtEnv )
{
delete m_pRtEnv;
m_pRtEnv = NULL;
}
CUtlVector < Vector > & tris = * ( msg_in.m_pShadowTriangleList );
if ( tris.Count() )
{
// FILE *fp = fopen( "c:\\gl.out", "w" );
m_pRtEnv = new RayTracingEnvironment;
for( int i = 0; i < tris.Count(); i += 3 )
{
// fprintf(fp,"3\n");
// for(int j=0;j<3;j++)
// fprintf( fp,"%f %f %f %f %f %f\n", tris[j+i].x,tris[j+i].y,tris[j+i].z, cr[j],cg[j],cb[j] );
m_pRtEnv->AddTriangle( i, tris[i], tris[1 + i], tris[2 + i], Vector( .5, .5, .5 ) );
}
// fclose( fp );
}
delete msg_in.m_pShadowTriangleList;
m_bAccStructureBuilt = false;
DiscardResults();
}
float CIncrementalLightInfo::PredictedContribution( void ) const
{
if ( ( m_fTotalContribution == 0 ) || ( ! m_nNumLinesCalculated ) )
return 0.;
else
return m_fTotalContribution * ( m_CalculatedContribution.NumRows() * ( 1.0 / m_nNumLinesCalculated ) );
}
void CLightingPreviewThread::CalculateSceneBounds( void )
{
FourVectors minbound, maxbound;
minbound.DuplicateVector( m_LastEyePosition );
maxbound.DuplicateVector( m_LastEyePosition );
for( int y = 0; y < m_GBuffer.NumRows(); y++ )
{
FourVectors const *cptr = m_GBuffer.RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, y );
for( int x = 0; x < m_GBuffer.NumQuadsPerRow(); x++ )
{
minbound.x = MinSIMD( cptr->x, minbound.x );
minbound.y = MinSIMD( cptr->y, minbound.y );
minbound.z = MinSIMD( cptr->z, minbound.z );
maxbound.x = MaxSIMD( cptr->x, maxbound.x );
maxbound.y = MaxSIMD( cptr->y, maxbound.y );
maxbound.z = MaxSIMD( cptr->z, maxbound.z );
cptr++;
}
}
m_MinViewCoords = minbound.Vec( 0 );
m_MaxViewCoords = maxbound.Vec( 0 );
for( int v = 1; v < 4; v++ )
{
m_MinViewCoords = m_MinViewCoords.Min( minbound.Vec( v ) );
m_MaxViewCoords = m_MaxViewCoords.Max( maxbound.Vec( v ) );
}
}
void CLightingPreviewThread::UpdateIncrementalForNewLightList( void )
{
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
// see if we know about this light
for( CIncrementalLightInfo * i = m_pIncrementalLightInfoList; i; i = i->m_pNext )
{
if ( i->m_nObjectID == l->m_nObjectID )
{
// found it!
l->m_pIncrementalInfo = i;
i->m_pLight = l;
break;
}
}
if ( ! l->m_pIncrementalInfo )
{
l->m_pIncrementalInfo = new CIncrementalLightInfo;
l->m_pIncrementalInfo->m_nObjectID = l->m_nObjectID;
l->m_pIncrementalInfo->m_pLight = l;
// add to list
l->m_pIncrementalInfo->m_pNext = m_pIncrementalLightInfoList;
m_pIncrementalLightInfoList = l->m_pIncrementalInfo;
}
}
}
void CLightingPreviewThread::Run( void )
{
bool should_quit = false;
while( ! should_quit )
{
while (
( ! should_quit ) &&
( ( ! AnyUsefulWorkToDo() ) || ( g_HammerToLPreviewMsgQueue.MessageWaiting() ) ) )
should_quit |= HandleAMessage();
if ( ( ! should_quit ) && ( AnyUsefulWorkToDo() ) )
DoWork();
if ( m_bResultChangedSinceLastSend )
{
float newtime = Plat_FloatTime();
if ( ( newtime - m_fLastSendTime > 2.0 ) || ( ! AnyUsefulWorkToDo() ) )
{
SendResult();
}
}
}
}
bool CLightingPreviewThread::HandleAMessage( void )
{
MessageToLPreview msg_in;
g_HammerToLPreviewMsgQueue.WaitMessage( & msg_in );
switch( msg_in.m_MsgType )
{
case LPREVIEW_MSG_EXIT:
return true; // return from thread
case LPREVIEW_MSG_LIGHT_DATA:
{
m_LightList.Purge();
m_LightList = msg_in.m_LightList;
m_LastEyePosition = msg_in.m_EyePosition;
UpdateIncrementalForNewLightList();
DiscardResults();
}
break;
case LPREVIEW_MSG_GEOM_DATA:
HandleGeomMessage( msg_in );
DiscardResults();
break;
case LPREVIEW_MSG_G_BUFFERS:
HandleGBuffersMessage( msg_in );
DiscardResults();
break;
}
return false;
}
bool CLightingPreviewThread::AnyUsefulWorkToDo( void )
{
if ( m_GBuffer.NumRows() )
{
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
CIncrementalLightInfo *l_info = l->m_pIncrementalInfo;
if ( l_info->HasWorkToDo() )
return true;
}
}
return false;
}
static void s_CalculateForLight( CLightingPreviewLightDescription * &pLight )
{
s_pThis->CalculateForLight( pLight );
}
void CLightingPreviewThread::DoWork( void )
{
if ( m_pRtEnv && ( ! m_bAccStructureBuilt ) )
{
m_bAccStructureBuilt = true;
m_pRtEnv->SetupAccelerationStructure();
}
CLightingPreviewLightDescription *pLightsToRun[8];
int nNumLightJobs = 0;
int nJobsToDo = s_nNumThreads + 1;
if ( m_bFirstWork )
{
nJobsToDo *= 2;
m_bFirstWork = false;
}
#if LPREVIEW_MULTITHREAD == 0
nJobsToDo = 1;
#endif
for( int i = 0; i < nJobsToDo; i++ )
{
CLightingPreviewLightDescription *best_l = NULL;
CIncrementalLightInfo * best_l_info = NULL;
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
CIncrementalLightInfo * l_info = l->m_pIncrementalInfo;
// check if light could influence scene
if ( l_info->m_bDisabled )
continue; // this light can't effect the visible scene
if ( l->m_Type != MATERIAL_LIGHT_DIRECTIONAL )
{
float lrad = l->DistanceAtWhichBrightnessIsLessThan( 1.0 / 500.0 );
if ( ! l->m_Position.WithinAABox( m_MinViewCoords - ReplicateToVector( lrad ),
m_MaxViewCoords + ReplicateToVector( lrad ) ) )
{
l_info->m_bDisabled = true;
}
}
if ( l_info->m_bDisabled )
continue; // this light can't effect the visible scene
// check that we don't have it
bool bHaveit = false;
for( int j = 0; j < nNumLightJobs; j++ )
if ( pLightsToRun[j] == l )
bHaveit = true;
if ( (! bHaveit) && ( l_info->HasWorkToDo() ) )
{
if ( ( ! best_l ) ||
( best_l->m_pIncrementalInfo->IsLowerPriorityThan( this, *l_info ) ) )
{
best_l_info = l_info;
best_l = l;
}
}
}
if ( best_l )
{
pLightsToRun[nNumLightJobs++] = best_l;
}
}
// now, process in parallel
if ( nNumLightJobs )
{
#if LPREVIEW_MULTITHREAD
ParallelProcess( s_pThreadPool, pLightsToRun, nNumLightJobs, s_CalculateForLight );
#else
for( int i = 0; i < nNumLightJobs; i++ )
{
Warning( "process light %p lnum=%d contribution = %f predicted = %f\n", pLightsToRun[i], pLightsToRun[i]->m_pIncrementalInfo->m_nNumLinesCalculated, pLightsToRun[i]->m_pIncrementalInfo->m_fTotalContribution, pLightsToRun[i]->m_pIncrementalInfo->PredictedContribution() );
s_CalculateForLight( pLightsToRun[i] );
}
#endif
// now, some lights may have created lights for indirect light. We must move these to the global list.
// we could not do this while creating them, because of thread-safety.
for( int i = 0; i < nNumLightJobs; i++ )
{
if ( pLightsToRun[i]->m_pIncrementalInfo->m_flLastContribution )
{
m_bResultChangedSinceLastSend = true;
}
for( int j = 0; j < pLightsToRun[i]->m_TempChildren.Count(); j++ )
{
CLightingPreviewLightDescription *pNew = pLightsToRun[i]->m_TempChildren[j];
pNew->m_pIncrementalInfo = new CIncrementalLightInfo;
pNew->m_pIncrementalInfo->m_nObjectID = pNew->m_nObjectID;
pNew->m_pIncrementalInfo->m_pLight = pNew;
pNew->m_pIncrementalInfo->m_pNext = m_pIncrementalLightInfoList;
m_pIncrementalLightInfoList = pNew->m_pIncrementalInfo;
m_LightList.AddToTail( pNew );
}
pLightsToRun[i]->m_TempChildren.Purge();
pLightsToRun[i]->m_bDidIndirect = true;
}
}
}
void CLightingPreviewThread::HandleGBuffersMessage( MessageToLPreview & msg_in )
{
m_GBuffer.Purge();
m_GBuffer.SetAttributeType( GBUFFER_ATTR_POSITION, ATTRDATATYPE_4V );
m_GBuffer.SetAttributeType( GBUFFER_ATTR_ALBEDO, ATTRDATATYPE_4V );
m_GBuffer.SetAttributeType( GBUFFER_ATTR_NORMAL, ATTRDATATYPE_4V );
m_GBuffer.AllocateData( msg_in.m_pDefferedRenderingBMs[0]->NumCols(),
msg_in.m_pDefferedRenderingBMs[0]->NumRows() );
m_GBuffer.PackScalarAttributesToVectorAttribute( msg_in.m_pDefferedRenderingBMs[0],
GBUFFER_ATTR_ALBEDO,
FBM_ATTR_RED, FBM_ATTR_GREEN, FBM_ATTR_BLUE );
m_GBuffer.PackScalarAttributesToVectorAttribute( msg_in.m_pDefferedRenderingBMs[1],
GBUFFER_ATTR_NORMAL,
FBM_ATTR_RED, FBM_ATTR_GREEN, FBM_ATTR_BLUE );
m_GBuffer.PackScalarAttributesToVectorAttribute( msg_in.m_pDefferedRenderingBMs[2],
GBUFFER_ATTR_POSITION,
FBM_ATTR_RED, FBM_ATTR_GREEN, FBM_ATTR_BLUE );
m_GBufferLowRes.Purge();
m_GBufferLowRes.SetAttributeType( GBUFFER_ATTR_POSITION, ATTRDATATYPE_4V );
m_GBufferLowRes.SetAttributeType( GBUFFER_ATTR_ALBEDO, ATTRDATATYPE_4V );
m_GBufferLowRes.SetAttributeType( GBUFFER_ATTR_NORMAL, ATTRDATATYPE_4V );
m_GBufferLowRes.AllocateData( msg_in.m_pDefferedRenderingBMs[0]->NumCols() / 4,
msg_in.m_pDefferedRenderingBMs[0]->NumRows() / 4 );
// now, downsample
m_GBufferLowRes.ResampleAttribute( m_GBuffer, GBUFFER_ATTR_POSITION );
m_GBufferLowRes.ResampleAttribute( m_GBuffer, GBUFFER_ATTR_ALBEDO );
m_GBufferLowRes.ResampleAttribute( m_GBuffer, GBUFFER_ATTR_NORMAL );
m_LastEyePosition = msg_in.m_EyePosition;
for( int i = 0;i < ARRAYSIZE( msg_in.m_pDefferedRenderingBMs ); i++ )
delete msg_in.m_pDefferedRenderingBMs[i];
n_gbufs_queued--;
m_nBitmapGenerationCounter = msg_in.m_nBitmapGenerationCounter;
CalculateSceneBounds();
}
void CLightingPreviewThread::AccumulateOuput( int nLineMask, CSOAContainer *rslt, CSOAContainer *rslt1 )
{
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
CSOAContainer *pRslt = rslt;
CSOAContainer *pGB = &m_GBuffer;
if ( l->m_bLowRes )
{
pGB = &m_GBufferLowRes;
pRslt = rslt1;
}
CIncrementalLightInfo * l_info = l->m_pIncrementalInfo;
if ( ( l_info->m_fTotalContribution > 0.0 ) &&
( l_info->m_eIncrState >= INCR_STATE_PARTIAL_RESULTS ) )
{
// need to add partials, replicated to handle undone lines
CSOAContainer &src = l_info->m_CalculatedContribution;
int nY0 = l_info->m_nFirstCalculatedLine;
int nY1 = nY0;
// scan forward to find the next calculated line, if any
while ( nY1 < l_info->m_nMaxCalculatedLine )
{
nY1++;
if ( l_info->m_nCalculationLevel[nY1] )
break;
}
fltx4 fl4NormalFactorScale = ReplicateX4( 4.0f );
fltx4 fl4NormalBias = ReplicateX4( 0.0f ); //1.01 ); // prevent 0.
for( int y = 0; y < pGB->NumRows(); y++ )
{
if ( nLineMask & ( 1 << ( y & 31 ) ) )
{
fltx4 fl4Weights[2];
if ( ( y < nY0 ) || ( nY0 == nY1 ) )
{
fl4Weights[0] = Four_Ones;
fl4Weights[1] = Four_Zeros;
}
else
{
fl4Weights[1] = ReplicateX4( ( y - nY0 ) * ( 1.0 / ( nY1 - nY0 ) ) );
fl4Weights[0] = SubSIMD( Four_Ones, fl4Weights[1] );
}
FourVectors *pRslts[2];
pRslts[0] = src.RowPtr<FourVectors>( RSLT_ATTR_DIFFUSE_RGB, nY0 );
pRslts[1] = src.RowPtr<FourVectors>( RSLT_ATTR_DIFFUSE_RGB, nY1 );
FourVectors *dest = pRslt->RowPtr<FourVectors>( RSLT_BUFFER_RSLT_RGB, y);
FourVectors const * pNormal = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, y );
FourVectors const * pRsltNormals[2];
pRsltNormals[0] = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, nY0 );
pRsltNormals[1] = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, nY1 );
FourVectors const * pCoord = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, y );
FourVectors const * pCoords[2];
pCoords[0] = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, nY0 );
pCoords[1] = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, nY1 );
fltx4 fl4DistanceScale = ReplicateX4( 1.0 / 36.0 );
for( int x = 0; x < pGB->NumQuadsPerRow(); x++ )
{
FourVectors l1 = *( pRslts[1]++ );
fltx4 fl4Dot = ( *pRsltNormals[1]++ ) * ( *pNormal );
fl4Dot = MaxSIMD( Four_Epsilons,
MulSIMD( fl4NormalFactorScale, AddSIMD( fl4NormalBias, fl4Dot ) ) );
FourVectors fl4Delta = *( pCoords[1]++ );
fl4Delta -= *pCoord;
fltx4 fl4Distance = fl4Delta.length();
fl4Distance = ReciprocalEstSIMD( AddSIMD( Four_Ones, MulSIMD( fl4Distance, fl4DistanceScale ) ) );
fltx4 fl4SumWeights = MulSIMD( fl4Distance, MulSIMD( fl4Weights[1], fl4Dot ) );
l1 *= fl4SumWeights;
fl4Dot = ( *pRsltNormals[0]++ ) * ( *pNormal++ );
fl4Dot = MaxSIMD( Four_Epsilons,
MulSIMD( fl4NormalFactorScale, AddSIMD( fl4NormalBias, fl4Dot ) ) );
fl4Delta = *( pCoords[0]++ );
fl4Delta -= *pCoord;
fl4Distance = fl4Delta.length();
pCoord++;
fl4Distance = ReciprocalEstSIMD( AddSIMD( Four_Ones, MulSIMD( fl4Distance, fl4DistanceScale ) ) );
FourVectors l2 = *( pRslts[0]++ );
fltx4 w0 = MulSIMD( fl4Distance, MulSIMD( fl4Dot, fl4Weights[0] ) );
l2 *= w0;
l1 += l2;
fl4SumWeights = AddSIMD( fl4SumWeights, w0 );
l1 *= ReciprocalSIMD( fl4SumWeights );
* ( dest++ ) += l1;
}
}
// now, update line indices
if ( y >= nY1 )
{
nY0 = nY1;
while ( nY1 < l_info->m_nMaxCalculatedLine )
{
nY1++;
if ( l_info->m_nCalculationLevel[nY1] )
break;
}
}
}
}
}
}
static CSOAContainer *s_pResultBuffer;
static CSOAContainer *s_pResultBuffer1;
void s_AccumulateOutput( int &nLineMask )
{
s_pThis->AccumulateOuput( nLineMask, s_pResultBuffer, s_pResultBuffer1 );
}
#define GRAB4PIXELS( base ) \
base##AAAA.x = SplatXSIMD( base##ShiftRegister0.x ); \
base##AAAA.y = SplatXSIMD( base##ShiftRegister0.y ); \
base##AAAA.z = SplatXSIMD( base##ShiftRegister0.z ); \
base##BBBB.x = SplatYSIMD( base##ShiftRegister0.x ); \
base##BBBB.y = SplatYSIMD( base##ShiftRegister0.y ); \
base##BBBB.z = SplatYSIMD( base##ShiftRegister0.z ); \
RotateLeftDoubleSIMD( base##ShiftRegister0.x, base##ShiftRegister0a.x ); \
RotateLeftDoubleSIMD( base##ShiftRegister0.y, base##ShiftRegister0a.y ); \
RotateLeftDoubleSIMD( base##ShiftRegister0.z, base##ShiftRegister0a.z ); \
base##EEEE.x = SplatXSIMD( base##ShiftRegister1.x ); \
base##EEEE.y = SplatXSIMD( base##ShiftRegister1.y ); \
base##EEEE.z = SplatXSIMD( base##ShiftRegister1.z ); \
base##FFFF.x = SplatYSIMD( base##ShiftRegister1.x ); \
base##FFFF.y = SplatYSIMD( base##ShiftRegister1.y ); \
base##FFFF.z = SplatYSIMD( base##ShiftRegister1.z ); \
RotateLeftDoubleSIMD( base##ShiftRegister1.x, base##ShiftRegister1a.x ); \
RotateLeftDoubleSIMD( base##ShiftRegister1.y, base##ShiftRegister1a.y ); \
RotateLeftDoubleSIMD( base##ShiftRegister1.z, base##ShiftRegister1a.z );
void CLightingPreviewThread::AddLowresResultToHires( CSOAContainer &lores, CSOAContainer &hires )
{
// we will bilaterally upsample lowres and add it to hires. This is coded for the specific case of a 4x4 downsamping
fltx4 fl4NormalFactorScale = ReplicateX4( 4.0f );
fltx4 fl4NormalBias = ReplicateX4( 0.0f ); //1.01 ); // prevent 0.
fltx4 fl4DistanceScale = ReplicateX4( 1.0 / 36.0 );
Assert( lores.NumRows() == m_GBufferLowRes.NumRows() );
Assert( lores.NumCols() == m_GBufferLowRes.NumCols() );
for( int y = 0; y < hires.NumRows(); y++ )
{
int ysrc0 = min( ( y >> 2 ), lores.NumRows() -1 );
int ysrc1 = min( ysrc0 + 1, lores.NumRows() - 1 );
int nIterations = hires.NumQuadsPerRow();
int numFetches = lores.NumQuadsPerRow();
FourVectors *pSrc0 = lores.RowPtr<FourVectors>( RSLT_BUFFER_RSLT_RGB, ysrc0 );
FourVectors *pSrc1 = lores.RowPtr<FourVectors>( RSLT_BUFFER_RSLT_RGB, ysrc1 );
FourVectors rsltShiftRegister0 = *( pSrc0++ );
FourVectors rsltShiftRegister0a;
FourVectors rsltShiftRegister1 = *( pSrc1++ );
FourVectors rsltShiftRegister1a;
FourVectors *pSrcNormal0 = m_GBufferLowRes.RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, ysrc0 );
FourVectors *pSrcNormal1 = m_GBufferLowRes.RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, ysrc1 );
FourVectors normShiftRegister0 = *( pSrcNormal0++ );
FourVectors normShiftRegister0a;
FourVectors normShiftRegister1 = *( pSrcNormal1++ );
FourVectors normShiftRegister1a;
FourVectors *pSrcPos0 = m_GBufferLowRes.RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, ysrc0 );
FourVectors *pSrcPos1 = m_GBufferLowRes.RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, ysrc1 );
FourVectors posShiftRegister0 = *( pSrcPos0++ );
FourVectors posShiftRegister0a;
FourVectors posShiftRegister1 = *( pSrcPos1++ );
FourVectors posShiftRegister1a;
FourVectors *pDest = hires.RowPtr<FourVectors>( RSLT_BUFFER_RSLT_RGB, y );
FourVectors *pDestNormal = m_GBuffer.RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, y );
FourVectors *pDestPos = m_GBuffer.RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, y );
numFetches--;
for( int x = 0; x < nIterations; x++ )
{
if ( ( ( x & 3 ) == 0 ) && numFetches ) // need to fetch new data every 4 outputs
{
numFetches--;
rsltShiftRegister0a = *( pSrc0++ );
rsltShiftRegister1a = *( pSrc1++ );
normShiftRegister0a = *( pSrcNormal0++ );
normShiftRegister1a = *( pSrcNormal1++ );
posShiftRegister0a = *( pSrcPos0++ );
posShiftRegister1a = *( pSrcPos1++ );
}
FourVectors rsltAAAA, rsltBBBB, rsltEEEE, rsltFFFF;
GRAB4PIXELS( rslt );
FourVectors normAAAA, normBBBB, normEEEE, normFFFF;
GRAB4PIXELS( norm );
FourVectors posAAAA, posBBBB, posEEEE, posFFFF;
GRAB4PIXELS( pos );
// we should now be ready to filter. We will take the 4 pixels we have, and produce 4 output pixels
FourVectors dNorm = *( pDestNormal++ );
fltx4 fl4ADot = MaxSIMD( Four_Epsilons, MulSIMD( fl4NormalFactorScale, AddSIMD( fl4NormalBias, dNorm * normAAAA ) ) );
fltx4 fl4BDot = MaxSIMD( Four_Epsilons, MulSIMD( fl4NormalFactorScale, AddSIMD( fl4NormalBias, dNorm * normBBBB ) ) );
fltx4 fl4EDot = MaxSIMD( Four_Epsilons, MulSIMD( fl4NormalFactorScale, AddSIMD( fl4NormalBias, dNorm * normEEEE ) ) );
fltx4 fl4FDot = MaxSIMD( Four_Epsilons, MulSIMD( fl4NormalFactorScale, AddSIMD( fl4NormalBias, dNorm * normFFFF ) ) );
FourVectors fl4Pos = *( pDestPos++ );
FourVectors v4Delta = posAAAA;
v4Delta -= fl4Pos;
fltx4 fl4WA =
MulSIMD( fl4ADot, ReciprocalEstSIMD( AddSIMD( Four_Ones, MulSIMD( v4Delta.length(), fl4DistanceScale ) ) ) );
v4Delta = posBBBB;
v4Delta -= fl4Pos;
fltx4 fl4WB =
MulSIMD( fl4BDot, ReciprocalEstSIMD( AddSIMD( Four_Ones, MulSIMD( v4Delta.length(), fl4DistanceScale ) ) ) );
v4Delta = posEEEE;
v4Delta -= fl4Pos;
fltx4 fl4WE =
MulSIMD( fl4EDot, ReciprocalEstSIMD( AddSIMD( Four_Ones, MulSIMD( v4Delta.length(), fl4DistanceScale ) ) ) );
v4Delta = posFFFF;
v4Delta -= fl4Pos;
fltx4 fl4WF =
MulSIMD( fl4FDot, ReciprocalEstSIMD( AddSIMD( Four_Ones, MulSIMD( v4Delta.length(), fl4DistanceScale ) ) ) );
fltx4 fl4OOSumWeights = ReciprocalSIMD( AddSIMD( AddSIMD( fl4WA, fl4WB ), AddSIMD( fl4WE, fl4WF ) ) );
// now, calculate the output color
FourVectors out = rsltAAAA;
out *= fl4WA;
FourVectors out1 = rsltBBBB;
out1 *= fl4WB;
out += out1;
out1 = rsltEEEE;
out1 *= fl4WE;
out += out1;
out1 = rsltFFFF;
out1 *= fl4WF;
out += out1;
out *= fl4OOSumWeights;
*( pDest++ ) += out;
}
}
}
void CLightingPreviewThread::SendResult( void )
{
if ( m_GBuffer.NumRows() && m_GBuffer.NumCols() )
{
// Warning("send\n");
CSOAContainer rsltBuffer;
rsltBuffer.SetAttributeType( RSLT_BUFFER_RSLT_RGB, ATTRDATATYPE_4V );
rsltBuffer.AllocateData( m_GBuffer.NumCols(), m_GBuffer.NumRows() );
rsltBuffer.FillAttr( RSLT_BUFFER_RSLT_RGB, EstimatedUnshotAmbient() );
s_pResultBuffer = &rsltBuffer;
bool bDidLoRes = false;
for( CLightingPreviewLightDescription *l = m_LightList.Head(); l; l = l->m_pNext )
{
if ( l->m_bLowRes )
bDidLoRes = true;
}
CSOAContainer rsltBuffer1;
rsltBuffer1.SetAttributeType( RSLT_BUFFER_RSLT_RGB, ATTRDATATYPE_4V );
rsltBuffer1.AllocateData( m_GBufferLowRes.NumCols(), m_GBufferLowRes.NumRows() );
if ( bDidLoRes )
{
rsltBuffer1.FillAttr( RSLT_BUFFER_RSLT_RGB, Vector( 0, 0, 0 ) );
}
s_pResultBuffer1 = &rsltBuffer1;
int nProcessMasks[32];
for( int i = 0; i < 32; i++ )
nProcessMasks[i] = ( 1 << i );
ParallelProcess( s_pThreadPool, nProcessMasks, 32, s_AccumulateOutput );
if ( bDidLoRes )
AddLowresResultToHires( rsltBuffer1, rsltBuffer );
// now, multiply by albedo
rsltBuffer.MulAttr( m_GBuffer, GBUFFER_ATTR_ALBEDO, RSLT_BUFFER_RSLT_RGB );
SendResultRendering( rsltBuffer );
m_fLastSendTime = Plat_FloatTime();
m_bResultChangedSinceLastSend = false;
}
}
void CLightingPreviewThread::CalculateForLightTask( int nLineStart, int nLineEnd,
CLightingPreviewLightDescription *l,
float *fContributionOut,
CIncrementalLightInfo *pLInfo )
{
FourVectors zero_vector;
zero_vector.x = Four_Zeros;
zero_vector.y = Four_Zeros;
zero_vector.z = Four_Zeros;
FourVectors total_light = zero_vector;
CIncrementalLightInfo * l_info = l->m_pIncrementalInfo;
CSOAContainer &rslt = l_info->m_CalculatedContribution;
// figure out what lines to do
fltx4 ThresholdBrightness = ReplicateX4( 0.1 / 1024.0 );
FourVectors LastLinesTotalLight = zero_vector;
// calculate jitter stuff
fltx4 fl4RandRange = ReplicateX4( l->m_flJitterAmount );
bool bJitter = l->m_flJitterAmount > 0.0;
int nCtx = GetSIMDRandContext();
CSOAContainer *pGB = ( l->m_bLowRes ) ? &m_GBufferLowRes : &m_GBuffer;
for( int idx = nLineStart; idx <= nLineEnd; idx++ )
{
int y = InsideOut( rslt.NumRows(), idx );
FourVectors ThisLinesTotalLight = zero_vector;
FourVectors *pDataOut = rslt.RowPtr<FourVectors>( RSLT_ATTR_DIFFUSE_RGB, y );
FourVectors *pAlbedo = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_ALBEDO, y );
FourVectors *pPos = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_POSITION, y );
FourVectors *pNormal = pGB->RowPtr<FourVectors>( GBUFFER_ATTR_NORMAL, y );
for( int x = 0; x < rslt.NumQuadsPerRow(); x++ )
{
// shadow check
FourVectors pos = *( pPos++ );
FourVectors normal = *( pNormal++ );
FourVectors l_add = zero_vector;
l->ComputeLightAtPoints( pos, normal, l_add, false );
fltx4 v_or = OrSIMD( l_add.x, OrSIMD( l_add.y, l_add.z ) );
if ( ! IsAllZeros( v_or ) )
{
FourVectors lpos;
lpos.DuplicateVector( l->m_Position );
// jitter light position
if ( bJitter )
{
lpos.x =
AddSIMD( lpos.x, MulSIMD( fl4RandRange, SubSIMD( MulSIMD( Four_Twos, RandSIMD( nCtx ) ), Four_Ones ) ) );
lpos.y =
AddSIMD( lpos.y, MulSIMD( fl4RandRange, SubSIMD( MulSIMD( Four_Twos, RandSIMD( nCtx ) ), Four_Ones ) ) );
lpos.z =
AddSIMD( lpos.z, MulSIMD( fl4RandRange, SubSIMD( MulSIMD( Four_Twos, RandSIMD( nCtx ) ), Four_Ones ) ) );
}
FourRays myray;
myray.direction = lpos;
myray.direction -= pos;
fltx4 len = myray.direction.length();
myray.direction *= ReciprocalSIMD( len );
// slide towards light to avoid self-intersection
myray.origin = myray.direction;
myray.origin *= 0.02;
myray.origin += pos;
RayTracingResult r_rslt;
m_pRtEnv->Trace4Rays( myray, Four_Zeros, ReplicateX4( 1.0e9 ), & r_rslt );
for( int c = 0; c < 4; c++ ) // !!speed!! use sse logic ops here
{
if ( ( r_rslt.HitIds[c] != - 1 ) &&
( r_rslt.HitDistance.m128_f32[c] < len.m128_f32[c] ) )
{
l_add.x.m128_f32[c]= 0.0;
l_add.y.m128_f32[c]= 0.0;
l_add.z.m128_f32[c]= 0.0;
}
}
*( pDataOut ) = l_add;
l_add *= *(pAlbedo );
// now, supress brightness < threshold so as to not falsely think
// far away lights are interesting
l_add.x = AndSIMD( l_add.x, CmpGtSIMD( l_add.x, ThresholdBrightness ) );
l_add.y = AndSIMD( l_add.y, CmpGtSIMD( l_add.y, ThresholdBrightness ) );
l_add.z = AndSIMD( l_add.z, CmpGtSIMD( l_add.z, ThresholdBrightness ) );
ThisLinesTotalLight += l_add;
}
else
*( pDataOut ) = l_add;
pDataOut++;
pAlbedo++;
}
pLInfo->m_nCalculationLevel[y] = 1;
pLInfo->m_nMaxCalculatedLine = max( y, pLInfo->m_nMaxCalculatedLine );
pLInfo->m_nFirstCalculatedLine = min( y, pLInfo->m_nFirstCalculatedLine );
total_light += ThisLinesTotalLight;
}
ReleaseSIMDRandContext( nCtx );
fltx4 lmag = total_light.length();
* ( fContributionOut ) = lmag.m128_f32[0]+ lmag.m128_f32[1]+ lmag.m128_f32[2]+ lmag.m128_f32[3];
}
#define N_FAKE_LIGHTS_FOR_INDIRECT 50
void CLightingPreviewThread::CalculateForLight( CLightingPreviewLightDescription *l )
{
if ( ! l->m_bDidIndirect )
{
// create a bunch of pseudo lights for this light
float lrad = l->DistanceAtWhichBrightnessIsLessThan( 1.0 / 500.0 );
RayTracingSingleResult rslts[N_FAKE_LIGHTS_FOR_INDIRECT];
Vector rayDirs[N_FAKE_LIGHTS_FOR_INDIRECT];
DirectionalSampler_t sampler;
RayStream myStream;
Vector rayStart = l->m_Position;
for( int i = 0; i < N_FAKE_LIGHTS_FOR_INDIRECT; i++ )
{
rayDirs[i] = sampler.NextValue();
m_pRtEnv->AddToRayStream( myStream, rayStart, rayStart + lrad * rayDirs[i], rslts + i );
}
m_pRtEnv->FinishRayStream( myStream);
// now, we have a bunch of raytracing results
for( int i = 0; i < N_FAKE_LIGHTS_FOR_INDIRECT; i++ )
{
if ( rslts[i].HitID != -1 ) // hit something
{
Vector vecHitPos = rayStart + rslts[i].HitDistance * rayDirs[i];
FourVectors v4Pnt;
v4Pnt.DuplicateVector( vecHitPos );
FourVectors v4Normal;
v4Normal.DuplicateVector( rslts[i].surface_normal );
FourVectors v4Color;
l->ComputeLightAtPoints( v4Pnt, v4Normal, v4Color );
Vector vecColorToShoot = v4Color.Vec( 0 ) * 0.25 / N_FAKE_LIGHTS_FOR_INDIRECT;
if ( vecColorToShoot.Length() > 1/255.0 )
{
CLightingPreviewLightDescription *pNew = new CLightingPreviewLightDescription;
pNew->Init( 0xf0000000 );
pNew->m_Position = vecHitPos + rslts[i].surface_normal * 2;
pNew->m_Type = MATERIAL_LIGHT_SPOT;
pNew->m_Color = vecColorToShoot;
pNew->m_Direction = rslts[i].surface_normal;
pNew->m_Theta = 0;
pNew->m_Phi = M_PI;
pNew->RecalculateDerivedValues();
pNew->m_Falloff = 5.0;
pNew->m_Range = 0.;
pNew->m_Attenuation0 = 0;
pNew->m_Attenuation1 = 0;
pNew->m_Attenuation2 = 1;
pNew->m_bDidIndirect = true;
l->m_TempChildren.AddToTail( pNew );
}
}
}
l->m_bDidIndirect = true;
}
CIncrementalLightInfo * l_info = l->m_pIncrementalInfo;
CSOAContainer *pGB = &m_GBuffer;
if ( l->m_bLowRes )
pGB = &m_GBufferLowRes;
l_info->SetContributionSize( pGB->NumCols(), pGB->NumRows() );
// figure out which lines need to be calculated
int nStartIteration = l_info->m_nNumLinesCalculated;
int nEndIteration =
min( l_info->m_nNumLinesCalculated + NUMBER_OF_LINES_TO_CALCULATE_PER_STEP, pGB->NumRows() - 1 );
float total_light;
CalculateForLightTask( nStartIteration, nEndIteration, l, &total_light, l_info );
l_info->m_flLastContribution = total_light;
l_info->m_fTotalContribution += total_light;
// throw away light array if no contribution ?????
if ( l_info->m_fTotalContribution == 0.0 )
l_info->m_CalculatedContribution.Purge();
else
{
l_info->m_nMostRecentNonZeroContributionTimeStamp = m_nContributionCounter;
}
l_info->m_nNumLinesCalculated = nEndIteration + 1;
if ( nEndIteration == pGB->NumRows() - 1 )
l_info->m_eIncrState = INCR_STATE_HAVE_FULL_RESULTS;
else
l_info->m_eIncrState = INCR_STATE_PARTIAL_RESULTS;
}
void CLightingPreviewThread::SendResultRendering( CSOAContainer &rsltBuffer )
{
Bitmap_t *ret_bm = new Bitmap_t;
#if 0
ret_bm->Init( m_GBuffer.NumCols(), m_GBuffer.NumRows(), IMAGE_FORMAT_RGBA8888 );
// lets copy into the output bitmap
for( int y = 0; y < ret_bm->m_nHeight; y++ )
{
float const *pRGBData = m_GBuffer.RowPtr<float>( GBUFFER_ATTR_NORMAL, y );
for( int x = 0; x < ret_bm->m_nWidth; x++ )
{
Vector color;
color.Init( 0.5 + 0.5 * pRGBData[0] , 0.5 + 0.5 * pRGBData[4], 0.5 + 0.5 * pRGBData[8] );
* ( ret_bm->GetPixel( x, y ) + 0 ) = ( uint8 ) min( 255, ( 255.0 * pow( color.z, ( float ) ( 1 / 2.2 ) ) ) );
* ( ret_bm->GetPixel( x, y ) + 1 ) = ( uint8 ) min( 255, ( 255.0 * pow( color.y, ( float ) ( 1 / 2.2 ) ) ) );
* ( ret_bm->GetPixel( x, y ) + 2 ) = ( uint8 ) min( 255, ( 255.0 * pow( color.x, ( float ) ( 1 / 2.2 ) ) ) );
* ( ret_bm->GetPixel( x, y ) + 3 ) = 0;
pRGBData++;
if ( ( x & 3 ) == 3 )
pRGBData += 8;
}
}
#else
ret_bm->Init( rsltBuffer.NumCols(), rsltBuffer.NumRows(), IMAGE_FORMAT_RGBA8888 );
// lets copy into the output bitmap
for( int y = 0; y < ret_bm->Height(); y++ )
{
float const *pRGBData = rsltBuffer.RowPtr<float>( RSLT_BUFFER_RSLT_RGB, y );
for( int x = 0; x < ret_bm->Width(); x++ )
{
Vector color;
color.Init( pRGBData[0], pRGBData[4], pRGBData[8] );
* ( ret_bm->GetPixel( x, y ) + 0 ) = ( uint8 ) min( 255, ( 255.0 * pow( color.z, ( float ) ( 1 / 2.2 ) ) ) );
* ( ret_bm->GetPixel( x, y ) + 1 ) = ( uint8 ) min( 255, ( 255.0 * pow( color.y, ( float ) ( 1 / 2.2 ) ) ) );
* ( ret_bm->GetPixel( x, y ) + 2 ) = ( uint8 ) min( 255, ( 255.0 * pow( color.x, ( float ) ( 1 / 2.2 ) ) ) );
* ( ret_bm->GetPixel( x, y ) + 3 ) = 0;
pRGBData++;
if ( ( x & 3 ) == 3 )
pRGBData += 8;
}
}
#endif
MessageFromLPreview ret_msg( LPREVIEW_MSG_DISPLAY_RESULT );
// n_result_bms_queued++;
ret_msg.m_pBitmapToDisplay = ret_bm;
ret_msg.m_nBitmapGenerationCounter = m_nBitmapGenerationCounter;
g_LPreviewToHammerMsgQueue.QueueMessage( ret_msg );
}
// master side of lighting preview
unsigned LightingPreviewThreadFN( void * thread_start_arg )
{
CLightingPreviewThread LPreviewObject;
s_pThis = &LPreviewObject;
ThreadSetPriority( -2 ); // low
s_pThreadPool = CreateNewThreadPool();
CPUInformation pCPUInfo = GetCPUInformation();
ThreadPoolStartParams_t startParams;
startParams.nThreads = pCPUInfo.m_nPhysicalProcessors - 1;
s_nNumThreads = startParams.nThreads;
startParams.nStackSize = 1024*1024;
startParams.fDistribute = TRS_TRUE;
startParams.iThreadPriority = -2;
s_pThreadPool->Start( startParams );
LPreviewObject.Run();
return 0;
}
void HandleLightingPreview( void )
{
if ( GetMainWnd()->m_pLightingPreviewOutputWindow && !GetMainWnd()->m_bLightingPreviewOutputWindowShowing )
{
delete GetMainWnd()->m_pLightingPreviewOutputWindow;
GetMainWnd()->m_pLightingPreviewOutputWindow = NULL;
}
// called during main loop
while ( g_LPreviewToHammerMsgQueue.MessageWaiting() )
{
MessageFromLPreview msg;
g_LPreviewToHammerMsgQueue.WaitMessage( & msg );
switch( msg.m_MsgType )
{
case LPREVIEW_MSG_DISPLAY_RESULT:
{
n_result_bms_queued--;
if ( g_pLPreviewOutputBitmap )
delete g_pLPreviewOutputBitmap;
g_pLPreviewOutputBitmap = NULL;
// if ( msg.m_nBitmapGenerationCounter == g_nBitmapGenerationCounter )
{
g_pLPreviewOutputBitmap = msg.m_pBitmapToDisplay;
if ( g_pLPreviewOutputBitmap && ( g_pLPreviewOutputBitmap->Width() > 10 ) )
{
SignalUpdate( EVTYPE_BITMAP_RECEIVED_FROM_LPREVIEW );
CLightingPreviewResultsWindow *w=GetMainWnd()->m_pLightingPreviewOutputWindow;
if ( !GetMainWnd()->m_bLightingPreviewOutputWindowShowing )
{
w = new CLightingPreviewResultsWindow;
GetMainWnd()->m_pLightingPreviewOutputWindow = w;
w->Create( GetMainWnd() );
GetMainWnd()->m_bLightingPreviewOutputWindowShowing = true;
}
if ( ! w->IsWindowVisible() )
w->ShowWindow( SW_SHOW );
RECT existing_rect;
w->GetClientRect( & existing_rect );
if (
( existing_rect.right != g_pLPreviewOutputBitmap->Width() - 1 ) ||
( existing_rect.bottom != g_pLPreviewOutputBitmap->Height() - 1 ) )
{
CRect myRect;
myRect.top = 0;
myRect.left = 0;
myRect.right = g_pLPreviewOutputBitmap->Width() - 1;
myRect.bottom = g_pLPreviewOutputBitmap->Height() - 1;
w->CalcWindowRect( & myRect );
w->SetWindowPos(
NULL, 0, 0,
myRect.Width(), myRect.Height(),
SWP_NOMOVE | SWP_NOZORDER );
}
w->Invalidate( false );
w->UpdateWindow();
}
}
// else
// delete msg.m_pBitmapToDisplay; // its old
break;
}
}
}
}