csgo-2018-source/gcsdk/steamextra/tier1/tsmultimempool.cpp
2021-07-24 21:11:47 -07:00

352 lines
12 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include <stdafx.h>
#include "tier0/t0constants.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
static const int k_cubMemBlockPrefixSize = sizeof(uint32);
#define ALLOCSIZE_TO_LOOKUP( cubAlloc ) ( (cubAlloc - 1) >> 5 )
#define LOOKUP_TO_ALLOCSIZE( iLookup ) ( (iLookup << 5) + 1 )
//-----------------------------------------------------------------------------
// Purpose: constructor, the sizes in pMemPoolConfig must be in ascending order
//-----------------------------------------------------------------------------
CThreadSafeMultiMemoryPool::CThreadSafeMultiMemoryPool( const MemPoolConfig_t *pMemPoolConfig, int cnMemPoolConfig, int nGrowMode /*= GROW_FAST*/ )
{
m_cubReallocedTotal = 0;
m_MapRawAllocation.SetLessFunc( DefLessFunc( void * ) );
for ( int iMemPoolConfig = 0; iMemPoolConfig < cnMemPoolConfig; iMemPoolConfig++ )
{
MemPoolRecord_t memPoolRecord;
// verify that the mem pool sizes are in ascending order
Assert( iMemPoolConfig == 0 || ( iMemPoolConfig > 0 && pMemPoolConfig[ iMemPoolConfig - 1 ].m_cubBlockSize < pMemPoolConfig[ iMemPoolConfig].m_cubBlockSize ) );
AssertMsg( pMemPoolConfig[ iMemPoolConfig].m_cubBlockSize % 32 == 0, "Mempools sizes must be multiples of 32" );
// add an int to the block size so we can note the alloc size
memPoolRecord.m_pMemPool = new CThreadSafeMemoryPool( pMemPoolConfig[ iMemPoolConfig ].m_cubBlockSize + k_cubMemBlockPrefixSize,
pMemPoolConfig[ iMemPoolConfig ].m_cubDefaultPoolSize, nGrowMode );
Assert( memPoolRecord.m_pMemPool );
memPoolRecord.m_nBlockSize = pMemPoolConfig[ iMemPoolConfig ].m_cubBlockSize;
m_VecMemPool.AddToTail( memPoolRecord );
// update the largest blocksize
m_nBlockSizeMax = MAX( m_nBlockSizeMax, memPoolRecord.m_nBlockSize );
}
// build the lookup table
int nLookupMax = m_nBlockSizeMax >> 5;
m_VecMemPoolLookup.AddMultipleToTail( nLookupMax );
for ( int i = 0; i < nLookupMax; i++ )
{
uint32 cubAllocSize = LOOKUP_TO_ALLOCSIZE( i );
for ( int iMemPool = 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
if ( m_VecMemPool[iMemPool].m_nBlockSize >= cubAllocSize )
{
m_VecMemPoolLookup[i] = &m_VecMemPool[iMemPool];
break;
}
}
}
#if defined(_DEBUG)
// validate the lookup table
for ( int i = 1; i < (int)m_nBlockSizeMax; i++ )
{
for ( int iMemPool = 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
if ( (int)m_VecMemPool[iMemPool].m_nBlockSize >= i )
{
AssertMsg( m_VecMemPoolLookup[ALLOCSIZE_TO_LOOKUP(i)] == &m_VecMemPool[iMemPool], "Invalid mempool block size, can't generate lookup table" );
break;
}
}
}
#endif // _DEBUG
}
//-----------------------------------------------------------------------------
// Purpose: destructor
//-----------------------------------------------------------------------------
CThreadSafeMultiMemoryPool::~CThreadSafeMultiMemoryPool()
{
AUTO_LOCK( m_mutexRawAllocations );
for ( int iMemPool = 0; iMemPool < m_VecMemPool.Count(); iMemPool ++ )
{
delete m_VecMemPool[iMemPool].m_pMemPool;
}
FOR_EACH_MAP_FAST( m_MapRawAllocation, iRawAllocation )
{
FreePv( m_MapRawAllocation[iRawAllocation].m_pvMem );
}
}
//-----------------------------------------------------------------------------
// Purpose: Allocates a block of memory at of least nAllocSize bytes
// Input : nAllocSize - number of bytes to alloc
// Output : pointer to memory alloc'd, NULL on error
//-----------------------------------------------------------------------------
void *CThreadSafeMultiMemoryPool::Alloc( uint32 cubAllocSize )
{
if ( cubAllocSize == 0 )
return NULL;
if ( cubAllocSize <= m_nBlockSizeMax )
{
MemPoolRecord_t *pMemPoolRecord = m_VecMemPoolLookup[ALLOCSIZE_TO_LOOKUP( cubAllocSize )];
void *pvMem = pMemPoolRecord->m_pMemPool->Alloc( cubAllocSize + k_cubMemBlockPrefixSize );
*(uint32 *)pvMem = cubAllocSize;
return ( (char *)pvMem + k_cubMemBlockPrefixSize );
}
// can't fit in our mem pools, alloc it in our one off buffer
RawAllocation_t rawAllocation;
rawAllocation.m_nBlockSize = cubAllocSize;
rawAllocation.m_pvMem = PvAlloc( cubAllocSize + k_cubMemBlockPrefixSize );
if ( !rawAllocation.m_pvMem )
{
return NULL;
}
*(uint32 *)rawAllocation.m_pvMem = rawAllocation.m_nBlockSize;
AUTO_LOCK( m_mutexRawAllocations );
m_MapRawAllocation.Insert( rawAllocation.m_pvMem, rawAllocation );
return ( (char *)rawAllocation.m_pvMem + k_cubMemBlockPrefixSize );
}
//-----------------------------------------------------------------------------
// Purpose: Free a previously alloc'd block
// Input : pMem - memory to free
//-----------------------------------------------------------------------------
void CThreadSafeMultiMemoryPool::Free( void *pvMem )
{
if ( !pvMem )
return;
uint32 cubAllocSize = *( (uint32 *)pvMem - 1 );
if ( cubAllocSize <= m_nBlockSizeMax )
{
MemPoolRecord_t *pMemPoolRecord = m_VecMemPoolLookup[ALLOCSIZE_TO_LOOKUP( cubAllocSize )];
pMemPoolRecord->m_pMemPool->Free( (char *)pvMem - k_cubMemBlockPrefixSize, cubAllocSize + k_cubMemBlockPrefixSize );
return;
}
AUTO_LOCK( m_mutexRawAllocations );
// must have been alloc'd from the raw heap, find it in map
void *pvAllocedMem = (char *)pvMem - k_cubMemBlockPrefixSize;
int iRawAllocation = m_MapRawAllocation.Find( pvAllocedMem );
if ( m_MapRawAllocation.InvalidIndex() == iRawAllocation )
{
AssertMsg3( false, "CThreadSafeMultiMemoryPool::Free: raw allocation %p (original alloc: %p, %d bytes) not found in allocation map",
pvMem, pvAllocedMem, cubAllocSize );
return;
}
FreePv( m_MapRawAllocation[iRawAllocation].m_pvMem );
m_MapRawAllocation.RemoveAt( iRawAllocation);
}
//-----------------------------------------------------------------------------
// Purpose: Return the size alloc'd for this block
// Input : pMem - memory to report
// Output : size in bytes of this memory
//-----------------------------------------------------------------------------
int CThreadSafeMultiMemoryPool::CubAllocSize(void *pvMem)
{
if ( !pvMem )
{
return -1;
}
return *(((uint32 *)pvMem) -1);
}
//-----------------------------------------------------------------------------
// Purpose: Frees all previously alloc'd memory
//-----------------------------------------------------------------------------
void CThreadSafeMultiMemoryPool::Clear()
{
AUTO_LOCK( m_mutexRawAllocations );
for ( int iMemPool = 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
m_VecMemPool[iMemPool].m_pMemPool->Clear();
}
FOR_EACH_MAP_FAST( m_MapRawAllocation, iRawAllocation )
{
FreePv( m_MapRawAllocation[iRawAllocation].m_pvMem );
}
m_MapRawAllocation.RemoveAll();
}
//-----------------------------------------------------------------------------
// Purpose: print to the console info about our storage
//-----------------------------------------------------------------------------
void CThreadSafeMultiMemoryPool::PrintStats()
{
for ( int iMemPool= 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
m_VecMemPool[iMemPool].m_pMemPool->PrintStats();
}
int cubRawBytesAllocd = 0;
AUTO_LOCK( m_mutexRawAllocations );
FOR_EACH_MAP_FAST( m_MapRawAllocation, iRawAllocation )
{
cubRawBytesAllocd += m_MapRawAllocation[iRawAllocation].m_nBlockSize;
}
Msg( "Raw bytes alloc'd: %s\n", Q_pretifymem( cubRawBytesAllocd, 2, true ) );
Msg( "Cumulative bytes re-alloced: %s\n", Q_pretifymem( m_cubReallocedTotal, 2, true ) );
}
//-----------------------------------------------------------------------------
// Purpose: return the total mem alloced by this pool in MB
//-----------------------------------------------------------------------------
int CThreadSafeMultiMemoryPool::CMBPoolSize() const
{
uint64 cubRawBytesAllocd = 0;
for ( int iMemPool= 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
cubRawBytesAllocd += ( m_VecMemPool[iMemPool].m_pMemPool->CubTotalSize() );
}
AUTO_LOCK( m_mutexRawAllocations );
FOR_EACH_MAP_FAST( m_MapRawAllocation, iRawAllocation )
{
cubRawBytesAllocd += m_MapRawAllocation[iRawAllocation].m_nBlockSize;
}
return ( cubRawBytesAllocd / k_nMegabyte );
}
//-----------------------------------------------------------------------------
// Purpose: return the total mem alloced by this pool in MB
//-----------------------------------------------------------------------------
int CThreadSafeMultiMemoryPool::CMBPoolSizeInUse() const
{
uint64 cubRawBytesAllocd = 0;
for ( int iMemPool= 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
cubRawBytesAllocd += ( m_VecMemPool[iMemPool].m_pMemPool->CubSizeInUse() );
}
AUTO_LOCK( m_mutexRawAllocations );
FOR_EACH_MAP_FAST( m_MapRawAllocation, iRawAllocation )
{
cubRawBytesAllocd += m_MapRawAllocation[iRawAllocation].m_nBlockSize;
}
return ( cubRawBytesAllocd / k_nMegabyte );
}
//-----------------------------------------------------------------------------
// Purpose: return number of mempool blocks alloc'd
//-----------------------------------------------------------------------------
int CThreadSafeMultiMemoryPool::Count()
{
int cCount = 0;
for ( int iMemPool = 0; iMemPool < m_VecMemPool.Count(); iMemPool++ )
{
cCount += m_VecMemPool[iMemPool].m_pMemPool->Count();
}
return cCount;
}
//-----------------------------------------------------------------------------
// Purpose: reallocate an existing block of memory to a new size (and copy the data
// Input: pvMem - a pointer to the existing memory
// cubAlloc - number of bytes to alloc
// Output: returns a pointer to the memory allocated (NULL on error)
//-----------------------------------------------------------------------------
void *CThreadSafeMultiMemoryPool::ReAlloc( void *pvMem, uint32 cubAlloc )
{
uint32 cubOldAlloc = CubAllocSize(pvMem);
if ( pvMem && cubAlloc <= cubOldAlloc )
return pvMem;
if ( cubOldAlloc > m_nBlockSizeMax )
{
AUTO_LOCK( m_mutexRawAllocations );
// okay, must have been alloc'd from the raw heap, search for it
void *pvAllocedMem = (char *)pvMem - k_cubMemBlockPrefixSize;
int iRawAllocation = m_MapRawAllocation.Find( pvAllocedMem );
if ( m_MapRawAllocation.InvalidIndex() == iRawAllocation )
{
AssertMsg3( false, "CThreadSafeMultiMemoryPool::ReAlloc: raw allocation %p (original alloc: %p, %d bytes) not found in allocation map",
pvMem, pvAllocedMem, cubOldAlloc );
return NULL;
}
// realloc the memory
void *pvNewMem = PvRealloc( pvAllocedMem, cubAlloc + k_cubMemBlockPrefixSize );
if ( !pvNewMem )
{
m_MapRawAllocation.RemoveAt( iRawAllocation );
return NULL;
}
// update our tracking
*(uint32 *)pvNewMem = cubAlloc;
if ( pvAllocedMem == pvNewMem )
{
// if pointer is the same, use the same map entry with the same key (the pointer given to caller)
m_MapRawAllocation[iRawAllocation].m_pvMem = pvNewMem;
m_MapRawAllocation[iRawAllocation].m_nBlockSize = cubAlloc;
}
else
{
// if pointer changed, need to remove the old entry and re-insert with new key
m_MapRawAllocation.RemoveAt( iRawAllocation );
RawAllocation_t rawAllocation;
rawAllocation.m_pvMem = pvNewMem;
rawAllocation.m_nBlockSize = cubAlloc;
m_MapRawAllocation.Insert( rawAllocation.m_pvMem, rawAllocation );
}
return ( (char *)pvNewMem + k_cubMemBlockPrefixSize );
}
else
{
// see if we can stay in the same block
MemPoolRecord_t *pMemPoolRecord = m_VecMemPoolLookup[ALLOCSIZE_TO_LOOKUP( cubOldAlloc )];
if ( cubAlloc <= pMemPoolRecord->m_nBlockSize )
{
// re-assign the size
*((uint32 *)pvMem - 1) = cubAlloc;
return pvMem;
}
void *pvNewMem = Alloc( cubAlloc );
if ( !pvNewMem )
{
return NULL;
}
m_cubReallocedTotal += cubOldAlloc;
Q_memcpy( pvNewMem, pvMem, cubOldAlloc );
Free( pvMem ); // now free the old memory buffer we had
return pvNewMem;
}
}