csgo-2018-source/materialsystem/texturemanager.cpp

1676 lines
50 KiB
C++
Raw Permalink Normal View History

2021-07-24 21:11:47 -07:00
//===== Copyright (c) 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
//===========================================================================//
#include <stdlib.h>
#ifndef _PS3
#include <malloc.h>
#endif
#include "materialsystem_global.h"
#include "string.h"
#include "shaderapi/ishaderapi.h"
#include "materialsystem/materialsystem_config.h"
#include "IHardwareConfigInternal.h"
#include "texturemanager.h"
#include "materialsystem/imaterialvar.h"
#include "materialsystem/IColorCorrection.h"
#include "tier1/strtools.h"
#include "utlvector.h"
#include "utldict.h"
#include "itextureinternal.h"
#include "vtf/vtf.h"
#include "pixelwriter.h"
#include "basetypes.h"
#include "utlbuffer.h"
#include "filesystem.h"
#include "materialsystem/imesh.h"
#include "materialsystem/ishaderapi.h"
#include "vstdlib/random.h"
#include "imorphinternal.h"
#include "isubdinternal.h"
#include "tier1/utlrbtree.h"
#include "ctype.h"
#include "tier0/icommandline.h"
#include "filesystem/IQueuedLoader.h"
// Need lightmaps access here
#ifndef _PS3
#define MATSYS_INTERNAL
#endif
#include "cmatlightmaps.h"
#include "cmaterialsystem.h"
#ifndef _PS3
#undef MATSYS_INTERNAL
#endif
#include "tier0/memdbgon.h"
#define ERROR_TEXTURE_SIZE 32
#define WHITE_TEXTURE_SIZE 1
#define BLACK_TEXTURE_SIZE 1
#define GREY_TEXTURE_SIZE 1
#define NORMALIZATION_CUBEMAP_SIZE 32
#define SSAO_NOISE_TEXTURE_SIZE 32
#define ERROR_TEXTURE_IS_SOLID
//-----------------------------------------------------------------------------
//
// Various procedural texture regeneration classes
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Creates a checkerboard texture
//-----------------------------------------------------------------------------
class CCheckerboardTexture : public ITextureRegenerator
{
public:
CCheckerboardTexture( int nCheckerSize, color32 color1, color32 color2 ) :
m_nCheckerSize( nCheckerSize ), m_Color1(color1), m_Color2(color2)
{
}
virtual void RegenerateTextureBits( ITexture *pTexture, IVTFTexture *pVTFTexture, Rect_t *pSubRect )
{
for (int iFrame = 0; iFrame < pVTFTexture->FrameCount(); ++iFrame )
{
for (int iFace = 0; iFace < pVTFTexture->FaceCount(); ++iFace )
{
int nWidth = pVTFTexture->Width();
int nHeight = pVTFTexture->Height();
int nDepth = pVTFTexture->Depth();
for (int z = 0; z < nDepth; ++z)
{
// Fill mip 0 with a checkerboard
CPixelWriter pixelWriter;
pixelWriter.SetPixelMemory( pVTFTexture->Format(),
pVTFTexture->ImageData( iFrame, iFace, 0, 0, 0, z ), pVTFTexture->RowSizeInBytes( 0 ) );
for (int y = 0; y < nHeight; ++y)
{
pixelWriter.Seek( 0, y );
for (int x = 0; x < nWidth; ++x)
{
if ( ((x & m_nCheckerSize) ^ (y & m_nCheckerSize)) ^ (z & m_nCheckerSize) )
{
pixelWriter.WritePixel( m_Color1.r, m_Color1.g, m_Color1.b, m_Color1.a );
}
else
{
pixelWriter.WritePixel( m_Color2.r, m_Color2.g, m_Color2.b, m_Color2.a );
}
}
}
}
}
}
}
virtual void Release()
{
delete this;
}
private:
int m_nCheckerSize;
color32 m_Color1;
color32 m_Color2;
};
static void CreateCheckerboardTexture( ITextureInternal *pTexture, int nCheckerSize, color32 color1, color32 color2 )
{
ITextureRegenerator *pRegen = new CCheckerboardTexture( nCheckerSize, color1, color2 );
pTexture->SetTextureRegenerator( pRegen );
}
//-----------------------------------------------------------------------------
// Creates a solid texture
//-----------------------------------------------------------------------------
class CSolidTexture : public ITextureRegenerator
{
public:
CSolidTexture( color32 color ) : m_Color(color)
{
}
virtual void RegenerateTextureBits( ITexture *pTexture, IVTFTexture *pVTFTexture, Rect_t *pSubRect )
{
int nMipCount = pTexture->IsMipmapped() ? pVTFTexture->MipCount() : 1;
for (int iFrame = 0; iFrame < pVTFTexture->FrameCount(); ++iFrame )
{
for (int iFace = 0; iFace < pVTFTexture->FaceCount(); ++iFace )
{
for (int iMip = 0; iMip < nMipCount; ++iMip )
{
int nWidth, nHeight, nDepth;
pVTFTexture->ComputeMipLevelDimensions( iMip, &nWidth, &nHeight, &nDepth );
for (int z = 0; z < nDepth; ++z)
{
CPixelWriter pixelWriter;
pixelWriter.SetPixelMemory( pVTFTexture->Format(),
pVTFTexture->ImageData( iFrame, iFace, iMip, 0, 0, z ), pVTFTexture->RowSizeInBytes( iMip ) );
for (int y = 0; y < nHeight; ++y)
{
pixelWriter.Seek( 0, y );
for (int x = 0; x < nWidth; ++x)
{
pixelWriter.WritePixel( m_Color.r, m_Color.g, m_Color.b, m_Color.a );
}
}
}
}
}
}
}
virtual void Release()
{
delete this;
}
private:
color32 m_Color;
};
static void CreateSolidTexture( ITextureInternal *pTexture, color32 color )
{
ITextureRegenerator *pRegen = new CSolidTexture( color );
pTexture->SetTextureRegenerator( pRegen );
}
//-----------------------------------------------------------------------------
// Creates a normalization cubemap texture
//-----------------------------------------------------------------------------
class CNormalizationCubemap : public ITextureRegenerator
{
public:
virtual void RegenerateTextureBits( ITexture *pTexture, IVTFTexture *pVTFTexture, Rect_t *pSubRect )
{
// Normalization cubemap doesn't make sense on low-end hardware
// So we won't construct a spheremap out of this
CPixelWriter pixelWriter;
Vector direction;
for (int iFace = 0; iFace < 6; ++iFace)
{
pixelWriter.SetPixelMemory( pVTFTexture->Format(),
pVTFTexture->ImageData( 0, iFace, 0 ), pVTFTexture->RowSizeInBytes( 0 ) );
int nWidth = pVTFTexture->Width();
int nHeight = pVTFTexture->Height();
float flInvWidth = 2.0f / (float)(nWidth-1);
float flInvHeight = 2.0f / (float)(nHeight-1);
for (int y = 0; y < nHeight; ++y)
{
float v = y * flInvHeight - 1.0f;
pixelWriter.Seek( 0, y );
for (int x = 0; x < nWidth; ++x)
{
float u = x * flInvWidth - 1.0f;
float oow = 1.0f / sqrt( 1.0f + u*u + v*v );
int ix = (int)(255.0f * 0.5f * (u*oow + 1.0f) + 0.5f);
ix = clamp( ix, 0, 255 );
int iy = (int)(255.0f * 0.5f * (v*oow + 1.0f) + 0.5f);
iy = clamp( iy, 0, 255 );
int iz = (int)(255.0f * 0.5f * (oow + 1.0f) + 0.5f);
iz = clamp( iz, 0, 255 );
switch (iFace)
{
case CUBEMAP_FACE_RIGHT:
pixelWriter.WritePixel( iz, 255 - iy, 255 - ix, 255 );
break;
case CUBEMAP_FACE_LEFT:
pixelWriter.WritePixel( 255 - iz, 255 - iy, ix, 255 );
break;
case CUBEMAP_FACE_BACK:
pixelWriter.WritePixel( ix, iz, iy, 255 );
break;
case CUBEMAP_FACE_FRONT:
pixelWriter.WritePixel( ix, 255 - iz, 255 - iy, 255 );
break;
case CUBEMAP_FACE_UP:
pixelWriter.WritePixel( ix, 255 - iy, iz, 255 );
break;
case CUBEMAP_FACE_DOWN:
pixelWriter.WritePixel( 255 - ix, 255 - iy, 255 - iz, 255 );
break;
default:
break;
}
}
}
}
}
// NOTE: The normalization cubemap regenerator is stateless
// so there's no need to allocate + deallocate them
virtual void Release() {}
};
//-----------------------------------------------------------------------------
// Creates a normalization cubemap texture
//-----------------------------------------------------------------------------
class CSignedNormalizationCubemap : public ITextureRegenerator
{
public:
virtual void RegenerateTextureBits( ITexture *pTexture, IVTFTexture *pVTFTexture, Rect_t *pSubRect )
{
// Normalization cubemap doesn't make sense on low-end hardware
// So we won't construct a spheremap out of this
CPixelWriter pixelWriter;
Vector direction;
for (int iFace = 0; iFace < 6; ++iFace)
{
pixelWriter.SetPixelMemory( pVTFTexture->Format(),
pVTFTexture->ImageData( 0, iFace, 0 ), pVTFTexture->RowSizeInBytes( 0 ) );
int nWidth = pVTFTexture->Width();
int nHeight = pVTFTexture->Height();
float flInvWidth = 2.0f / (float)(nWidth-1);
float flInvHeight = 2.0f / (float)(nHeight-1);
for (int y = 0; y < nHeight; ++y)
{
float v = y * flInvHeight - 1.0f;
pixelWriter.Seek( 0, y );
for (int x = 0; x < nWidth; ++x)
{
float u = x * flInvWidth - 1.0f;
float oow = 1.0f / sqrt( 1.0f + u*u + v*v );
#if defined( DX_TO_GL_ABSTRACTION ) && !defined( _PS3 )
float flX = (255.0f * 0.5 * (u*oow + 1.0f) + 0.5f);
float flY = (255.0f * 0.5 * (v*oow + 1.0f) + 0.5f);
float flZ = (255.0f * 0.5 * (oow + 1.0f) + 0.5f);
switch (iFace)
{
case CUBEMAP_FACE_RIGHT:
flX = 255.0f - flX;
flY = 255.0f - flY;
break;
case CUBEMAP_FACE_LEFT:
flY = 255.0f - flY;
flZ = 255.0f - flZ;
break;
case CUBEMAP_FACE_BACK:
break;
case CUBEMAP_FACE_FRONT:
flY = 255.0f - flY;
flZ = 255.0f - flZ;
break;
case CUBEMAP_FACE_UP:
flY = 255.0f - flY;
break;
case CUBEMAP_FACE_DOWN:
flX = 255.0f - flX;
flY = 255.0f - flY;
flZ = 255.0f - flZ;
break;
default:
break;
}
flX -= 128.0f;
flY -= 128.0f;
flZ -= 128.0f;
flX /= 128.0f;
flY /= 128.0f;
flZ /= 128.0f;
switch ( iFace )
{
case CUBEMAP_FACE_RIGHT:
pixelWriter.WritePixelF( flZ, flY, flX, 0.0f );
break;
case CUBEMAP_FACE_LEFT:
pixelWriter.WritePixelF( flZ, flY, flX, 0.0f );
break;
case CUBEMAP_FACE_BACK:
pixelWriter.WritePixelF( flX, flZ, flY, 0.0f );
break;
case CUBEMAP_FACE_FRONT:
pixelWriter.WritePixelF( flX, flZ, flY, 0.0f );
break;
case CUBEMAP_FACE_UP:
pixelWriter.WritePixelF( flX, flY, flZ, 0.0f );
break;
case CUBEMAP_FACE_DOWN:
pixelWriter.WritePixelF( flX, flY, flZ, 0.0f );
break;
default:
break;
}
#else
int ix = (int)(255 * 0.5 * (u*oow + 1.0f) + 0.5f);
ix = clamp( ix, 0, 255 );
int iy = (int)(255 * 0.5 * (v*oow + 1.0f) + 0.5f);
iy = clamp( iy, 0, 255 );
int iz = (int)(255 * 0.5 * (oow + 1.0f) + 0.5f);
iz = clamp( iz, 0, 255 );
switch (iFace)
{
case CUBEMAP_FACE_RIGHT:
ix = 255 - ix;
iy = 255 - iy;
break;
case CUBEMAP_FACE_LEFT:
iy = 255 - iy;
iz = 255 - iz;
break;
case CUBEMAP_FACE_BACK:
break;
case CUBEMAP_FACE_FRONT:
iy = 255 - iy;
iz = 255 - iz;
break;
case CUBEMAP_FACE_UP:
iy = 255 - iy;
break;
case CUBEMAP_FACE_DOWN:
ix = 255 - ix;
iy = 255 - iy;
iz = 255 - iz;
break;
default:
break;
}
ix -= 128;
iy -= 128;
iz -= 128;
Assert( ix >= -128 && ix <= 127 );
Assert( iy >= -128 && iy <= 127 );
Assert( iz >= -128 && iz <= 127 );
switch (iFace)
{
case CUBEMAP_FACE_RIGHT:
// correct
// pixelWriter.WritePixelSigned( -128, -128, -128, 0 );
pixelWriter.WritePixelSigned( iz, iy, ix, 0 );
break;
case CUBEMAP_FACE_LEFT:
// correct
// pixelWriter.WritePixelSigned( -128, -128, -128, 0 );
pixelWriter.WritePixelSigned( iz, iy, ix, 0 );
break;
case CUBEMAP_FACE_BACK:
// wrong
// pixelWriter.WritePixelSigned( -128, -128, -128, 0 );
pixelWriter.WritePixelSigned( ix, iz, iy, 0 );
// pixelWriter.WritePixelSigned( -127, -127, 127, 0 );
break;
case CUBEMAP_FACE_FRONT:
// wrong
// pixelWriter.WritePixelSigned( -128, -128, -128, 0 );
pixelWriter.WritePixelSigned( ix, iz, iy, 0 );
break;
case CUBEMAP_FACE_UP:
// correct
// pixelWriter.WritePixelSigned( -128, -128, -128, 0 );
pixelWriter.WritePixelSigned( ix, iy, iz, 0 );
break;
case CUBEMAP_FACE_DOWN:
// correct
// pixelWriter.WritePixelSigned( -128, -128, -128, 0 );
pixelWriter.WritePixelSigned( ix, iy, iz, 0 );
break;
default:
break;
}
#endif
} // x
} // y
} // iFace
}
// NOTE: The normalization cubemap regenerator is stateless
// so there's no need to allocate + deallocate them
virtual void Release() {}
};
static void CreateNormalizationCubemap( ITextureInternal *pTexture )
{
// NOTE: The normalization cubemap regenerator is stateless
// so there's no need to allocate + deallocate them
static CNormalizationCubemap s_NormalizationCubemap;
pTexture->SetTextureRegenerator( &s_NormalizationCubemap );
}
static void CreateSignedNormalizationCubemap( ITextureInternal *pTexture )
{
// NOTE: The normalization cubemap regenerator is stateless
// so there's no need to allocate + deallocate them
static CSignedNormalizationCubemap s_SignedNormalizationCubemap;
pTexture->SetTextureRegenerator( &s_SignedNormalizationCubemap );
}
/*
static void CreateSSAONoiseTexture( ITextureInternal *pTexture )
{
// NOTE: This texture regenerator is stateless so there's no need to allocate + deallocate
static CSSAONoiseMap s_SSAONoiseMap;
pTexture->SetTextureRegenerator( &s_SSAONoiseMap );
}
*/
//-----------------------------------------------------------------------------
// Implementation of the texture manager
//-----------------------------------------------------------------------------
class CTextureManager : public ITextureManager
{
public:
CTextureManager( void );
// Initialization + shutdown
virtual void Init( int nFlags );
virtual void Shutdown();
virtual void AllocateStandardRenderTargets( );
virtual void FreeStandardRenderTargets();
virtual void CacheExternalStandardRenderTargets();
virtual ITextureInternal *CreateProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, int d, ImageFormat fmt, int nFlags );
virtual ITextureInternal *FindOrLoadTexture( const char *textureName, const char *pTextureGroupName, int nAdditionalCreationFlags = 0 );
virtual bool IsTextureLoaded( const char *pTextureName );
virtual bool GetTextureInformation( char const *szTextureName, MaterialTextureInfo_t &info );
virtual void AddTextureAlias( const char *pAlias, const char *pRealName );
virtual void RemoveTextureAlias( const char *pAlias );
virtual void SetExcludedTextures( const char *pScriptName, bool bUsingWeaponModelCache );
virtual void UpdateExcludedTextures();
virtual void ClearForceExcludes();
virtual void ResetTextureFilteringState();
void ReloadTextures( void );
// These are used when we lose our video memory due to a mode switch etc
void ReleaseTextures( bool bReleaseManaged = true );
void RestoreNonRenderTargetTextures( void );
void RestoreRenderTargets( void );
// delete any texture that has a refcount <= 0
void RemoveUnusedTextures( void );
void DebugPrintUsedTextures( void );
// Request a texture ID
virtual int RequestNextTextureID();
// Get at a couple standard textures
virtual ITextureInternal *ErrorTexture();
virtual ITextureInternal *NormalizationCubemap();
virtual ITextureInternal *SignedNormalizationCubemap();
virtual ITextureInternal *ShadowNoise2D();
virtual ITextureInternal *SSAONoise2D();
virtual ITextureInternal *IdentityLightWarp();
virtual ITextureInternal *ColorCorrectionTexture( int i );
virtual ITextureInternal *FullFrameDepthTexture();
virtual ITextureInternal *StereoParamTexture();
// Generates an error texture pattern
virtual void GenerateErrorTexture( ITexture *pTexture, IVTFTexture *pVTFTexture );
// Updates the color correction state
virtual void SetColorCorrectionTexture( int i, ITextureInternal *pTexture );
virtual void ForceAllTexturesIntoHardware( void );
virtual ITextureInternal *CreateRenderTargetTexture(
const char *pRTName, // NULL for auto-generated name
int w,
int h,
RenderTargetSizeMode_t sizeMode,
ImageFormat fmt,
RenderTargetType_t type,
unsigned int textureFlags,
unsigned int renderTargetFlags,
bool bMultipleTargets );
virtual void RemoveTexture( ITextureInternal *pTexture );
virtual void ReloadFilesInList( IFileList *pFilesToReload );
// start with -1, list terminates with -1
virtual int FindNext( int iIndex, ITextureInternal **ppTexture );
virtual void ReleaseTempRenderTargetBits( void );
protected:
ITextureInternal *FindTexture( const char *textureName );
ITextureInternal *LoadTexture( const char *textureName, const char *pTextureGroupName, int nAdditionalCreationFlags = 0 );
// Restores a single texture
void RestoreTexture( ITextureInternal* pTex );
CUtlDict< ITextureInternal *, unsigned short > m_TextureList;
CUtlDict< const char *, unsigned short > m_TextureAliases;
CUtlDict< int, unsigned short > m_TextureExcludes;
bool m_bUsingWeaponModelCache;
int m_iNextTexID;
int m_nFlags;
ITextureInternal *m_pErrorTexture;
ITextureInternal *m_pBlackTexture;
ITextureInternal *m_pWhiteTexture;
ITextureInternal *m_pGreyTexture;
ITextureInternal *m_pGreyAlphaZeroTexture;
ITextureInternal *m_pNormalizationCubemap;
ITextureInternal *m_pFullScreenTexture;
ITextureInternal *m_pSignedNormalizationCubemap;
ITextureInternal *m_pShadowNoise2D;
ITextureInternal *m_pSSAONoise2D;
ITextureInternal *m_pIdentityLightWarp;
ITextureInternal *m_pColorCorrectionTextures[ COLOR_CORRECTION_MAX_TEXTURES ];
ITextureInternal *m_pFullScreenDepthTexture;
ITextureInternal *m_pStereoParamTexture;
// Used to generate various error texture patterns when necessary
#ifdef ERROR_TEXTURE_IS_SOLID
CSolidTexture *m_pErrorRegen;
#else
CCheckerboardTexture *m_pErrorRegen;
#endif
private:
bool ParseTextureExcludeScript( const char *pScriptName );
};
//-----------------------------------------------------------------------------
// Singleton instance
//-----------------------------------------------------------------------------
static CTextureManager s_TextureManager;
ITextureManager *g_pTextureManager = &s_TextureManager;
//-----------------------------------------------------------------------------
// Texture manager
//-----------------------------------------------------------------------------
CTextureManager::CTextureManager( void ) : m_TextureList( true ), m_TextureAliases( true ), m_TextureExcludes( true )
{
m_pErrorTexture = NULL;
m_pBlackTexture = NULL;
m_pWhiteTexture = NULL;
m_pGreyTexture = NULL;
m_pGreyAlphaZeroTexture = NULL;
m_pNormalizationCubemap = NULL;
m_pErrorRegen = NULL;
m_pFullScreenTexture = NULL;
m_pSignedNormalizationCubemap = NULL;
m_pShadowNoise2D = NULL;
m_pSSAONoise2D = NULL;
m_pIdentityLightWarp = NULL;
m_pFullScreenDepthTexture = NULL;
m_pStereoParamTexture = NULL;
m_bUsingWeaponModelCache = false;
}
//-----------------------------------------------------------------------------
// Initialization + shutdown
//-----------------------------------------------------------------------------
void CTextureManager::Init( int nFlags )
{
m_nFlags = nFlags;
color32 color, color2;
m_iNextTexID = 4096;
// setup the checkerboard generator for failed texture loading
color.r = color.g = color.b = 0; color.a = 128;
color2.r = color2.b = color2.a = 255; color2.g = 0;
#ifdef ERROR_TEXTURE_IS_SOLID
color32 color_black; color_black.r = color_black.g = color_black.b = 0; color_black.a = 255;
m_pErrorRegen = new CSolidTexture( color_black );
#else
m_pErrorRegen = new CCheckerboardTexture( 4, color, color2 );
#endif
// Create an error texture
m_pErrorTexture = CreateProceduralTexture( "error", TEXTURE_GROUP_OTHER,
ERROR_TEXTURE_SIZE, ERROR_TEXTURE_SIZE, 1, IMAGE_FORMAT_BGRA8888, TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_SRGB );
#ifdef ERROR_TEXTURE_IS_SOLID
CreateSolidTexture( m_pErrorTexture, color_black );
#else
CreateCheckerboardTexture( m_pErrorTexture, 4, color, color2 );
#endif
// Create a white texture
m_pWhiteTexture = CreateProceduralTexture( "white", TEXTURE_GROUP_OTHER,
WHITE_TEXTURE_SIZE, WHITE_TEXTURE_SIZE, 1, IMAGE_FORMAT_BGRX8888, TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_SRGB );
color.r = color.g = color.b = color.a = 255;
CreateSolidTexture( m_pWhiteTexture, color );
// Create a black texture
m_pBlackTexture = CreateProceduralTexture( "black", TEXTURE_GROUP_OTHER,
BLACK_TEXTURE_SIZE, BLACK_TEXTURE_SIZE, 1, IMAGE_FORMAT_BGRX8888, TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_SRGB );
color.r = color.g = color.b = 0;
CreateSolidTexture( m_pBlackTexture, color );
// Create a grey texture
m_pGreyTexture = CreateProceduralTexture( "grey", TEXTURE_GROUP_OTHER,
GREY_TEXTURE_SIZE, GREY_TEXTURE_SIZE, 1, IMAGE_FORMAT_BGRA8888, TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_SRGB );
color.r = color.g = color.b = 128;
color.a = 255;
CreateSolidTexture( m_pGreyTexture, color );
// Create a grey texture
m_pGreyAlphaZeroTexture = CreateProceduralTexture( "greyalphazero", TEXTURE_GROUP_OTHER,
GREY_TEXTURE_SIZE, GREY_TEXTURE_SIZE, 1, IMAGE_FORMAT_BGRA8888, TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_SRGB );
color.r = color.g = color.b = 128;
color.a = 0;
CreateSolidTexture( m_pGreyAlphaZeroTexture, color );
#ifdef IS_WINDOWS_PC
if ( g_pShaderAPI->IsStereoSupported() )
{
// TODO: Call CreateStereoTexture, which should make a similar call onto the ShaderAPI
int stereoWidth = 8;
int stereoHeight = 1;
m_pStereoParamTexture = CreateProceduralTexture( "stereoparam", TEXTURE_GROUP_OTHER,
stereoWidth, stereoHeight, 1, IMAGE_FORMAT_R32F, TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_POINTSAMPLE | TEXTUREFLAGS_DEFAULT_POOL);
}
#endif
if ( HardwareConfig()->GetMaxDXSupportLevel() >= 80 )
{
// Create a normalization cubemap
m_pNormalizationCubemap = CreateProceduralTexture( "normalize", TEXTURE_GROUP_CUBE_MAP,
NORMALIZATION_CUBEMAP_SIZE, NORMALIZATION_CUBEMAP_SIZE, 1, IMAGE_FORMAT_BGRX8888,
TEXTUREFLAGS_ENVMAP | TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_SINGLECOPY |
TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT | TEXTUREFLAGS_CLAMPU );
CreateNormalizationCubemap( m_pNormalizationCubemap );
}
if ( HardwareConfig()->GetMaxDXSupportLevel() >= 90 )
{
// On MacOS, we have poor format support, so we ask for signed float
ImageFormat fmt = IsOpenGL() ? IMAGE_FORMAT_RGBA16161616F : IMAGE_FORMAT_UVWQ8888;
int nFlags = TEXTUREFLAGS_ENVMAP | TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_NOLOD | TEXTUREFLAGS_SINGLECOPY | TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT | TEXTUREFLAGS_CLAMPU;
nFlags |= IsOSXOpenGL() ? TEXTUREFLAGS_POINTSAMPLE : 0; // JasonM - ridiculous hack around R500 lameness...we never use this texture on MacOS anyways (right?)
// Create a normalization cubemap
m_pSignedNormalizationCubemap = CreateProceduralTexture( "normalizesigned", TEXTURE_GROUP_CUBE_MAP,
NORMALIZATION_CUBEMAP_SIZE, NORMALIZATION_CUBEMAP_SIZE, 1, fmt, nFlags );
CreateSignedNormalizationCubemap( m_pSignedNormalizationCubemap );
m_pIdentityLightWarp = FindOrLoadTexture( "dev/IdentityLightWarp", TEXTURE_GROUP_OTHER );
m_pIdentityLightWarp->IncrementReferenceCount();
}
// For safety, always load the shadow noise 2D texture even on 9.0 hardware. (It's not needed in Portal2's flashlight shaders, but I'm leaving it in
// because it's referenced all over the place and so the older L4D-style flashlight shadows can be easily re-enabled if needed.)
m_pShadowNoise2D = FindOrLoadTexture( "engine/NormalizedRandomDirections2D", TEXTURE_GROUP_OTHER );
m_pShadowNoise2D->IncrementReferenceCount();
if ( HardwareConfig()->GetMaxDXSupportLevel() >= 92 )
{
m_pSSAONoise2D = FindOrLoadTexture( "engine/SSAOReflectionVectors", TEXTURE_GROUP_OTHER );
m_pSSAONoise2D->IncrementReferenceCount();
}
}
void CTextureManager::Shutdown()
{
FreeStandardRenderTargets();
// These checks added because it's possible for shutdown to be called before the material system is
// fully initialized.
if ( m_pWhiteTexture )
{
m_pWhiteTexture->DecrementReferenceCount();
m_pWhiteTexture = NULL;
}
if ( m_pBlackTexture )
{
m_pBlackTexture->DecrementReferenceCount();
m_pBlackTexture = NULL;
}
if ( m_pGreyTexture )
{
m_pGreyTexture->DecrementReferenceCount();
m_pGreyTexture = NULL;
}
if ( m_pGreyAlphaZeroTexture )
{
m_pGreyAlphaZeroTexture->DecrementReferenceCount();
m_pGreyAlphaZeroTexture = NULL;
}
if ( m_pNormalizationCubemap )
{
m_pNormalizationCubemap->DecrementReferenceCount();
m_pNormalizationCubemap = NULL;
}
if ( m_pSignedNormalizationCubemap )
{
m_pSignedNormalizationCubemap->DecrementReferenceCount();
m_pSignedNormalizationCubemap = NULL;
}
if ( m_pShadowNoise2D )
{
m_pShadowNoise2D->DecrementReferenceCount();
m_pShadowNoise2D = NULL;
}
if ( m_pSSAONoise2D )
{
m_pSSAONoise2D->DecrementReferenceCount();
m_pSSAONoise2D = NULL;
}
if ( m_pIdentityLightWarp )
{
m_pIdentityLightWarp->DecrementReferenceCount();
m_pIdentityLightWarp = NULL;
}
if ( m_pErrorTexture )
{
m_pErrorTexture->DecrementReferenceCount();
m_pErrorTexture = NULL;
}
if ( m_pStereoParamTexture )
{
m_pStereoParamTexture->DecrementReferenceCount();
m_pStereoParamTexture = NULL;
}
ReleaseTextures();
if ( m_pErrorRegen )
{
m_pErrorRegen->Release();
m_pErrorRegen = NULL;
}
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
ITextureInternal::Destroy( m_TextureList[i] );
}
m_TextureList.RemoveAll();
for( int i = m_TextureAliases.First(); i != m_TextureAliases.InvalidIndex(); i = m_TextureAliases.Next( i ) )
{
delete []m_TextureAliases[i];
}
m_TextureAliases.RemoveAll();
m_TextureExcludes.RemoveAll();
}
//-----------------------------------------------------------------------------
// Allocate, free standard render target textures
//-----------------------------------------------------------------------------
void CTextureManager::AllocateStandardRenderTargets( )
{
bool bAllocateFullscreenTexture = ( m_nFlags & MATERIAL_INIT_ALLOCATE_FULLSCREEN_TEXTURE ) != 0;
bool bAllocateMorphAccumTexture = g_pMorphMgr->ShouldAllocateScratchTextures();
if ( IsPC() && ( bAllocateFullscreenTexture || bAllocateMorphAccumTexture ) )
{
MaterialSystem()->BeginRenderTargetAllocation();
// A offscreen render target which is the size + format of the back buffer (*not* HDR format!)
if ( bAllocateFullscreenTexture )
{
// Ensure the _rt_FullScreen RT is given its own depth-stencil surface (RENDER_TARGET_WITH_DEPTH vs. RENDER_TARGET) on the PC/Mac to work around store rendering glitches between the bot panel and the rest of the store UI.
m_pFullScreenTexture = CreateRenderTargetTexture( "_rt_FullScreen", 1, 1, RT_SIZE_FULL_FRAME_BUFFER_ROUNDED_UP, MaterialSystem()->GetBackBufferFormat(), RENDER_TARGET_WITH_DEPTH, TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT, 0, false );
m_pFullScreenTexture->IncrementReferenceCount();
}
// This texture is the one we accumulate morph deltas into
if ( bAllocateMorphAccumTexture )
{
g_pMorphMgr->AllocateScratchTextures();
g_pMorphMgr->AllocateMaterials();
}
MaterialSystem()->EndRenderTargetAllocation();
}
}
void CTextureManager::FreeStandardRenderTargets()
{
if ( m_pFullScreenTexture )
{
m_pFullScreenTexture->DecrementReferenceCount();
m_pFullScreenTexture = NULL;
}
g_pMorphMgr->FreeMaterials();
g_pMorphMgr->FreeScratchTextures();
#if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->FreeTextures();
#endif
}
void CTextureManager::CacheExternalStandardRenderTargets()
{
m_pFullScreenDepthTexture = FindTexture( "_rt_FullFrameDepth" ); //created/destroyed in engine/matsys_interface.cpp to properly track hdr changes
}
//-----------------------------------------------------------------------------
// Generates an error texture pattern
//-----------------------------------------------------------------------------
void CTextureManager::GenerateErrorTexture( ITexture *pTexture, IVTFTexture *pVTFTexture )
{
m_pErrorRegen->RegenerateTextureBits( pTexture, pVTFTexture, NULL );
}
//-----------------------------------------------------------------------------
// Updates the color correction state
//-----------------------------------------------------------------------------
ITextureInternal *CTextureManager::ColorCorrectionTexture( int i )
{
Assert( i<COLOR_CORRECTION_MAX_TEXTURES );
return m_pColorCorrectionTextures[ i ];
}
void CTextureManager::SetColorCorrectionTexture( int i, ITextureInternal *pTexture )
{
Assert( i<COLOR_CORRECTION_MAX_TEXTURES );
if( m_pColorCorrectionTextures[i] )
{
m_pColorCorrectionTextures[i]->DecrementReferenceCount();
}
m_pColorCorrectionTextures[i] = pTexture;
if( pTexture )
pTexture->IncrementReferenceCount();
}
//-----------------------------------------------------------------------------
// Releases all textures (cause we've lost video memory)
//-----------------------------------------------------------------------------
void CTextureManager::ReleaseTextures( bool bReleaseManaged /*= true*/ )
{
g_pShaderAPI->SetFullScreenTextureHandle( INVALID_SHADERAPI_TEXTURE_HANDLE );
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
if ( bReleaseManaged || m_TextureList[i]->IsRenderTarget() || m_TextureList[i]->IsDefaultPool() )
{
// Release the texture...
m_TextureList[i]->Release();
}
}
}
//-----------------------------------------------------------------------------
// Request a texture ID
//-----------------------------------------------------------------------------
int CTextureManager::RequestNextTextureID()
{
// FIXME: Deal better with texture ids
// The range between 19000 and 21000 are used for standard textures + lightmaps
if (m_iNextTexID == 19000)
{
m_iNextTexID = 21000;
}
return m_iNextTexID++;
}
//-----------------------------------------------------------------------------
// Restores a single texture
//-----------------------------------------------------------------------------
void CTextureManager::RestoreTexture( ITextureInternal* pTexture )
{
// Put the texture back onto the board
pTexture->OnRestore(); // Give render targets a chance to reinitialize themselves if necessary (due to AA changes).
pTexture->Download();
}
//-----------------------------------------------------------------------------
// Restore all textures (cause we've got video memory again)
//-----------------------------------------------------------------------------
void CTextureManager::RestoreNonRenderTargetTextures()
{
// 360 should not have gotten here
Assert( !IsX360() );
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
if ( !m_TextureList[i]->IsRenderTarget() )
{
RestoreTexture( m_TextureList[i] );
}
}
}
//-----------------------------------------------------------------------------
// Restore just the render targets (cause we've got video memory again)
//-----------------------------------------------------------------------------
void CTextureManager::RestoreRenderTargets()
{
// 360 should not have gotten here
Assert( !IsX360() );
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
if ( m_TextureList[i]->IsRenderTarget() )
{
RestoreTexture( m_TextureList[i] );
}
}
if ( m_pFullScreenTexture )
{
g_pShaderAPI->SetFullScreenTextureHandle( m_pFullScreenTexture->GetTextureHandle( 0 ) );
}
CacheExternalStandardRenderTargets();
}
//-----------------------------------------------------------------------------
// Reloads all textures
//-----------------------------------------------------------------------------
void CTextureManager::ReloadTextures()
{
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
// Put the texture back onto the board
m_TextureList[i]->Download();
}
}
static void ForceTextureIntoHardware( ITexture *pTexture, IMaterial *pMaterial, IMaterialVar *pBaseTextureVar )
{
if ( IsGameConsole() )
return;
pBaseTextureVar->SetTextureValue( pTexture );
CMatRenderContextPtr pRenderContext( MaterialSystem()->GetRenderContext() );
pRenderContext->Bind( pMaterial );
IMesh* pMesh = pRenderContext->GetDynamicMesh( true );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 1 );
meshBuilder.Position3f( 0.0f, 0.0f, 0.0f );
meshBuilder.TangentS3f( 0.0f, 1.0f, 0.0f );
meshBuilder.TangentT3f( 1.0f, 0.0f, 0.0f );
meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f );
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( 0.0f, 0.0f, 0.0f );
meshBuilder.TangentS3f( 0.0f, 1.0f, 0.0f );
meshBuilder.TangentT3f( 1.0f, 0.0f, 0.0f );
meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f );
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( 0.0f, 0.0f, 0.0f );
meshBuilder.TangentS3f( 0.0f, 1.0f, 0.0f );
meshBuilder.TangentT3f( 1.0f, 0.0f, 0.0f );
meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f );
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
meshBuilder.AdvanceVertex();
meshBuilder.End();
pMesh->Draw();
}
//-----------------------------------------------------------------------------
// Reloads all textures
//-----------------------------------------------------------------------------
void CTextureManager::ForceAllTexturesIntoHardware( void )
{
if ( IsGameConsole() )
return;
IMaterial *pMaterial = MaterialSystem()->FindMaterial( "engine/preloadtexture", "texture preload" );
pMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion(); //always work with the realtime material internally
bool bFound;
IMaterialVar *pBaseTextureVar = pMaterial->FindVar( "$basetexture", &bFound );
if( !bFound )
{
return;
}
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
// Put the texture back onto the board
ForceTextureIntoHardware( m_TextureList[i], pMaterial, pBaseTextureVar );
}
}
//-----------------------------------------------------------------------------
// Get at a couple standard textures
//-----------------------------------------------------------------------------
ITextureInternal *CTextureManager::ErrorTexture()
{
return m_pErrorTexture;
}
ITextureInternal *CTextureManager::NormalizationCubemap()
{
return m_pNormalizationCubemap;
}
ITextureInternal *CTextureManager::SignedNormalizationCubemap()
{
return m_pSignedNormalizationCubemap;
}
ITextureInternal *CTextureManager::ShadowNoise2D()
{
return m_pShadowNoise2D;
}
ITextureInternal *CTextureManager::SSAONoise2D()
{
return m_pSSAONoise2D;
}
ITextureInternal *CTextureManager::IdentityLightWarp()
{
return m_pIdentityLightWarp;
}
ITextureInternal *CTextureManager::FullFrameDepthTexture()
{
return m_pFullScreenDepthTexture;
}
ITextureInternal *CTextureManager::StereoParamTexture()
{
return m_pStereoParamTexture ? m_pStereoParamTexture : m_pErrorTexture;
}
//-----------------------------------------------------------------------------
// Creates a procedural texture
//-----------------------------------------------------------------------------
ITextureInternal *CTextureManager::CreateProceduralTexture(
const char *pTextureName,
const char *pTextureGroupName,
int w,
int h,
int d,
ImageFormat fmt,
int nFlags )
{
ITextureInternal *pNewTexture = ITextureInternal::CreateProceduralTexture( pTextureName, pTextureGroupName, w, h, d, fmt, nFlags );
if ( !pNewTexture )
return NULL;
// Add it to the list of textures so it can be restored, etc.
m_TextureList.Insert( pNewTexture->GetName(), pNewTexture );
if ( ( nFlags & TEXTUREFLAGS_SKIP_INITIAL_DOWNLOAD ) != TEXTUREFLAGS_SKIP_INITIAL_DOWNLOAD )
{
// NOTE: This will download the texture only if the shader api is ready
pNewTexture->Download();
}
return pNewTexture;
}
//-----------------------------------------------------------------------------
// FIXME: Need some better understanding of when textures should be added to
// the texture dictionary here. Is it only for files, for example?
// Texture dictionary...
//-----------------------------------------------------------------------------
ITextureInternal *CTextureManager::LoadTexture( const char *pTextureName, const char *pTextureGroupName, int nAdditionalCreationFlags /* = 0 */ )
{
ITextureInternal *pNewTexture = ITextureInternal::CreateFileTexture( pTextureName, pTextureGroupName );
if ( pNewTexture )
{
int iIndex = m_TextureExcludes.Find( pNewTexture->GetName() );
if ( m_TextureExcludes.IsValidIndex( iIndex ) )
{
// mark the new texture as excluded
int nDimensionsLimit = m_TextureExcludes[iIndex];
pNewTexture->MarkAsExcluded( ( nDimensionsLimit == 0 ), nDimensionsLimit );
}
else if ( m_bUsingWeaponModelCache && g_pQueuedLoader->IsMapLoading() )
{
// Unfortunate, but the weapon textures get automatically subverted
// to avoid ensuring that scripts do not need to be maintained as new weapons occur.
// When a weapon texture in not explicitly excluded (which trumps), ensure the exclusion.
if ( V_stristr( pNewTexture->GetName(), "weapons/v_models" ) ||
V_stristr( pNewTexture->GetName(), "weapons/w_models" ) ||
V_stristr( pNewTexture->GetName(), "weapons/shared" ) )
{
// ALL weapon textures (subject to temp exclusion) are getting pre-excluded down to 16, which matches the weapon model cache
// exclusion expectation during loading.
//
// This is necessary to avoid a horrible memory load pattern where the QL would otherwise load the texture at full-res and then
// the weapon model cache would then evict causing a reload as it evicts down to 16.
//
// This hack is because the QL is blasting these in BEFORE the weapon model cache has any chance to know what are the actual dependent
// weapon materials that are subject to initial eviction.
//
// Instead this gets in front of the QL which will bring in ALL weapon based textures in at the desired reduced state with a single load/free.
// Then, there is a fixup by weapon model cache that has then discovered which texture are the REAL dependents and restores the ones
// that got broadly classified here (i.e. shared textures that can't be subject to temp evictions). Temp Exclusion abilities cannot
// be determined this early, thus the broad classification, and the unfortunate minor fixup
pNewTexture->MarkAsExcluded( false, 16, true );
}
}
// Stick the texture onto the board
pNewTexture->Download( NULL, nAdditionalCreationFlags );
// FIXME: If there's been an error loading, we don't also want this error...
}
return pNewTexture;
}
ITextureInternal *CTextureManager::FindTexture( const char *pTextureName )
{
if ( !pTextureName || pTextureName[0] == 0 )
return NULL;
char szCleanName[MAX_PATH];
NormalizeTextureName( pTextureName, szCleanName, sizeof( szCleanName ) );
int i = m_TextureList.Find( szCleanName );
if ( i != m_TextureList.InvalidIndex() )
{
return m_TextureList[i];
}
i = m_TextureAliases.Find( szCleanName );
if ( i != m_TextureAliases.InvalidIndex() )
{
return FindTexture( m_TextureAliases[i] );
}
// Special handling: lightmaps
if ( char const *szLightMapNum = StringAfterPrefix( szCleanName, "[lightmap" ) )
{
int iLightMapNum = atoi( szLightMapNum );
extern CMaterialSystem g_MaterialSystem;
CMatLightmaps *plm = g_MaterialSystem.GetLightmaps();
if ( iLightMapNum >= 0 &&
iLightMapNum < plm->GetNumLightmapPages() )
{
ShaderAPITextureHandle_t hTex = plm->GetLightmapPageTextureHandle( iLightMapNum );
if ( hTex != INVALID_SHADERAPI_TEXTURE_HANDLE )
{
// Establish the lookup linking in the dictionary
ITextureInternal *pTxInt = ITextureInternal::CreateReferenceTextureFromHandle( pTextureName, TEXTURE_GROUP_LIGHTMAP, hTex );
m_TextureList.Insert( pTextureName, pTxInt );
return pTxInt;
}
}
}
// scaleform textures bypass the texture manager
if ( !V_strncmp( szCleanName, "scaleform", 9 ) )
{
ShaderAPITextureHandle_t hTex = g_pShaderAPI->FindTexture( szCleanName );
if ( hTex != INVALID_SHADERAPI_TEXTURE_HANDLE )
{
// Establish the lookup linking in the dictionary
ITextureInternal *pTxInt = ITextureInternal::CreateReferenceTextureFromHandle( szCleanName, TEXTURE_GROUP_SCALEFORM, hTex );
m_TextureList.Insert( szCleanName, pTxInt );
return pTxInt;
}
}
return NULL;
}
void CTextureManager::AddTextureAlias( const char *pAlias, const char *pRealName )
{
if ( (pAlias == NULL) || (pRealName == NULL) )
return; //invalid alias
char szCleanName[MAX_PATH];
int index = m_TextureAliases.Find( NormalizeTextureName( pAlias, szCleanName, sizeof( szCleanName ) ) );
if ( index != m_TextureAliases.InvalidIndex() )
{
AssertMsg( Q_stricmp( pRealName, m_TextureAliases[index] ) == 0, "Trying to use one name to alias two different textures." );
RemoveTextureAlias( pAlias ); //remove the old alias to make room for the new one.
}
size_t iRealNameLength = strlen( pRealName ) + 1;
char *pRealNameCopy = new char [iRealNameLength];
memcpy( pRealNameCopy, pRealName, iRealNameLength );
m_TextureAliases.Insert( szCleanName, pRealNameCopy );
}
void CTextureManager::RemoveTextureAlias( const char *pAlias )
{
if ( pAlias == NULL )
return;
char szCleanName[MAX_PATH];
int index = m_TextureAliases.Find( NormalizeTextureName( pAlias, szCleanName, sizeof( szCleanName ) ) );
if ( index == m_TextureAliases.InvalidIndex() )
return; //not found
delete []m_TextureAliases[index];
m_TextureAliases.RemoveAt( index );
}
bool CTextureManager::ParseTextureExcludeScript( const char *pScriptName )
{
// get optional script
if ( !pScriptName || !pScriptName[0] )
return false;
CUtlBuffer excludeBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER );
if ( !g_pFullFileSystem->ReadFile( pScriptName, NULL, excludeBuffer ) )
return false;
char szToken[MAX_PATH];
while ( 1 )
{
// must support spaces in names without quotes
// have to brute force parse up to a valid line
while ( 1 )
{
excludeBuffer.EatWhiteSpace();
if ( !excludeBuffer.EatCPPComment() )
{
// not a comment
break;
}
}
excludeBuffer.GetLine( szToken, sizeof( szToken ) );
int tokenLength = strlen( szToken );
if ( !tokenLength )
{
// end of list
break;
}
// remove all trailing whitespace
while ( tokenLength > 0 )
{
tokenLength--;
if ( V_isgraph( szToken[tokenLength] ) )
{
break;
}
szToken[tokenLength] = '\0';
}
// first optional token may be a dimension limit hint
int nDimensionsLimit = 0;
char *pTextureName = szToken;
if ( pTextureName[0] != 0 && V_isdigit( pTextureName[0] ) )
{
nDimensionsLimit = atoi( pTextureName );
// skip forward to name
for ( ;; )
{
char ch = *pTextureName;
if ( !ch || ( !V_isdigit( ch ) && !V_isspace( ch ) ) )
{
break;
}
pTextureName++;
}
}
char szCleanName[MAX_PATH];
NormalizeTextureName( pTextureName, szCleanName, sizeof( szCleanName ) );
int iIndex = m_TextureExcludes.Find( szCleanName );
if ( m_TextureExcludes.IsValidIndex( iIndex ) )
{
// do not duplicate, override existing entry
m_TextureExcludes[iIndex] = nDimensionsLimit;
}
else
{
m_TextureExcludes.Insert( szCleanName, nDimensionsLimit );
}
}
return true;
}
void CTextureManager::SetExcludedTextures( const char *pScriptName, bool bUsingWeaponModelCache )
{
MEM_ALLOC_CREDIT();
m_bUsingWeaponModelCache = IsGameConsole() && bUsingWeaponModelCache;
// clear all existing texture's exclusion
for ( int i = m_TextureExcludes.First(); i != m_TextureExcludes.InvalidIndex(); i = m_TextureExcludes.Next( i ) )
{
ITextureInternal *pTexture = FindTexture( m_TextureExcludes.GetElementName( i ) );
if ( pTexture )
{
pTexture->MarkAsExcluded( false, 0 );
}
}
m_TextureExcludes.RemoveAll();
// run through exclusions, build final aggregate list
// optional global script first
ParseTextureExcludeScript( "//MOD/maps/_exclude.lst" );
// optional spec'd script further refines
ParseTextureExcludeScript( pScriptName );
// perform exclusions
for ( int i = m_TextureExcludes.First(); i != m_TextureExcludes.InvalidIndex(); i = m_TextureExcludes.Next( i ) )
{
// set any existing texture's exclusion
// textures that don't exist yet will get caught during their creation path
ITextureInternal *pTexture = FindTexture( m_TextureExcludes.GetElementName( i ) );
if ( pTexture )
{
int nDimensionsLimit = m_TextureExcludes[i];
pTexture->MarkAsExcluded( ( nDimensionsLimit == 0 ), nDimensionsLimit );
}
}
}
void CTextureManager::UpdateExcludedTextures( void )
{
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
m_TextureList[i]->UpdateExcludedState();
}
}
void CTextureManager::ClearForceExcludes( void )
{
if ( !m_bUsingWeaponModelCache )
{
// forced excludes are a temp state promoted by the weapon model cache
return;
}
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
if ( m_TextureList[i]->IsForceExcluded() )
{
m_TextureList[i]->ClearForceExclusion();
}
}
}
ITextureInternal *CTextureManager::FindOrLoadTexture( const char *pTextureName, const char *pTextureGroupName, int nAdditionalCreationFlags /* = 0 */ )
{
ITextureInternal *pTexture = FindTexture( pTextureName );
if ( !pTexture )
{
#if defined( DEVELOPMENT_ONLY ) || defined( ALLOW_TEXT_MODE )
static bool s_bTextMode = CommandLine()->HasParm( "-textmode" );
if ( s_bTextMode )
{
return m_pErrorTexture;
}
#endif
pTexture = LoadTexture( pTextureName, pTextureGroupName, nAdditionalCreationFlags );
if ( pTexture )
{
// insert into the dictionary using the processed texture name
m_TextureList.Insert( pTexture->GetName(), pTexture );
}
}
return pTexture;
}
bool CTextureManager::IsTextureLoaded( const char *pTextureName )
{
ITextureInternal *pTexture = FindTexture( pTextureName );
return ( pTexture != NULL );
}
bool CTextureManager::GetTextureInformation( char const *szTextureName, MaterialTextureInfo_t &info )
{
extern bool CTextureImpl_GetTextureInformation( char const *szTextureName, MaterialTextureInfo_t &info );
return CTextureImpl_GetTextureInformation( szTextureName, info );
}
//-----------------------------------------------------------------------------
// Creates a texture that's a render target
//-----------------------------------------------------------------------------
ITextureInternal *CTextureManager::CreateRenderTargetTexture(
const char *pRTName, // NULL for auto-generated name
int w,
int h,
RenderTargetSizeMode_t sizeMode,
ImageFormat fmt,
RenderTargetType_t type,
unsigned int textureFlags,
unsigned int renderTargetFlags,
bool bMultipleTargets )
{
MEM_ALLOC_CREDIT_( __FILE__ ": Render target" );
ITextureInternal *pTexture;
if ( pRTName )
{
// caller is re-initing or changing
pTexture = FindTexture( pRTName );
if ( pTexture )
{
// Changing the underlying render target, but leaving the pointer and refcount
// alone fixes callers that have exisiting references to this object.
ITextureInternal::ChangeRenderTarget( pTexture, w, h, sizeMode, fmt, type,
textureFlags, renderTargetFlags );
#ifdef _PS3
if ( pRTName[0] == '^' )
{
// Alias raw buffer
pTexture->Ps3gcmRawBufferAlias( pRTName );
return pTexture;
}
#endif
// download if ready
pTexture->Download();
return pTexture;
}
}
pTexture = ITextureInternal::CreateRenderTarget( pRTName, w, h, sizeMode, fmt, type,
textureFlags, renderTargetFlags, bMultipleTargets );
if ( !pTexture )
return NULL;
// Add the render target to the list of textures
// that way it'll get cleaned up correctly in case of a task switch
m_TextureList.Insert( pTexture->GetName(), pTexture );
// NOTE: This will download the texture only if the shader api is ready
#ifdef _PS3
if ( pRTName && pRTName[0] == '^' )
{
// Alias raw buffer
pTexture->Ps3gcmRawBufferAlias( pRTName );
}
else
#endif
{
pTexture->Download();
}
return pTexture;
}
void CTextureManager::ResetTextureFilteringState( )
{
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
m_TextureList[i]->SetFilteringAndClampingMode();
}
}
void CTextureManager::RemoveUnusedTextures( void )
{
int iNext;
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = iNext )
{
iNext = m_TextureList.Next( i );
#ifdef _DEBUG
if ( m_TextureList[i]->GetReferenceCount() < 0 )
{
Warning( "RemoveUnusedTextures: pTexture->m_referenceCount < 0 for %s\n", m_TextureList[i]->GetName() );
}
#endif
if ( m_TextureList[i]->GetReferenceCount() <= 0 )
{
ITextureInternal::Destroy( m_TextureList[i] );
m_TextureList.RemoveAt( i );
}
}
}
void CTextureManager::RemoveTexture( ITextureInternal *pTexture )
{
Assert( pTexture->GetReferenceCount() <= 0 );
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
// search by object
if ( m_TextureList[i] == pTexture )
{
ITextureInternal::Destroy( m_TextureList[i] );
m_TextureList.RemoveAt( i );
break;
}
}
}
void CTextureManager::ReloadFilesInList( IFileList *pFilesToReload )
{
if ( IsPC() )
{
for ( int i=m_TextureList.First(); i != m_TextureList.InvalidIndex(); i=m_TextureList.Next( i ) )
{
ITextureInternal *pTex = m_TextureList[i];
pTex->ReloadFilesInList( pFilesToReload );
}
}
}
void CTextureManager::ReleaseTempRenderTargetBits( void )
{
if( IsX360() ) //only sane on 360
{
int iNext;
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = iNext )
{
iNext = m_TextureList.Next( i );
if ( m_TextureList[i]->IsTempRenderTarget() )
{
m_TextureList[i]->Release();
}
}
}
}
void CTextureManager::DebugPrintUsedTextures( void )
{
for ( int i = m_TextureList.First(); i != m_TextureList.InvalidIndex(); i = m_TextureList.Next( i ) )
{
ITextureInternal *pTexture;
pTexture = m_TextureList[i];
Msg( "Texture: '%s' RefCount: %d\n", pTexture->GetName(), pTexture->GetReferenceCount() );
}
if ( m_TextureExcludes.Count() )
{
Msg( "\nExcluded Textures: (%d)\n", m_TextureExcludes.Count() );
for ( int i = m_TextureExcludes.First(); i != m_TextureExcludes.InvalidIndex(); i = m_TextureExcludes.Next( i ) )
{
char buff[256];
const char *pName = m_TextureExcludes.GetElementName( i );
V_snprintf( buff, sizeof( buff ), "Excluded: %d '%s' \n", m_TextureExcludes[i], pName );
// an excluded texture is valid, but forced tiny
if ( IsTextureLoaded( pName ) )
{
Msg( "%s\n", buff );
}
else
{
// warn as unknown, could be a spelling error
Warning( "%s", buff );
}
}
}
}
int CTextureManager::FindNext( int iIndex, ITextureInternal **pTexInternal )
{
if ( iIndex == -1 && m_TextureList.Count() )
{
iIndex = m_TextureList.First();
}
else if ( !m_TextureList.Count() || !m_TextureList.IsValidIndex( iIndex ) )
{
*pTexInternal = NULL;
return -1;
}
*pTexInternal = m_TextureList[iIndex];
iIndex = m_TextureList.Next( iIndex );
if ( iIndex == m_TextureList.InvalidIndex() )
{
// end of list
iIndex = -1;
}
return iIndex;
}