csgo-2018-source/materialsystem/stdshaders/lightmapped_4wayblend_vs20.fxc

238 lines
7.1 KiB
Plaintext
Raw Permalink Normal View History

2021-07-24 21:11:47 -07:00
//===================== Copyright (c) Valve Corporation. All Rights Reserved. ======================
// STATIC: "ENVMAP_MASK" "0..1"
// STATIC: "TANGENTSPACE" "0..1"
// STATIC: "BUMPMAP" "0..1"
// STATIC: "DETAILTEXTURE" "0..1"
// STATIC: "VERTEXCOLOR" "0..1"
// STATIC: "SEAMLESS" "0..1"
// diffuse bump map is always true when bumpmapping is enabled, so just set it to 1
#define DIFFUSEBUMPMAP 1
// STATIC: "FLASHLIGHT" "0..1" [CONSOLE]
// STATIC: "SELFILLUM" "0..1"
// STATIC: "LIGHTING_PREVIEW" "0..3" [PC]
// STATIC: "LIGHTING_PREVIEW" "0..0" [CONSOLE]
// DYNAMIC: "FASTPATH" "0..1"
// SKIP: $LIGHTING_PREVIEW && $FLASHLIGHT
#include "common_fog_vs_supportsvertexfog_fxc.h"
#include "common_vs_fxc.h"
#include "common_4wayblend_fxc.h"
static const int g_FogType = DOWATERFOG;
static const bool g_UseSeparateEnvmapMask = ENVMAP_MASK;
static const bool g_bTangentSpace = TANGENTSPACE;
static const bool g_bBumpmap = BUMPMAP;
static const bool g_bBumpmapDiffuseLighting = DIFFUSEBUMPMAP;
static const bool g_bVertexColor = VERTEXCOLOR;
#if SEAMLESS
const float4 SeamlessScale : register( SHADER_SPECIFIC_CONST_0 );
#define SEAMLESS_SCALE (SeamlessScale.x)
#else
const float4 cBaseTexCoordTransform[2] : register( SHADER_SPECIFIC_CONST_0 );
const float4 cDetailOrBumpTexCoordTransform[2] : register( SHADER_SPECIFIC_CONST_2 );
#endif
// This should be identity if we are bump mapping, otherwise we'll screw up the lightmapTexCoordOffset.
const float4 cEnvmapMaskTexCoordTransform[2] : register( SHADER_SPECIFIC_CONST_4 );
#if FLASHLIGHT
const float4x4 g_FlashlightWorldToTexture : register( SHADER_SPECIFIC_CONST_6 );
#endif
#if DETAILTEXTURE && BUMPMAP && !SELFILLUM
const float4 cBumpTexCoordTransform[2] : register( SHADER_SPECIFIC_CONST_10 ); // not contiguous with the rest!
#endif
#if ( LIGHTING_PREVIEW == 3 )
const float4 g_vEyeVector : register( SHADER_SPECIFIC_CONST_12 );
#endif
struct VS_INPUT
{
float3 vPos : POSITION;
float4 vNormal : NORMAL;
float2 vBaseTexCoord : TEXCOORD0;
float2 vLightmapTexCoord : TEXCOORD1;
float2 vLightmapTexCoordOffset : TEXCOORD2;
float3 vTangentS : TANGENT;
float3 vTangentT : BINORMAL;
float4 vColor : COLOR0;
float4 vVertexBlends : COLOR1;
};
VS_OUTPUT main( const VS_INPUT v )
{
VS_OUTPUT o = ( VS_OUTPUT )0;
float3 vObjNormal;
DecompressVertex_Normal( v.vNormal, vObjNormal );
float4 projPos;
float3 worldPos;
worldPos = mul4x3( float4( v.vPos, 1 ), cModel[0] );
projPos = mul( float4( worldPos, 1 ), cViewProj );
o.projPos = projPos;
#ifdef _PS3
// Account for OpenGL's flipped y coordinate and expanded z range [-1,1] instead of [0,1]
o.projPos.y = -o.projPos.y;
o.projPos.z = 2.0f * o.projPos.z - o.projPos.w;
#endif // _PS3
o.worldPos_projPosZ.w = projPos.z;
o.worldPos_projPosZ.xyz = worldPos;
#if ( LIGHTING_PREVIEW == 3 )
o.worldPos_projPosZ.w = dot( g_vEyeVector, worldPos.xyz - cEyePos.xyz ); // Linear depth
#endif
float3 worldNormal = mul3x3( vObjNormal, ( float3x3 )cModel[0] );
#if TANGENTSPACE || LIGHTING_PREVIEW || defined( _X360 ) || defined( _PS3 )
float3 worldTangentS = mul3x3( v.vTangentS, ( const float3x3 )cModel[0] );
float3 worldTangentT = mul3x3( v.vTangentT, ( const float3x3 )cModel[0] );
#if SEAMLESS && BUMPMAP && ( defined( _X360 ) || defined( _PS3 ) )
float3 n = normalize( worldNormal );
float3 n2 = n * n; // sums to 1.
o.tangentSpaceTranspose[0] = normalize( float3( n2.y + n2.z, 0.0f, n2.x ) );
o.tangentSpaceTranspose[1] = normalize( float3( 0.0f, n2.x + n2.z, n2.y ) );
o.tangentSpaceTranspose[2] = worldNormal;
#else
o.tangentSpaceTranspose[0] = worldTangentS;
o.tangentSpaceTranspose[1] = worldTangentT;
o.tangentSpaceTranspose[2] = worldNormal;
#endif
#endif
float3 worldVertToEyeVector = VSHADER_VECT_SCALE * (cEyePos - worldPos);
#if ( SEAMLESS )
{
// we need to fill in the texture coordinate projections
o.SeamlessTexCoord_fogFactorW.xyz = SEAMLESS_SCALE * worldPos;
}
#else
{
if ( FASTPATH )
{
o.baseTexCoord_fogFactorZ.xy = v.vBaseTexCoord;
}
else
{
o.baseTexCoord_fogFactorZ.x = dot( v.vBaseTexCoord.xy, cBaseTexCoordTransform[0].xy ) + cBaseTexCoordTransform[0].w;
o.baseTexCoord_fogFactorZ.y = dot( v.vBaseTexCoord.xy, cBaseTexCoordTransform[1].xy ) + cBaseTexCoordTransform[1].w;
}
// calculate detailorbumptexcoord
if ( FASTPATH )
{
o.DETAILORBUMPCOORDS = v.vBaseTexCoord.xy;
}
else
{
o.DETAILORBUMPCOORDS = float2( dot( v.vBaseTexCoord.xy, cDetailOrBumpTexCoordTransform[0].xy ) + cDetailOrBumpTexCoordTransform[0].w,
dot( v.vBaseTexCoord.xy, cDetailOrBumpTexCoordTransform[1].xy ) + cDetailOrBumpTexCoordTransform[1].w );
}
}
#endif
if ( FASTPATH )
{
o.lightmapTexCoord3.zw = v.vBaseTexCoord;
#if DETAILTEXTURE && BUMPMAP && !SELFILLUM
o.BUMPCOORDS = v.vBaseTexCoord;
#endif
}
else
{
#if DETAILTEXTURE && BUMPMAP && !SELFILLUM
o.BUMPCOORDS = float2( dot( v.vBaseTexCoord.xy, cBumpTexCoordTransform[0].xy ) + cBumpTexCoordTransform[0].w,
dot( v.vBaseTexCoord.xy, cBumpTexCoordTransform[1].xy ) + cBumpTexCoordTransform[1].w );
#endif
}
// compute lightmap coordinates
if( g_bBumpmap && g_bBumpmapDiffuseLighting )
{
o.lightmapTexCoord1And2.xy = v.vLightmapTexCoord + v.vLightmapTexCoordOffset;
float2 lightmapTexCoord2 = o.lightmapTexCoord1And2.xy + v.vLightmapTexCoordOffset;
float2 lightmapTexCoord3 = lightmapTexCoord2 + v.vLightmapTexCoordOffset;
// reversed component order
o.lightmapTexCoord1And2.w = lightmapTexCoord2.x;
o.lightmapTexCoord1And2.z = lightmapTexCoord2.y;
o.lightmapTexCoord3.xy = lightmapTexCoord3;
}
else
{
o.lightmapTexCoord1And2.xy = v.vLightmapTexCoord;
}
if( g_UseSeparateEnvmapMask )
{
// reversed component order
#if FASTPATH
o.ENVMAPMASKCOORDS = v.vBaseTexCoord.xy;
#else
o.ENVMAPMASKCOORDS = float2( dot( v.vBaseTexCoord.xy, cEnvmapMaskTexCoordTransform[0].xy ) + cEnvmapMaskTexCoordTransform[0].w,
dot( v.vBaseTexCoord.xy, cEnvmapMaskTexCoordTransform[1].xy ) + cEnvmapMaskTexCoordTransform[1].w );
#endif
}
#if ( HARDWAREFOGBLEND )
{
o.fog = CalcFixedFunctionFog( worldPos, g_FogType );
}
#endif
#if ( !DOPIXELFOG && !HARDWAREFOGBLEND )
{
#if ( SEAMLESS )
{
o.SeamlessTexCoord_fogFactorW.w = CalcNonFixedFunctionFog( worldPos, g_FogType );
}
#else
{
o.baseTexCoord_fogFactorZ.z = CalcNonFixedFunctionFog( worldPos, g_FogType );
}
#endif
}
#endif
if ( !g_bVertexColor )
{
o.vertexColor = float4( 1.0f, 1.0f, 1.0f, cModulationColor.a );
}
else
{
o.vertexColor = v.vColor;
o.vertexColor.a *= cModulationColor.a;
}
#if SEAMLESS
// compute belnd weights in rgb
float3 vNormal=normalize( worldNormal );
o.vertexColor.xyz = vNormal * vNormal; // sums to 1.
#endif
// On 360/PS3, we have extra iterators and can fold the flashlight into this shader
#if ( defined( _X360 ) || defined( _PS3 ) ) && FLASHLIGHT
o.flashlightSpacePos = TransformFlashlightWorldToTexture( worldPos, g_FlashlightWorldToTexture );
o.vProjPos = projPos;
#endif
o.vertexBlend = v.vVertexBlends;
return o;
}