808 lines
24 KiB
C++
Raw Permalink Normal View History

2021-07-24 21:11:47 -07:00
//===== Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#define DISABLE_PROTECTED_THINGS
#include "togl/rendermechanism.h"
#include "shadershadowdx8.h"
#include "locald3dtypes.h"
#include "utlvector.h"
#include "shaderapi/ishaderutil.h"
#include "shaderapidx8_global.h"
#include "shaderapidx8.h"
#include "materialsystem/imaterialsystemhardwareconfig.h"
#include "materialsystem/imaterialsystem.h"
#include "imeshdx8.h"
#include "materialsystem/materialsystem_config.h"
#include "vertexshaderdx8.h"
// NOTE: This must be the last file included!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// The DX8 implementation of the shader setup interface
//-----------------------------------------------------------------------------
class CShaderShadowDX8 : public IShaderShadowDX8
{
public:
// constructor, destructor
CShaderShadowDX8( );
virtual ~CShaderShadowDX8();
// Initialize render state
void Init( );
// Sets the default state
void SetDefaultState();
// Methods related to depth buffering
void DepthFunc( ShaderDepthFunc_t depthFunc );
void EnableDepthWrites( bool bEnable );
void EnableDepthTest( bool bEnable );
void EnablePolyOffset( PolygonOffsetMode_t nOffsetMode );
// Suppresses/activates color writing
void EnableColorWrites( bool bEnable );
void EnableAlphaWrites( bool bEnable );
// Methods related to alpha blending
void EnableBlending( bool bEnable );
void EnableBlendingForceOpaque( bool bEnable );
void BlendFunc( ShaderBlendFactor_t srcFactor, ShaderBlendFactor_t dstFactor );
void BlendOp( ShaderBlendOp_t blendOp );
void EnableBlendingSeparateAlpha( bool bEnable );
void BlendFuncSeparateAlpha( ShaderBlendFactor_t srcFactor, ShaderBlendFactor_t dstFactor );
void BlendOpSeparateAlpha( ShaderBlendOp_t blendOp );
// Alpha testing
void EnableAlphaTest( bool bEnable );
void AlphaFunc( ShaderAlphaFunc_t alphaFunc, float alphaRef /* [0-1] */ );
// Wireframe/filled polygons
void PolyMode( ShaderPolyModeFace_t face, ShaderPolyMode_t polyMode );
// Back face culling
void EnableCulling( bool bEnable );
// Convert from linear to gamma color space on writes to frame buffer.
void EnableSRGBWrite( bool bEnable );
// Convert from gamma to linear on texture fetch.
void EnableSRGBRead( Sampler_t stage, bool bEnable );
// Set up appropriate shadow filtering state (such as Fetch4 on ATI)
//void SetShadowDepthFiltering( Sampler_t stage );
// Computes the vertex format
virtual void VertexShaderVertexFormat( unsigned int nFlags,
int nTexCoordCount, int* pTexCoordDimensions, int nUserDataSize );
// Pixel and vertex shader methods
virtual void SetVertexShader( const char* pFileName, int nStaticVshIndex );
virtual void SetPixelShader( const char* pFileName, int nStaticPshIndex );
// Per texture unit stuff
void EnableTexture( Sampler_t stage, bool bEnable );
void EnableVertexTexture( VertexTextureSampler_t sampler, bool bEnable );
// Last call to be make before snapshotting
void ComputeAggregateShadowState( );
// Gets at the shadow state
const ShadowState_t & GetShadowState();
const ShadowShaderState_t & GetShadowShaderState();
void FogMode( ShaderFogMode_t fogMode, bool bVertexFog );
void DisableFogGammaCorrection( bool bDisable );
// Alpha to coverage
void EnableAlphaToCoverage( bool bEnable );
virtual float GetLightMapScaleFactor( void ) const;
private:
struct SamplerState_t
{
bool m_TextureEnable : 1;
};
// Computes the blend factor
D3DBLEND BlendFuncValue( ShaderBlendFactor_t factor ) const;
// Computes the blend op
D3DBLENDOP BlendOpValue( ShaderBlendOp_t blendOp ) const;
// Configures our texture indices
void ConfigureTextureCoordinates( unsigned int flags );
// returns true if we're using texture coordinates at a given stage
bool IsUsingTextureCoordinates( Sampler_t stage ) const;
// State needed to create the snapshots
IMaterialSystemHardwareConfig* m_pHardwareConfig;
// Alpha blending...
D3DBLEND m_SrcBlend;
D3DBLEND m_DestBlend;
D3DBLENDOP m_BlendOp;
// Separate alpha blending...
D3DBLEND m_SrcBlendAlpha;
D3DBLEND m_DestBlendAlpha;
D3DBLENDOP m_BlendOpAlpha;
// Alpha testing
D3DCMPFUNC m_AlphaFunc;
int m_AlphaRef;
// The current shadow state
ShadowState_t m_ShadowState;
ShadowShaderState_t m_ShadowShaderState;
// State info stores with each sampler stage
SamplerState_t m_SamplerState[MAX_SAMPLERS];
SamplerState_t m_VertexSamplerState[MAX_VERTEX_SAMPLERS];
};
//-----------------------------------------------------------------------------
// Class factory
//-----------------------------------------------------------------------------
static CShaderShadowDX8 g_ShaderShadow;
IShaderShadowDX8 *g_pShaderShadowDx8 = &g_ShaderShadow;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CShaderShadowDX8, IShaderShadow,
SHADERSHADOW_INTERFACE_VERSION, g_ShaderShadow )
//-----------------------------------------------------------------------------
// Global instance
//-----------------------------------------------------------------------------
IShaderShadowDX8* ShaderShadow()
{
return &g_ShaderShadow;
}
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CShaderShadowDX8::CShaderShadowDX8( ) : m_pHardwareConfig(0)
{
memset( &m_ShadowState, 0, sizeof(m_ShadowState) );
}
CShaderShadowDX8::~CShaderShadowDX8()
{
}
//-----------------------------------------------------------------------------
// Initialize render state
//-----------------------------------------------------------------------------
void CShaderShadowDX8::Init( )
{
m_pHardwareConfig = g_pHardwareConfig;
// Clear out the shadow state
memset( &m_ShadowState, 0, sizeof(m_ShadowState) );
m_ShadowState.m_FogAndMiscState.m_bDisableFogGammaCorrection = false;
// Pixel + vertex shaders
m_ShadowShaderState.m_VertexShader = INVALID_SHADER;
m_ShadowShaderState.m_PixelShader = INVALID_SHADER;
m_ShadowShaderState.m_nStaticPshIndex = 0;
m_ShadowShaderState.m_nStaticVshIndex = 0;
m_ShadowShaderState.m_VertexUsage = 0;
m_ShadowState.m_nFetch4Enable = 0;
#if ( defined ( DX_TO_GL_ABSTRACTION ) )
m_ShadowState.m_nShadowFilterEnable = 0;
#endif
for (int i = 0; i < MAX_SAMPLERS; ++i)
{
// A *real* measure if the texture stage is being used.
// we sometimes have to set the shadow state to not mirror this.
m_SamplerState[i].m_TextureEnable = false;
}
}
//-----------------------------------------------------------------------------
// Sets the default state
//-----------------------------------------------------------------------------
void CShaderShadowDX8::SetDefaultState()
{
DepthFunc( SHADER_DEPTHFUNC_NEAREROREQUAL );
EnableDepthWrites( true );
EnableDepthTest( true );
EnableColorWrites( true );
EnableAlphaWrites( false );
EnableAlphaTest( false );
EnableBlending( false );
BlendFunc( SHADER_BLEND_ZERO, SHADER_BLEND_ZERO );
BlendOp( SHADER_BLEND_OP_ADD );
EnableBlendingSeparateAlpha( false );
BlendFuncSeparateAlpha( SHADER_BLEND_ZERO, SHADER_BLEND_ZERO );
BlendOpSeparateAlpha( SHADER_BLEND_OP_ADD );
AlphaFunc( SHADER_ALPHAFUNC_GEQUAL, 0.7f );
PolyMode( SHADER_POLYMODEFACE_FRONT_AND_BACK, SHADER_POLYMODE_FILL );
EnableCulling( true );
EnableAlphaToCoverage( false );
EnablePolyOffset( SHADER_POLYOFFSET_DISABLE );
EnableSRGBWrite( false );
SetVertexShader( NULL, 0 );
SetPixelShader( NULL, 0 );
FogMode( SHADER_FOGMODE_DISABLED, false );
DisableFogGammaCorrection( false );
m_ShadowShaderState.m_VertexUsage = 0;
int i;
int nSamplerCount = HardwareConfig()->GetSamplerCount();
for( i = 0; i < nSamplerCount; i++ )
{
EnableTexture( (Sampler_t)i, false );
EnableSRGBRead( (Sampler_t)i, false );
}
}
//-----------------------------------------------------------------------------
// Gets at the shadow state
//-----------------------------------------------------------------------------
const ShadowState_t &CShaderShadowDX8::GetShadowState()
{
return m_ShadowState;
}
const ShadowShaderState_t &CShaderShadowDX8::GetShadowShaderState()
{
return m_ShadowShaderState;
}
//-----------------------------------------------------------------------------
// Depth functions...
//-----------------------------------------------------------------------------
void CShaderShadowDX8::DepthFunc( ShaderDepthFunc_t depthFunc )
{
D3DCMPFUNC zFunc;
switch( depthFunc )
{
case SHADER_DEPTHFUNC_NEVER:
zFunc = D3DCMP_NEVER;
break;
case SHADER_DEPTHFUNC_NEARER:
zFunc = (ShaderUtil()->GetConfig().bReverseDepth ^ ReverseDepthOnX360()) ? D3DCMP_GREATER : D3DCMP_LESS;
break;
case SHADER_DEPTHFUNC_EQUAL:
zFunc = D3DCMP_EQUAL;
break;
case SHADER_DEPTHFUNC_NEAREROREQUAL:
zFunc = (ShaderUtil()->GetConfig().bReverseDepth ^ ReverseDepthOnX360()) ? D3DCMP_GREATEREQUAL : D3DCMP_LESSEQUAL;
break;
case SHADER_DEPTHFUNC_FARTHER:
zFunc = (ShaderUtil()->GetConfig().bReverseDepth ^ ReverseDepthOnX360()) ? D3DCMP_LESS : D3DCMP_GREATER;
break;
case SHADER_DEPTHFUNC_NOTEQUAL:
zFunc = D3DCMP_NOTEQUAL;
break;
case SHADER_DEPTHFUNC_FARTHEROREQUAL:
zFunc = (ShaderUtil()->GetConfig().bReverseDepth ^ ReverseDepthOnX360()) ? D3DCMP_LESSEQUAL : D3DCMP_GREATEREQUAL;
break;
case SHADER_DEPTHFUNC_ALWAYS:
zFunc = D3DCMP_ALWAYS;
break;
default:
zFunc = D3DCMP_ALWAYS;
Warning( "DepthFunc: invalid param\n" );
break;
}
m_ShadowState.m_DepthTestState.m_ZFunc = zFunc;
}
void CShaderShadowDX8::EnableDepthWrites( bool bEnable )
{
m_ShadowState.m_DepthTestState.m_ZWriteEnable = bEnable;
}
void CShaderShadowDX8::EnableDepthTest( bool bEnable )
{
m_ShadowState.m_DepthTestState.m_ZEnable = bEnable ? D3DZB_TRUE : D3DZB_FALSE;
}
void CShaderShadowDX8::EnablePolyOffset( PolygonOffsetMode_t nOffsetMode )
{
m_ShadowState.m_DepthTestState.m_ZBias = nOffsetMode;
}
//-----------------------------------------------------------------------------
// Color write state
//-----------------------------------------------------------------------------
void CShaderShadowDX8::EnableColorWrites( bool bEnable )
{
if (bEnable)
{
m_ShadowState.m_DepthTestState.m_ColorWriteEnable |= D3DCOLORWRITEENABLE_BLUE |
D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_RED;
}
else
{
m_ShadowState.m_DepthTestState.m_ColorWriteEnable &= ~( D3DCOLORWRITEENABLE_BLUE |
D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_RED );
}
}
void CShaderShadowDX8::EnableAlphaWrites( bool bEnable )
{
if (bEnable)
{
m_ShadowState.m_DepthTestState.m_ColorWriteEnable |= D3DCOLORWRITEENABLE_ALPHA;
}
else
{
m_ShadowState.m_DepthTestState.m_ColorWriteEnable &= ~D3DCOLORWRITEENABLE_ALPHA;
}
}
//-----------------------------------------------------------------------------
// Alpha blending states
//-----------------------------------------------------------------------------
void CShaderShadowDX8::EnableBlending( bool bEnable )
{
m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnable = bEnable;
m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnabledForceOpaque = false;
}
void CShaderShadowDX8::EnableBlendingForceOpaque( bool bEnable )
{
m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnable = bEnable;
m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnabledForceOpaque = true;
}
// Separate alpha blending
void CShaderShadowDX8::EnableBlendingSeparateAlpha( bool bEnable )
{
m_ShadowState.m_AlphaBlendState.m_SeparateAlphaBlendEnable = bEnable;
}
void CShaderShadowDX8::EnableAlphaTest( bool bEnable )
{
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaTestEnable = bEnable;
}
void CShaderShadowDX8::AlphaFunc( ShaderAlphaFunc_t alphaFunc, float alphaRef /* [0-1] */ )
{
D3DCMPFUNC d3dCmpFunc;
switch( alphaFunc )
{
case SHADER_ALPHAFUNC_NEVER:
d3dCmpFunc = D3DCMP_NEVER;
break;
case SHADER_ALPHAFUNC_LESS:
d3dCmpFunc = D3DCMP_LESS;
break;
case SHADER_ALPHAFUNC_EQUAL:
d3dCmpFunc = D3DCMP_EQUAL;
break;
case SHADER_ALPHAFUNC_LEQUAL:
d3dCmpFunc = D3DCMP_LESSEQUAL;
break;
case SHADER_ALPHAFUNC_GREATER:
d3dCmpFunc = D3DCMP_GREATER;
break;
case SHADER_ALPHAFUNC_NOTEQUAL:
d3dCmpFunc = D3DCMP_NOTEQUAL;
break;
case SHADER_ALPHAFUNC_GEQUAL:
d3dCmpFunc = D3DCMP_GREATEREQUAL;
break;
case SHADER_ALPHAFUNC_ALWAYS:
d3dCmpFunc = D3DCMP_ALWAYS;
break;
default:
Warning( "AlphaFunc: invalid param\n" );
return;
}
m_AlphaFunc = d3dCmpFunc;
m_AlphaRef = (int)(alphaRef * 255);
}
D3DBLEND CShaderShadowDX8::BlendFuncValue( ShaderBlendFactor_t factor ) const
{
switch( factor )
{
case SHADER_BLEND_ZERO:
return D3DBLEND_ZERO;
case SHADER_BLEND_ONE:
return D3DBLEND_ONE;
case SHADER_BLEND_DST_COLOR:
return D3DBLEND_DESTCOLOR;
case SHADER_BLEND_ONE_MINUS_DST_COLOR:
return D3DBLEND_INVDESTCOLOR;
case SHADER_BLEND_SRC_ALPHA:
return D3DBLEND_SRCALPHA;
case SHADER_BLEND_ONE_MINUS_SRC_ALPHA:
return D3DBLEND_INVSRCALPHA;
case SHADER_BLEND_DST_ALPHA:
return D3DBLEND_DESTALPHA;
case SHADER_BLEND_ONE_MINUS_DST_ALPHA:
return D3DBLEND_INVDESTALPHA;
case SHADER_BLEND_SRC_ALPHA_SATURATE:
return D3DBLEND_SRCALPHASAT;
case SHADER_BLEND_SRC_COLOR:
return D3DBLEND_SRCCOLOR;
case SHADER_BLEND_ONE_MINUS_SRC_COLOR:
return D3DBLEND_INVSRCCOLOR;
}
Warning( "BlendFunc: invalid factor\n" );
return D3DBLEND_ONE;
}
D3DBLENDOP CShaderShadowDX8::BlendOpValue( ShaderBlendOp_t blendOp ) const
{
switch( blendOp )
{
case SHADER_BLEND_OP_ADD:
return D3DBLENDOP_ADD;
case SHADER_BLEND_OP_SUBTRACT:
return D3DBLENDOP_SUBTRACT;
case SHADER_BLEND_OP_REVSUBTRACT:
return D3DBLENDOP_REVSUBTRACT;
case SHADER_BLEND_OP_MIN:
return D3DBLENDOP_MIN;
case SHADER_BLEND_OP_MAX:
return D3DBLENDOP_MAX;
}
Warning( "BlendOp: invalid op\n" );
return D3DBLENDOP_ADD;
}
void CShaderShadowDX8::BlendFunc( ShaderBlendFactor_t srcFactor, ShaderBlendFactor_t dstFactor )
{
D3DBLEND d3dSrcFactor = BlendFuncValue( srcFactor );
D3DBLEND d3dDstFactor = BlendFuncValue( dstFactor );
m_SrcBlend = d3dSrcFactor;
m_DestBlend = d3dDstFactor;
}
// Separate alpha blending
void CShaderShadowDX8::BlendFuncSeparateAlpha( ShaderBlendFactor_t srcFactor, ShaderBlendFactor_t dstFactor )
{
D3DBLEND d3dSrcFactor = BlendFuncValue( srcFactor );
D3DBLEND d3dDstFactor = BlendFuncValue( dstFactor );
m_SrcBlendAlpha = d3dSrcFactor;
m_DestBlendAlpha = d3dDstFactor;
}
void CShaderShadowDX8::BlendOp( ShaderBlendOp_t blendOp )
{
m_BlendOp = BlendOpValue( blendOp );
}
void CShaderShadowDX8::BlendOpSeparateAlpha( ShaderBlendOp_t blendOp )
{
m_BlendOpAlpha = BlendOpValue( blendOp );
}
//-----------------------------------------------------------------------------
// Polygon fill mode states
//-----------------------------------------------------------------------------
void CShaderShadowDX8::PolyMode( ShaderPolyModeFace_t face, ShaderPolyMode_t polyMode )
{
// DX8 can't handle different modes on front and back faces
// FIXME: Assert( face == SHADER_POLYMODEFACE_FRONT_AND_BACK );
if (face == SHADER_POLYMODEFACE_BACK)
return;
D3DFILLMODE fillMode;
switch( polyMode )
{
case SHADER_POLYMODE_POINT:
fillMode = D3DFILL_POINT;
break;
case SHADER_POLYMODE_LINE:
fillMode = D3DFILL_WIREFRAME;
break;
case SHADER_POLYMODE_FILL:
fillMode = D3DFILL_SOLID;
break;
default:
Warning( "PolyMode: invalid poly mode\n" );
return;
}
m_ShadowState.m_AlphaTestAndMiscState.m_FillMode = fillMode;
}
//-----------------------------------------------------------------------------
// Backface cull states
//-----------------------------------------------------------------------------
void CShaderShadowDX8::EnableCulling( bool bEnable )
{
m_ShadowState.m_AlphaTestAndMiscState.m_CullEnable = bEnable;
}
//-----------------------------------------------------------------------------
// Alpha to coverage
//-----------------------------------------------------------------------------
void CShaderShadowDX8::EnableAlphaToCoverage( bool bEnable )
{
m_ShadowState.m_AlphaTestAndMiscState.m_EnableAlphaToCoverage = bEnable;
}
//-----------------------------------------------------------------------------
// Enables auto-conversion from linear to gamma space on write to framebuffer.
//-----------------------------------------------------------------------------
void CShaderShadowDX8::EnableSRGBWrite( bool bEnable )
{
if ( m_pHardwareConfig->SupportsSRGB() )
{
m_ShadowState.m_FogAndMiscState.m_SRGBWriteEnable = bEnable;
}
else
{
m_ShadowState.m_FogAndMiscState.m_SRGBWriteEnable = false;
}
}
void CShaderShadowDX8::EnableTexture( Sampler_t sampler, bool bEnable )
{
if ( sampler < m_pHardwareConfig->GetSamplerCount() )
{
m_SamplerState[sampler].m_TextureEnable = bEnable;
}
else
{
Warning( "Attempting to bind a texture to an invalid sampler (%d)!\n", sampler );
}
}
void CShaderShadowDX8::EnableVertexTexture( VertexTextureSampler_t vtSampler, bool bEnable )
{
if ( vtSampler < m_pHardwareConfig->GetVertexSamplerCount() )
{
m_VertexSamplerState[vtSampler].m_TextureEnable = bEnable;
}
else
{
Warning( "Attempting to bind a texture to an invalid vertex sampler (%d)!\n", vtSampler );
}
}
void CShaderShadowDX8::EnableSRGBRead( Sampler_t sampler, bool bEnable )
{
}
#if 0
void CShaderShadowDX8::SetShadowDepthFiltering( Sampler_t stage )
{
int nMask = ( 1 << stage );
if ( stage < m_pHardwareConfig->GetSamplerCount() )
{
#if ( defined ( POSIX ) )
// m_ShadowState.m_ShadowFilterEnable |= nMask;
#else
if ( !m_pHardwareConfig->SupportsFetch4() )
{
m_ShadowState.m_nFetch4Enable &= ~nMask;
}
else
{
m_ShadowState.m_nFetch4Enable |= nMask;
}
#endif
}
else
{
Warning( "Attempting set shadow filtering state on an invalid sampler (%d)!\n", stage );
}
}
#endif
//-----------------------------------------------------------------------------
// Compute the vertex format from vertex descriptor flags
//-----------------------------------------------------------------------------
void CShaderShadowDX8::VertexShaderVertexFormat( unsigned int nFlags,
int nTexCoordCount, int* pTexCoordDimensions, int nUserDataSize )
{
// Code that creates a Mesh should specify whether it contains bone weights+indices, *not* the shader.
Assert( ( nFlags & VERTEX_BONE_INDEX ) == 0 );
nFlags &= ~VERTEX_BONE_INDEX;
// This indicates we're using a vertex shader
m_ShadowShaderState.m_VertexUsage = MeshMgr()->ComputeVertexFormat( nFlags, nTexCoordCount,
pTexCoordDimensions, 0, nUserDataSize );
// Avoid an error if vertex stream 0 is too narrow
if ( CVertexBufferBase::VertexFormatSize( m_ShadowShaderState.m_VertexUsage ) <= 16 )
{
// FIXME: this is only necessary because we
// (a) put the flex normal/position stream in ALL vertex decls
// (b) bind stream 0's VB to stream 2 if there is no actual flex data
// ...it would be far more sensible to not add stream 2 to all vertex decls.
static bool bComplained = false;
if( !bComplained )
{
Warning( "ERROR: shader asking for a too-narrow vertex format - you will see errors if running with debug D3D DLLs!\n\tPadding the vertex format with extra texcoords\n\tWill not warn again.\n" );
bComplained = true;
}
// All vertex formats should contain position...
Assert( nFlags & VERTEX_POSITION );
nFlags |= VERTEX_POSITION;
// This error should occur only if we have zero texcoords, or if we have a single, 1-D texcoord
Assert( ( nTexCoordCount == 0 ) ||
( ( nTexCoordCount == 1 ) && pTexCoordDimensions && ( pTexCoordDimensions[0] == 1 ) ) );
nTexCoordCount = 1;
m_ShadowShaderState.m_VertexUsage = MeshMgr()->ComputeVertexFormat( nFlags, nTexCoordCount, NULL, 0, nUserDataSize );
}
}
//-----------------------------------------------------------------------------
// Pixel and vertex shader methods
//-----------------------------------------------------------------------------
void CShaderShadowDX8::SetVertexShader( const char* pFileName, int nStaticVshIndex )
{
char debugLabel[500] = "";
#ifdef DX_TO_GL_ABSTRACTION
Q_snprintf( debugLabel, sizeof(debugLabel), "vs-file %s vs-index %d", pFileName, nStaticVshIndex );
#endif
m_ShadowShaderState.m_VertexShader = ShaderManager()->CreateVertexShader( pFileName, nStaticVshIndex, debugLabel );
m_ShadowShaderState.m_nStaticVshIndex = nStaticVshIndex;
}
void CShaderShadowDX8::SetPixelShader( const char* pFileName, int nStaticPshIndex )
{
char debugLabel[500] = "";
#ifdef DX_TO_GL_ABSTRACTION
Q_snprintf( debugLabel, sizeof(debugLabel), "ps-file %s ps-index %d", pFileName, nStaticPshIndex );
#endif
m_ShadowShaderState.m_PixelShader = ShaderManager()->CreatePixelShader( pFileName, nStaticPshIndex, debugLabel );
m_ShadowShaderState.m_nStaticPshIndex = nStaticPshIndex;
}
//-----------------------------------------------------------------------------
// Returns the lightmap scale factor
//-----------------------------------------------------------------------------
float CShaderShadowDX8::GetLightMapScaleFactor( void ) const
{
return g_pHardwareConfig->GetLightMapScaleFactor();
}
//-----------------------------------------------------------------------------
// Fog
//-----------------------------------------------------------------------------
void CShaderShadowDX8::FogMode( ShaderFogMode_t fogMode, bool bVertexFog )
{
Assert( fogMode >= 0 && fogMode < SHADER_FOGMODE_NUMFOGMODES );
m_ShadowState.m_FogAndMiscState.m_FogMode = fogMode;
m_ShadowState.m_FogAndMiscState.m_bVertexFogEnable = bVertexFog;
}
void CShaderShadowDX8::DisableFogGammaCorrection( bool bDisable )
{
m_ShadowState.m_FogAndMiscState.m_bDisableFogGammaCorrection = bDisable;
}
//-----------------------------------------------------------------------------
// NOTE: See Version 5 of this file for NVidia 8-stage shader stuff
//-----------------------------------------------------------------------------
inline bool CShaderShadowDX8::IsUsingTextureCoordinates( Sampler_t sampler ) const
{
return m_SamplerState[sampler].m_TextureEnable;
}
//-----------------------------------------------------------------------------
// Computes shadow state based on bunches of other parameters
//-----------------------------------------------------------------------------
void CShaderShadowDX8::ComputeAggregateShadowState( )
{
// Initialize the texture stage usage; this may get changed later
int nEnableMask = 0;
for (int i = 0; i < m_pHardwareConfig->GetSamplerCount(); ++i)
{
if ( IsUsingTextureCoordinates( (Sampler_t)i ) )
{
nEnableMask |= ( 1 << i );
}
}
// Always use the same alpha src + dest if it's disabled
// NOTE: This is essential for stateblocks to work
if ( m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnable )
{
m_ShadowState.m_AlphaBlendState.m_SrcBlend = m_SrcBlend;
m_ShadowState.m_AlphaBlendState.m_DestBlend = m_DestBlend;
m_ShadowState.m_AlphaBlendState.m_BlendOp = m_BlendOp;
}
else
{
m_ShadowState.m_AlphaBlendState.m_SrcBlend = D3DBLEND_ONE;
m_ShadowState.m_AlphaBlendState.m_DestBlend = D3DBLEND_ZERO;
m_ShadowState.m_AlphaBlendState.m_BlendOp = D3DBLENDOP_ADD;
}
// GR
if (m_ShadowState.m_AlphaBlendState.m_SeparateAlphaBlendEnable)
{
m_ShadowState.m_AlphaBlendState.m_SrcBlendAlpha = m_SrcBlendAlpha;
m_ShadowState.m_AlphaBlendState.m_DestBlendAlpha = m_DestBlendAlpha;
m_ShadowState.m_AlphaBlendState.m_BlendOpAlpha = m_BlendOpAlpha;
}
else
{
m_ShadowState.m_AlphaBlendState.m_SrcBlendAlpha = D3DBLEND_ONE;
m_ShadowState.m_AlphaBlendState.m_DestBlendAlpha = D3DBLEND_ZERO;
m_ShadowState.m_AlphaBlendState.m_BlendOpAlpha = D3DBLENDOP_ADD;
}
// Use the same func if it's disabled
if (m_ShadowState.m_AlphaTestAndMiscState.m_AlphaTestEnable)
{
// If alpha test is enabled, just use the values set
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaFunc = m_AlphaFunc;
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaRef = m_AlphaRef;
}
else
{
// A default value
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaFunc = D3DCMP_GREATEREQUAL;
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaRef = 0;
// If not alpha testing and doing a standard alpha blend, force on alpha testing
if ( m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnable )
{
if ( ( m_ShadowState.m_AlphaBlendState.m_SrcBlend == D3DBLEND_SRCALPHA ) && ( m_ShadowState.m_AlphaBlendState.m_DestBlend == D3DBLEND_INVSRCALPHA ) )
{
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaFunc = D3DCMP_GREATEREQUAL;
m_ShadowState.m_AlphaTestAndMiscState.m_AlphaRef = 1;
}
}
}
// Alpha to coverage
if ( m_ShadowState.m_AlphaTestAndMiscState.m_EnableAlphaToCoverage )
{
// Only allow this to be enabled if blending is disabled and testing is enabled
if ( ( m_ShadowState.m_AlphaBlendState.m_AlphaBlendEnable == true ) || ( m_ShadowState.m_AlphaTestAndMiscState.m_AlphaTestEnable == false ) )
{
m_ShadowState.m_AlphaTestAndMiscState.m_EnableAlphaToCoverage = false;
}
}
}