readme and depthsurround

This commit is contained in:
Martijn 2021-07-28 12:40:34 +02:00
parent f7cdd16376
commit 847dd91ea1
11 changed files with 888 additions and 16 deletions

View File

@ -28,6 +28,7 @@ set(FILES
src/utils/CCombFilter.cpp src/utils/CCombFilter.cpp
src/utils/CRevModel.cpp src/utils/CRevModel.cpp
src/utils/Crossfeed.cpp src/utils/Crossfeed.cpp
src/utils/DepthSurround.cpp
src/utils/FixedBiquad.cpp src/utils/FixedBiquad.cpp
src/utils/IIR_1st.cpp src/utils/IIR_1st.cpp
src/utils/IIR_NOrder_BW_BP.cpp src/utils/IIR_NOrder_BW_BP.cpp

17
README.md Normal file
View File

@ -0,0 +1,17 @@
# ViPERFX_RE
This is a reverse-engineering project aimed to make ViPER4Android more easy to access, modify, and improve.
Some QOL changes have been made, such as processing audio as float32, removing unused code, using more modern libraries, etc.
To view the progress, see [Issue #2](https://github.com/AndroidAudioMods/ViPERFX_RE/issues/2)
# Building
- Install the NDK, CMake and Make.
- Run `cmake . -DCMAKE_TOOLCHAIN_FILE=<NDKROOT>/build/cmake/android.toolchain.cmake -DANDROID_ABI=<ABI>` where <NDKROOT> is where you installed the NDK and <ABI> is the target ABI to build for.
- Run `make`
- You should now find a `libv4afx_r.so` file in your project root.
# Credits
Zhuhang and ViPER520 for making ViPER4Android
Martmists and Iscle for reverse-engineering

View File

@ -97,22 +97,21 @@ int32_t Effect::configure(effect_config_t *newConfig) {
DO_ERROR(); DO_ERROR();
} }
v4a_print(ANDROID_LOG_INFO, "Input and output configuration checked."); // TODO: Allow multiple formats by converting before/after processing
// if (((inFormat & 0x80000) != 0) && ((outFormat & 0x80000) != 0)) { if (newConfig->inputCfg.format != AUDIO_FORMAT_PCM_FLOAT) {
// if ((inFormat & 0xfd) != 1) { v4a_printf(ANDROID_LOG_ERROR, "ViPER4Android disabled, reason [in.FMT = %d]", newConfig->inputCfg.format);
// v4a_printf(ANDROID_LOG_ERROR, "ViPER4Android disabled, reason [in.FMT = %d]"); v4a_print(ANDROID_LOG_ERROR, "We only accept f32 format");
// v4a_printf(ANDROID_LOG_ERROR, "We only accept s16 and fixed.31 format"); DO_ERROR();
// this->configureOk = false; }
// return 0xffffffea;
// } if (newConfig->outputCfg.format != AUDIO_FORMAT_PCM_FLOAT) {
// if ((outFormat & 0xfd) != 1) { v4a_printf(ANDROID_LOG_ERROR, "ViPER4Android disabled, reason [out.FMT = %d]", newConfig->outputCfg.format);
// v4a_printf(ANDROID_LOG_ERROR, "ViPER4Android disabled, reason [out.FMT = %d]"); v4a_print(ANDROID_LOG_ERROR, "We only accept f32 format");
// v4a_printf(ANDROID_LOG_ERROR, "We only accept s16 and fixed.31 format"); DO_ERROR();
// this->configureOk = false; }
// return 0xffffffea;
// } v4a_print(ANDROID_LOG_INFO, "Input and output configuration checked.");
// }
memcpy(&this->config, newConfig, sizeof(effect_config_t)); memcpy(&this->config, newConfig, sizeof(effect_config_t));
this->configureOk = true; this->configureOk = true;

View File

@ -0,0 +1,2 @@
This is a stripped-down version of kissfft, used to replace ffts.
Source: https://github.com/berndporr/kiss-fft

View File

@ -0,0 +1,353 @@
#ifndef KISS_FFT_GUTS_H
#define KISS_FFT_GUTS_H
/*
Copyright (c) 2003-2010, Mark Borgerding
Copyright (c) 2020-2021, Bernd Porr
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <limits.h>
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }
#define C_MULBYSCALAR( c, s ) \
{ (c).r *= (s);\
(c).i *= (s); }
#define C_ADD( res, a,b)\
{ \
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}
#define C_SUB( res, a,b) \
{ \
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}
#define C_ADDTO( res , a) \
{ \
(res).r += (a).r; (res).i += (a).i;\
}
#define C_SUBFROM( res , a)\
{\
(res).r -= (a).r; (res).i -= (a).i; \
}
#define HALF_OF(x) ((x)*.5)
#define kf_cexp(x,phase) \
{ \
(x)->r = cos(phase);\
(x)->i = sin(phase);\
}
/* a debugging function */
#define pcpx(c)\
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )
static void kf_bfly2(
kiss_fft_cpx *Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
) {
kiss_fft_cpx *Fout2;
kiss_fft_cpx *tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do {
C_MUL (t, *Fout2, *tw1);
tw1 += fstride;
C_SUB(*Fout2, *Fout, t);
C_ADDTO(*Fout, t);
++Fout2;
++Fout;
} while (--m);
}
static void kf_bfly4(
kiss_fft_cpx *Fout,
const size_t fstride,
const kiss_fft_cfg st,
const size_t m
) {
kiss_fft_cpx *tw1, *tw2, *tw3;
kiss_fft_cpx scratch[6];
size_t k = m;
const size_t m2 = 2 * m;
const size_t m3 = 3 * m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_MUL(scratch[0], Fout[m], *tw1);
C_MUL(scratch[1], Fout[m2], *tw2);
C_MUL(scratch[2], Fout[m3], *tw3);
C_SUB(scratch[5], *Fout, scratch[1]);
C_ADDTO(*Fout, scratch[1]);
C_ADD(scratch[3], scratch[0], scratch[2]);
C_SUB(scratch[4], scratch[0], scratch[2]);
C_SUB(Fout[m2], *Fout, scratch[3]);
tw1 += fstride;
tw2 += fstride * 2;
tw3 += fstride * 3;
C_ADDTO(*Fout, scratch[3]);
if (st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
} else {
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
} while (--k);
}
static void kf_bfly3(
kiss_fft_cpx *Fout,
const size_t fstride,
const kiss_fft_cfg st,
size_t m
) {
size_t k = m;
const size_t m2 = 2 * m;
kiss_fft_cpx *tw1, *tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride * m];
tw1 = tw2 = st->twiddles;
do {
C_MUL(scratch[1], Fout[m], *tw1);
C_MUL(scratch[2], Fout[m2], *tw2);
C_ADD(scratch[3], scratch[1], scratch[2]);
C_SUB(scratch[0], scratch[1], scratch[2]);
tw1 += fstride;
tw2 += fstride * 2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR(scratch[0], epi3.i);
C_ADDTO(*Fout, scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
} while (--k);
}
static void kf_bfly5(
kiss_fft_cpx *Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
) {
kiss_fft_cpx *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx *twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya, yb;
ya = twiddles[fstride * m];
yb = twiddles[fstride * 2 * m];
Fout0 = Fout;
Fout1 = Fout0 + m;
Fout2 = Fout0 + 2 * m;
Fout3 = Fout0 + 3 * m;
Fout4 = Fout0 + 4 * m;
tw = st->twiddles;
for (u = 0; u < m; ++u) {
scratch[0] = *Fout0;
C_MUL(scratch[1], *Fout1, tw[u * fstride]);
C_MUL(scratch[2], *Fout2, tw[2 * u * fstride]);
C_MUL(scratch[3], *Fout3, tw[3 * u * fstride]);
C_MUL(scratch[4], *Fout4, tw[4 * u * fstride]);
C_ADD(scratch[7], scratch[1], scratch[4]);
C_SUB(scratch[10], scratch[1], scratch[4]);
C_ADD(scratch[8], scratch[2], scratch[3]);
C_SUB(scratch[9], scratch[2], scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r, ya.r) + S_MUL(scratch[8].r, yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i, ya.r) + S_MUL(scratch[8].i, yb.r);
scratch[6].r = S_MUL(scratch[10].i, ya.i) + S_MUL(scratch[9].i, yb.i);
scratch[6].i = -S_MUL(scratch[10].r, ya.i) - S_MUL(scratch[9].r, yb.i);
C_SUB(*Fout1, scratch[5], scratch[6]);
C_ADD(*Fout4, scratch[5], scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r, yb.r) + S_MUL(scratch[8].r, ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i, yb.r) + S_MUL(scratch[8].i, ya.r);
scratch[12].r = -S_MUL(scratch[10].i, yb.i) + S_MUL(scratch[9].i, ya.i);
scratch[12].i = S_MUL(scratch[10].r, yb.i) - S_MUL(scratch[9].r, ya.i);
C_ADD(*Fout2, scratch[11], scratch[12]);
C_SUB(*Fout3, scratch[11], scratch[12]);
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(
kiss_fft_cpx *Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m,
int p
) {
int u, k, q1, q;
kiss_fft_cpx *twiddles = st->twiddles;
kiss_fft_cpx t;
long unsigned int Norig = st->nfft;
kiss_fft_cpx *scratch = (kiss_fft_cpx *) malloc(sizeof(kiss_fft_cpx) * p);
for (u = 0; u < m; ++u) {
k = u;
for (q1 = 0; q1 < p; ++q1) {
scratch[q1] = Fout[k];
k += m;
}
k = u;
for (q1 = 0; q1 < p; ++q1) {
long unsigned int twidx = 0;
Fout[k] = scratch[0];
for (q = 1; q < p; ++q) {
twidx += fstride * k;
if (twidx >= Norig) twidx -= Norig;
C_MUL(t, scratch[q], twiddles[twidx]);
C_ADDTO(Fout[k], t);
}
k += m;
}
}
free(scratch);
}
static
void kf_work(
kiss_fft_cpx *Fout,
const kiss_fft_cpx *f,
const size_t fstride,
int in_stride,
int *factors,
const kiss_fft_cfg st
) {
kiss_fft_cpx *Fout_beg = Fout;
const int p = *factors++; /* the radix */
const int m = *factors++; /* stage's fft length/p */
const kiss_fft_cpx *Fout_end = Fout + p * m;
if (m == 1) {
do {
*Fout = *f;
f += fstride * in_stride;
} while (++Fout != Fout_end);
} else {
do {
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(Fout, f, fstride * p, in_stride, factors, st);
f += fstride * in_stride;
} while ((Fout += m) != Fout_end);
}
Fout = Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2:
kf_bfly2(Fout, fstride, st, m);
break;
case 3:
kf_bfly3(Fout, fstride, st, m);
break;
case 4:
kf_bfly4(Fout, fstride, st, m);
break;
case 5:
kf_bfly5(Fout, fstride, st, m);
break;
default:
kf_bfly_generic(Fout, fstride, st, m, p);
break;
}
}
#endif

View File

@ -0,0 +1,129 @@
/*
Copyright (c) 2003-2010, Mark Borgerding
Copyright (c) 2017-2021, Bernd Porr
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "kiss_fft.h"
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static
void kf_factor(int n, int *facbuf) {
int p = 4;
double floor_sqrt;
floor_sqrt = floor(sqrt((double) n));
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4:
p = 2;
break;
case 2:
p = 3;
break;
default:
p += 2;
break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft, int inverse_fft, void *mem, size_t *lenmem) {
kiss_fft_cfg st = nullptr;
size_t memneeded = sizeof(struct kiss_fft_state)
+ sizeof(kiss_fft_cpx) * (nfft - 1); /* twiddle factors*/
if (lenmem == nullptr) {
st = (kiss_fft_cfg) KISS_FFT_MALLOC(memneeded);
} else {
if (mem != nullptr && *lenmem >= memneeded)
st = (kiss_fft_cfg) mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft = nfft;
st->inverse = inverse_fft;
for (i = 0; i < nfft; ++i) {
double phase = -2.0 * M_PI * ((double)i) / ((double)nfft);
if (st->inverse)
phase *= -1;
kf_cexp(st->twiddles + i, phase);
}
kf_factor(nfft, st->factors);
}
return st;
}
void kiss_fft_stride(kiss_fft_cfg st, const kiss_fft_cpx *fin, kiss_fft_cpx *fout, int in_stride) {
int j;
if (fin == fout) {
//NOTE: this is not really an in-place FFT algorithm.
//It just performs an out-of-place FFT into a temp buffer
kiss_fft_cpx *tmpbuf = (kiss_fft_cpx *) malloc(sizeof(kiss_fft_cpx) * st->nfft);
kf_work(tmpbuf, fin, 1, in_stride, st->factors, st);
memcpy(fout, tmpbuf, sizeof(kiss_fft_cpx) * st->nfft);
free(tmpbuf);
} else {
kf_work(fout, fin, 1, in_stride, st->factors, st);
}
if (st->inverse) {
for (j = 0; j < st->nfft; j++) {
fout[j].r /= st->nfft;
fout[j].i /= st->nfft;
}
}
}
void kiss_fft(kiss_fft_cfg cfg, const kiss_fft_cpx *fin, kiss_fft_cpx *fout) {
kiss_fft_stride(cfg, fin, fout, 1);
}
int kiss_fft_next_fast_size(int n) {
while (1) {
int m = n;
while ((m % 2) == 0) m /= 2;
while ((m % 3) == 0) m /= 3;
while ((m % 5) == 0) m /= 5;
if (m <= 1)
break; /* n is completely factorable by twos, threes, and fives */
n++;
}
return n;
}

View File

@ -0,0 +1,79 @@
#ifndef KISS_FFT_H
#define KISS_FFT_H
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#define KISS_FFT_MALLOC malloc
#define KISS_FFT_FREE free
typedef struct {
double r;
double i;
} kiss_fft_cpx;
typedef struct kiss_fft_state* kiss_fft_cfg;
#include "_kiss_fft_guts.h"
/*
* kiss_fft_alloc
*
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
*
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0); for FFT
* kiss_fft_cfg mycfg=kiss_fft_alloc(1024,1); for IFFT
*
* The return value from fft_alloc is a cfg buffer used internally
* by the fft routine or NULL.
*
* The inverse FFT is calculated if inverse_fft is non-zero.
*
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc.
* The returned value should be free()d when done to avoid memory leaks.
*
* The state can be placed in a user supplied buffer 'mem':
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
* then the function places the cfg in mem and the size used in *lenmem
* and returns mem.
*
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
* then the function returns NULL and places the minimum cfg
* buffer size in *lenmem.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem = nullptr,size_t * lenmem = nullptr);
/*
* kiss_fft(cfg,in_out_buf)
*
* Perform an FFT on a complex input buffer.
* for a forward FFT,
* fin should be f[0] , f[1] , ... ,f[nfft-1]
* fout will be F[0] , F[1] , ... ,F[nfft-1]
* Note that each element is complex and can be accessed like
f[k].r and f[k].i
* */
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout);
/*
A more generic version of the above function. It reads its input from every Nth sample.
* */
void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride);
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
buffer and can be simply free()d when no longer needed*/
#define kiss_fft_free free
/*
* Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5)
*/
int kiss_fft_next_fast_size(int n);
/* for real ffts, we need an even size */
#define kiss_fftr_next_fast_size_real(n) \
(kiss_fft_next_fast_size( ((n)+1)>>1)<<1)
#endif

View File

@ -0,0 +1,144 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
Copyright (c) 2017-2021, Bernd Porr
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "kiss_fftr.h"
#include "_kiss_fft_guts.h"
struct kiss_fftr_state{
kiss_fft_cfg substate;
kiss_fft_cpx * tmpbuf;
kiss_fft_cpx * super_twiddles;
};
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
{
int i;
kiss_fftr_cfg st = nullptr;
size_t subsize, memneeded;
if (nfft & 1) {
fprintf(stderr,"Real FFT optimization must be even.\n");
return nullptr;
}
nfft >>= 1;
kiss_fft_alloc (nfft, inverse_fft, nullptr, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
if (lenmem == nullptr) {
st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg) mem;
*lenmem = memneeded;
}
if (!st)
return nullptr;
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft/2; ++i) {
double phase =
-M_PI * ((double) (i+1) / nfft + .5);
if (inverse_fft)
phase *= -1;
kf_cexp (st->super_twiddles+i,phase);
}
return st;
}
void kiss_fftr(kiss_fftr_cfg st,const double *timedata,kiss_fft_cpx *freqdata)
{
/* input buffer timedata is stored row-wise */
int k,ncfft;
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
if ( st->substate->inverse) {
fprintf(stderr,"kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
freqdata[ncfft].i = freqdata[0].i = 0;
for ( k=1;k <= ncfft/2 ; ++k ) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft-k].r;
fpnk.i = - st->tmpbuf[ncfft-k].i;
C_ADD( f1k, fpk , fpnk );
C_SUB( f2k, fpk , fpnk );
C_MUL( tw , f2k , st->super_twiddles[k-1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
}
}
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,double *timedata)
{
/* input buffer timedata is stored row-wise */
int k, ncfft;
if (st->substate->inverse == 0) {
fprintf (stderr, "kiss fft usage error: improper alloc\n");
exit (1);
}
ncfft = st->substate->nfft;
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
for (k = 1; k <= ncfft / 2; ++k) {
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
fk = freqdata[k];
fnkc.r = freqdata[ncfft - k].r;
fnkc.i = -freqdata[ncfft - k].i;
C_ADD (fek, fk, fnkc);
C_SUB (tmp, fk, fnkc);
C_MUL (fok, tmp, st->super_twiddles[k-1]);
C_ADD (st->tmpbuf[k], fek, fok);
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
st->tmpbuf[ncfft - k].i *= -1;
}
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
for (k = 0; k < (ncfft * 2); k++) {
timedata[k] /= 2;
}
}

View File

@ -0,0 +1,36 @@
// Replacement for ffts which is not as cross-platform
#pragma once
#include "kiss_fft.h"
/*
Real optimized version can save about 45% cpu time vs. complex fft of a real seq.
*/
typedef struct kiss_fftr_state *kiss_fftr_cfg;
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem = nullptr, size_t * lenmem = nullptr);
/*
nfft must be even
If you don't care to allocate space, use mem = lenmem = NULL
*/
void kiss_fftr(kiss_fftr_cfg cfg,const double *timedata,kiss_fft_cpx *freqdata);
/*
input timedata has nfft scalar points
output freqdata has nfft/2+1 complex points
*/
void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,double *timedata);
/*
input freqdata has nfft/2+1 complex points
output timedata has nfft scalar points
*/
#define kiss_fftr_free free

View File

@ -0,0 +1,84 @@
//
// Created by mart on 7/28/21.
//
#include "DepthSurround.h"
#include <cstring>
#include <cmath>
#include "../constants.h"
DepthSurround::DepthSurround() {
this->strength = 0;
this->enabled = false;
this->strengthAtLeast500 = false;
this->gain = 0;
memset(&this->prev, 0, 2 * sizeof(float));
SetSamplingRate(DEFAULT_SAMPLERATE);
RefreshStrength(this->strength);
}
void DepthSurround::Process(float *samples, uint32_t size) {
if (this->enabled) {
if (!this->strengthAtLeast500) {
for (int i = 0; i < size; i++) {
float sampleLeft = samples[2*i];
float sampleRight = samples[2*i+1];
this->prev[0] = this->gain * this->delay[0].ProcessSample(sampleLeft + this->prev[1]);
this->prev[1] = this->gain * this->delay[1].ProcessSample(sampleRight + this->prev[0]);
float l = this->prev[0] + sampleLeft;
float r = this->prev[1] + sampleRight;
float diff = (l - r) / 2.f;
float avg = (l + r) / 2.f;
float avgOut = this->highpass.ProcessSample(diff);
samples[2*i] = avg + (diff - avgOut);
samples[2*i+1] = avg - (diff - avgOut);
}
} else {
for (int i = 0; i < size; i++) {
float sampleLeft = samples[2*i];
float sampleRight = samples[2*i+1];
this->prev[0] = this->gain * this->delay[0].ProcessSample(sampleLeft + this->prev[1]);
this->prev[1] = -this->gain * this->delay[1].ProcessSample(sampleRight + this->prev[0]);
float l = this->prev[0] + sampleLeft;
float r = this->prev[1] + sampleRight;
float diff = (l - r) / 2.f;
float avg = (l + r) / 2.f;
float avgOut = this->highpass.ProcessSample(diff);
samples[2*i] = avg + (diff - avgOut);
samples[2*i+1] = avg - (diff - avgOut);
}
}
}
}
void DepthSurround::RefreshStrength(short strength) {
this->strengthAtLeast500 = strength >= 500;
this->enabled = strength != 0;
if (strength != 0) {
float _gain = powf(10.f,((strength / 1000.f) * 10.f - 15.f) / 20.f);
if (fabsf(_gain) > 1.f) {
_gain = 1.f;
}
this->gain = _gain;
} else {
this->gain = 0;
}
}
void DepthSurround::SetSamplingRate(uint32_t samplerate) {
this->delay[0].SetParameters(samplerate, 0.02);
this->delay[1].SetParameters(samplerate, 0.014);
this->highpass.SetHighPassParameter(800.f, samplerate, -11.0f, 0.72f, 0);
memset(&this->prev, 0, 2 * sizeof(float));
}
void DepthSurround::SetStrength(short strength) {
this->strength = strength;
RefreshStrength(strength);
}

28
src/utils/DepthSurround.h Normal file
View File

@ -0,0 +1,28 @@
//
// Created by mart on 7/28/21.
//
#pragma once
#include <cstdint>
#include "FixedBiquad.h"
#include "TimeConstDelay.h"
class DepthSurround {
public:
DepthSurround();
void Process(float* samples, uint32_t size);
void RefreshStrength(short strength);
void SetSamplingRate(uint32_t samplerate);
void SetStrength(short strength);
short strength;
bool enabled;
bool strengthAtLeast500;
uint32_t gain;
float prev[2];
TimeConstDelay delay[2];
FixedBiquad highpass;
};