mirror of
https://github.com/0TheSpy/Seaside.git
synced 2025-01-10 19:22:10 +08:00
1878 lines
38 KiB
C++
1878 lines
38 KiB
C++
#ifndef VECTOR_H
|
|
#define VECTOR_H
|
|
|
|
#ifdef _WIN32
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#include "basetypes.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifndef _X360
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#include "dbg.h"
|
|
#include "threadtools.h"
|
|
#include "vector2d.h"
|
|
#include "math_pfns.h"
|
|
#include "minmax.h"
|
|
|
|
|
|
#define X_INDEX 0
|
|
#define Y_INDEX 1
|
|
#define Z_INDEX 2
|
|
|
|
|
|
#ifdef VECTOR_PARANOIA
|
|
#define CHECK_VALID( _v) Assert( (_v).IsValid() )
|
|
#else
|
|
#ifdef GNUC
|
|
#define CHECK_VALID( _v)
|
|
#else
|
|
#define CHECK_VALID( _v) 0
|
|
#endif
|
|
#endif
|
|
|
|
#define VecToString(v) (static_cast<const char *>(CFmtStr("(%f, %f, %f)", (v).x, (v).y, (v).z)))
|
|
|
|
class VectorByValue;
|
|
|
|
class Vector
|
|
{
|
|
public:
|
|
vec_t x, y, z;
|
|
|
|
Vector(void);
|
|
Vector(vec_t X, vec_t Y, vec_t Z);
|
|
explicit Vector(vec_t XYZ);
|
|
|
|
void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f);
|
|
bool IsValid() const;
|
|
void Invalidate();
|
|
|
|
vec_t operator[](int i) const;
|
|
vec_t& operator[](int i);
|
|
|
|
vec_t* Base();
|
|
vec_t const* Base() const;
|
|
|
|
Vector2D& AsVector2D();
|
|
const Vector2D& AsVector2D() const;
|
|
|
|
void Random(vec_t minVal, vec_t maxVal);
|
|
inline void Zero();
|
|
|
|
bool operator==(const Vector& v) const;
|
|
bool operator!=(const Vector& v) const;
|
|
|
|
FORCEINLINE Vector& operator+=(const Vector& v);
|
|
FORCEINLINE Vector& operator-=(const Vector& v);
|
|
FORCEINLINE Vector& operator*=(const Vector& v);
|
|
FORCEINLINE Vector& operator*=(float s);
|
|
FORCEINLINE Vector& operator/=(const Vector& v);
|
|
FORCEINLINE Vector& operator/=(float s);
|
|
FORCEINLINE Vector& operator+=(float fl);
|
|
FORCEINLINE Vector& operator-=(float fl);
|
|
|
|
void Negate();
|
|
|
|
inline vec_t Length() const;
|
|
|
|
FORCEINLINE vec_t LengthSqr(void) const
|
|
{
|
|
CHECK_VALID(*this);
|
|
return (x * x + y * y + z * z);
|
|
}
|
|
|
|
bool IsZero(float tolerance = 0.01f) const
|
|
{
|
|
return (x > -tolerance && x < tolerance&&
|
|
y > -tolerance && y < tolerance&&
|
|
z > -tolerance && z < tolerance);
|
|
}
|
|
|
|
vec_t NormalizeInPlace();
|
|
Vector Normalized() const;
|
|
bool IsLengthGreaterThan(float val) const;
|
|
bool IsLengthLessThan(float val) const;
|
|
|
|
FORCEINLINE bool WithinAABox(Vector const& boxmin, Vector const& boxmax);
|
|
|
|
vec_t DistTo(const Vector& vOther) const;
|
|
|
|
FORCEINLINE vec_t DistToSqr(const Vector& vOther) const
|
|
{
|
|
Vector delta;
|
|
|
|
delta.x = x - vOther.x;
|
|
delta.y = y - vOther.y;
|
|
delta.z = z - vOther.z;
|
|
|
|
return delta.LengthSqr();
|
|
}
|
|
|
|
void CopyToArray(float* rgfl) const;
|
|
|
|
void MulAdd(const Vector& a, const Vector& b, float scalar);
|
|
|
|
vec_t Dot(const Vector& vOther) const;
|
|
|
|
Vector& operator=(const Vector& vOther);
|
|
|
|
vec_t Length2D(void) const;
|
|
vec_t Length2DSqr(void) const;
|
|
|
|
operator VectorByValue& () { return *((VectorByValue*)(this)); }
|
|
operator const VectorByValue& () const { return *((const VectorByValue*)(this)); }
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
Vector operator-(void) const;
|
|
|
|
Vector operator+(const Vector& v) const;
|
|
Vector operator-(const Vector& v) const;
|
|
Vector operator*(const Vector& v) const;
|
|
Vector operator/(const Vector& v) const;
|
|
Vector operator*(float fl) const;
|
|
Vector operator/(float fl) const;
|
|
|
|
Vector Cross(const Vector& vOther) const;
|
|
|
|
Vector Min(const Vector& vOther) const;
|
|
Vector Max(const Vector& vOther) const;
|
|
|
|
#else
|
|
|
|
private:
|
|
Vector(const Vector& vOther);
|
|
#endif
|
|
};
|
|
|
|
FORCEINLINE void NetworkVarConstruct(Vector& v) { v.Zero(); }
|
|
|
|
|
|
#define USE_M64S ( ( !defined( _X360 ) ) )
|
|
|
|
|
|
|
|
class ALIGN8 ShortVector
|
|
{
|
|
public:
|
|
|
|
short x, y, z, w;
|
|
|
|
void Init(short ix = 0, short iy = 0, short iz = 0, short iw = 0);
|
|
|
|
|
|
#if USE_M64S
|
|
__m64& AsM64() { return *(__m64*) & x; }
|
|
const __m64& AsM64() const { return *(const __m64*) & x; }
|
|
#endif
|
|
|
|
void Set(const ShortVector& vOther);
|
|
void Set(const short ix, const short iy, const short iz, const short iw);
|
|
|
|
short operator[](int i) const;
|
|
short& operator[](int i);
|
|
|
|
short* Base();
|
|
short const* Base() const;
|
|
|
|
bool operator==(const ShortVector& v) const;
|
|
bool operator!=(const ShortVector& v) const;
|
|
|
|
FORCEINLINE ShortVector& operator+=(const ShortVector& v);
|
|
FORCEINLINE ShortVector& operator-=(const ShortVector& v);
|
|
FORCEINLINE ShortVector& operator*=(const ShortVector& v);
|
|
FORCEINLINE ShortVector& operator*=(float s);
|
|
FORCEINLINE ShortVector& operator/=(const ShortVector& v);
|
|
FORCEINLINE ShortVector& operator/=(float s);
|
|
FORCEINLINE ShortVector operator*(float fl) const;
|
|
|
|
private:
|
|
|
|
} ALIGN8_POST;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class IntVector4D
|
|
{
|
|
public:
|
|
|
|
int x, y, z, w;
|
|
|
|
void Init(int ix = 0, int iy = 0, int iz = 0, int iw = 0);
|
|
|
|
#if USE_M64S
|
|
__m64& AsM64() { return *(__m64*) & x; }
|
|
const __m64& AsM64() const { return *(const __m64*) & x; }
|
|
#endif
|
|
|
|
void Set(const IntVector4D& vOther);
|
|
void Set(const int ix, const int iy, const int iz, const int iw);
|
|
|
|
int operator[](int i) const;
|
|
int& operator[](int i);
|
|
|
|
int* Base();
|
|
int const* Base() const;
|
|
|
|
bool operator==(const IntVector4D& v) const;
|
|
bool operator!=(const IntVector4D& v) const;
|
|
|
|
FORCEINLINE IntVector4D& operator+=(const IntVector4D& v);
|
|
FORCEINLINE IntVector4D& operator-=(const IntVector4D& v);
|
|
FORCEINLINE IntVector4D& operator*=(const IntVector4D& v);
|
|
FORCEINLINE IntVector4D& operator*=(float s);
|
|
FORCEINLINE IntVector4D& operator/=(const IntVector4D& v);
|
|
FORCEINLINE IntVector4D& operator/=(float s);
|
|
FORCEINLINE IntVector4D operator*(float fl) const;
|
|
|
|
private:
|
|
|
|
};
|
|
|
|
|
|
|
|
class VectorByValue : public Vector
|
|
{
|
|
public:
|
|
VectorByValue(void) : Vector() {}
|
|
VectorByValue(vec_t X, vec_t Y, vec_t Z) : Vector(X, Y, Z) {}
|
|
VectorByValue(const VectorByValue& vOther) { *this = vOther; }
|
|
};
|
|
|
|
|
|
class TableVector
|
|
{
|
|
public:
|
|
vec_t x, y, z;
|
|
|
|
operator Vector& () { return *((Vector*)(this)); }
|
|
operator const Vector& () const { return *((const Vector*)(this)); }
|
|
|
|
inline vec_t& operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
inline vec_t operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
};
|
|
|
|
|
|
class ALIGN16 VectorAligned : public Vector
|
|
{
|
|
public:
|
|
inline VectorAligned(void) {};
|
|
inline VectorAligned(vec_t X, vec_t Y, vec_t Z)
|
|
{
|
|
Init(X, Y, Z);
|
|
}
|
|
|
|
#ifdef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
private:
|
|
VectorAligned(const VectorAligned& vOther);
|
|
VectorAligned(const Vector& vOther);
|
|
|
|
#else
|
|
public:
|
|
explicit VectorAligned(const Vector& vOther)
|
|
{
|
|
Init(vOther.x, vOther.y, vOther.z);
|
|
}
|
|
|
|
VectorAligned& operator=(const Vector& vOther)
|
|
{
|
|
Init(vOther.x, vOther.y, vOther.z);
|
|
return *this;
|
|
}
|
|
|
|
#endif
|
|
float w;
|
|
} ALIGN16_POST;
|
|
|
|
FORCEINLINE void VectorClear(Vector& a);
|
|
|
|
FORCEINLINE void VectorCopy(const Vector& src, Vector& dst);
|
|
|
|
FORCEINLINE void VectorAdd(const Vector& a, const Vector& b, Vector& result);
|
|
FORCEINLINE void VectorSubtract(const Vector& a, const Vector& b, Vector& result);
|
|
FORCEINLINE void VectorMultiply(const Vector& a, vec_t b, Vector& result);
|
|
FORCEINLINE void VectorMultiply(const Vector& a, const Vector& b, Vector& result);
|
|
FORCEINLINE void VectorDivide(const Vector& a, vec_t b, Vector& result);
|
|
FORCEINLINE void VectorDivide(const Vector& a, const Vector& b, Vector& result);
|
|
inline void VectorScale(const Vector& in, vec_t scale, Vector& result);
|
|
void VectorMA(const Vector& start, float scale, const Vector& direction, Vector& dest);
|
|
|
|
bool VectorsAreEqual(const Vector& src1, const Vector& src2, float tolerance = 0.0f);
|
|
|
|
#define VectorExpand(v) (v).x, (v).y, (v).z
|
|
|
|
|
|
inline vec_t VectorLength(const Vector& v);
|
|
|
|
FORCEINLINE vec_t DotProduct(const Vector& a, const Vector& b);
|
|
|
|
void CrossProduct(const Vector& a, const Vector& b, Vector& result);
|
|
|
|
void VectorMin(const Vector& a, const Vector& b, Vector& result);
|
|
void VectorMax(const Vector& a, const Vector& b, Vector& result);
|
|
|
|
void VectorLerp(const Vector& src1, const Vector& src2, vec_t t, Vector& dest);
|
|
Vector VectorLerp(const Vector& src1, const Vector& src2, vec_t t);
|
|
|
|
FORCEINLINE Vector ReplicateToVector(float x)
|
|
{
|
|
return Vector(x, x, x);
|
|
}
|
|
|
|
FORCEINLINE bool PointWithinViewAngle(Vector const& vecSrcPosition,
|
|
Vector const& vecTargetPosition,
|
|
Vector const& vecLookDirection, float flCosHalfFOV)
|
|
{
|
|
Vector vecDelta = vecTargetPosition - vecSrcPosition;
|
|
float cosDiff = DotProduct(vecLookDirection, vecDelta);
|
|
|
|
if (cosDiff < 0)
|
|
return false;
|
|
|
|
float flLen2 = vecDelta.LengthSqr();
|
|
|
|
return (cosDiff * cosDiff > flLen2 * flCosHalfFOV * flCosHalfFOV);
|
|
|
|
}
|
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
Vector CrossProduct(const Vector& a, const Vector& b);
|
|
|
|
Vector RandomVector(vec_t minVal, vec_t maxVal);
|
|
|
|
#endif
|
|
|
|
float RandomVectorInUnitSphere(Vector* pVector);
|
|
float RandomVectorInUnitCircle(Vector2D* pVector);
|
|
|
|
|
|
|
|
inline Vector::Vector(void)
|
|
{
|
|
#ifdef _DEBUG
|
|
#ifdef VECTOR_PARANOIA
|
|
x = y = z = VEC_T_NAN;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
inline Vector::Vector(vec_t X, vec_t Y, vec_t Z)
|
|
{
|
|
x = X; y = Y; z = Z;
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
inline Vector::Vector(vec_t XYZ)
|
|
{
|
|
x = y = z = XYZ;
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
#if 0
|
|
inline Vector::Vector(const Vector& vOther)
|
|
{
|
|
CHECK_VALID(vOther);
|
|
x = vOther.x; y = vOther.y; z = vOther.z;
|
|
}
|
|
#endif
|
|
|
|
inline void Vector::Init(vec_t ix, vec_t iy, vec_t iz)
|
|
{
|
|
x = ix; y = iy; z = iz;
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
inline void Vector::Random(vec_t minVal, vec_t maxVal)
|
|
{
|
|
x = minVal + ((float)rand() / VALVE_RAND_MAX) * (maxVal - minVal);
|
|
y = minVal + ((float)rand() / VALVE_RAND_MAX) * (maxVal - minVal);
|
|
z = minVal + ((float)rand() / VALVE_RAND_MAX) * (maxVal - minVal);
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
inline void Vector::Zero()
|
|
{
|
|
x = y = z = 0.0f;
|
|
}
|
|
|
|
inline void VectorClear(Vector& a)
|
|
{
|
|
a.x = a.y = a.z = 0.0f;
|
|
}
|
|
|
|
inline Vector& Vector::operator=(const Vector& vOther)
|
|
{
|
|
CHECK_VALID(vOther);
|
|
x = vOther.x; y = vOther.y; z = vOther.z;
|
|
return *this;
|
|
}
|
|
|
|
|
|
inline vec_t& Vector::operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
inline vec_t Vector::operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
|
|
inline vec_t* Vector::Base()
|
|
{
|
|
return (vec_t*)this;
|
|
}
|
|
|
|
inline vec_t const* Vector::Base() const
|
|
{
|
|
return (vec_t const*)this;
|
|
}
|
|
|
|
inline Vector2D& Vector::AsVector2D()
|
|
{
|
|
return *(Vector2D*)this;
|
|
}
|
|
|
|
inline const Vector2D& Vector::AsVector2D() const
|
|
{
|
|
return *(const Vector2D*)this;
|
|
}
|
|
|
|
inline bool Vector::IsValid() const
|
|
{
|
|
return IsFinite(x) && IsFinite(y) && IsFinite(z);
|
|
}
|
|
|
|
inline void Vector::Invalidate()
|
|
{
|
|
x = y = z = VEC_T_NAN;
|
|
}
|
|
|
|
inline bool Vector::operator==(const Vector& src) const
|
|
{
|
|
CHECK_VALID(src);
|
|
CHECK_VALID(*this);
|
|
return (src.x == x) && (src.y == y) && (src.z == z);
|
|
}
|
|
|
|
inline bool Vector::operator!=(const Vector& src) const
|
|
{
|
|
CHECK_VALID(src);
|
|
CHECK_VALID(*this);
|
|
return (src.x != x) || (src.y != y) || (src.z != z);
|
|
}
|
|
|
|
|
|
FORCEINLINE void VectorCopy(const Vector& src, Vector& dst)
|
|
{
|
|
CHECK_VALID(src);
|
|
dst.x = src.x;
|
|
dst.y = src.y;
|
|
dst.z = src.z;
|
|
}
|
|
|
|
inline void Vector::CopyToArray(float* rgfl) const
|
|
{
|
|
Assert(rgfl);
|
|
CHECK_VALID(*this);
|
|
rgfl[0] = x, rgfl[1] = y, rgfl[2] = z;
|
|
}
|
|
|
|
inline void Vector::Negate()
|
|
{
|
|
CHECK_VALID(*this);
|
|
x = -x; y = -y; z = -z;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator+=(const Vector& v)
|
|
{
|
|
CHECK_VALID(*this);
|
|
CHECK_VALID(v);
|
|
x += v.x; y += v.y; z += v.z;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator-=(const Vector& v)
|
|
{
|
|
CHECK_VALID(*this);
|
|
CHECK_VALID(v);
|
|
x -= v.x; y -= v.y; z -= v.z;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator*=(float fl)
|
|
{
|
|
x *= fl;
|
|
y *= fl;
|
|
z *= fl;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator*=(const Vector& v)
|
|
{
|
|
CHECK_VALID(v);
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator+=(float fl)
|
|
{
|
|
x += fl;
|
|
y += fl;
|
|
z += fl;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator-=(float fl)
|
|
{
|
|
x -= fl;
|
|
y -= fl;
|
|
z -= fl;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
FORCEINLINE Vector& Vector::operator/=(float fl)
|
|
{
|
|
Assert(fl != 0.0f);
|
|
float oofl = 1.0f / fl;
|
|
x *= oofl;
|
|
y *= oofl;
|
|
z *= oofl;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE Vector& Vector::operator/=(const Vector& v)
|
|
{
|
|
CHECK_VALID(v);
|
|
Assert(v.x != 0.0f && v.y != 0.0f && v.z != 0.0f);
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
|
|
inline void ShortVector::Init(short ix, short iy, short iz, short iw)
|
|
{
|
|
x = ix; y = iy; z = iz; w = iw;
|
|
}
|
|
|
|
FORCEINLINE void ShortVector::Set(const ShortVector& vOther)
|
|
{
|
|
x = vOther.x;
|
|
y = vOther.y;
|
|
z = vOther.z;
|
|
w = vOther.w;
|
|
}
|
|
|
|
FORCEINLINE void ShortVector::Set(const short ix, const short iy, const short iz, const short iw)
|
|
{
|
|
x = ix;
|
|
y = iy;
|
|
z = iz;
|
|
w = iw;
|
|
}
|
|
|
|
|
|
inline short ShortVector::operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 4));
|
|
return ((short*)this)[i];
|
|
}
|
|
|
|
inline short& ShortVector::operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 4));
|
|
return ((short*)this)[i];
|
|
}
|
|
|
|
inline short* ShortVector::Base()
|
|
{
|
|
return (short*)this;
|
|
}
|
|
|
|
inline short const* ShortVector::Base() const
|
|
{
|
|
return (short const*)this;
|
|
}
|
|
|
|
|
|
inline bool ShortVector::operator==(const ShortVector& src) const
|
|
{
|
|
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
|
|
}
|
|
|
|
inline bool ShortVector::operator!=(const ShortVector& src) const
|
|
{
|
|
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
|
|
}
|
|
|
|
|
|
|
|
FORCEINLINE ShortVector& ShortVector::operator+=(const ShortVector& v)
|
|
{
|
|
x += v.x; y += v.y; z += v.z; w += v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE ShortVector& ShortVector::operator-=(const ShortVector& v)
|
|
{
|
|
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE ShortVector& ShortVector::operator*=(float fl)
|
|
{
|
|
x *= fl;
|
|
y *= fl;
|
|
z *= fl;
|
|
w *= fl;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE ShortVector& ShortVector::operator*=(const ShortVector& v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
w *= v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE ShortVector& ShortVector::operator/=(float fl)
|
|
{
|
|
Assert(fl != 0.0f);
|
|
float oofl = 1.0f / fl;
|
|
x *= oofl;
|
|
y *= oofl;
|
|
z *= oofl;
|
|
w *= oofl;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE ShortVector& ShortVector::operator/=(const ShortVector& v)
|
|
{
|
|
Assert(v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0);
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
w /= v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE void ShortVectorMultiply(const ShortVector& src, float fl, ShortVector& res)
|
|
{
|
|
Assert(IsFinite(fl));
|
|
res.x = src.x * fl;
|
|
res.y = src.y * fl;
|
|
res.z = src.z * fl;
|
|
res.w = src.w * fl;
|
|
}
|
|
|
|
FORCEINLINE ShortVector ShortVector::operator*(float fl) const
|
|
{
|
|
ShortVector res;
|
|
ShortVectorMultiply(*this, fl, res);
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline void IntVector4D::Init(int ix, int iy, int iz, int iw)
|
|
{
|
|
x = ix; y = iy; z = iz; w = iw;
|
|
}
|
|
|
|
FORCEINLINE void IntVector4D::Set(const IntVector4D& vOther)
|
|
{
|
|
x = vOther.x;
|
|
y = vOther.y;
|
|
z = vOther.z;
|
|
w = vOther.w;
|
|
}
|
|
|
|
FORCEINLINE void IntVector4D::Set(const int ix, const int iy, const int iz, const int iw)
|
|
{
|
|
x = ix;
|
|
y = iy;
|
|
z = iz;
|
|
w = iw;
|
|
}
|
|
|
|
|
|
inline int IntVector4D::operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 4));
|
|
return ((int*)this)[i];
|
|
}
|
|
|
|
inline int& IntVector4D::operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 4));
|
|
return ((int*)this)[i];
|
|
}
|
|
|
|
inline int* IntVector4D::Base()
|
|
{
|
|
return (int*)this;
|
|
}
|
|
|
|
inline int const* IntVector4D::Base() const
|
|
{
|
|
return (int const*)this;
|
|
}
|
|
|
|
|
|
inline bool IntVector4D::operator==(const IntVector4D& src) const
|
|
{
|
|
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
|
|
}
|
|
|
|
inline bool IntVector4D::operator!=(const IntVector4D& src) const
|
|
{
|
|
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
|
|
}
|
|
|
|
|
|
|
|
FORCEINLINE IntVector4D& IntVector4D::operator+=(const IntVector4D& v)
|
|
{
|
|
x += v.x; y += v.y; z += v.z; w += v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE IntVector4D& IntVector4D::operator-=(const IntVector4D& v)
|
|
{
|
|
x -= v.x; y -= v.y; z -= v.z; w -= v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE IntVector4D& IntVector4D::operator*=(float fl)
|
|
{
|
|
x *= fl;
|
|
y *= fl;
|
|
z *= fl;
|
|
w *= fl;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE IntVector4D& IntVector4D::operator*=(const IntVector4D& v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
w *= v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE IntVector4D& IntVector4D::operator/=(float fl)
|
|
{
|
|
Assert(fl != 0.0f);
|
|
float oofl = 1.0f / fl;
|
|
x *= oofl;
|
|
y *= oofl;
|
|
z *= oofl;
|
|
w *= oofl;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE IntVector4D& IntVector4D::operator/=(const IntVector4D& v)
|
|
{
|
|
Assert(v.x != 0 && v.y != 0 && v.z != 0 && v.w != 0);
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
w /= v.w;
|
|
return *this;
|
|
}
|
|
|
|
FORCEINLINE void IntVector4DMultiply(const IntVector4D& src, float fl, IntVector4D& res)
|
|
{
|
|
Assert(IsFinite(fl));
|
|
res.x = src.x * fl;
|
|
res.y = src.y * fl;
|
|
res.z = src.z * fl;
|
|
res.w = src.w * fl;
|
|
}
|
|
|
|
FORCEINLINE IntVector4D IntVector4D::operator*(float fl) const
|
|
{
|
|
IntVector4D res;
|
|
IntVector4DMultiply(*this, fl, res);
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
FORCEINLINE void VectorAdd(const Vector& a, const Vector& b, Vector& c)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
c.x = a.x + b.x;
|
|
c.y = a.y + b.y;
|
|
c.z = a.z + b.z;
|
|
}
|
|
|
|
FORCEINLINE void VectorSubtract(const Vector& a, const Vector& b, Vector& c)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
c.x = a.x - b.x;
|
|
c.y = a.y - b.y;
|
|
c.z = a.z - b.z;
|
|
}
|
|
|
|
FORCEINLINE void VectorMultiply(const Vector& a, vec_t b, Vector& c)
|
|
{
|
|
CHECK_VALID(a);
|
|
Assert(IsFinite(b));
|
|
c.x = a.x * b;
|
|
c.y = a.y * b;
|
|
c.z = a.z * b;
|
|
}
|
|
|
|
FORCEINLINE void VectorMultiply(const Vector& a, const Vector& b, Vector& c)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
c.x = a.x * b.x;
|
|
c.y = a.y * b.y;
|
|
c.z = a.z * b.z;
|
|
}
|
|
|
|
inline void VectorScale(const Vector& in, vec_t scale, Vector& result)
|
|
{
|
|
VectorMultiply(in, scale, result);
|
|
}
|
|
|
|
|
|
FORCEINLINE void VectorDivide(const Vector& a, vec_t b, Vector& c)
|
|
{
|
|
CHECK_VALID(a);
|
|
Assert(b != 0.0f);
|
|
vec_t oob = 1.0f / b;
|
|
c.x = a.x * oob;
|
|
c.y = a.y * oob;
|
|
c.z = a.z * oob;
|
|
}
|
|
|
|
FORCEINLINE void VectorDivide(const Vector& a, const Vector& b, Vector& c)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
Assert((b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f));
|
|
c.x = a.x / b.x;
|
|
c.y = a.y / b.y;
|
|
c.z = a.z / b.z;
|
|
}
|
|
|
|
inline void Vector::MulAdd(const Vector& a, const Vector& b, float scalar)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
x = a.x + b.x * scalar;
|
|
y = a.y + b.y * scalar;
|
|
z = a.z + b.z * scalar;
|
|
}
|
|
|
|
inline void VectorLerp(const Vector& src1, const Vector& src2, vec_t t, Vector& dest)
|
|
{
|
|
CHECK_VALID(src1);
|
|
CHECK_VALID(src2);
|
|
dest.x = src1.x + (src2.x - src1.x) * t;
|
|
dest.y = src1.y + (src2.y - src1.y) * t;
|
|
dest.z = src1.z + (src2.z - src1.z) * t;
|
|
}
|
|
|
|
inline Vector VectorLerp(const Vector& src1, const Vector& src2, vec_t t)
|
|
{
|
|
Vector result;
|
|
VectorLerp(src1, src2, t, result);
|
|
return result;
|
|
}
|
|
|
|
inline Vector& AllocTempVector()
|
|
{
|
|
static Vector s_vecTemp[128];
|
|
static CInterlockedInt s_nIndex;
|
|
|
|
int nIndex;
|
|
for (;;)
|
|
{
|
|
int nOldIndex = s_nIndex;
|
|
nIndex = ((nOldIndex + 0x10001) & 0x7F);
|
|
|
|
if (s_nIndex.AssignIf(nOldIndex, nIndex))
|
|
{
|
|
break;
|
|
}
|
|
ThreadPause();
|
|
}
|
|
return s_vecTemp[nIndex];
|
|
}
|
|
|
|
|
|
|
|
FORCEINLINE vec_t DotProduct(const Vector& a, const Vector& b)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
return(a.x * b.x + a.y * b.y + a.z * b.z);
|
|
}
|
|
|
|
inline vec_t Vector::Dot(const Vector& vOther) const
|
|
{
|
|
CHECK_VALID(vOther);
|
|
return DotProduct(*this, vOther);
|
|
}
|
|
|
|
inline void CrossProduct(const Vector& a, const Vector& b, Vector& result)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
Assert(&a != &result);
|
|
Assert(&b != &result);
|
|
result.x = a.y * b.z - a.z * b.y;
|
|
result.y = a.z * b.x - a.x * b.z;
|
|
result.z = a.x * b.y - a.y * b.x;
|
|
}
|
|
|
|
inline vec_t DotProductAbs(const Vector& v0, const Vector& v1)
|
|
{
|
|
CHECK_VALID(v0);
|
|
CHECK_VALID(v1);
|
|
return FloatMakePositive(v0.x * v1.x) + FloatMakePositive(v0.y * v1.y) + FloatMakePositive(v0.z * v1.z);
|
|
}
|
|
|
|
inline vec_t DotProductAbs(const Vector& v0, const float* v1)
|
|
{
|
|
return FloatMakePositive(v0.x * v1[0]) + FloatMakePositive(v0.y * v1[1]) + FloatMakePositive(v0.z * v1[2]);
|
|
}
|
|
|
|
inline vec_t VectorLength(const Vector& v)
|
|
{
|
|
CHECK_VALID(v);
|
|
return (vec_t)FastSqrt(v.x * v.x + v.y * v.y + v.z * v.z);
|
|
}
|
|
|
|
|
|
inline vec_t Vector::Length(void) const
|
|
{
|
|
CHECK_VALID(*this);
|
|
return VectorLength(*this);
|
|
}
|
|
|
|
|
|
|
|
bool Vector::WithinAABox(Vector const& boxmin, Vector const& boxmax)
|
|
{
|
|
return (
|
|
(x >= boxmin.x) && (x <= boxmax.x) &&
|
|
(y >= boxmin.y) && (y <= boxmax.y) &&
|
|
(z >= boxmin.z) && (z <= boxmax.z)
|
|
);
|
|
}
|
|
|
|
inline vec_t Vector::DistTo(const Vector& vOther) const
|
|
{
|
|
Vector delta;
|
|
VectorSubtract(*this, vOther, delta);
|
|
return delta.Length();
|
|
}
|
|
|
|
|
|
inline bool VectorsAreEqual(const Vector& src1, const Vector& src2, float tolerance)
|
|
{
|
|
if (FloatMakePositive(src1.x - src2.x) > tolerance)
|
|
return false;
|
|
if (FloatMakePositive(src1.y - src2.y) > tolerance)
|
|
return false;
|
|
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
|
|
}
|
|
|
|
|
|
inline void ComputeClosestPoint(const Vector& vecStart, float flMaxDist, const Vector& vecTarget, Vector* pResult)
|
|
{
|
|
Vector vecDelta;
|
|
VectorSubtract(vecTarget, vecStart, vecDelta);
|
|
float flDistSqr = vecDelta.LengthSqr();
|
|
if (flDistSqr <= flMaxDist * flMaxDist)
|
|
{
|
|
*pResult = vecTarget;
|
|
}
|
|
else
|
|
{
|
|
vecDelta /= FastSqrt(flDistSqr);
|
|
VectorMA(vecStart, flMaxDist, vecDelta, *pResult);
|
|
}
|
|
}
|
|
|
|
|
|
inline void VectorAbs(const Vector& src, Vector& dst)
|
|
{
|
|
dst.x = FloatMakePositive(src.x);
|
|
dst.y = FloatMakePositive(src.y);
|
|
dst.z = FloatMakePositive(src.z);
|
|
}
|
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
inline Vector Vector::Min(const Vector& vOther) const
|
|
{
|
|
return Vector(x < vOther.x ? x : vOther.x,
|
|
y < vOther.y ? y : vOther.y,
|
|
z < vOther.z ? z : vOther.z);
|
|
}
|
|
|
|
inline Vector Vector::Max(const Vector& vOther) const
|
|
{
|
|
return Vector(x > vOther.x ? x : vOther.x,
|
|
y > vOther.y ? y : vOther.y,
|
|
z > vOther.z ? z : vOther.z);
|
|
}
|
|
|
|
|
|
inline Vector Vector::operator-(void) const
|
|
{
|
|
return Vector(-x, -y, -z);
|
|
}
|
|
|
|
inline Vector Vector::operator+(const Vector& v) const
|
|
{
|
|
Vector res;
|
|
VectorAdd(*this, v, res);
|
|
return res;
|
|
}
|
|
|
|
inline Vector Vector::operator-(const Vector& v) const
|
|
{
|
|
Vector res;
|
|
VectorSubtract(*this, v, res);
|
|
return res;
|
|
}
|
|
|
|
inline Vector Vector::operator*(float fl) const
|
|
{
|
|
Vector res;
|
|
VectorMultiply(*this, fl, res);
|
|
return res;
|
|
}
|
|
|
|
inline Vector Vector::operator*(const Vector& v) const
|
|
{
|
|
Vector res;
|
|
VectorMultiply(*this, v, res);
|
|
return res;
|
|
}
|
|
|
|
inline Vector Vector::operator/(float fl) const
|
|
{
|
|
Vector res;
|
|
VectorDivide(*this, fl, res);
|
|
return res;
|
|
}
|
|
|
|
inline Vector Vector::operator/(const Vector& v) const
|
|
{
|
|
Vector res;
|
|
VectorDivide(*this, v, res);
|
|
return res;
|
|
}
|
|
|
|
inline Vector operator*(float fl, const Vector& v)
|
|
{
|
|
return v * fl;
|
|
}
|
|
|
|
inline Vector Vector::Cross(const Vector& vOther) const
|
|
{
|
|
Vector res;
|
|
CrossProduct(*this, vOther, res);
|
|
return res;
|
|
}
|
|
|
|
inline vec_t Vector::Length2D(void) const
|
|
{
|
|
return (vec_t)FastSqrt(x * x + y * y);
|
|
}
|
|
|
|
inline vec_t Vector::Length2DSqr(void) const
|
|
{
|
|
return (x * x + y * y);
|
|
}
|
|
|
|
inline Vector CrossProduct(const Vector& a, const Vector& b)
|
|
{
|
|
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
inline void VectorMin(const Vector& a, const Vector& b, Vector& result)
|
|
{
|
|
result.x = fpmin(a.x, b.x);
|
|
result.y = fpmin(a.y, b.y);
|
|
result.z = fpmin(a.z, b.z);
|
|
}
|
|
|
|
inline void VectorMax(const Vector& a, const Vector& b, Vector& result)
|
|
{
|
|
result.x = fpmax(a.x, b.x);
|
|
result.y = fpmax(a.y, b.y);
|
|
result.z = fpmax(a.z, b.z);
|
|
}
|
|
|
|
inline float ComputeVolume(const Vector& vecMins, const Vector& vecMaxs)
|
|
{
|
|
Vector vecDelta;
|
|
VectorSubtract(vecMaxs, vecMins, vecDelta);
|
|
return DotProduct(vecDelta, vecDelta);
|
|
}
|
|
|
|
inline Vector RandomVector(float minVal, float maxVal)
|
|
{
|
|
Vector random;
|
|
random.Random(minVal, maxVal);
|
|
return random;
|
|
}
|
|
|
|
#endif
|
|
|
|
inline bool operator==(float const* f, const Vector& v)
|
|
{
|
|
Assert(0);
|
|
return false;
|
|
}
|
|
|
|
inline bool operator==(const Vector& v, float const* f)
|
|
{
|
|
Assert(0);
|
|
return false;
|
|
}
|
|
|
|
inline bool operator!=(float const* f, const Vector& v)
|
|
{
|
|
Assert(0);
|
|
return false;
|
|
}
|
|
|
|
inline bool operator!=(const Vector& v, float const* f)
|
|
{
|
|
Assert(0);
|
|
return false;
|
|
}
|
|
|
|
|
|
typedef Vector AngularImpulse;
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
inline AngularImpulse RandomAngularImpulse(float minVal, float maxVal)
|
|
{
|
|
AngularImpulse angImp;
|
|
angImp.Random(minVal, maxVal);
|
|
return angImp;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
class RadianEuler;
|
|
|
|
class Quaternion
|
|
{
|
|
public:
|
|
inline Quaternion(void) {
|
|
|
|
#ifdef _DEBUG
|
|
#ifdef VECTOR_PARANOIA
|
|
x = y = z = w = VEC_T_NAN;
|
|
#endif
|
|
#endif
|
|
}
|
|
inline Quaternion(vec_t ix, vec_t iy, vec_t iz, vec_t iw) : x(ix), y(iy), z(iz), w(iw) { }
|
|
inline Quaternion(RadianEuler const& angle);
|
|
|
|
inline void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f, vec_t iw = 0.0f) { x = ix; y = iy; z = iz; w = iw; }
|
|
|
|
bool IsValid() const;
|
|
void Invalidate();
|
|
|
|
bool operator==(const Quaternion& src) const;
|
|
bool operator!=(const Quaternion& src) const;
|
|
|
|
vec_t* Base() { return (vec_t*)this; }
|
|
const vec_t* Base() const { return (vec_t*)this; }
|
|
|
|
vec_t operator[](int i) const;
|
|
vec_t& operator[](int i);
|
|
|
|
vec_t x, y, z, w;
|
|
};
|
|
|
|
|
|
inline vec_t& Quaternion::operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 4));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
inline vec_t Quaternion::operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 4));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
|
|
inline bool Quaternion::operator==(const Quaternion& src) const
|
|
{
|
|
return (x == src.x) && (y == src.y) && (z == src.z) && (w == src.w);
|
|
}
|
|
|
|
inline bool Quaternion::operator!=(const Quaternion& src) const
|
|
{
|
|
return !operator==(src);
|
|
}
|
|
|
|
|
|
inline bool QuaternionsAreEqual(const Quaternion& src1, const Quaternion& src2, float tolerance)
|
|
{
|
|
if (FloatMakePositive(src1.x - src2.x) > tolerance)
|
|
return false;
|
|
if (FloatMakePositive(src1.y - src2.y) > tolerance)
|
|
return false;
|
|
if (FloatMakePositive(src1.z - src2.z) > tolerance)
|
|
return false;
|
|
return (FloatMakePositive(src1.w - src2.w) <= tolerance);
|
|
}
|
|
|
|
|
|
class ALIGN16 QuaternionAligned : public Quaternion
|
|
{
|
|
public:
|
|
inline QuaternionAligned(void) {};
|
|
inline QuaternionAligned(vec_t X, vec_t Y, vec_t Z, vec_t W)
|
|
{
|
|
Init(X, Y, Z, W);
|
|
}
|
|
|
|
#ifdef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
private:
|
|
QuaternionAligned(const QuaternionAligned& vOther);
|
|
QuaternionAligned(const Quaternion& vOther);
|
|
|
|
#else
|
|
public:
|
|
explicit QuaternionAligned(const Quaternion& vOther)
|
|
{
|
|
Init(vOther.x, vOther.y, vOther.z, vOther.w);
|
|
}
|
|
|
|
QuaternionAligned& operator=(const Quaternion& vOther)
|
|
{
|
|
Init(vOther.x, vOther.y, vOther.z, vOther.w);
|
|
return *this;
|
|
}
|
|
|
|
#endif
|
|
} ALIGN16_POST;
|
|
|
|
|
|
class QAngle;
|
|
class RadianEuler
|
|
{
|
|
public:
|
|
inline RadianEuler(void) { }
|
|
inline RadianEuler(vec_t X, vec_t Y, vec_t Z) { x = X; y = Y; z = Z; }
|
|
inline RadianEuler(Quaternion const& q);
|
|
inline RadianEuler(QAngle const& angles);
|
|
|
|
inline void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f) { x = ix; y = iy; z = iz; }
|
|
|
|
QAngle ToQAngle(void) const;
|
|
bool IsValid() const;
|
|
void Invalidate();
|
|
|
|
vec_t operator[](int i) const;
|
|
vec_t& operator[](int i);
|
|
|
|
vec_t x, y, z;
|
|
};
|
|
|
|
|
|
extern void AngleQuaternion(RadianEuler const& angles, Quaternion& qt);
|
|
extern void QuaternionAngles(Quaternion const& q, RadianEuler& angles);
|
|
|
|
FORCEINLINE void NetworkVarConstruct(Quaternion& q) { q.x = q.y = q.z = q.w = 0.0f; }
|
|
|
|
inline Quaternion::Quaternion(RadianEuler const& angle)
|
|
{
|
|
AngleQuaternion(angle, *this);
|
|
}
|
|
|
|
inline bool Quaternion::IsValid() const
|
|
{
|
|
return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w);
|
|
}
|
|
|
|
inline void Quaternion::Invalidate()
|
|
{
|
|
x = y = z = w = VEC_T_NAN;
|
|
}
|
|
|
|
inline RadianEuler::RadianEuler(Quaternion const& q)
|
|
{
|
|
QuaternionAngles(q, *this);
|
|
}
|
|
|
|
inline void VectorCopy(RadianEuler const& src, RadianEuler& dst)
|
|
{
|
|
CHECK_VALID(src);
|
|
dst.x = src.x;
|
|
dst.y = src.y;
|
|
dst.z = src.z;
|
|
}
|
|
|
|
inline void VectorScale(RadianEuler const& src, float b, RadianEuler& dst)
|
|
{
|
|
CHECK_VALID(src);
|
|
Assert(IsFinite(b));
|
|
dst.x = src.x * b;
|
|
dst.y = src.y * b;
|
|
dst.z = src.z * b;
|
|
}
|
|
|
|
inline bool RadianEuler::IsValid() const
|
|
{
|
|
return IsFinite(x) && IsFinite(y) && IsFinite(z);
|
|
}
|
|
|
|
inline void RadianEuler::Invalidate()
|
|
{
|
|
x = y = z = VEC_T_NAN;
|
|
}
|
|
|
|
|
|
inline vec_t& RadianEuler::operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
inline vec_t RadianEuler::operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
|
|
class QAngleByValue;
|
|
|
|
class QAngle
|
|
{
|
|
public:
|
|
vec_t x, y, z;
|
|
|
|
QAngle(void);
|
|
QAngle(vec_t X, vec_t Y, vec_t Z);
|
|
operator QAngleByValue& () { return *((QAngleByValue*)(this)); }
|
|
operator const QAngleByValue& () const { return *((const QAngleByValue*)(this)); }
|
|
|
|
void Init(vec_t ix = 0.0f, vec_t iy = 0.0f, vec_t iz = 0.0f);
|
|
void Random(vec_t minVal, vec_t maxVal);
|
|
|
|
bool IsValid() const;
|
|
void Invalidate();
|
|
|
|
vec_t operator[](int i) const;
|
|
vec_t& operator[](int i);
|
|
|
|
vec_t* Base();
|
|
vec_t const* Base() const;
|
|
|
|
bool operator==(const QAngle& v) const;
|
|
bool operator!=(const QAngle& v) const;
|
|
|
|
QAngle& operator+=(const QAngle& v);
|
|
QAngle& operator-=(const QAngle& v);
|
|
QAngle& operator*=(float s);
|
|
QAngle& operator/=(float s);
|
|
|
|
vec_t Length() const;
|
|
vec_t LengthSqr() const;
|
|
|
|
QAngle& operator=(const QAngle& src);
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
QAngle operator-(void) const;
|
|
|
|
QAngle operator+(const QAngle& v) const;
|
|
QAngle operator-(const QAngle& v) const;
|
|
QAngle operator*(float fl) const;
|
|
QAngle operator/(float fl) const;
|
|
#else
|
|
|
|
private:
|
|
QAngle(const QAngle& vOther);
|
|
|
|
#endif
|
|
};
|
|
|
|
FORCEINLINE void NetworkVarConstruct(QAngle& q) { q.x = q.y = q.z = 0.0f; }
|
|
|
|
class QAngleByValue : public QAngle
|
|
{
|
|
public:
|
|
QAngleByValue(void) : QAngle() {}
|
|
QAngleByValue(vec_t X, vec_t Y, vec_t Z) : QAngle(X, Y, Z) {}
|
|
QAngleByValue(const QAngleByValue& vOther) { *this = vOther; }
|
|
};
|
|
|
|
|
|
inline void VectorAdd(const QAngle& a, const QAngle& b, QAngle& result)
|
|
{
|
|
CHECK_VALID(a);
|
|
CHECK_VALID(b);
|
|
result.x = a.x + b.x;
|
|
result.y = a.y + b.y;
|
|
result.z = a.z + b.z;
|
|
}
|
|
|
|
inline void VectorMA(const QAngle& start, float scale, const QAngle& direction, QAngle& dest)
|
|
{
|
|
CHECK_VALID(start);
|
|
CHECK_VALID(direction);
|
|
dest.x = start.x + scale * direction.x;
|
|
dest.y = start.y + scale * direction.y;
|
|
dest.z = start.z + scale * direction.z;
|
|
}
|
|
|
|
|
|
inline QAngle::QAngle(void)
|
|
{
|
|
#ifdef _DEBUG
|
|
#ifdef VECTOR_PARANOIA
|
|
x = y = z = VEC_T_NAN;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
inline QAngle::QAngle(vec_t X, vec_t Y, vec_t Z)
|
|
{
|
|
x = X; y = Y; z = Z;
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
|
|
inline void QAngle::Init(vec_t ix, vec_t iy, vec_t iz)
|
|
{
|
|
x = ix; y = iy; z = iz;
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
inline void QAngle::Random(vec_t minVal, vec_t maxVal)
|
|
{
|
|
x = minVal + ((float)rand() / VALVE_RAND_MAX) * (maxVal - minVal);
|
|
y = minVal + ((float)rand() / VALVE_RAND_MAX) * (maxVal - minVal);
|
|
z = minVal + ((float)rand() / VALVE_RAND_MAX) * (maxVal - minVal);
|
|
CHECK_VALID(*this);
|
|
}
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
inline QAngle RandomAngle(float minVal, float maxVal)
|
|
{
|
|
Vector random;
|
|
random.Random(minVal, maxVal);
|
|
QAngle ret(random.x, random.y, random.z);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
inline RadianEuler::RadianEuler(QAngle const& angles)
|
|
{
|
|
Init(
|
|
angles.z * 3.14159265358979323846f / 180.f,
|
|
angles.x * 3.14159265358979323846f / 180.f,
|
|
angles.y * 3.14159265358979323846f / 180.f);
|
|
}
|
|
|
|
|
|
|
|
|
|
inline QAngle RadianEuler::ToQAngle(void) const
|
|
{
|
|
return QAngle(
|
|
y * 180.f / 3.14159265358979323846f,
|
|
z * 180.f / 3.14159265358979323846f,
|
|
x * 180.f / 3.14159265358979323846f);
|
|
}
|
|
|
|
|
|
inline QAngle& QAngle::operator=(const QAngle& vOther)
|
|
{
|
|
CHECK_VALID(vOther);
|
|
x = vOther.x; y = vOther.y; z = vOther.z;
|
|
return *this;
|
|
}
|
|
|
|
|
|
inline vec_t& QAngle::operator[](int i)
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
inline vec_t QAngle::operator[](int i) const
|
|
{
|
|
Assert((i >= 0) && (i < 3));
|
|
return ((vec_t*)this)[i];
|
|
}
|
|
|
|
|
|
inline vec_t* QAngle::Base()
|
|
{
|
|
return (vec_t*)this;
|
|
}
|
|
|
|
inline vec_t const* QAngle::Base() const
|
|
{
|
|
return (vec_t const*)this;
|
|
}
|
|
|
|
|
|
inline bool QAngle::IsValid() const
|
|
{
|
|
return IsFinite(x) && IsFinite(y) && IsFinite(z);
|
|
}
|
|
|
|
inline void QAngle::Invalidate()
|
|
{
|
|
x = y = z = VEC_T_NAN;
|
|
}
|
|
|
|
inline bool QAngle::operator==(const QAngle& src) const
|
|
{
|
|
CHECK_VALID(src);
|
|
CHECK_VALID(*this);
|
|
return (src.x == x) && (src.y == y) && (src.z == z);
|
|
}
|
|
|
|
inline bool QAngle::operator!=(const QAngle& src) const
|
|
{
|
|
CHECK_VALID(src);
|
|
CHECK_VALID(*this);
|
|
return (src.x != x) || (src.y != y) || (src.z != z);
|
|
}
|
|
|
|
|
|
inline void VectorCopy(const QAngle& src, QAngle& dst)
|
|
{
|
|
CHECK_VALID(src);
|
|
dst.x = src.x;
|
|
dst.y = src.y;
|
|
dst.z = src.z;
|
|
}
|
|
|
|
|
|
inline QAngle& QAngle::operator+=(const QAngle& v)
|
|
{
|
|
CHECK_VALID(*this);
|
|
CHECK_VALID(v);
|
|
x += v.x; y += v.y; z += v.z;
|
|
return *this;
|
|
}
|
|
|
|
inline QAngle& QAngle::operator-=(const QAngle& v)
|
|
{
|
|
CHECK_VALID(*this);
|
|
CHECK_VALID(v);
|
|
x -= v.x; y -= v.y; z -= v.z;
|
|
return *this;
|
|
}
|
|
|
|
inline QAngle& QAngle::operator*=(float fl)
|
|
{
|
|
x *= fl;
|
|
y *= fl;
|
|
z *= fl;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
inline QAngle& QAngle::operator/=(float fl)
|
|
{
|
|
Assert(fl != 0.0f);
|
|
float oofl = 1.0f / fl;
|
|
x *= oofl;
|
|
y *= oofl;
|
|
z *= oofl;
|
|
CHECK_VALID(*this);
|
|
return *this;
|
|
}
|
|
|
|
|
|
inline vec_t QAngle::Length() const
|
|
{
|
|
CHECK_VALID(*this);
|
|
return (vec_t)FastSqrt(LengthSqr());
|
|
}
|
|
|
|
|
|
inline vec_t QAngle::LengthSqr() const
|
|
{
|
|
CHECK_VALID(*this);
|
|
return x * x + y * y + z * z;
|
|
}
|
|
|
|
|
|
inline bool QAnglesAreEqual(const QAngle& src1, const QAngle& src2, float tolerance = 0.0f)
|
|
{
|
|
if (FloatMakePositive(src1.x - src2.x) > tolerance)
|
|
return false;
|
|
if (FloatMakePositive(src1.y - src2.y) > tolerance)
|
|
return false;
|
|
return (FloatMakePositive(src1.z - src2.z) <= tolerance);
|
|
}
|
|
|
|
|
|
#ifndef VECTOR_NO_SLOW_OPERATIONS
|
|
|
|
inline QAngle QAngle::operator-(void) const
|
|
{
|
|
QAngle ret(-x, -y, -z);
|
|
return ret;
|
|
}
|
|
|
|
inline QAngle QAngle::operator+(const QAngle& v) const
|
|
{
|
|
QAngle res;
|
|
res.x = x + v.x;
|
|
res.y = y + v.y;
|
|
res.z = z + v.z;
|
|
return res;
|
|
}
|
|
|
|
inline QAngle QAngle::operator-(const QAngle& v) const
|
|
{
|
|
QAngle res;
|
|
res.x = x - v.x;
|
|
res.y = y - v.y;
|
|
res.z = z - v.z;
|
|
return res;
|
|
}
|
|
|
|
inline QAngle QAngle::operator*(float fl) const
|
|
{
|
|
QAngle res;
|
|
res.x = x * fl;
|
|
res.y = y * fl;
|
|
res.z = z * fl;
|
|
return res;
|
|
}
|
|
|
|
inline QAngle QAngle::operator/(float fl) const
|
|
{
|
|
QAngle res;
|
|
res.x = x / fl;
|
|
res.y = y / fl;
|
|
res.z = z / fl;
|
|
return res;
|
|
}
|
|
|
|
inline QAngle operator*(float fl, const QAngle& v)
|
|
{
|
|
QAngle ret(v * fl);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
inline void QAngleToAngularImpulse(const QAngle& angles, AngularImpulse& impulse)
|
|
{
|
|
impulse.x = angles.z;
|
|
impulse.y = angles.x;
|
|
impulse.z = angles.y;
|
|
}
|
|
|
|
inline void AngularImpulseToQAngle(const AngularImpulse& impulse, QAngle& angles)
|
|
{
|
|
angles.x = impulse.y;
|
|
angles.y = impulse.z;
|
|
angles.z = impulse.x;
|
|
}
|
|
|
|
#if !defined( _X360 )
|
|
|
|
FORCEINLINE vec_t InvRSquared(float const* v)
|
|
{
|
|
#if defined(__i386__) || defined(_M_IX86)
|
|
float sqrlen = v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + 1.0e-10f, result;
|
|
_mm_store_ss(&result, _mm_rcp_ss(_mm_max_ss(_mm_set_ss(1.0f), _mm_load_ss(&sqrlen))));
|
|
return result;
|
|
#else
|
|
return 1.f / fpmax(1.f, v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
#endif
|
|
}
|
|
|
|
FORCEINLINE vec_t InvRSquared(const Vector& v)
|
|
{
|
|
return InvRSquared(&v.x);
|
|
}
|
|
|
|
#if defined(__i386__) || defined(_M_IX86)
|
|
inline void _SSE_RSqrtInline(float a, float* out)
|
|
{
|
|
__m128 xx = _mm_load_ss(&a);
|
|
__m128 xr = _mm_rsqrt_ss(xx);
|
|
__m128 xt;
|
|
xt = _mm_mul_ss(xr, xr);
|
|
xt = _mm_mul_ss(xt, xx);
|
|
xt = _mm_sub_ss(_mm_set_ss(3.f), xt);
|
|
xt = _mm_mul_ss(xt, _mm_set_ss(0.5f));
|
|
xr = _mm_mul_ss(xr, xt);
|
|
_mm_store_ss(out, xr);
|
|
}
|
|
#endif
|
|
|
|
FORCEINLINE float VectorNormalize(Vector& vec)
|
|
{
|
|
#ifndef DEBUG
|
|
#if defined(__i386__) || defined(_M_IX86)
|
|
#define DO_SSE_OPTIMIZATION
|
|
#endif
|
|
#endif
|
|
|
|
#if defined( DO_SSE_OPTIMIZATION )
|
|
float sqrlen = vec.LengthSqr() + 1.0e-10f, invlen;
|
|
_SSE_RSqrtInline(sqrlen, &invlen);
|
|
vec.x *= invlen;
|
|
vec.y *= invlen;
|
|
vec.z *= invlen;
|
|
return sqrlen * invlen;
|
|
#else
|
|
extern float (FASTCALL * pfVectorNormalize)(Vector & v);
|
|
return (*pfVectorNormalize)(vec);
|
|
#endif
|
|
}
|
|
|
|
FORCEINLINE float VectorNormalize(float* v)
|
|
{
|
|
return VectorNormalize(*(reinterpret_cast<Vector*>(v)));
|
|
}
|
|
|
|
FORCEINLINE void VectorNormalizeFast(Vector& vec)
|
|
{
|
|
VectorNormalize(vec);
|
|
}
|
|
|
|
#else
|
|
|
|
FORCEINLINE float _VMX_InvRSquared(const Vector& v)
|
|
{
|
|
XMVECTOR xmV = XMVector3ReciprocalLength(XMLoadVector3(v.Base()));
|
|
xmV = XMVector3Dot(xmV, xmV);
|
|
return xmV.x;
|
|
}
|
|
|
|
FORCEINLINE float _VMX_VectorNormalize(Vector& vec)
|
|
{
|
|
float mag = XMVector3Length(XMLoadVector3(vec.Base())).x;
|
|
float den = 1.f / (mag + FLT_EPSILON);
|
|
vec.x *= den;
|
|
vec.y *= den;
|
|
vec.z *= den;
|
|
return mag;
|
|
}
|
|
|
|
#define InvRSquared(x) _VMX_InvRSquared(x)
|
|
|
|
FORCEINLINE float VectorNormalize(Vector& v)
|
|
{
|
|
return _VMX_VectorNormalize(v);
|
|
}
|
|
FORCEINLINE float VectorNormalize(float* pV)
|
|
{
|
|
return _VMX_VectorNormalize(*(reinterpret_cast<Vector*>(pV)));
|
|
}
|
|
|
|
FORCEINLINE void VectorNormalizeFast(Vector& vec)
|
|
{
|
|
XMVECTOR xmV = XMVector3LengthEst(XMLoadVector3(vec.Base()));
|
|
float den = 1.f / (xmV.x + FLT_EPSILON);
|
|
vec.x *= den;
|
|
vec.y *= den;
|
|
vec.z *= den;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
inline vec_t Vector::NormalizeInPlace()
|
|
{
|
|
return VectorNormalize(*this);
|
|
}
|
|
|
|
inline Vector Vector::Normalized() const
|
|
{
|
|
Vector norm = *this;
|
|
VectorNormalize(norm);
|
|
return norm;
|
|
}
|
|
|
|
inline bool Vector::IsLengthGreaterThan(float val) const
|
|
{
|
|
return LengthSqr() > val * val;
|
|
}
|
|
|
|
inline bool Vector::IsLengthLessThan(float val) const
|
|
{
|
|
return LengthSqr() < val * val;
|
|
}
|
|
|
|
#endif |