Seaside/SpyCustom/mathlib.h
2021-06-16 18:43:45 +03:00

1785 lines
46 KiB
C++

#ifndef MATH_LIB_H
#define MATH_LIB_H
#include <math.h>
#include "sdk/basetypes.h"
#include "sdk/commonmacros.h"
#include "sdk/vector.h"
#include "sdk/vector2d.h"
#include "sdk/dbg.h"
#include "sdk/math_pfns.h"
#if defined(__i386__) || defined(_M_IX86)
#include <xmmintrin.h>
#endif
#undef clamp
#ifdef FP_EXCEPTIONS_ENABLED
#include <float.h>
#endif
class FPExceptionDisabler
{
public:
#ifdef FP_EXCEPTIONS_ENABLED
FPExceptionDisabler();
~FPExceptionDisabler();
private:
unsigned int mOldValues;
#else
FPExceptionDisabler() {}
~FPExceptionDisabler() {}
#endif
private:
FPExceptionDisabler(const FPExceptionDisabler&);
FPExceptionDisabler& operator=(const FPExceptionDisabler&);
};
class FPExceptionEnabler
{
public:
#ifdef FP_EXCEPTIONS_ENABLED
FPExceptionEnabler(unsigned int enableBits = _EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID);
~FPExceptionEnabler();
private:
unsigned int mOldValues;
#else
FPExceptionEnabler(unsigned int enableBits = 0)
{
}
~FPExceptionEnabler()
{
}
#endif
private:
FPExceptionEnabler(const FPExceptionEnabler&);
FPExceptionEnabler& operator=(const FPExceptionEnabler&);
};
#ifdef DEBUG
FORCEINLINE float clamp(float val, float minVal, float maxVal)
{
if (maxVal < minVal)
return maxVal;
else if (val < minVal)
return minVal;
else if (val > maxVal)
return maxVal;
else
return val;
}
#else
FORCEINLINE float clamp(float val, float minVal, float maxVal)
{
#if defined(__i386__) || defined(_M_IX86)
_mm_store_ss(&val,
_mm_min_ss(
_mm_max_ss(
_mm_load_ss(&val),
_mm_load_ss(&minVal)),
_mm_load_ss(&maxVal)));
#else
val = fpmax(minVal, val);
val = fpmin(maxVal, val);
#endif
return val;
}
#endif
template< class T >
inline T clamp(T const& val, T const& minVal, T const& maxVal)
{
if (maxVal < minVal)
return maxVal;
else if (val < minVal)
return minVal;
else if (val > maxVal)
return maxVal;
else
return val;
}
struct cplane_t
{
Vector normal;
float dist;
byte type;
byte signbits;
byte pad[2];
#ifdef VECTOR_NO_SLOW_OPERATIONS
cplane_t() {}
private:
cplane_t(const cplane_t& vOther);
#endif
};
#define CPLANE_NORMAL_X 0
#define CPLANE_NORMAL_Y 4
#define CPLANE_NORMAL_Z 8
#define CPLANE_DIST 12
#define CPLANE_TYPE 16
#define CPLANE_SIGNBITS 17
#define CPLANE_PAD0 18
#define CPLANE_PAD1 19
#define PLANE_X 0
#define PLANE_Y 1
#define PLANE_Z 2
#define PLANE_ANYX 3
#define PLANE_ANYY 4
#define PLANE_ANYZ 5
enum
{
FRUSTUM_RIGHT = 0,
FRUSTUM_LEFT = 1,
FRUSTUM_TOP = 2,
FRUSTUM_BOTTOM = 3,
FRUSTUM_NEARZ = 4,
FRUSTUM_FARZ = 5,
FRUSTUM_NUMPLANES = 6
};
extern int SignbitsForPlane(cplane_t* out);
class Frustum_t
{
public:
void SetPlane(int i, int nType, const Vector& vecNormal, float dist)
{
m_Plane[i].normal = vecNormal;
m_Plane[i].dist = dist;
m_Plane[i].type = nType;
m_Plane[i].signbits = SignbitsForPlane(&m_Plane[i]);
m_AbsNormal[i].Init(fabs(vecNormal.x), fabs(vecNormal.y), fabs(vecNormal.z));
}
inline const cplane_t* GetPlane(int i) const { return &m_Plane[i]; }
inline const Vector& GetAbsNormal(int i) const { return m_AbsNormal[i]; }
private:
cplane_t m_Plane[FRUSTUM_NUMPLANES];
Vector m_AbsNormal[FRUSTUM_NUMPLANES];
};
float CalcFovY(float flFovX, float flScreenAspect);
float CalcFovX(float flFovY, float flScreenAspect);
void GeneratePerspectiveFrustum(const Vector& origin, const QAngle& angles, float flZNear, float flZFar, float flFovX, float flAspectRatio, Frustum_t& frustum);
void GeneratePerspectiveFrustum(const Vector& origin, const Vector& forward, const Vector& right, const Vector& up, float flZNear, float flZFar, float flFovX, float flFovY, Frustum_t& frustum);
bool R_CullBox(const Vector& mins, const Vector& maxs, const Frustum_t& frustum);
bool R_CullBoxSkipNear(const Vector& mins, const Vector& maxs, const Frustum_t& frustum);
struct matrix3x4_t
{
matrix3x4_t() {}
matrix3x4_t(
float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23)
{
m_flMatVal[0][0] = m00; m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02; m_flMatVal[0][3] = m03;
m_flMatVal[1][0] = m10; m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12; m_flMatVal[1][3] = m13;
m_flMatVal[2][0] = m20; m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22; m_flMatVal[2][3] = m23;
}
void Init(const Vector& xAxis, const Vector& yAxis, const Vector& zAxis, const Vector& vecOrigin)
{
m_flMatVal[0][0] = xAxis.x; m_flMatVal[0][1] = yAxis.x; m_flMatVal[0][2] = zAxis.x; m_flMatVal[0][3] = vecOrigin.x;
m_flMatVal[1][0] = xAxis.y; m_flMatVal[1][1] = yAxis.y; m_flMatVal[1][2] = zAxis.y; m_flMatVal[1][3] = vecOrigin.y;
m_flMatVal[2][0] = xAxis.z; m_flMatVal[2][1] = yAxis.z; m_flMatVal[2][2] = zAxis.z; m_flMatVal[2][3] = vecOrigin.z;
}
matrix3x4_t(const Vector& xAxis, const Vector& yAxis, const Vector& zAxis, const Vector& vecOrigin)
{
Init(xAxis, yAxis, zAxis, vecOrigin);
}
inline void Invalidate(void)
{
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 4; j++)
{
m_flMatVal[i][j] = VEC_T_NAN;
}
}
}
float* operator[](int i) { Assert((i >= 0) && (i < 3)); return m_flMatVal[i]; }
const float* operator[](int i) const { Assert((i >= 0) && (i < 3)); return m_flMatVal[i]; }
float* Base() { return &m_flMatVal[0][0]; }
const float* Base() const { return &m_flMatVal[0][0]; }
float m_flMatVal[3][4];
};
#include "fltx4.h"
class ALIGN16 matrix3x4a_t : public matrix3x4_t
{
public:
matrix3x4a_t(const matrix3x4_t& src) { *this = src; };
matrix3x4a_t& operator=(const matrix3x4_t& src) { memcpy(Base(), src.Base(), sizeof(float) * 3 * 4); return *this; };
matrix3x4a_t(
float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23)
{
AssertDbg(((size_t)Base() & 0xf) == 0);
m_flMatVal[0][0] = m00; m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02; m_flMatVal[0][3] = m03;
m_flMatVal[1][0] = m10; m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12; m_flMatVal[1][3] = m13;
m_flMatVal[2][0] = m20; m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22; m_flMatVal[2][3] = m23;
}
matrix3x4a_t() {}
static FORCEINLINE bool TypeIsAlignedForSIMD(void) { return true; }
FORCEINLINE fltx4& SIMDRow(uint nIdx) { AssertDbg(nIdx < 3); return *((fltx4*)(&(m_flMatVal[nIdx]))); }
FORCEINLINE const fltx4& SIMDRow(uint nIdx) const { AssertDbg(nIdx < 3); return *((const fltx4*)(&(m_flMatVal[nIdx]))); }
} ALIGN16_POST;
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define M_PI_F ((float)(M_PI))
#ifndef RAD2DEG
#define RAD2DEG( x ) ( (float)(x) * (float)(180.f / M_PI_F) )
#endif
#ifndef DEG2RAD
#define DEG2RAD( x ) ( (float)(x) * (float)(M_PI_F / 180.f) )
#endif
#define SIDE_FRONT 0
#define SIDE_BACK 1
#define SIDE_ON 2
#define SIDE_CROSS -2
#define ON_VIS_EPSILON 0.01
#define EQUAL_EPSILON 0.001
extern bool s_bMathlibInitialized;
extern const Vector vec3_origin;
extern const QAngle vec3_angle;
extern const Quaternion quat_identity;
extern const Vector vec3_invalid;
extern const int nanmask;
#define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask)
FORCEINLINE vec_t DotProduct(const vec_t* v1, const vec_t* v2)
{
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
FORCEINLINE void VectorSubtract(const vec_t* a, const vec_t* b, vec_t* c)
{
c[0] = a[0] - b[0];
c[1] = a[1] - b[1];
c[2] = a[2] - b[2];
}
FORCEINLINE void VectorAdd(const vec_t* a, const vec_t* b, vec_t* c)
{
c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];
}
FORCEINLINE void VectorCopy(const vec_t* a, vec_t* b)
{
b[0] = a[0];
b[1] = a[1];
b[2] = a[2];
}
FORCEINLINE void VectorClear(vec_t* a)
{
a[0] = a[1] = a[2] = 0;
}
FORCEINLINE float VectorMaximum(const vec_t* v)
{
return max(v[0], max(v[1], v[2]));
}
FORCEINLINE float VectorMaximum(const Vector& v)
{
return max(v.x, max(v.y, v.z));
}
FORCEINLINE void VectorScale(const float* in, vec_t scale, float* out)
{
out[0] = in[0] * scale;
out[1] = in[1] * scale;
out[2] = in[2] * scale;
}
inline void VectorFill(vec_t* a, float b)
{
a[0] = a[1] = a[2] = b;
}
inline void VectorNegate(vec_t* a)
{
a[0] = -a[0];
a[1] = -a[1];
a[2] = -a[2];
}
#define Vector2Clear(x) {(x)[0]=(x)[1]=0;}
#define Vector2Negate(x) {(x)[0]=-((x)[0]);(x)[1]=-((x)[1]);}
#define Vector2Copy(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];}
#define Vector2Subtract(a,b,c) {(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];}
#define Vector2Add(a,b,c) {(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];}
#define Vector2Scale(a,b,c) {(c)[0]=(b)*(a)[0];(c)[1]=(b)*(a)[1];}
#define VECTOR_COPY( A, B ) do { (B)[0] = (A)[0]; (B)[1] = (A)[1]; (B)[2]=(A)[2]; } while(0)
#define DOT_PRODUCT( A, B ) ( (A)[0]*(B)[0] + (A)[1]*(B)[1] + (A)[2]*(B)[2] )
FORCEINLINE void VectorMAInline(const float* start, float scale, const float* direction, float* dest)
{
dest[0] = start[0] + direction[0] * scale;
dest[1] = start[1] + direction[1] * scale;
dest[2] = start[2] + direction[2] * scale;
}
FORCEINLINE void VectorMAInline(const Vector& start, float scale, const Vector& direction, Vector& dest)
{
dest.x = start.x + direction.x * scale;
dest.y = start.y + direction.y * scale;
dest.z = start.z + direction.z * scale;
}
FORCEINLINE void VectorMA(const Vector& start, float scale, const Vector& direction, Vector& dest)
{
VectorMAInline(start, scale, direction, dest);
}
FORCEINLINE void VectorMA(const float* start, float scale, const float* direction, float* dest)
{
VectorMAInline(start, scale, direction, dest);
}
int VectorCompare(const float* v1, const float* v2);
inline float VectorLength(const float* v)
{
return FastSqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + FLT_EPSILON);
}
void CrossProduct(const float* v1, const float* v2, float* cross);
qboolean VectorsEqual(const float* v1, const float* v2);
inline vec_t RoundInt(vec_t in)
{
return floor(in + 0.5f);
}
int Q_log2(int val);
void inline SinCos(float radians, float* sine, float* cosine)
{
#if defined( _X360 )
XMScalarSinCos(sine, cosine, radians);
#elif defined( PLATFORM_WINDOWS_PC32 )
_asm
{
fld DWORD PTR[radians]
fsincos
mov edx, DWORD PTR[cosine]
mov eax, DWORD PTR[sine]
fstp DWORD PTR[edx]
fstp DWORD PTR[eax]
}
#elif defined( PLATFORM_WINDOWS_PC64 )
*sine = sin(radians);
*cosine = cos(radians);
#elif defined( POSIX )
register double __cosr, __sinr;
__asm ("fsincos" : "=t" (__cosr), "=u" (__sinr) : "0" (radians));
*sine = __sinr;
*cosine = __cosr;
#endif
}
#define SIN_TABLE_SIZE 256
#define FTOIBIAS 12582912.f
extern float SinCosTable[SIN_TABLE_SIZE];
inline float TableCos(float theta)
{
union
{
int i;
float f;
} ftmp;
ftmp.f = theta * (float)(SIN_TABLE_SIZE / (2.0f * M_PI)) + (FTOIBIAS + (SIN_TABLE_SIZE / 4));
return SinCosTable[ftmp.i & (SIN_TABLE_SIZE - 1)];
}
inline float TableSin(float theta)
{
union
{
int i;
float f;
} ftmp;
ftmp.f = theta * (float)(SIN_TABLE_SIZE / (2.0f * M_PI)) + FTOIBIAS;
return SinCosTable[ftmp.i & (SIN_TABLE_SIZE - 1)];
}
template<class T>
FORCEINLINE T Square(T const& a)
{
return a * a;
}
FORCEINLINE uint SmallestPowerOfTwoGreaterOrEqual(uint x)
{
x -= 1;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x + 1;
}
FORCEINLINE uint LargestPowerOfTwoLessThanOrEqual(uint x)
{
if (x >= 0x80000000)
return 0x80000000;
return SmallestPowerOfTwoGreaterOrEqual(x + 1) >> 1;
}
void FloorDivMod(double numer, double denom, int* quotient, int* rem);
int GreatestCommonDivisor(int i1, int i2);
bool IsDenormal(const float& val);
enum
{
PITCH = 0,
YAW,
ROLL
};
void MatrixAngles(const matrix3x4_t& matrix, float* angles);
void MatrixVectors(const matrix3x4_t& matrix, Vector* pForward, Vector* pRight, Vector* pUp);
void VectorTransform(const float* in1, const matrix3x4_t& in2, float* out);
void VectorITransform(const float* in1, const matrix3x4_t& in2, float* out);
void VectorRotate(const float* in1, const matrix3x4_t& in2, float* out);
void VectorRotate(const Vector& in1, const QAngle& in2, Vector& out);
void VectorRotate(const Vector& in1, const Quaternion& in2, Vector& out);
void VectorIRotate(const float* in1, const matrix3x4_t& in2, float* out);
#ifndef VECTOR_NO_SLOW_OPERATIONS
QAngle TransformAnglesToLocalSpace(const QAngle& angles, const matrix3x4_t& parentMatrix);
QAngle TransformAnglesToWorldSpace(const QAngle& angles, const matrix3x4_t& parentMatrix);
#endif
void MatrixInitialize(matrix3x4_t& mat, const Vector& vecOrigin, const Vector& vecXAxis, const Vector& vecYAxis, const Vector& vecZAxis);
void MatrixCopy(const matrix3x4_t& in, matrix3x4_t& out);
void MatrixInvert(const matrix3x4_t& in, matrix3x4_t& out);
bool MatricesAreEqual(const matrix3x4_t& src1, const matrix3x4_t& src2, float flTolerance = 1e-5);
void MatrixGetColumn(const matrix3x4_t& in, int column, Vector& out);
void MatrixSetColumn(const Vector& in, int column, matrix3x4_t& out);
inline void MatrixGetTranslation(const matrix3x4_t& in, Vector& out)
{
MatrixGetColumn(in, 3, out);
}
inline void MatrixSetTranslation(const Vector& in, matrix3x4_t& out)
{
MatrixSetColumn(in, 3, out);
}
void MatrixScaleBy(const float flScale, matrix3x4_t& out);
void MatrixScaleByZero(matrix3x4_t& out);
void ConcatRotations(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out);
void ConcatTransforms(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out);
inline void MatrixMultiply(const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out)
{
ConcatTransforms(in1, in2, out);
}
void QuaternionSlerp(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionSlerpNoAlign(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionBlend(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionBlendNoAlign(const Quaternion& p, const Quaternion& q, float t, Quaternion& qt);
void QuaternionIdentityBlend(const Quaternion& p, float t, Quaternion& qt);
float QuaternionAngleDiff(const Quaternion& p, const Quaternion& q);
void QuaternionScale(const Quaternion& p, float t, Quaternion& q);
void QuaternionAlign(const Quaternion& p, const Quaternion& q, Quaternion& qt);
float QuaternionDotProduct(const Quaternion& p, const Quaternion& q);
void QuaternionConjugate(const Quaternion& p, Quaternion& q);
void QuaternionInvert(const Quaternion& p, Quaternion& q);
float QuaternionNormalize(Quaternion& q);
void QuaternionAdd(const Quaternion& p, const Quaternion& q, Quaternion& qt);
void QuaternionMult(const Quaternion& p, const Quaternion& q, Quaternion& qt);
void QuaternionMatrix(const Quaternion& q, matrix3x4_t& matrix);
void QuaternionMatrix(const Quaternion& q, const Vector& pos, matrix3x4_t& matrix);
void QuaternionAngles(const Quaternion& q, QAngle& angles);
void AngleQuaternion(const QAngle& angles, Quaternion& qt);
void QuaternionAngles(const Quaternion& q, RadianEuler& angles);
void AngleQuaternion(RadianEuler const& angles, Quaternion& qt);
void QuaternionAxisAngle(const Quaternion& q, Vector& axis, float& angle);
void AxisAngleQuaternion(const Vector& axis, float angle, Quaternion& q);
void BasisToQuaternion(const Vector& vecForward, const Vector& vecRight, const Vector& vecUp, Quaternion& q);
void MatrixQuaternion(const matrix3x4_t& mat, Quaternion& q);
inline float MatrixRowDotProduct(const matrix3x4_t& in1, int row, const Vector& in2)
{
Assert((row >= 0) && (row < 3));
return DotProduct(in1[row], in2.Base());
}
inline float MatrixColumnDotProduct(const matrix3x4_t& in1, int col, const Vector& in2)
{
Assert((col >= 0) && (col < 4));
return in1[0][col] * in2[0] + in1[1][col] * in2[1] + in1[2][col] * in2[2];
}
int __cdecl BoxOnPlaneSide(const float* emins, const float* emaxs, const cplane_t* plane);
inline float anglemod(float a)
{
a = (360.f / 65536) * ((int)(a * (65536.f / 360.0f)) & 65535);
return a;
}
inline float RemapVal(float val, float A, float B, float C, float D)
{
if (A == B)
return val >= B ? D : C;
return C + (D - C) * (val - A) / (B - A);
}
inline float RemapValClamped(float val, float A, float B, float C, float D)
{
if (A == B)
return val >= B ? D : C;
float cVal = (val - A) / (B - A);
cVal = clamp(cVal, 0.0f, 1.0f);
return C + (D - C) * cVal;
}
template <class T>
FORCEINLINE T Lerp(float flPercent, T const& A, T const& B)
{
return A + (B - A) * flPercent;
}
FORCEINLINE float Sqr(float f)
{
return f * f;
}
static inline float FLerp(float f1, float f2, float i1, float i2, float x)
{
return f1 + (f2 - f1) * (x - i1) / (i2 - i1);
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
template<> FORCEINLINE QAngle Lerp<QAngle>(float flPercent, const QAngle& q1, const QAngle& q2)
{
if (q1 == q2)
return q1;
Quaternion src, dest;
AngleQuaternion(q1, src);
AngleQuaternion(q2, dest);
Quaternion result;
QuaternionSlerp(src, dest, flPercent, result);
QAngle output;
QuaternionAngles(result, output);
return output;
}
#else
#pragma error
template<> FORCEINLINE QAngleByValue Lerp<QAngleByValue>(float flPercent, const QAngleByValue& q1, const QAngleByValue& q2)
{
if (q1 == q2)
return q1;
Quaternion src, dest;
AngleQuaternion(q1, src);
AngleQuaternion(q2, dest);
Quaternion result;
QuaternionSlerp(src, dest, flPercent, result);
QAngleByValue output;
QuaternionAngles(result, output);
return output;
}
#endif
template <class T>
FORCEINLINE void V_swap(T& x, T& y)
{
T temp = x;
x = y;
y = temp;
}
template <class T> FORCEINLINE T AVG(T a, T b)
{
return (a + b) / 2;
}
#define NELEMS(x) ARRAYSIZE(x)
#define XYZ(v) (v).x,(v).y,(v).z
inline float Sign(float x)
{
return (x < 0.0f) ? -1.0f : 1.0f;
}
inline int ClampArrayBounds(int n, unsigned maxindex)
{
unsigned int inrangemask = 0xFFFFFFFF + (((unsigned)n) > maxindex);
unsigned int lessthan0mask = 0xFFFFFFFF + (n >= 0);
int result = (inrangemask & n);
result |= ((~inrangemask) & (~lessthan0mask)) & maxindex;
return result;
}
#define BOX_ON_PLANE_SIDE(emins, emaxs, p) \
(((p)->type < 3)? \
( \
((p)->dist <= (emins)[(p)->type])? \
1 \
: \
( \
((p)->dist >= (emaxs)[(p)->type])?\
2 \
: \
3 \
) \
) \
: \
BoxOnPlaneSide( (emins), (emaxs), (p)))
void AngleVectors(const QAngle& angles, Vector* forward);
void AngleVectors(const QAngle& angles, Vector* forward, Vector* right, Vector* up);
void AngleVectorsTranspose(const QAngle& angles, Vector* forward, Vector* right, Vector* up);
void AngleMatrix(const QAngle& angles, matrix3x4_t& mat);
void AngleMatrix(const QAngle& angles, const Vector& position, matrix3x4_t& mat);
void AngleMatrix(const RadianEuler& angles, matrix3x4_t& mat);
void AngleMatrix(RadianEuler const& angles, const Vector& position, matrix3x4_t& mat);
void AngleIMatrix(const QAngle& angles, matrix3x4_t& mat);
void AngleIMatrix(const QAngle& angles, const Vector& position, matrix3x4_t& mat);
void AngleIMatrix(const RadianEuler& angles, matrix3x4_t& mat);
void VectorAngles(const Vector& forward, QAngle& angles);
void VectorAngles(const Vector& forward, const Vector& pseudoup, QAngle& angles);
void VectorMatrix(const Vector& forward, matrix3x4_t& mat);
void VectorVectors(const Vector& forward, Vector& right, Vector& up);
void SetIdentityMatrix(matrix3x4_t& mat);
void SetScaleMatrix(float x, float y, float z, matrix3x4_t& dst);
void MatrixBuildRotationAboutAxis(const Vector& vAxisOfRot, float angleDegrees, matrix3x4_t& dst);
inline void SetScaleMatrix(float flScale, matrix3x4_t& dst)
{
SetScaleMatrix(flScale, flScale, flScale, dst);
}
inline void SetScaleMatrix(const Vector& scale, matrix3x4_t& dst)
{
SetScaleMatrix(scale.x, scale.y, scale.z, dst);
}
void MatrixTranspose(matrix3x4_t& mat);
void MatrixTranspose(const matrix3x4_t& src, matrix3x4_t& dst);
void MatrixInverseTranspose(const matrix3x4_t& src, matrix3x4_t& dst);
inline void PositionMatrix(const Vector& position, matrix3x4_t& mat)
{
MatrixSetColumn(position, 3, mat);
}
inline void MatrixPosition(const matrix3x4_t& matrix, Vector& position)
{
MatrixGetColumn(matrix, 3, position);
}
inline void VectorRotate(const Vector& in1, const matrix3x4_t& in2, Vector& out)
{
VectorRotate(&in1.x, in2, &out.x);
}
inline void VectorIRotate(const Vector& in1, const matrix3x4_t& in2, Vector& out)
{
VectorIRotate(&in1.x, in2, &out.x);
}
inline void MatrixAngles(const matrix3x4_t& matrix, QAngle& angles)
{
MatrixAngles(matrix, &angles.x);
}
inline void MatrixAngles(const matrix3x4_t& matrix, QAngle& angles, Vector& position)
{
MatrixAngles(matrix, angles);
MatrixPosition(matrix, position);
}
inline void MatrixAngles(const matrix3x4_t& matrix, RadianEuler& angles)
{
MatrixAngles(matrix, &angles.x);
angles.Init(DEG2RAD(angles.z), DEG2RAD(angles.x), DEG2RAD(angles.y));
}
void MatrixAngles(const matrix3x4_t& mat, RadianEuler& angles, Vector& position);
void MatrixAngles(const matrix3x4_t& mat, Quaternion& q, Vector& position);
inline int VectorCompare(const Vector& v1, const Vector& v2)
{
return v1 == v2;
}
inline void VectorTransform(const Vector& in1, const matrix3x4_t& in2, Vector& out)
{
VectorTransform(&in1.x, in2, &out.x);
}
inline void VectorITransform(const Vector& in1, const matrix3x4_t& in2, Vector& out)
{
VectorITransform(&in1.x, in2, &out.x);
}
inline int BoxOnPlaneSide(const Vector& emins, const Vector& emaxs, const cplane_t* plane)
{
return BoxOnPlaneSide(&emins.x, &emaxs.x, plane);
}
inline void VectorFill(Vector& a, float b)
{
a[0] = a[1] = a[2] = b;
}
inline void VectorNegate(Vector& a)
{
a[0] = -a[0];
a[1] = -a[1];
a[2] = -a[2];
}
inline vec_t VectorAvg(Vector& a)
{
return (a[0] + a[1] + a[2]) / 3;
}
inline int FASTCALL BoxOnPlaneSide2(const Vector& emins, const Vector& emaxs, const cplane_t* p, float tolerance = 0.f)
{
Vector corners[2];
if (p->normal[0] < 0)
{
corners[0][0] = emins[0];
corners[1][0] = emaxs[0];
}
else
{
corners[1][0] = emins[0];
corners[0][0] = emaxs[0];
}
if (p->normal[1] < 0)
{
corners[0][1] = emins[1];
corners[1][1] = emaxs[1];
}
else
{
corners[1][1] = emins[1];
corners[0][1] = emaxs[1];
}
if (p->normal[2] < 0)
{
corners[0][2] = emins[2];
corners[1][2] = emaxs[2];
}
else
{
corners[1][2] = emins[2];
corners[0][2] = emaxs[2];
}
int sides = 0;
float dist1 = DotProduct(p->normal, corners[0]) - p->dist;
if (dist1 >= tolerance)
sides = 1;
float dist2 = DotProduct(p->normal, corners[1]) - p->dist;
if (dist2 < -tolerance)
sides |= 2;
return sides;
}
void ClearBounds(Vector& mins, Vector& maxs);
void AddPointToBounds(const Vector& v, Vector& mins, Vector& maxs);
void BuildGammaTable(float gamma, float texGamma, float brightness, int overbright);
inline float TexLightToLinear(int c, int exponent)
{
extern float power2_n[256];
Assert(exponent >= -128 && exponent <= 127);
return (float)c * power2_n[exponent + 128];
}
int LinearToTexture(float f);
int LinearToScreenGamma(float f);
float TextureToLinear(int c);
struct ColorRGBExp32
{
byte r, g, b;
signed char exponent;
};
void ColorRGBExp32ToVector(const ColorRGBExp32& in, Vector& out);
void VectorToColorRGBExp32(const Vector& v, ColorRGBExp32& c);
bool SolveQuadratic(float a, float b, float c, float& root1, float& root2);
bool SolveInverseQuadratic(float x1, float y1, float x2, float y2, float x3, float y3, float& a, float& b, float& c);
bool SolveInverseQuadraticMonotonic(float x1, float y1, float x2, float y2,
float x3, float y3, float& a, float& b, float& c);
bool SolveInverseReciprocalQuadratic(float x1, float y1, float x2, float y2, float x3, float y3, float& a, float& b, float& c);
void VectorYawRotate(const Vector& in, float flYaw, Vector& out);
float Bias(float x, float biasAmt);
float Gain(float x, float biasAmt);
float SmoothCurve(float x);
float SmoothCurve_Tweak(float x, float flPeakPos = 0.5, float flPeakSharpness = 0.5);
inline float ExponentialDecay(float halflife, float dt)
{
return expf(-0.69314718f / halflife * dt);
}
inline float ExponentialDecay(float decayTo, float decayTime, float dt)
{
return expf(logf(decayTo) / decayTime * dt);
}
inline float ExponentialDecayIntegral(float decayTo, float decayTime, float dt)
{
return (powf(decayTo, dt / decayTime) * decayTime - decayTime) / logf(decayTo);
}
inline float SimpleSpline(float value)
{
float valueSquared = value * value;
return (3 * valueSquared - 2 * valueSquared * value);
}
inline float SimpleSplineRemapVal(float val, float A, float B, float C, float D)
{
if (A == B)
return val >= B ? D : C;
float cVal = (val - A) / (B - A);
return C + (D - C) * SimpleSpline(cVal);
}
inline float SimpleSplineRemapValClamped(float val, float A, float B, float C, float D)
{
if (A == B)
return val >= B ? D : C;
float cVal = (val - A) / (B - A);
cVal = clamp(cVal, 0.0f, 1.0f);
return C + (D - C) * SimpleSpline(cVal);
}
FORCEINLINE int RoundFloatToInt(float f)
{
#if defined(__i386__) || defined(_M_IX86) || defined( PLATFORM_WINDOWS_PC64 )
return _mm_cvtss_si32(_mm_load_ss(&f));
#elif defined( _X360 )
#ifdef Assert
Assert(IsFPUControlWordSet());
#endif
union
{
double flResult;
int pResult[2];
};
flResult = __fctiw(f);
return pResult[1];
#else
#error Unknown architecture
#endif
}
FORCEINLINE unsigned char RoundFloatToByte(float f)
{
int nResult = RoundFloatToInt(f);
#ifdef Assert
Assert((nResult & ~0xFF) == 0);
#endif
return (unsigned char)nResult;
}
FORCEINLINE unsigned long RoundFloatToUnsignedLong(float f)
{
#if defined( _X360 )
#ifdef Assert
Assert(IsFPUControlWordSet());
#endif
union
{
double flResult;
int pIntResult[2];
unsigned long pResult[2];
};
flResult = __fctiw(f);
Assert(pIntResult[1] >= 0);
return pResult[1];
#else
#if defined( PLATFORM_WINDOWS_PC64 )
uint nRet = (uint)f;
if (nRet & 1)
{
if ((f - floor(f) >= 0.5))
{
nRet++;
}
}
else
{
if ((f - floor(f) > 0.5))
{
nRet++;
}
}
return nRet;
#else
unsigned char nResult[8];
#if defined( _WIN32 )
__asm
{
fld f
fistp qword ptr nResult
}
#elif POSIX
__asm __volatile__(
"fistpl %0;": "=m" (nResult) : "t" (f) : "st"
);
#endif
return *((unsigned long*)nResult);
#endif
#endif
}
FORCEINLINE bool IsIntegralValue(float flValue, float flTolerance = 0.001f)
{
return fabs(RoundFloatToInt(flValue) - flValue) < flTolerance;
}
FORCEINLINE int Float2Int(float a)
{
#if defined( _X360 )
union
{
double flResult;
int pResult[2];
};
flResult = __fctiwz(a);
return pResult[1];
#else
return (int)a;
#endif
}
inline int Floor2Int(float a)
{
int RetVal;
#if defined( __i386__ )
__m128 a128 = _mm_set_ss(a);
RetVal = _mm_cvtss_si32(a128);
__m128 rounded128 = _mm_cvt_si2ss(_mm_setzero_ps(), RetVal);
RetVal -= _mm_comigt_ss(rounded128, a128);
#else
RetVal = static_cast<int>(floor(a));
#endif
return RetVal;
}
FORCEINLINE unsigned int FastFToC(float c)
{
#if defined( __i386__ )
union { float f; int i; } convert = { c * 255.0f + (float)(1 << 23) };
return convert.i & 255;
#else
return Float2Int(c * 255.0f);
#endif
}
FORCEINLINE int FastFloatToSmallInt(float c)
{
#if defined( __i386__ )
union { float f; int i; } convert = { c + (float)(3 << 22) };
return (convert.i & ((1 << 23) - 1)) - (1 << 22);
#else
return Float2Int(c);
#endif
}
inline float ClampToMsec(float in)
{
int msec = Floor2Int(in * 1000.0f + 0.5f);
return 0.001f * msec;
}
inline int Ceil2Int(float a)
{
int RetVal;
#if defined( __i386__ )
__m128 a128 = _mm_load_ss(&a);
RetVal = _mm_cvtss_si32(a128);
__m128 rounded128 = _mm_cvt_si2ss(_mm_setzero_ps(), RetVal);
RetVal += _mm_comilt_ss(rounded128, a128);
#else
RetVal = static_cast<int>(ceil(a));
#endif
return RetVal;
}
#define TriArea2D( A, B, C ) \
( 0.5f * ( ( B.x - A.x ) * ( C.y - A.y ) - ( B.y - A.y ) * ( C.x - A.x ) ) )
#define TriArea2DTimesTwo( A, B, C ) \
( ( ( B.x - A.x ) * ( C.y - A.y ) - ( B.y - A.y ) * ( C.x - A.x ) ) )
inline void GetBarycentricCoords2D(
Vector2D const& A,
Vector2D const& B,
Vector2D const& C,
Vector2D const& pt,
float bcCoords[3])
{
float invTriArea = 1.0f / TriArea2DTimesTwo(A, B, C);
bcCoords[0] = TriArea2DTimesTwo(B, C, pt) * invTriArea;
bcCoords[1] = TriArea2DTimesTwo(C, A, pt) * invTriArea;
bcCoords[2] = TriArea2DTimesTwo(A, B, pt) * invTriArea;
}
inline bool QuickBoxSphereTest(
const Vector& vOrigin,
float flRadius,
const Vector& bbMin,
const Vector& bbMax)
{
return vOrigin.x - flRadius < bbMax.x&& vOrigin.x + flRadius > bbMin.x &&
vOrigin.y - flRadius < bbMax.y&& vOrigin.y + flRadius > bbMin.y &&
vOrigin.z - flRadius < bbMax.z&& vOrigin.z + flRadius > bbMin.z;
}
inline bool QuickBoxIntersectTest(
const Vector& vBox1Min,
const Vector& vBox1Max,
const Vector& vBox2Min,
const Vector& vBox2Max)
{
return
vBox1Min.x < vBox2Max.x&& vBox1Max.x > vBox2Min.x &&
vBox1Min.y < vBox2Max.y&& vBox1Max.y > vBox2Min.y &&
vBox1Min.z < vBox2Max.z&& vBox1Max.z > vBox2Min.z;
}
extern float GammaToLinearFullRange(float gamma);
extern float LinearToGammaFullRange(float linear);
extern float GammaToLinear(float gamma);
extern float LinearToGamma(float linear);
extern float SrgbGammaToLinear(float flSrgbGammaValue);
extern float SrgbLinearToGamma(float flLinearValue);
extern float X360GammaToLinear(float fl360GammaValue);
extern float X360LinearToGamma(float flLinearValue);
extern float SrgbGammaTo360Gamma(float flSrgbGammaValue);
FORCEINLINE float LinearToVertexLight(float f)
{
extern float lineartovertex[4096];
int i = RoundFloatToInt(f * 1024.f);
if ((unsigned)i > 4095)
{
if (i < 0)
i = 0;
else
i = 4095;
}
return lineartovertex[i];
}
FORCEINLINE unsigned char LinearToLightmap(float f)
{
extern unsigned char lineartolightmap[4096];
int i = RoundFloatToInt(f * 1024.f);
if ((unsigned)i > 4095)
{
if (i < 0)
i = 0;
else
i = 4095;
}
return lineartolightmap[i];
}
FORCEINLINE void ColorClamp(Vector& color)
{
float maxc = max(color.x, max(color.y, color.z));
if (maxc > 1.0f)
{
float ooMax = 1.0f / maxc;
color.x *= ooMax;
color.y *= ooMax;
color.z *= ooMax;
}
if (color[0] < 0.f) color[0] = 0.f;
if (color[1] < 0.f) color[1] = 0.f;
if (color[2] < 0.f) color[2] = 0.f;
}
inline void ColorClampTruncate(Vector& color)
{
if (color[0] > 1.0f) color[0] = 1.0f; else if (color[0] < 0.0f) color[0] = 0.0f;
if (color[1] > 1.0f) color[1] = 1.0f; else if (color[1] < 0.0f) color[1] = 0.0f;
if (color[2] > 1.0f) color[2] = 1.0f; else if (color[2] < 0.0f) color[2] = 0.0f;
}
void Catmull_Rom_Spline(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Catmull_Rom_Spline_Tangent(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Catmull_Rom_Spline_Integral(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Catmull_Rom_Spline_Integral(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
Vector& output);
void Catmull_Rom_Spline_Normalize(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Catmull_Rom_Spline_Integral_Normalize(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Catmull_Rom_Spline_NormalizeX(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Catmull_Rom_Spline_NormalizeX(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Hermite_Spline(
const Vector& p1,
const Vector& p2,
const Vector& d1,
const Vector& d2,
float t,
Vector& output);
float Hermite_Spline(
float p1,
float p2,
float d1,
float d2,
float t);
void Hermite_Spline(
const Vector& p0,
const Vector& p1,
const Vector& p2,
float t,
Vector& output);
float Hermite_Spline(
float p0,
float p1,
float p2,
float t);
void Hermite_SplineBasis(float t, float basis[]);
void Hermite_Spline(
const Quaternion& q0,
const Quaternion& q1,
const Quaternion& q2,
float t,
Quaternion& output);
void Kochanek_Bartels_Spline(
float tension,
float bias,
float continuity,
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Kochanek_Bartels_Spline_NormalizeX(
float tension,
float bias,
float continuity,
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Cubic_Spline(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Cubic_Spline_NormalizeX(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void BSpline(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void BSpline_NormalizeX(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Parabolic_Spline(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
void Parabolic_Spline_NormalizeX(
const Vector& p1,
const Vector& p2,
const Vector& p3,
const Vector& p4,
float t,
Vector& output);
FORCEINLINE float QuinticInterpolatingPolynomial(float t)
{
return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
}
void GetInterpolationData(float const* pKnotPositions,
float const* pKnotValues,
int nNumValuesinList,
int nInterpolationRange,
float flPositionToInterpolateAt,
bool bWrap,
float* pValueA,
float* pValueB,
float* pInterpolationValue);
float RangeCompressor(float flValue, float flMin, float flMax, float flBase);
float CalcSqrDistanceToAABB(const Vector& mins, const Vector& maxs, const Vector& point);
void CalcClosestPointOnAABB(const Vector& mins, const Vector& maxs, const Vector& point, Vector& closestOut);
void CalcSqrDistAndClosestPointOnAABB(const Vector& mins, const Vector& maxs, const Vector& point, Vector& closestOut, float& distSqrOut);
inline float CalcDistanceToAABB(const Vector& mins, const Vector& maxs, const Vector& point)
{
float flDistSqr = CalcSqrDistanceToAABB(mins, maxs, point);
return sqrt(flDistSqr);
}
void CalcClosestPointOnLine(const Vector& P, const Vector& vLineA, const Vector& vLineB, Vector& vClosest, float* t = 0);
float CalcDistanceToLine(const Vector& P, const Vector& vLineA, const Vector& vLineB, float* t = 0);
float CalcDistanceSqrToLine(const Vector& P, const Vector& vLineA, const Vector& vLineB, float* t = 0);
void CalcClosestPointOnLineSegment(const Vector& P, const Vector& vLineA, const Vector& vLineB, Vector& vClosest, float* t = 0);
float CalcDistanceToLineSegment(const Vector& P, const Vector& vLineA, const Vector& vLineB, float* t = 0);
float CalcDistanceSqrToLineSegment(const Vector& P, const Vector& vLineA, const Vector& vLineB, float* t = 0);
bool CalcLineToLineIntersectionSegment(
const Vector& p1, const Vector& p2, const Vector& p3, const Vector& p4, Vector* s1, Vector* s2,
float* t1, float* t2);
void CalcClosestPointOnLine2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, Vector2D& vClosest, float* t = 0);
float CalcDistanceToLine2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
float CalcDistanceSqrToLine2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
void CalcClosestPointOnLineSegment2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, Vector2D& vClosest, float* t = 0);
float CalcDistanceToLineSegment2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
float CalcDistanceSqrToLineSegment2D(Vector2D const& P, Vector2D const& vLineA, Vector2D const& vLineB, float* t = 0);
void MathLib_Init(float gamma = 2.2f, float texGamma = 2.2f, float brightness = 0.0f, int overbright = 2.0f, bool bAllow3DNow = true, bool bAllowSSE = true, bool bAllowSSE2 = true, bool bAllowMMX = true);
bool MathLib_3DNowEnabled(void);
bool MathLib_MMXEnabled(void);
bool MathLib_SSEEnabled(void);
bool MathLib_SSE2Enabled(void);
float Approach(float target, float value, float speed);
float ApproachAngle(float target, float value, float speed);
float AngleDiff(float destAngle, float srcAngle);
float AngleDistance(float next, float cur);
float AngleNormalize(float angle);
float AngleNormalizePositive(float angle);
bool AnglesAreEqual(float a, float b, float tolerance = 0.0f);
void RotationDeltaAxisAngle(const QAngle& srcAngles, const QAngle& destAngles, Vector& deltaAxis, float& deltaAngle);
void RotationDelta(const QAngle& srcAngles, const QAngle& destAngles, QAngle* out);
void ComputeTrianglePlane(const Vector& v1, const Vector& v2, const Vector& v3, Vector& normal, float& intercept);
int PolyFromPlane(Vector* outVerts, const Vector& normal, float dist, float fHalfScale = 9000.0f);
int ClipPolyToPlane(Vector* inVerts, int vertCount, Vector* outVerts, const Vector& normal, float dist, float fOnPlaneEpsilon = 0.1f);
int ClipPolyToPlane_Precise(double* inVerts, int vertCount, double* outVerts, const double* normal, double dist, double fOnPlaneEpsilon = 0.1);
void CalcTriangleTangentSpace(const Vector& p0, const Vector& p1, const Vector& p2,
const Vector2D& t0, const Vector2D& t1, const Vector2D& t2,
Vector& sVect, Vector& tVect);
void TransformAABB(const matrix3x4_t& in1, const Vector& vecMinsIn, const Vector& vecMaxsIn, Vector& vecMinsOut, Vector& vecMaxsOut);
void ITransformAABB(const matrix3x4_t& in1, const Vector& vecMinsIn, const Vector& vecMaxsIn, Vector& vecMinsOut, Vector& vecMaxsOut);
void RotateAABB(const matrix3x4_t& in1, const Vector& vecMinsIn, const Vector& vecMaxsIn, Vector& vecMinsOut, Vector& vecMaxsOut);
void IRotateAABB(const matrix3x4_t& in1, const Vector& vecMinsIn, const Vector& vecMaxsIn, Vector& vecMinsOut, Vector& vecMaxsOut);
inline void MatrixTransformPlane(const matrix3x4_t& src, const cplane_t& inPlane, cplane_t& outPlane)
{
VectorRotate(inPlane.normal, src, outPlane.normal);
outPlane.dist = inPlane.dist * DotProduct(outPlane.normal, outPlane.normal);
outPlane.dist += outPlane.normal.x * src[0][3] + outPlane.normal.y * src[1][3] + outPlane.normal.z * src[2][3];
}
inline void MatrixITransformPlane(const matrix3x4_t& src, const cplane_t& inPlane, cplane_t& outPlane)
{
Vector vecTranslation;
MatrixGetColumn(src, 3, vecTranslation);
Vector vecInvTranslation;
VectorIRotate(vecTranslation, src, vecInvTranslation);
VectorIRotate(inPlane.normal, src, outPlane.normal);
outPlane.dist = inPlane.dist * DotProduct(outPlane.normal, outPlane.normal);
outPlane.dist -= outPlane.normal.x * vecInvTranslation[0] + outPlane.normal.y * vecInvTranslation[1] + outPlane.normal.z * vecInvTranslation[2];
}
int CeilPow2(int in);
int FloorPow2(int in);
FORCEINLINE float* UnpackNormal_HEND3N(const unsigned int* pPackedNormal, float* pNormal)
{
int temp[3];
temp[0] = ((*pPackedNormal >> 0L) & 0x7ff);
if (temp[0] & 0x400)
{
temp[0] = 2048 - temp[0];
}
temp[1] = ((*pPackedNormal >> 11L) & 0x7ff);
if (temp[1] & 0x400)
{
temp[1] = 2048 - temp[1];
}
temp[2] = ((*pPackedNormal >> 22L) & 0x3ff);
if (temp[2] & 0x200)
{
temp[2] = 1024 - temp[2];
}
pNormal[0] = (float)temp[0] * 1.0f / 1023.0f;
pNormal[1] = (float)temp[1] * 1.0f / 1023.0f;
pNormal[2] = (float)temp[2] * 1.0f / 511.0f;
return pNormal;
}
FORCEINLINE unsigned int* PackNormal_HEND3N(const float* pNormal, unsigned int* pPackedNormal)
{
int temp[3];
temp[0] = Float2Int(pNormal[0] * 1023.0f);
temp[1] = Float2Int(pNormal[1] * 1023.0f);
temp[2] = Float2Int(pNormal[2] * 511.0f);
Assert(temp[0] >= -1023 && temp[0] <= 1023);
Assert(temp[1] >= -1023 && temp[1] <= 1023);
Assert(temp[2] >= -511 && temp[2] <= 511);
*pPackedNormal = ((temp[2] & 0x3ff) << 22L) |
((temp[1] & 0x7ff) << 11L) |
((temp[0] & 0x7ff) << 0L);
return pPackedNormal;
}
FORCEINLINE unsigned int* PackNormal_HEND3N(float nx, float ny, float nz, unsigned int* pPackedNormal)
{
int temp[3];
temp[0] = Float2Int(nx * 1023.0f);
temp[1] = Float2Int(ny * 1023.0f);
temp[2] = Float2Int(nz * 511.0f);
Assert(temp[0] >= -1023 && temp[0] <= 1023);
Assert(temp[1] >= -1023 && temp[1] <= 1023);
Assert(temp[2] >= -511 && temp[2] <= 511);
*pPackedNormal = ((temp[2] & 0x3ff) << 22L) |
((temp[1] & 0x7ff) << 11L) |
((temp[0] & 0x7ff) << 0L);
return pPackedNormal;
}
FORCEINLINE float* UnpackNormal_SHORT2(const unsigned int* pPackedNormal, float* pNormal, bool bIsTangent = FALSE)
{
short iX = (*pPackedNormal & 0x0000FFFF);
short iY = (*pPackedNormal & 0xFFFF0000) >> 16;
float zSign = +1;
if (iX < 0)
{
zSign = -1;
iX = -iX;
}
float tSign = +1;
if (iY < 0)
{
tSign = -1;
iY = -iY;
}
pNormal[0] = (iX - 16384.0f) / 16384.0f;
pNormal[1] = (iY - 16384.0f) / 16384.0f;
pNormal[2] = zSign * sqrtf(1.0f - (pNormal[0] * pNormal[0] + pNormal[1] * pNormal[1]));
if (bIsTangent)
{
pNormal[3] = tSign;
}
return pNormal;
}
FORCEINLINE unsigned int* PackNormal_SHORT2(float nx, float ny, float nz, unsigned int* pPackedNormal, float binormalSign = +1.0f)
{
nx += 1;
ny += 1;
nx *= 16384.0f;
ny *= 16384.0f;
nx = max(nx, 1.0f);
ny = max(ny, 1.0f);
nx = min(nx, 32767.0f);
ny = min(ny, 32767.0f);
if (nz < 0.0f)
nx = -nx;
ny *= binormalSign;
short sX = (short)nx;
short sY = (short)ny;
*pPackedNormal = (sX & 0x0000FFFF) | (sY << 16);
return pPackedNormal;
}
FORCEINLINE unsigned int* PackNormal_SHORT2(const float* pNormal, unsigned int* pPackedNormal, float binormalSign = +1.0f)
{
return PackNormal_SHORT2(pNormal[0], pNormal[1], pNormal[2], pPackedNormal, binormalSign);
}
FORCEINLINE float* UnpackNormal_UBYTE4(const unsigned int* pPackedNormal, float* pNormal, bool bIsTangent = FALSE)
{
unsigned char cX, cY;
if (bIsTangent)
{
cX = *pPackedNormal >> 16;
cY = *pPackedNormal >> 24;
}
else
{
cX = *pPackedNormal >> 0;
cY = *pPackedNormal >> 8;
}
float x = cX - 128.0f;
float y = cY - 128.0f;
float z;
float zSignBit = x < 0 ? 1.0f : 0.0f;
float tSignBit = y < 0 ? 1.0f : 0.0f;
float zSign = -(2 * zSignBit - 1);
float tSign = -(2 * tSignBit - 1);
x = x * zSign - zSignBit;
y = y * tSign - tSignBit;
x = x - 64;
y = y - 64;
float xSignBit = x < 0 ? 1.0f : 0.0f;
float ySignBit = y < 0 ? 1.0f : 0.0f;
float xSign = -(2 * xSignBit - 1);
float ySign = -(2 * ySignBit - 1);
x = (x * xSign - xSignBit) / 63.0f;
y = (y * ySign - ySignBit) / 63.0f;
z = 1.0f - x - y;
float oolen = 1.0f / sqrt(x * x + y * y + z * z);
x *= oolen * xSign;
y *= oolen * ySign;
z *= oolen * zSign;
pNormal[0] = x;
pNormal[1] = y;
pNormal[2] = z;
if (bIsTangent)
{
pNormal[3] = tSign;
}
return pNormal;
}
FORCEINLINE unsigned int* PackNormal_UBYTE4(float nx, float ny, float nz, unsigned int* pPackedNormal, bool bIsTangent = false, float binormalSign = +1.0f)
{
float xSign = nx < 0.0f ? -1.0f : 1.0f;
float ySign = ny < 0.0f ? -1.0f : 1.0f;
float zSign = nz < 0.0f ? -1.0f : 1.0f;
float tSign = binormalSign;
Assert((binormalSign == +1.0f) || (binormalSign == -1.0f));
float xSignBit = 0.5f * (1 - xSign);
float ySignBit = 0.5f * (1 - ySign);
float zSignBit = 0.5f * (1 - zSign);
float tSignBit = 0.5f * (1 - binormalSign);
float absX = xSign * nx;
float absY = ySign * ny;
float absZ = zSign * nz;
float xbits = absX / (absX + absY + absZ);
float ybits = absY / (absX + absY + absZ);
xbits *= 63;
ybits *= 63;
xbits = xbits * xSign - xSignBit;
ybits = ybits * ySign - ySignBit;
xbits += 64.0f;
ybits += 64.0f;
xbits = xbits * zSign - zSignBit;
ybits = ybits * tSign - tSignBit;
xbits += 128.0f;
ybits += 128.0f;
unsigned char cX = (unsigned char)xbits;
unsigned char cY = (unsigned char)ybits;
if (!bIsTangent)
*pPackedNormal = (cX << 0) | (cY << 8);
else
*pPackedNormal = (cX << 16) | (cY << 24);
return pPackedNormal;
}
FORCEINLINE unsigned int* PackNormal_UBYTE4(const float* pNormal, unsigned int* pPackedNormal, bool bIsTangent = false, float binormalSign = +1.0f)
{
return PackNormal_UBYTE4(pNormal[0], pNormal[1], pNormal[2], pPackedNormal, bIsTangent, binormalSign);
}
void RGBtoHSV(const Vector& rgb, Vector& hsv);
void HSVtoRGB(const Vector& hsv, Vector& rgb);
float FastLog2(float i);
float FastPow2(float i);
float FastPow(float a, float b);
float FastPow10(float i);
inline bool CloseEnough(float a, float b, float epsilon = EQUAL_EPSILON)
{
return fabs(a - b) <= epsilon;
}
inline bool CloseEnough(const Vector& a, const Vector& b, float epsilon = EQUAL_EPSILON)
{
return fabs(a.x - b.x) <= epsilon &&
fabs(a.y - b.y) <= epsilon &&
fabs(a.z - b.z) <= epsilon;
}
bool AlmostEqual(float a, float b, int maxUlps = 10);
inline bool AlmostEqual(const Vector& a, const Vector& b, int maxUlps = 10)
{
return AlmostEqual(a.x, b.x, maxUlps) &&
AlmostEqual(a.y, b.y, maxUlps) &&
AlmostEqual(a.z, b.z, maxUlps);
}
#endif