Seaside/SpyCustom/interpolatedvar.h
2021-06-16 16:10:20 +03:00

1429 lines
35 KiB
C++

#ifndef INTERPOLATEDVAR_H
#define INTERPOLATEDVAR_H
#ifdef _WIN32
#pragma once
#endif
#include "utllinkedlist.h"
#include "rangecheckedvar.h"
#include "lerp_functions.h"
#include "animationlayer.h"
#include "convar.h"
#include "memdbgon.h"
#define COMPARE_HISTORY(a,b) \
( memcmp( m_VarHistory[a].GetValue(), m_VarHistory[b].GetValue(), sizeof(Type)*GetMaxCount() ) == 0 )
#define LATCH_ANIMATION_VAR (1<<0)
#define LATCH_SIMULATION_VAR (1<<1)
#define EXCLUDE_AUTO_LATCH (1<<2)
#define EXCLUDE_AUTO_INTERPOLATE (1<<3)
#define INTERPOLATE_LINEAR_ONLY (1<<4)
#define INTERPOLATE_OMIT_UPDATE_LAST_NETWORKED (1<<5)
#define EXTRA_INTERPOLATION_HISTORY_STORED 0.05f
extern float g_flLastPacketTimestamp;
inline void Interpolation_SetLastPacketTimeStamp(float timestamp)
{
Assert(timestamp > 0);
g_flLastPacketTimestamp = timestamp;
}
class CInterpolationContext
{
public:
CInterpolationContext()
{
m_bOldAllowExtrapolation = s_bAllowExtrapolation;
m_flOldLastTimeStamp = s_flLastTimeStamp;
s_bAllowExtrapolation = false;
m_pNext = s_pHead;
s_pHead = this;
}
~CInterpolationContext()
{
s_bAllowExtrapolation = m_bOldAllowExtrapolation;
s_flLastTimeStamp = m_flOldLastTimeStamp;
Assert(s_pHead == this);
s_pHead = m_pNext;
}
static void EnableExtrapolation(bool state)
{
s_bAllowExtrapolation = state;
}
static bool IsThereAContext()
{
return s_pHead != NULL;
}
static bool IsExtrapolationAllowed()
{
return s_bAllowExtrapolation;
}
static void SetLastTimeStamp(float timestamp)
{
s_flLastTimeStamp = timestamp;
}
static float GetLastTimeStamp()
{
return s_flLastTimeStamp;
}
private:
CInterpolationContext* m_pNext;
bool m_bOldAllowExtrapolation;
float m_flOldLastTimeStamp;
static CInterpolationContext* s_pHead;
static bool s_bAllowExtrapolation;
static float s_flLastTimeStamp;
};
extern ConVar cl_extrapolate_amount;
template< class T >
inline T ExtrapolateInterpolatedVarType(const T& oldVal, const T& newVal, float divisor, float flExtrapolationAmount)
{
return newVal;
}
inline Vector ExtrapolateInterpolatedVarType(const Vector& oldVal, const Vector& newVal, float divisor, float flExtrapolationAmount)
{
return Lerp(1.0f + flExtrapolationAmount * divisor, oldVal, newVal);
}
inline float ExtrapolateInterpolatedVarType(const float& oldVal, const float& newVal, float divisor, float flExtrapolationAmount)
{
return Lerp(1.0f + flExtrapolationAmount * divisor, oldVal, newVal);
}
inline QAngle ExtrapolateInterpolatedVarType(const QAngle& oldVal, const QAngle& newVal, float divisor, float flExtrapolationAmount)
{
return Lerp<QAngle>(1.0f + flExtrapolationAmount * divisor, oldVal, newVal);
}
abstract_class IInterpolatedVar
{
public:
virtual ~IInterpolatedVar() {}
virtual void Setup(void* pValue, int type) = 0;
virtual void SetInterpolationAmount(float seconds) = 0;
virtual void NoteLastNetworkedValue() = 0;
virtual bool NoteChanged(float changetime, bool bUpdateLastNetworkedValue) = 0;
virtual void Reset() = 0;
virtual int Interpolate(float currentTime) = 0;
virtual int GetType() const = 0;
virtual void RestoreToLastNetworked() = 0;
virtual void Copy(IInterpolatedVar* pSrc) = 0;
virtual const char* GetDebugName() = 0;
virtual void SetDebugName(const char* pName) = 0;
virtual void SetDebug(bool bDebug) = 0;
};
template< typename Type, bool IS_ARRAY >
struct CInterpolatedVarEntryBase
{
CInterpolatedVarEntryBase()
{
value = NULL;
count = 0;
changetime = 0;
}
~CInterpolatedVarEntryBase()
{
delete[] value;
value = NULL;
}
void FastTransferFrom(CInterpolatedVarEntryBase& src)
{
Assert(!value);
value = src.value;
count = src.count;
changetime = src.changetime;
src.value = 0;
src.count = 0;
}
CInterpolatedVarEntryBase& operator=(const CInterpolatedVarEntryBase& src)
{
delete[] value;
value = NULL;
count = 0;
if (src.value)
{
count = src.count;
value = new Type[count];
for (int i = 0; i < count; i++)
{
value[i] = src.value[i];
}
}
return *this;
}
Type* GetValue() { return value; }
const Type* GetValue() const { return value; }
void Init(int maxCount)
{
if (!maxCount)
{
DeleteEntry();
}
else
{
if (maxCount != count)
{
DeleteEntry();
}
if (!value)
{
count = maxCount;
value = new Type[maxCount];
}
}
Assert(count == maxCount);
}
Type* NewEntry(const Type* pValue, int maxCount, float time)
{
changetime = time;
Init(maxCount);
if (value && maxCount)
{
memcpy(value, pValue, maxCount * sizeof(Type));
}
return value;
}
void DeleteEntry()
{
delete[] value;
value = NULL;
count = 0;
}
float changetime;
int count;
Type* value;
private:
CInterpolatedVarEntryBase(const CInterpolatedVarEntryBase& src);
};
template<typename Type>
struct CInterpolatedVarEntryBase<Type, false>
{
CInterpolatedVarEntryBase() {}
~CInterpolatedVarEntryBase() {}
const Type* GetValue() const { return &value; }
Type* GetValue() { return &value; }
void Init(int maxCount)
{
Assert(maxCount == 1);
}
Type* NewEntry(const Type* pValue, int maxCount, float time)
{
Assert(maxCount == 1);
changetime = time;
memcpy(&value, pValue, maxCount * sizeof(Type));
return &value;
}
void FastTransferFrom(CInterpolatedVarEntryBase& src)
{
*this = src;
}
void DeleteEntry() {}
float changetime;
Type value;
};
template<typename T>
class CSimpleRingBuffer
{
public:
CSimpleRingBuffer(int startSize = 4)
{
m_pElements = 0;
m_maxElement = 0;
m_firstElement = 0;
m_count = 0;
m_growSize = 16;
EnsureCapacity(startSize);
}
~CSimpleRingBuffer()
{
delete[] m_pElements;
m_pElements = NULL;
}
inline int Count() const { return m_count; }
int Head() const { return (m_count > 0) ? 0 : InvalidIndex(); }
bool IsIdxValid(int i) const { return (i >= 0 && i < m_count) ? true : false; }
bool IsValidIndex(int i) const { return IsIdxValid(i); }
static int InvalidIndex() { return -1; }
T& operator[](int i)
{
Assert(IsIdxValid(i));
i += m_firstElement;
i = WrapRange(i);
return m_pElements[i];
}
const T& operator[](int i) const
{
Assert(IsIdxValid(i));
i += m_firstElement;
i = WrapRange(i);
return m_pElements[i];
}
void EnsureCapacity(int capSize)
{
if (capSize > m_maxElement)
{
int newMax = m_maxElement + ((capSize + m_growSize - 1) / m_growSize) * m_growSize;
T* pNew = new T[newMax];
for (int i = 0; i < m_maxElement; i++)
{
pNew[i].FastTransferFrom(m_pElements[WrapRange(i + m_firstElement)]);
}
m_firstElement = 0;
m_maxElement = newMax;
delete[] m_pElements;
m_pElements = pNew;
}
}
int AddToHead()
{
EnsureCapacity(m_count + 1);
int i = m_firstElement + m_maxElement - 1;
m_count++;
i = WrapRange(i);
m_firstElement = i;
return 0;
}
int AddToHead(const T& elem)
{
AddToHead();
m_pElements[m_firstElement] = elem;
return 0;
}
int AddToTail()
{
EnsureCapacity(m_count + 1);
m_count++;
return WrapRange(m_firstElement + m_count - 1);
}
void RemoveAll()
{
m_count = 0;
m_firstElement = 0;
}
void RemoveAtHead()
{
if (m_count > 0)
{
m_firstElement = WrapRange(m_firstElement + 1);
m_count--;
}
}
void Truncate(int newLength)
{
if (newLength < m_count)
{
Assert(newLength >= 0);
m_count = newLength;
}
}
private:
inline int WrapRange(int i) const
{
return (i >= m_maxElement) ? (i - m_maxElement) : i;
}
T* m_pElements;
unsigned short m_maxElement;
unsigned short m_firstElement;
unsigned short m_count;
unsigned short m_growSize;
};
template< typename Type, bool IS_ARRAY>
class CInterpolatedVarArrayBase : public IInterpolatedVar
{
public:
friend class CInterpolatedVarPrivate;
CInterpolatedVarArrayBase(const char* pDebugName = "no debug name");
virtual ~CInterpolatedVarArrayBase();
public:
virtual void Setup(void* pValue, int type);
virtual void SetInterpolationAmount(float seconds);
virtual void NoteLastNetworkedValue();
virtual bool NoteChanged(float changetime, bool bUpdateLastNetworkedValue);
virtual void Reset();
virtual int Interpolate(float currentTime);
virtual int GetType() const;
virtual void RestoreToLastNetworked();
virtual void Copy(IInterpolatedVar* pInSrc);
virtual const char* GetDebugName() { return m_pDebugName; }
public:
bool NoteChanged(float changetime, float interpolation_amount, bool bUpdateLastNetworkedValue);
int Interpolate(float currentTime, float interpolation_amount);
void DebugInterpolate(Type* pOut, float currentTime);
void GetDerivative(Type* pOut, float currentTime);
void GetDerivative_SmoothVelocity(Type* pOut, float currentTime);
void ClearHistory();
void AddToHead(float changeTime, const Type* values, bool bFlushNewer);
const Type& GetPrev(int iArrayIndex = 0) const;
const Type& GetCurrent(int iArrayIndex = 0) const;
float GetInterval() const;
bool IsValidIndex(int i);
Type* GetHistoryValue(int index, float& changetime, int iArrayIndex = 0);
int GetHead() { return 0; }
int GetNext(int i)
{
int next = i + 1;
if (!m_VarHistory.IsValidIndex(next))
return m_VarHistory.InvalidIndex();
return next;
}
void SetHistoryValuesForItem(int item, Type& value);
void SetLooping(bool looping, int iArrayIndex = 0);
void SetMaxCount(int newmax);
int GetMaxCount() const;
float GetOldestEntry();
void SetDebugName(const char* pName) { m_pDebugName = pName; }
virtual void SetDebug(bool bDebug) { m_bDebug = bDebug; }
bool GetInterpolationInfo(float currentTime, int* pNewer, int* pOlder, int* pOldest);
protected:
typedef CInterpolatedVarEntryBase<Type, IS_ARRAY> CInterpolatedVarEntry;
typedef CSimpleRingBuffer< CInterpolatedVarEntry > CVarHistory;
friend class CInterpolationInfo;
class CInterpolationInfo
{
public:
bool m_bHermite;
int oldest;
int older;
int newer;
float frac;
};
protected:
void RemoveOldEntries(float oldesttime);
void RemoveEntriesPreviousTo(float flTime);
bool GetInterpolationInfo(
CInterpolationInfo* pInfo,
float currentTime,
float interpolation_amount,
int* pNoMoreChanges);
void TimeFixup_Hermite(
CInterpolatedVarEntry& fixup,
CInterpolatedVarEntry*& prev,
CInterpolatedVarEntry*& start,
CInterpolatedVarEntry*& end);
void TimeFixup2_Hermite(
CInterpolatedVarEntry& fixup,
CInterpolatedVarEntry*& prev,
CInterpolatedVarEntry*& start,
float dt
);
void _Extrapolate(
Type* pOut,
CInterpolatedVarEntry* pOld,
CInterpolatedVarEntry* pNew,
float flDestinationTime,
float flMaxExtrapolationAmount
);
void _Interpolate(Type* out, float frac, CInterpolatedVarEntry* start, CInterpolatedVarEntry* end);
void _Interpolate_Hermite(Type* out, float frac, CInterpolatedVarEntry* pOriginalPrev, CInterpolatedVarEntry* start, CInterpolatedVarEntry* end, bool looping = false);
void _Derivative_Hermite(Type* out, float frac, CInterpolatedVarEntry* pOriginalPrev, CInterpolatedVarEntry* start, CInterpolatedVarEntry* end);
void _Derivative_Hermite_SmoothVelocity(Type* out, float frac, CInterpolatedVarEntry* b, CInterpolatedVarEntry* c, CInterpolatedVarEntry* d);
void _Derivative_Linear(Type* out, CInterpolatedVarEntry* start, CInterpolatedVarEntry* end);
bool ValidOrder();
protected:
Type* m_pValue;
CVarHistory m_VarHistory;
Type* m_LastNetworkedValue;
float m_LastNetworkedTime;
byte m_fType;
byte m_nMaxCount;
byte* m_bLooping;
float m_InterpolationAmount;
const char* m_pDebugName;
bool m_bDebug : 1;
};
template< typename Type, bool IS_ARRAY >
inline CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarArrayBase(const char* pDebugName)
{
m_pDebugName = pDebugName;
m_pValue = NULL;
m_fType = LATCH_ANIMATION_VAR;
m_InterpolationAmount = 0.0f;
m_nMaxCount = 0;
m_LastNetworkedTime = 0;
m_LastNetworkedValue = NULL;
m_bLooping = NULL;
m_bDebug = false;
}
template< typename Type, bool IS_ARRAY >
inline CInterpolatedVarArrayBase<Type, IS_ARRAY>::~CInterpolatedVarArrayBase()
{
ClearHistory();
delete[] m_bLooping;
delete[] m_LastNetworkedValue;
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::Setup(void* pValue, int type)
{
m_pValue = (Type*)pValue;
m_fType = type;
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetInterpolationAmount(float seconds)
{
m_InterpolationAmount = seconds;
}
template< typename Type, bool IS_ARRAY >
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetType() const
{
return m_fType;
}
template< typename Type, bool IS_ARRAY >
void CInterpolatedVarArrayBase<Type, IS_ARRAY>::NoteLastNetworkedValue()
{
memcpy(m_LastNetworkedValue, m_pValue, m_nMaxCount * sizeof(Type));
m_LastNetworkedTime = g_flLastPacketTimestamp;
}
template< typename Type, bool IS_ARRAY >
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::NoteChanged(float changetime, float interpolation_amount, bool bUpdateLastNetworkedValue)
{
Assert(m_pValue);
bool bRet = true;
if (m_VarHistory.Count())
{
if (memcmp(m_pValue, m_VarHistory[0].GetValue(), sizeof(Type) * m_nMaxCount) == 0)
{
bRet = false;
}
}
if (m_bDebug)
{
char const* pDiffString = bRet ? "differs" : "identical";
}
AddToHead(changetime, m_pValue, true);
if (bUpdateLastNetworkedValue)
{
NoteLastNetworkedValue();
}
#if 0
RemoveOldEntries(gpGlobals->curtime - interpolation_amount - 2.0f);
#else
#endif
return bRet;
}
template< typename Type, bool IS_ARRAY >
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::NoteChanged(float changetime, bool bUpdateLastNetworkedValue)
{
return NoteChanged(changetime, m_InterpolationAmount, bUpdateLastNetworkedValue);
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::RestoreToLastNetworked()
{
Assert(m_pValue);
memcpy(m_pValue, m_LastNetworkedValue, m_nMaxCount * sizeof(Type));
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::ClearHistory()
{
for (int i = 0; i < m_VarHistory.Count(); i++)
{
m_VarHistory[i].DeleteEntry();
}
m_VarHistory.RemoveAll();
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::AddToHead(float changeTime, const Type* values, bool bFlushNewer)
{
MEM_ALLOC_CREDIT_CLASS();
int newslot;
if (bFlushNewer)
{
while (m_VarHistory.Count())
{
if ((m_VarHistory[0].changetime + 0.0001f) > changeTime)
{
m_VarHistory.RemoveAtHead();
}
else
{
break;
}
}
newslot = m_VarHistory.AddToHead();
}
else
{
newslot = m_VarHistory.AddToHead();
for (int i = 1; i < m_VarHistory.Count(); i++)
{
if (m_VarHistory[i].changetime <= changeTime)
break;
m_VarHistory[newslot].FastTransferFrom(m_VarHistory[i]);
newslot = i;
}
}
CInterpolatedVarEntry* e = &m_VarHistory[newslot];
e->NewEntry(values, m_nMaxCount, changeTime);
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::Reset()
{
ClearHistory();
if (m_pValue)
{
memcpy(m_LastNetworkedValue, m_pValue, m_nMaxCount * sizeof(Type));
}
}
template< typename Type, bool IS_ARRAY >
inline float CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetOldestEntry()
{
float lastVal = 0;
if (m_VarHistory.Count())
{
lastVal = m_VarHistory[m_VarHistory.Count() - 1].changetime;
}
return lastVal;
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::RemoveOldEntries(float oldesttime)
{
int newCount = m_VarHistory.Count();
for (int i = m_VarHistory.Count(); --i > 2; )
{
if (m_VarHistory[i].changetime > oldesttime)
break;
newCount = i;
}
m_VarHistory.Truncate(newCount);
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::RemoveEntriesPreviousTo(float flTime)
{
for (int i = 0; i < m_VarHistory.Count(); i++)
{
if (m_VarHistory[i].changetime < flTime)
{
m_VarHistory.Truncate(i + 3);
break;
}
}
}
template< typename Type, bool IS_ARRAY >
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetInterpolationInfo(
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolationInfo* pInfo,
float currentTime,
float interpolation_amount,
int* pNoMoreChanges
)
{
Assert(m_pValue);
CVarHistory& varHistory = m_VarHistory;
float targettime = currentTime - interpolation_amount;
pInfo->m_bHermite = false;
pInfo->frac = 0;
pInfo->oldest = pInfo->older = pInfo->newer = varHistory.InvalidIndex();
for (int i = 0; i < varHistory.Count(); i++)
{
pInfo->older = i;
float older_change_time = m_VarHistory[i].changetime;
if (older_change_time == 0.0f)
break;
if (targettime < older_change_time)
{
pInfo->newer = pInfo->older;
continue;
}
if (pInfo->newer == varHistory.InvalidIndex())
{
pInfo->newer = pInfo->older;
if (pNoMoreChanges)
*pNoMoreChanges = 1;
return true;
}
float newer_change_time = varHistory[pInfo->newer].changetime;
float dt = newer_change_time - older_change_time;
if (dt > 0.0001f)
{
pInfo->frac = (targettime - older_change_time) / (newer_change_time - older_change_time);
pInfo->frac = MIN(pInfo->frac, 2.0f);
int oldestindex = i + 1;
if (!(m_fType & INTERPOLATE_LINEAR_ONLY) && varHistory.IsIdxValid(oldestindex))
{
pInfo->oldest = oldestindex;
float oldest_change_time = varHistory[oldestindex].changetime;
float dt2 = older_change_time - oldest_change_time;
if (dt2 > 0.0001f)
{
pInfo->m_bHermite = true;
}
}
if (pNoMoreChanges && pInfo->newer == m_VarHistory.Head())
{
if (COMPARE_HISTORY(pInfo->newer, pInfo->older))
{
if (!pInfo->m_bHermite || COMPARE_HISTORY(pInfo->newer, pInfo->oldest))
*pNoMoreChanges = 1;
}
}
}
return true;
}
if (pInfo->newer != varHistory.InvalidIndex())
{
pInfo->older = pInfo->newer;
return true;
}
pInfo->newer = pInfo->older;
return (pInfo->older != varHistory.InvalidIndex());
}
template< typename Type, bool IS_ARRAY >
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetInterpolationInfo(float currentTime, int* pNewer, int* pOlder, int* pOldest)
{
CInterpolationInfo info;
bool result = GetInterpolationInfo(&info, currentTime, m_InterpolationAmount, NULL);
if (pNewer)
*pNewer = (int)info.newer;
if (pOlder)
*pOlder = (int)info.older;
if (pOldest)
*pOldest = (int)info.oldest;
return result;
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::DebugInterpolate(Type* pOut, float currentTime)
{
float interpolation_amount = m_InterpolationAmount;
int noMoreChanges = 0;
CInterpolationInfo info;
GetInterpolationInfo(&info, currentTime, interpolation_amount, &noMoreChanges);
CVarHistory& history = m_VarHistory;
if (info.m_bHermite)
{
_Interpolate_Hermite(pOut, info.frac, &history[info.oldest], &history[info.older], &history[info.newer]);
}
else if (info.newer == info.older)
{
int realOlder = info.newer + 1;
if (CInterpolationContext::IsExtrapolationAllowed() &&
IsValidIndex(realOlder) &&
history[realOlder].changetime != 0.0 &&
interpolation_amount > 0.000001f &&
CInterpolationContext::GetLastTimeStamp() <= m_LastNetworkedTime)
{
_Extrapolate(pOut, &history[realOlder], &history[info.newer], currentTime - interpolation_amount, cl_extrapolate_amount.GetFloat());
}
else
{
_Interpolate(pOut, info.frac, &history[info.older], &history[info.newer]);
}
}
else
{
_Interpolate(pOut, info.frac, &history[info.older], &history[info.newer]);
}
}
template< typename Type, bool IS_ARRAY >
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::Interpolate(float currentTime, float interpolation_amount)
{
int noMoreChanges = 0;
CInterpolationInfo info;
if (!GetInterpolationInfo(&info, currentTime, interpolation_amount, &noMoreChanges))
return noMoreChanges;
CVarHistory& history = m_VarHistory;
if (m_bDebug)
{
Msg("%s Interpolate at %f%s\n", GetDebugName(), currentTime, noMoreChanges ? " [value will hold]" : "");
}
#ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT
Type* backupValues = (Type*)_alloca(m_nMaxCount * sizeof(Type));
memcpy(backupValues, m_pValue, sizeof(Type) * m_nMaxCount);
#endif
if (info.m_bHermite)
{
_Interpolate_Hermite(m_pValue, info.frac, &history[info.oldest], &history[info.older], &history[info.newer]);
}
else if (info.newer == info.older)
{
int realOlder = info.newer + 1;
if (CInterpolationContext::IsExtrapolationAllowed() &&
IsValidIndex(realOlder) &&
history[realOlder].changetime != 0.0 &&
interpolation_amount > 0.000001f &&
CInterpolationContext::GetLastTimeStamp() <= m_LastNetworkedTime)
{
_Extrapolate(m_pValue, &history[realOlder], &history[info.newer], currentTime - interpolation_amount, cl_extrapolate_amount.GetFloat());
}
else
{
_Interpolate(m_pValue, info.frac, &history[info.older], &history[info.newer]);
}
}
else
{
_Interpolate(m_pValue, info.frac, &history[info.older], &history[info.newer]);
}
#ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT
if (memcmp(backupValues, m_pValue, sizeof(Type) * m_nMaxCount) != 0)
{
extern int g_nInterpolatedVarsChanged;
extern bool g_bRestoreInterpolatedVarValues;
++g_nInterpolatedVarsChanged;
if (g_bRestoreInterpolatedVarValues)
{
memcpy(m_pValue, backupValues, sizeof(Type) * m_nMaxCount);
return noMoreChanges;
}
}
#endif
RemoveEntriesPreviousTo(currentTime - interpolation_amount - EXTRA_INTERPOLATION_HISTORY_STORED);
return noMoreChanges;
}
template< typename Type, bool IS_ARRAY >
void CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetDerivative(Type* pOut, float currentTime)
{
CInterpolationInfo info;
if (!GetInterpolationInfo(&info, currentTime, m_InterpolationAmount, NULL))
return;
if (info.m_bHermite)
{
_Derivative_Hermite(pOut, info.frac, &m_VarHistory[info.oldest], &m_VarHistory[info.older], &m_VarHistory[info.newer]);
}
else
{
_Derivative_Linear(pOut, &m_VarHistory[info.older], &m_VarHistory[info.newer]);
}
}
template< typename Type, bool IS_ARRAY >
void CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetDerivative_SmoothVelocity(Type* pOut, float currentTime)
{
CInterpolationInfo info;
if (!GetInterpolationInfo(&info, currentTime, m_InterpolationAmount, NULL))
return;
CVarHistory& history = m_VarHistory;
bool bExtrapolate = false;
int realOlder = 0;
if (info.m_bHermite)
{
_Derivative_Hermite_SmoothVelocity(pOut, info.frac, &history[info.oldest], &history[info.older], &history[info.newer]);
return;
}
else if (info.newer == info.older && CInterpolationContext::IsExtrapolationAllowed())
{
realOlder = info.newer + 1;
if (IsValidIndex(realOlder) && history[realOlder].changetime != 0.0)
{
if (m_InterpolationAmount > 0.000001f &&
CInterpolationContext::GetLastTimeStamp() <= (currentTime - m_InterpolationAmount))
{
bExtrapolate = true;
}
}
}
if (bExtrapolate)
{
_Derivative_Linear(pOut, &history[realOlder], &history[info.newer]);
float flDestTime = currentTime - m_InterpolationAmount;
float diff = flDestTime - history[info.newer].changetime;
diff = clamp(diff, 0.f, cl_extrapolate_amount.GetFloat() * 2);
if (diff > cl_extrapolate_amount.GetFloat())
{
float scale = 1 - (diff - cl_extrapolate_amount.GetFloat()) / cl_extrapolate_amount.GetFloat();
for (int i = 0; i < m_nMaxCount; i++)
{
pOut[i] *= scale;
}
}
}
else
{
_Derivative_Linear(pOut, &history[info.older], &history[info.newer]);
}
}
template< typename Type, bool IS_ARRAY >
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::Interpolate(float currentTime)
{
return Interpolate(currentTime, m_InterpolationAmount);
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::Copy(IInterpolatedVar* pInSrc)
{
CInterpolatedVarArrayBase<Type, IS_ARRAY>* pSrc = dynamic_cast<CInterpolatedVarArrayBase<Type, IS_ARRAY>*>(pInSrc);
if (!pSrc || pSrc->m_nMaxCount != m_nMaxCount)
{
if (pSrc)
{
AssertMsg3(false, "pSrc->m_nMaxCount (%i) != m_nMaxCount (%i) for %s.", pSrc->m_nMaxCount, m_nMaxCount, m_pDebugName);
}
else
{
AssertMsg(false, "pSrc was null in CInterpolatedVarArrayBase<Type, IS_ARRAY>::Copy.");
}
return;
}
Assert((m_fType & ~EXCLUDE_AUTO_INTERPOLATE) == (pSrc->m_fType & ~EXCLUDE_AUTO_INTERPOLATE));
Assert(m_pDebugName == pSrc->GetDebugName());
for (int i = 0; i < m_nMaxCount; i++)
{
m_LastNetworkedValue[i] = pSrc->m_LastNetworkedValue[i];
m_bLooping[i] = pSrc->m_bLooping[i];
}
m_LastNetworkedTime = pSrc->m_LastNetworkedTime;
m_VarHistory.RemoveAll();
for (int i = 0; i < pSrc->m_VarHistory.Count(); i++)
{
int newslot = m_VarHistory.AddToTail();
CInterpolatedVarEntry* dest = &m_VarHistory[newslot];
CInterpolatedVarEntry* src = &pSrc->m_VarHistory[i];
dest->NewEntry(src->GetValue(), m_nMaxCount, src->changetime);
}
}
template< typename Type, bool IS_ARRAY >
inline const Type& CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetPrev(int iArrayIndex) const
{
Assert(m_pValue);
Assert(iArrayIndex >= 0 && iArrayIndex < m_nMaxCount);
if (m_VarHistory.Count() > 1)
{
return m_VarHistory[1].GetValue()[iArrayIndex];
}
return m_pValue[iArrayIndex];
}
template< typename Type, bool IS_ARRAY >
inline const Type& CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetCurrent(int iArrayIndex) const
{
Assert(m_pValue);
Assert(iArrayIndex >= 0 && iArrayIndex < m_nMaxCount);
if (m_VarHistory.Count() > 0)
{
return m_VarHistory[0].GetValue()[iArrayIndex];
}
return m_pValue[iArrayIndex];
}
template< typename Type, bool IS_ARRAY >
inline float CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetInterval() const
{
if (m_VarHistory.Count() > 1)
{
return m_VarHistory[0].changetime - m_VarHistory[1].changetime;
}
return 0.0f;
}
template< typename Type, bool IS_ARRAY >
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::IsValidIndex(int i)
{
return m_VarHistory.IsValidIndex(i);
}
template< typename Type, bool IS_ARRAY >
inline Type* CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetHistoryValue(int index, float& changetime, int iArrayIndex)
{
Assert(iArrayIndex >= 0 && iArrayIndex < m_nMaxCount);
if (m_VarHistory.IsIdxValid(index))
{
CInterpolatedVarEntry* entry = &m_VarHistory[index];
changetime = entry->changetime;
return &entry->GetValue()[iArrayIndex];
}
else
{
changetime = 0.0f;
return NULL;
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetHistoryValuesForItem(int item, Type& value)
{
Assert(item >= 0 && item < m_nMaxCount);
for (int i = 0; i < m_VarHistory.Count(); i++)
{
CInterpolatedVarEntry* entry = &m_VarHistory[i];
entry->GetValue()[item] = value;
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetLooping(bool looping, int iArrayIndex)
{
Assert(iArrayIndex >= 0 && iArrayIndex < m_nMaxCount);
m_bLooping[iArrayIndex] = looping;
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetMaxCount(int newmax)
{
bool changed = (newmax != m_nMaxCount) ? true : false;
newmax = MAX(1, newmax);
m_nMaxCount = newmax;
if (changed)
{
delete[] m_bLooping;
delete[] m_LastNetworkedValue;
m_bLooping = new byte[m_nMaxCount];
m_LastNetworkedValue = new Type[m_nMaxCount];
memset(m_bLooping, 0, sizeof(byte) * m_nMaxCount);
memset(m_LastNetworkedValue, 0, sizeof(Type) * m_nMaxCount);
Reset();
}
}
template< typename Type, bool IS_ARRAY >
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetMaxCount() const
{
return m_nMaxCount;
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Interpolate(Type* out, float frac, CInterpolatedVarEntry* start, CInterpolatedVarEntry* end)
{
Assert(start);
Assert(end);
if (start == end)
{
for (int i = 0; i < m_nMaxCount; i++)
{
out[i] = end->GetValue()[i];
Lerp_Clamp(out[i]);
}
return;
}
Assert(frac >= 0.0f && frac <= 1.0f);
for (int i = 0; i < m_nMaxCount; i++)
{
if (m_bLooping[i])
{
out[i] = LoopingLerp(frac, start->GetValue()[i], end->GetValue()[i]);
}
else
{
out[i] = Lerp(frac, start->GetValue()[i], end->GetValue()[i]);
}
Lerp_Clamp(out[i]);
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Extrapolate(
Type* pOut,
CInterpolatedVarEntry* pOld,
CInterpolatedVarEntry* pNew,
float flDestinationTime,
float flMaxExtrapolationAmount
)
{
if (fabs(pOld->changetime - pNew->changetime) < 0.001f || flDestinationTime <= pNew->changetime)
{
for (int i = 0; i < m_nMaxCount; i++)
pOut[i] = pNew->GetValue()[i];
}
else
{
float flExtrapolationAmount = MIN(flDestinationTime - pNew->changetime, flMaxExtrapolationAmount);
float divisor = 1.0f / (pNew->changetime - pOld->changetime);
for (int i = 0; i < m_nMaxCount; i++)
{
pOut[i] = ExtrapolateInterpolatedVarType(pOld->GetValue()[i], pNew->GetValue()[i], divisor, flExtrapolationAmount);
}
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::TimeFixup2_Hermite(
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry& fixup,
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& prev,
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& start,
float dt1
)
{
float dt2 = start->changetime - prev->changetime;
if (fabs(dt1 - dt2) > 0.0001f &&
dt2 > 0.0001f)
{
float frac = dt1 / dt2;
fixup.changetime = start->changetime - dt1;
for (int i = 0; i < m_nMaxCount; i++)
{
if (m_bLooping[i])
{
fixup.GetValue()[i] = LoopingLerp(1 - frac, prev->GetValue()[i], start->GetValue()[i]);
}
else
{
fixup.GetValue()[i] = Lerp(1 - frac, prev->GetValue()[i], start->GetValue()[i]);
}
}
prev = &fixup;
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::TimeFixup_Hermite(
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry& fixup,
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& prev,
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& start,
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& end)
{
TimeFixup2_Hermite(fixup, prev, start, end->changetime - start->changetime);
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Interpolate_Hermite(
Type* out,
float frac,
CInterpolatedVarEntry* prev,
CInterpolatedVarEntry* start,
CInterpolatedVarEntry* end,
bool looping)
{
Assert(start);
Assert(end);
CDisableRangeChecks disableRangeChecks;
CInterpolatedVarEntry fixup;
fixup.Init(m_nMaxCount);
TimeFixup_Hermite(fixup, prev, start, end);
for (int i = 0; i < m_nMaxCount; i++)
{
if (m_bLooping[i])
{
out[i] = LoopingLerp_Hermite(frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i]);
}
else
{
out[i] = Lerp_Hermite(frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i]);
}
Lerp_Clamp(out[i]);
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Derivative_Hermite(
Type* out,
float frac,
CInterpolatedVarEntry* prev,
CInterpolatedVarEntry* start,
CInterpolatedVarEntry* end)
{
Assert(start);
Assert(end);
CDisableRangeChecks disableRangeChecks;
CInterpolatedVarEntry fixup;
fixup.value = (Type*)_alloca(sizeof(Type) * m_nMaxCount);
TimeFixup_Hermite(fixup, prev, start, end);
float divisor = 1.0f / (end->changetime - start->changetime);
for (int i = 0; i < m_nMaxCount; i++)
{
Assert(!m_bLooping[i]);
out[i] = Derivative_Hermite(frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i]);
out[i] *= divisor;
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Derivative_Hermite_SmoothVelocity(
Type* out,
float frac,
CInterpolatedVarEntry* b,
CInterpolatedVarEntry* c,
CInterpolatedVarEntry* d)
{
CInterpolatedVarEntry fixup;
fixup.Init(m_nMaxCount);
TimeFixup_Hermite(fixup, b, c, d);
for (int i = 0; i < m_nMaxCount; i++)
{
Type prevVel = (c->GetValue()[i] - b->GetValue()[i]) / (c->changetime - b->changetime);
Type curVel = (d->GetValue()[i] - c->GetValue()[i]) / (d->changetime - c->changetime);
out[i] = Lerp(frac, prevVel, curVel);
}
}
template< typename Type, bool IS_ARRAY >
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Derivative_Linear(
Type* out,
CInterpolatedVarEntry* start,
CInterpolatedVarEntry* end)
{
if (start == end || fabs(start->changetime - end->changetime) < 0.0001f)
{
for (int i = 0; i < m_nMaxCount; i++)
{
out[i] = start->GetValue()[i] * 0;
}
}
else
{
float divisor = 1.0f / (end->changetime - start->changetime);
for (int i = 0; i < m_nMaxCount; i++)
{
out[i] = (end->GetValue()[i] - start->GetValue()[i]) * divisor;
}
}
}
template< typename Type, bool IS_ARRAY >
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::ValidOrder()
{
float newestchangetime = 0.0f;
bool first = true;
for (int i = 0; i < m_VarHistory.Count(); i++)
{
CInterpolatedVarEntry* entry = &m_VarHistory[i];
if (first)
{
first = false;
newestchangetime = entry->changetime;
continue;
}
if (entry->changetime > newestchangetime)
{
Assert(0);
return false;
}
newestchangetime = entry->changetime;
}
return true;
}
template< typename Type, int COUNT >
class CInterpolatedVarArray : public CInterpolatedVarArrayBase<Type, true >
{
public:
CInterpolatedVarArray(const char* pDebugName = "no debug name")
: CInterpolatedVarArrayBase<Type, true>(pDebugName)
{
this->SetMaxCount(COUNT);
}
};
template< typename Type >
class CInterpolatedVar : public CInterpolatedVarArrayBase< Type, false >
{
public:
CInterpolatedVar(const char* pDebugName = NULL)
: CInterpolatedVarArrayBase< Type, false >(pDebugName)
{
this->SetMaxCount(1);
}
};
#include "memdbgoff.h"
#endif