Seaside/SpyCustom/sdk/mempool.h
2021-06-16 18:48:15 +03:00

591 lines
14 KiB
C++

#ifndef MEMPOOL_H
#define MEMPOOL_H
#ifdef _WIN32
#pragma once
#endif
#include "memalloc.h"
#include "tslist.h"
#include "platform.h"
#include "utlvector.h"
#include "utlrbtree.h"
typedef void (*MemoryPoolReportFunc_t)(PRINTF_FORMAT_STRING char const* pMsg, ...);
class CUtlMemoryPool
{
public:
enum MemoryPoolGrowType_t
{
GROW_NONE = 0,
GROW_FAST = 1,
GROW_SLOW = 2
};
CUtlMemoryPool(int blockSize, int numElements, int growMode = GROW_FAST, const char* pszAllocOwner = NULL, int nAlignment = 0);
~CUtlMemoryPool();
void* Alloc();
void* Alloc(size_t amount);
void* AllocZero();
void* AllocZero(size_t amount);
void Free(void* pMem);
void Clear();
static void SetErrorReportFunc(MemoryPoolReportFunc_t func);
int Count() const { return m_BlocksAllocated; }
int PeakCount() const { return m_PeakAlloc; }
int BlockSize() const { return m_BlockSize; }
int Size() const;
bool IsAllocationWithinPool(void* pMem) const;
protected:
class CBlob
{
public:
CBlob* m_pPrev, * m_pNext;
int m_NumBytes;
char m_Data[1];
char m_Padding[3];
};
void Init();
void AddNewBlob();
void ReportLeaks();
int m_BlockSize;
int m_BlocksPerBlob;
int m_GrowMode;
int m_BlocksAllocated;
int m_PeakAlloc;
unsigned short m_nAlignment;
unsigned short m_NumBlobs;
void* m_pHeadOfFreeList;
const char* m_pszAllocOwner;
CBlob m_BlobHead;
static MemoryPoolReportFunc_t g_ReportFunc;
};
class CMemoryPoolMT : public CUtlMemoryPool
{
public:
CMemoryPoolMT(int blockSize, int numElements, int growMode = GROW_FAST, const char* pszAllocOwner = NULL, int nAlignment = 0) : CUtlMemoryPool(blockSize, numElements, growMode, pszAllocOwner, nAlignment) {}
void* Alloc() { AUTO_LOCK(m_mutex); return CUtlMemoryPool::Alloc(); }
void* Alloc(size_t amount) { AUTO_LOCK(m_mutex); return CUtlMemoryPool::Alloc(amount); }
void* AllocZero() { AUTO_LOCK(m_mutex); return CUtlMemoryPool::AllocZero(); }
void* AllocZero(size_t amount) { AUTO_LOCK(m_mutex); return CUtlMemoryPool::AllocZero(amount); }
void Free(void* pMem) { AUTO_LOCK(m_mutex); CUtlMemoryPool::Free(pMem); }
void Clear() { AUTO_LOCK(m_mutex); return CUtlMemoryPool::Clear(); }
private:
CThreadFastMutex m_mutex;
};
template< class T >
class CClassMemoryPool : public CUtlMemoryPool
{
public:
CClassMemoryPool(int numElements, int growMode = GROW_FAST, int nAlignment = 0) :
CUtlMemoryPool(sizeof(T), numElements, growMode, MEM_ALLOC_CLASSNAME(T), nAlignment) {}
T* Alloc();
T* AllocZero();
void Free(T* pMem);
void Clear();
};
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE = false, int COMPACT_THRESHOLD = 4 >
class CAlignedMemPool
{
enum
{
BLOCK_SIZE = COMPILETIME_MAX(ALIGN_VALUE(ITEM_SIZE, ALIGNMENT), 8),
};
public:
CAlignedMemPool();
void* Alloc();
void Free(void* p);
static int __cdecl CompareChunk(void* const* ppLeft, void* const* ppRight);
void Compact();
int NumTotal() { AUTO_LOCK(m_mutex); return m_Chunks.Count() * (CHUNK_SIZE / BLOCK_SIZE); }
int NumAllocated() { AUTO_LOCK(m_mutex); return NumTotal() - m_nFree; }
int NumFree() { AUTO_LOCK(m_mutex); return m_nFree; }
int BytesTotal() { AUTO_LOCK(m_mutex); return NumTotal() * BLOCK_SIZE; }
int BytesAllocated() { AUTO_LOCK(m_mutex); return NumAllocated() * BLOCK_SIZE; }
int BytesFree() { AUTO_LOCK(m_mutex); return NumFree() * BLOCK_SIZE; }
int ItemSize() { return ITEM_SIZE; }
int BlockSize() { return BLOCK_SIZE; }
int ChunkSize() { return CHUNK_SIZE; }
private:
struct FreeBlock_t
{
FreeBlock_t* pNext;
byte reserved[BLOCK_SIZE - sizeof(FreeBlock_t*)];
};
CUtlVector<void*> m_Chunks;
FreeBlock_t* m_pFirstFree;
int m_nFree;
CAllocator m_Allocator;
double m_TimeLastCompact;
CThreadFastMutex m_mutex;
};
template <typename T, int nInitialCount = 0, bool bDefCreateNewIfEmpty = true >
class CObjectPool
{
public:
CObjectPool()
{
int i = nInitialCount;
while (i-- > 0)
{
m_AvailableObjects.PushItem(new T);
}
}
~CObjectPool()
{
Purge();
}
int NumAvailable()
{
return m_AvailableObjects.Count();
}
void Purge()
{
T* p = NULL;
while (m_AvailableObjects.PopItem(&p))
{
delete p;
}
}
T* GetObject(bool bCreateNewIfEmpty = bDefCreateNewIfEmpty)
{
T* p = NULL;
if (!m_AvailableObjects.PopItem(&p))
{
p = (bCreateNewIfEmpty) ? new T : NULL;
}
return p;
}
void PutObject(T* p)
{
m_AvailableObjects.PushItem(p);
}
private:
CTSList<T*> m_AvailableObjects;
};
template <size_t PROVIDED_ITEM_SIZE, int ITEM_COUNT>
class CFixedBudgetMemoryPool
{
public:
CFixedBudgetMemoryPool()
{
m_pBase = m_pLimit = 0;
COMPILE_TIME_ASSERT(ITEM_SIZE % 4 == 0);
}
bool Owns(void* p)
{
return (p >= m_pBase && p < m_pLimit);
}
void* Alloc()
{
MEM_ALLOC_CREDIT_CLASS();
#ifndef USE_MEM_DEBUG
if (!m_pBase)
{
LOCAL_THREAD_LOCK();
if (!m_pBase)
{
byte* pMemory = m_pBase = (byte*)malloc(ITEM_COUNT * ITEM_SIZE);
m_pLimit = m_pBase + (ITEM_COUNT * ITEM_SIZE);
for (int i = 0; i < ITEM_COUNT; i++)
{
m_freeList.Push((TSLNodeBase_t*)pMemory);
pMemory += ITEM_SIZE;
}
}
}
void* p = m_freeList.Pop();
if (p)
return p;
#endif
return malloc(ITEM_SIZE);
}
void Free(void* p)
{
#ifndef USE_MEM_DEBUG
if (Owns(p))
m_freeList.Push((TSLNodeBase_t*)p);
else
#endif
free(p);
}
void Clear()
{
#ifndef USE_MEM_DEBUG
if (m_pBase)
{
free(m_pBase);
}
m_pBase = m_pLimit = 0;
Construct(&m_freeList);
#endif
}
bool IsEmpty()
{
#ifndef USE_MEM_DEBUG
if (m_pBase && m_freeList.Count() != ITEM_COUNT)
return false;
#endif
return true;
}
enum
{
ITEM_SIZE = ALIGN_VALUE(PROVIDED_ITEM_SIZE, TSLIST_NODE_ALIGNMENT)
};
CTSListBase m_freeList;
byte* m_pBase;
byte* m_pLimit;
};
#define BIND_TO_FIXED_BUDGET_POOL( poolName ) \
inline void* operator new( size_t size ) { return poolName.Alloc(); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { return poolName.Alloc(); } \
inline void operator delete( void* p ) { poolName.Free(p); } \
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { poolName.Free(p); }
template< class T >
inline T* CClassMemoryPool<T>::Alloc()
{
T* pRet;
{
MEM_ALLOC_CREDIT_CLASS();
pRet = (T*)CUtlMemoryPool::Alloc();
}
if (pRet)
{
Construct(pRet);
}
return pRet;
}
template< class T >
inline T* CClassMemoryPool<T>::AllocZero()
{
T* pRet;
{
MEM_ALLOC_CREDIT_CLASS();
pRet = (T*)CUtlMemoryPool::AllocZero();
}
if (pRet)
{
Construct(pRet);
}
return pRet;
}
template< class T >
inline void CClassMemoryPool<T>::Free(T* pMem)
{
if (pMem)
{
Destruct(pMem);
}
CUtlMemoryPool::Free(pMem);
}
template< class T >
inline void CClassMemoryPool<T>::Clear()
{
CUtlRBTree<void*, int> freeBlocks;
SetDefLessFunc(freeBlocks);
void* pCurFree = m_pHeadOfFreeList;
while (pCurFree != NULL)
{
freeBlocks.Insert(pCurFree);
pCurFree = *((void**)pCurFree);
}
for (CBlob* pCur = m_BlobHead.m_pNext; pCur != &m_BlobHead; pCur = pCur->m_pNext)
{
int nElements = pCur->m_NumBytes / this->m_BlockSize;
T* p = (T*)AlignValue(pCur->m_Data, this->m_nAlignment);
T* pLimit = p + nElements;
while (p < pLimit)
{
if (freeBlocks.Find(p) == freeBlocks.InvalidIndex())
{
Destruct(p);
}
p++;
}
}
CUtlMemoryPool::Clear();
}
#define DECLARE_FIXEDSIZE_ALLOCATOR( _class ) \
public: \
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void operator delete( void* p ) { s_Allocator.Free(p); } \
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { s_Allocator.Free(p); } \
private: \
static CUtlMemoryPool s_Allocator
#define DEFINE_FIXEDSIZE_ALLOCATOR( _class, _initsize, _grow ) \
CUtlMemoryPool _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool")
#define DEFINE_FIXEDSIZE_ALLOCATOR_ALIGNED( _class, _initsize, _grow, _alignment ) \
CUtlMemoryPool _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool", _alignment )
#define DECLARE_FIXEDSIZE_ALLOCATOR_MT( _class ) \
public: \
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_Allocator.Alloc(size); } \
inline void operator delete( void* p ) { s_Allocator.Free(p); } \
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { s_Allocator.Free(p); } \
private: \
static CMemoryPoolMT s_Allocator
#define DEFINE_FIXEDSIZE_ALLOCATOR_MT( _class, _initsize, _grow ) \
CMemoryPoolMT _class::s_Allocator(sizeof(_class), _initsize, _grow, #_class " pool")
#define DECLARE_FIXEDSIZE_ALLOCATOR_EXTERNAL( _class ) \
public: \
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_pAllocator->Alloc(size); } \
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_(#_class " pool"); return s_pAllocator->Alloc(size); } \
inline void operator delete( void* p ) { s_pAllocator->Free(p); } \
private: \
static CUtlMemoryPool* s_pAllocator
#define DEFINE_FIXEDSIZE_ALLOCATOR_EXTERNAL( _class, _allocator ) \
CUtlMemoryPool* _class::s_pAllocator = _allocator
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD >
inline CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::CAlignedMemPool()
: m_pFirstFree(0),
m_nFree(0),
m_TimeLastCompact(0)
{
{ COMPILE_TIME_ASSERT(sizeof(FreeBlock_t) >= BLOCK_SIZE); }
{ COMPILE_TIME_ASSERT(ALIGN_VALUE(sizeof(FreeBlock_t), ALIGNMENT) == sizeof(FreeBlock_t)); }
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD >
inline void* CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::Alloc()
{
AUTO_LOCK(m_mutex);
if (!m_pFirstFree)
{
if (!GROWMODE && m_Chunks.Count())
{
return NULL;
}
FreeBlock_t* pNew = (FreeBlock_t*)m_Allocator.Alloc(CHUNK_SIZE);
Assert((unsigned)pNew % ALIGNMENT == 0);
m_Chunks.AddToTail(pNew);
m_nFree = CHUNK_SIZE / BLOCK_SIZE;
m_pFirstFree = pNew;
for (int i = 0; i < m_nFree - 1; i++)
{
pNew->pNext = pNew + 1;
pNew++;
}
pNew->pNext = NULL;
}
void* p = m_pFirstFree;
m_pFirstFree = m_pFirstFree->pNext;
m_nFree--;
return p;
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD >
inline void CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::Free(void* p)
{
AUTO_LOCK(m_mutex);
FreeBlock_t* pFree = ((FreeBlock_t*)p);
FreeBlock_t* pCur = m_pFirstFree;
FreeBlock_t* pPrev = NULL;
while (pCur && pFree > pCur)
{
pPrev = pCur;
pCur = pCur->pNext;
}
pFree->pNext = pCur;
if (pPrev)
{
pPrev->pNext = pFree;
}
else
{
m_pFirstFree = pFree;
}
m_nFree++;
if (m_nFree >= (CHUNK_SIZE / BLOCK_SIZE) * COMPACT_THRESHOLD)
{
double time = Plat_FloatTime();
double compactTime = (m_nFree >= (CHUNK_SIZE / BLOCK_SIZE) * COMPACT_THRESHOLD * 4) ? 15.0 : 30.0;
if (m_TimeLastCompact > time || m_TimeLastCompact + compactTime < time)
{
Compact();
m_TimeLastCompact = time;
}
}
}
template <int ITEM_SIZE, int ALIGNMENT, int CHUNK_SIZE, class CAllocator, bool GROWMODE, int COMPACT_THRESHOLD >
inline void CAlignedMemPool<ITEM_SIZE, ALIGNMENT, CHUNK_SIZE, CAllocator, GROWMODE, COMPACT_THRESHOLD>::Compact()
{
FreeBlock_t* pCur = m_pFirstFree;
FreeBlock_t* pPrev = NULL;
m_Chunks.Sort(CompareChunk);
#ifdef VALIDATE_ALIGNED_MEM_POOL
{
FreeBlock_t* p = m_pFirstFree;
while (p)
{
if (p->pNext && p > p->pNext)
{
__asm { int 3 }
}
p = p->pNext;
}
for (int i = 0; i < m_Chunks.Count(); i++)
{
if (i + 1 < m_Chunks.Count())
{
if (m_Chunks[i] > m_Chunks[i + 1])
{
__asm { int 3 }
}
}
}
}
#endif
int i;
for (i = 0; i < m_Chunks.Count(); i++)
{
int nBlocksPerChunk = CHUNK_SIZE / BLOCK_SIZE;
FreeBlock_t* pChunkLimit = ((FreeBlock_t*)m_Chunks[i]) + nBlocksPerChunk;
int nFromChunk = 0;
if (pCur == m_Chunks[i])
{
FreeBlock_t* pFirst = pCur;
while (pCur && pCur >= m_Chunks[i] && pCur < pChunkLimit)
{
pCur = pCur->pNext;
nFromChunk++;
}
pCur = pFirst;
}
while (pCur && pCur >= m_Chunks[i] && pCur < pChunkLimit)
{
if (nFromChunk != nBlocksPerChunk)
{
if (pPrev)
{
pPrev->pNext = pCur;
}
else
{
m_pFirstFree = pCur;
}
pPrev = pCur;
}
else if (pPrev)
{
pPrev->pNext = NULL;
}
else
{
m_pFirstFree = NULL;
}
pCur = pCur->pNext;
}
if (nFromChunk == nBlocksPerChunk)
{
m_Allocator.Free(m_Chunks[i]);
m_nFree -= nBlocksPerChunk;
m_Chunks[i] = 0;
}
}
for (i = m_Chunks.Count() - 1; i >= 0; i--)
{
if (!m_Chunks[i])
{
m_Chunks.FastRemove(i);
}
}
}
#endif