mirror of
https://github.com/dashr9230/SA-MP.git
synced 2025-01-04 00:23:22 +08:00
5237 lines
119 KiB
C++
5237 lines
119 KiB
C++
/*
|
|
* This file is a part of TTMath Bignum Library
|
|
* and is distributed under the (new) BSD licence.
|
|
* Author: Tomasz Sowa <t.sowa@ttmath.org>
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2006-2010, Tomasz Sowa
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* * Neither the name Tomasz Sowa nor the names of contributors to this
|
|
* project may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef headerfilettmathbig
|
|
#define headerfilettmathbig
|
|
|
|
/*!
|
|
\file ttmathbig.h
|
|
\brief A Class for representing floating point numbers
|
|
*/
|
|
|
|
#include "ttmathint.h"
|
|
#include "ttmaththreads.h"
|
|
|
|
#include <iostream>
|
|
|
|
#ifdef TTMATH_MULTITHREADS
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
namespace ttmath
|
|
{
|
|
|
|
|
|
/*!
|
|
\brief Big implements the floating point numbers
|
|
*/
|
|
template <uint exp, uint man>
|
|
class Big
|
|
{
|
|
|
|
/*
|
|
value = mantissa * 2^exponent
|
|
|
|
exponent - an integer value with a sign
|
|
mantissa - an integer value without a sing
|
|
|
|
mantissa must be pushed into the left side that is the highest bit from
|
|
mantissa must be one (of course if there's another value than zero) -- this job
|
|
(pushing bits into the left side) making Standardizing() method
|
|
|
|
for example:
|
|
if we want to store value one (1) into our Big object we must:
|
|
set mantissa to 1
|
|
set exponent to 0
|
|
set info to 0
|
|
and call method Standardizing()
|
|
*/
|
|
|
|
|
|
public:
|
|
|
|
Int<exp> exponent;
|
|
UInt<man> mantissa;
|
|
unsigned char info;
|
|
|
|
|
|
/*!
|
|
Sign
|
|
the mask of a bit from 'info' which means that there is a sign
|
|
(when the bit is set)
|
|
*/
|
|
#define TTMATH_BIG_SIGN 128
|
|
|
|
|
|
/*!
|
|
Not a number
|
|
if this bit is set that there is not a valid number
|
|
*/
|
|
#define TTMATH_BIG_NAN 64
|
|
|
|
|
|
/*!
|
|
Zero
|
|
if this bit is set that there is value zero
|
|
mantissa should be zero and exponent should be zero too
|
|
(the Standardizing() method does this)
|
|
*/
|
|
#define TTMATH_BIG_ZERO 32
|
|
|
|
|
|
/*!
|
|
this method sets NaN if there was a carry (and returns 1 in such a case)
|
|
|
|
c can be 0, 1 or other value different from zero
|
|
*/
|
|
uint CheckCarry(uint c)
|
|
{
|
|
if( c != 0 )
|
|
{
|
|
SetNan();
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
returning the string represents the currect type of the library
|
|
we have following types:
|
|
asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
|
|
asm_gcc_32 - with asm code designed for GCC (32 bits)
|
|
asm_vc_64 - with asm for VC (64 bit)
|
|
asm_gcc_64 - with asm for GCC (64 bit)
|
|
no_asm_32 - pure C++ version (32 bit) - without any asm code
|
|
no_asm_64 - pure C++ version (64 bit) - without any asm code
|
|
*/
|
|
static const char * LibTypeStr()
|
|
{
|
|
return UInt<man>::LibTypeStr();
|
|
}
|
|
|
|
|
|
/*!
|
|
returning the currect type of the library
|
|
*/
|
|
static LibTypeCode LibType()
|
|
{
|
|
return UInt<man>::LibType();
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method moves all bits from mantissa into its left side
|
|
(suitably changes the exponent) or if the mantissa is zero
|
|
it sets the exponent to zero as well
|
|
(and clears the sign bit and sets the zero bit)
|
|
|
|
it can return a carry
|
|
the carry will be when we don't have enough space in the exponent
|
|
|
|
you don't have to use this method if you don't change the mantissa
|
|
and exponent directly
|
|
*/
|
|
uint Standardizing()
|
|
{
|
|
if( mantissa.IsTheHighestBitSet() )
|
|
{
|
|
ClearInfoBit(TTMATH_BIG_ZERO);
|
|
return 0;
|
|
}
|
|
|
|
if( CorrectZero() )
|
|
return 0;
|
|
|
|
uint comp = mantissa.CompensationToLeft();
|
|
|
|
return exponent.Sub( comp );
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
if the mantissa is equal zero this method sets exponent to zero and
|
|
info without the sign
|
|
|
|
it returns true if there was the correction
|
|
*/
|
|
bool CorrectZero()
|
|
{
|
|
if( mantissa.IsZero() )
|
|
{
|
|
SetInfoBit(TTMATH_BIG_ZERO);
|
|
ClearInfoBit(TTMATH_BIG_SIGN);
|
|
exponent.SetZero();
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
ClearInfoBit(TTMATH_BIG_ZERO);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
this method clears a specific bit in the 'info' variable
|
|
|
|
bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
|
|
*/
|
|
void ClearInfoBit(unsigned char bit)
|
|
{
|
|
info = info & (~bit);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets a specific bit in the 'info' variable
|
|
|
|
bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
|
|
|
|
*/
|
|
void SetInfoBit(unsigned char bit)
|
|
{
|
|
info = info | bit;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true if a specific bit in the 'info' variable is set
|
|
|
|
bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
|
|
*/
|
|
bool IsInfoBit(unsigned char bit) const
|
|
{
|
|
return (info & bit) != 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets zero
|
|
*/
|
|
void SetZero()
|
|
{
|
|
info = TTMATH_BIG_ZERO;
|
|
exponent.SetZero();
|
|
mantissa.SetZero();
|
|
|
|
/*
|
|
we don't have to compensate zero
|
|
*/
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets one
|
|
*/
|
|
void SetOne()
|
|
{
|
|
FromUInt(1);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets value 0.5
|
|
*/
|
|
void Set05()
|
|
{
|
|
FromUInt(1);
|
|
exponent.SubOne();
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets NaN flag (Not a Number)
|
|
when this flag is set that means there is no a valid number
|
|
*/
|
|
void SetNan()
|
|
{
|
|
SetInfoBit(TTMATH_BIG_NAN);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
this method sets the mantissa of the value of pi
|
|
*/
|
|
void SetMantissaPi()
|
|
{
|
|
// this is a static table which represents the value of Pi (mantissa of it)
|
|
// (first is the highest word)
|
|
// we must define this table as 'unsigned int' because
|
|
// both on 32bit and 64bit platforms this table is 32bit
|
|
static const unsigned int temp_table[] = {
|
|
0xc90fdaa2, 0x2168c234, 0xc4c6628b, 0x80dc1cd1, 0x29024e08, 0x8a67cc74, 0x020bbea6, 0x3b139b22,
|
|
0x514a0879, 0x8e3404dd, 0xef9519b3, 0xcd3a431b, 0x302b0a6d, 0xf25f1437, 0x4fe1356d, 0x6d51c245,
|
|
0xe485b576, 0x625e7ec6, 0xf44c42e9, 0xa637ed6b, 0x0bff5cb6, 0xf406b7ed, 0xee386bfb, 0x5a899fa5,
|
|
0xae9f2411, 0x7c4b1fe6, 0x49286651, 0xece45b3d, 0xc2007cb8, 0xa163bf05, 0x98da4836, 0x1c55d39a,
|
|
0x69163fa8, 0xfd24cf5f, 0x83655d23, 0xdca3ad96, 0x1c62f356, 0x208552bb, 0x9ed52907, 0x7096966d,
|
|
0x670c354e, 0x4abc9804, 0xf1746c08, 0xca18217c, 0x32905e46, 0x2e36ce3b, 0xe39e772c, 0x180e8603,
|
|
0x9b2783a2, 0xec07a28f, 0xb5c55df0, 0x6f4c52c9, 0xde2bcbf6, 0x95581718, 0x3995497c, 0xea956ae5,
|
|
0x15d22618, 0x98fa0510, 0x15728e5a, 0x8aaac42d, 0xad33170d, 0x04507a33, 0xa85521ab, 0xdf1cba64,
|
|
0xecfb8504, 0x58dbef0a, 0x8aea7157, 0x5d060c7d, 0xb3970f85, 0xa6e1e4c7, 0xabf5ae8c, 0xdb0933d7,
|
|
0x1e8c94e0, 0x4a25619d, 0xcee3d226, 0x1ad2ee6b, 0xf12ffa06, 0xd98a0864, 0xd8760273, 0x3ec86a64,
|
|
0x521f2b18, 0x177b200c, 0xbbe11757, 0x7a615d6c, 0x770988c0, 0xbad946e2, 0x08e24fa0, 0x74e5ab31,
|
|
0x43db5bfc, 0xe0fd108e, 0x4b82d120, 0xa9210801, 0x1a723c12, 0xa787e6d7, 0x88719a10, 0xbdba5b26,
|
|
0x99c32718, 0x6af4e23c, 0x1a946834, 0xb6150bda, 0x2583e9ca, 0x2ad44ce8, 0xdbbbc2db, 0x04de8ef9,
|
|
0x2e8efc14, 0x1fbecaa6, 0x287c5947, 0x4e6bc05d, 0x99b2964f, 0xa090c3a2, 0x233ba186, 0x515be7ed,
|
|
0x1f612970, 0xcee2d7af, 0xb81bdd76, 0x2170481c, 0xd0069127, 0xd5b05aa9, 0x93b4ea98, 0x8d8fddc1,
|
|
0x86ffb7dc, 0x90a6c08f, 0x4df435c9, 0x34028492, 0x36c3fab4, 0xd27c7026, 0xc1d4dcb2, 0x602646de,
|
|
0xc9751e76, 0x3dba37bd, 0xf8ff9406, 0xad9e530e, 0xe5db382f, 0x413001ae, 0xb06a53ed, 0x9027d831,
|
|
0x179727b0, 0x865a8918, 0xda3edbeb, 0xcf9b14ed, 0x44ce6cba, 0xced4bb1b, 0xdb7f1447, 0xe6cc254b,
|
|
0x33205151, 0x2bd7af42, 0x6fb8f401, 0x378cd2bf, 0x5983ca01, 0xc64b92ec, 0xf032ea15, 0xd1721d03,
|
|
0xf482d7ce, 0x6e74fef6, 0xd55e702f, 0x46980c82, 0xb5a84031, 0x900b1c9e, 0x59e7c97f, 0xbec7e8f3,
|
|
0x23a97a7e, 0x36cc88be, 0x0f1d45b7, 0xff585ac5, 0x4bd407b2, 0x2b4154aa, 0xcc8f6d7e, 0xbf48e1d8,
|
|
0x14cc5ed2, 0x0f8037e0, 0xa79715ee, 0xf29be328, 0x06a1d58b, 0xb7c5da76, 0xf550aa3d, 0x8a1fbff0,
|
|
0xeb19ccb1, 0xa313d55c, 0xda56c9ec, 0x2ef29632, 0x387fe8d7, 0x6e3c0468, 0x043e8f66, 0x3f4860ee,
|
|
0x12bf2d5b, 0x0b7474d6, 0xe694f91e, 0x6dbe1159, 0x74a3926f, 0x12fee5e4, 0x38777cb6, 0xa932df8c,
|
|
0xd8bec4d0, 0x73b931ba, 0x3bc832b6, 0x8d9dd300, 0x741fa7bf, 0x8afc47ed, 0x2576f693, 0x6ba42466,
|
|
0x3aab639c, 0x5ae4f568, 0x3423b474, 0x2bf1c978, 0x238f16cb, 0xe39d652d, 0xe3fdb8be, 0xfc848ad9,
|
|
0x22222e04, 0xa4037c07, 0x13eb57a8, 0x1a23f0c7, 0x3473fc64, 0x6cea306b, 0x4bcbc886, 0x2f8385dd,
|
|
0xfa9d4b7f, 0xa2c087e8, 0x79683303, 0xed5bdd3a, 0x062b3cf5, 0xb3a278a6, 0x6d2a13f8, 0x3f44f82d,
|
|
0xdf310ee0, 0x74ab6a36, 0x4597e899, 0xa0255dc1, 0x64f31cc5, 0x0846851d, 0xf9ab4819, 0x5ded7ea1,
|
|
0xb1d510bd, 0x7ee74d73, 0xfaf36bc3, 0x1ecfa268, 0x359046f4, 0xeb879f92, 0x4009438b, 0x481c6cd7,
|
|
0x889a002e, 0xd5ee382b, 0xc9190da6, 0xfc026e47, 0x9558e447, 0x5677e9aa, 0x9e3050e2, 0x765694df,
|
|
0xc81f56e8, 0x80b96e71, 0x60c980dd, 0x98a573ea, 0x4472065a, 0x139cd290, 0x6cd1cb72, 0x9ec52a53 // last one was: 0x9ec52a52
|
|
//0x86d44014, ...
|
|
// (the last word 0x9ec52a52 was rounded up because the next one is 0x86d44014 -- first bit is one 0x8..)
|
|
// 256 32bit words for the mantissa -- about 2464 valid decimal digits
|
|
};
|
|
// the value of PI is comming from the website http://zenwerx.com/pi.php
|
|
// 3101 digits were taken from this website
|
|
// (later the digits were compared with:
|
|
// http://www.eveandersson.com/pi/digits/1000000 and http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html )
|
|
// and they were set into Big<1,400> type (using operator=(const char*) on a 32bit platform)
|
|
// and then the first 256 words were taken into this table
|
|
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
|
|
// and on 64bit platform value 128 (256/2=128))
|
|
|
|
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
this method sets the value of pi
|
|
*/
|
|
void SetPi()
|
|
{
|
|
SetMantissaPi();
|
|
info = 0;
|
|
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the value of 0.5 * pi
|
|
*/
|
|
void Set05Pi()
|
|
{
|
|
SetMantissaPi();
|
|
info = 0;
|
|
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the value of 2 * pi
|
|
*/
|
|
void Set2Pi()
|
|
{
|
|
SetMantissaPi();
|
|
info = 0;
|
|
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 3;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the value of e
|
|
(the base of the natural logarithm)
|
|
*/
|
|
void SetE()
|
|
{
|
|
static const unsigned int temp_table[] = {
|
|
0xadf85458, 0xa2bb4a9a, 0xafdc5620, 0x273d3cf1, 0xd8b9c583, 0xce2d3695, 0xa9e13641, 0x146433fb,
|
|
0xcc939dce, 0x249b3ef9, 0x7d2fe363, 0x630c75d8, 0xf681b202, 0xaec4617a, 0xd3df1ed5, 0xd5fd6561,
|
|
0x2433f51f, 0x5f066ed0, 0x85636555, 0x3ded1af3, 0xb557135e, 0x7f57c935, 0x984f0c70, 0xe0e68b77,
|
|
0xe2a689da, 0xf3efe872, 0x1df158a1, 0x36ade735, 0x30acca4f, 0x483a797a, 0xbc0ab182, 0xb324fb61,
|
|
0xd108a94b, 0xb2c8e3fb, 0xb96adab7, 0x60d7f468, 0x1d4f42a3, 0xde394df4, 0xae56ede7, 0x6372bb19,
|
|
0x0b07a7c8, 0xee0a6d70, 0x9e02fce1, 0xcdf7e2ec, 0xc03404cd, 0x28342f61, 0x9172fe9c, 0xe98583ff,
|
|
0x8e4f1232, 0xeef28183, 0xc3fe3b1b, 0x4c6fad73, 0x3bb5fcbc, 0x2ec22005, 0xc58ef183, 0x7d1683b2,
|
|
0xc6f34a26, 0xc1b2effa, 0x886b4238, 0x611fcfdc, 0xde355b3b, 0x6519035b, 0xbc34f4de, 0xf99c0238,
|
|
0x61b46fc9, 0xd6e6c907, 0x7ad91d26, 0x91f7f7ee, 0x598cb0fa, 0xc186d91c, 0xaefe1309, 0x85139270,
|
|
0xb4130c93, 0xbc437944, 0xf4fd4452, 0xe2d74dd3, 0x64f2e21e, 0x71f54bff, 0x5cae82ab, 0x9c9df69e,
|
|
0xe86d2bc5, 0x22363a0d, 0xabc52197, 0x9b0deada, 0x1dbf9a42, 0xd5c4484e, 0x0abcd06b, 0xfa53ddef,
|
|
0x3c1b20ee, 0x3fd59d7c, 0x25e41d2b, 0x669e1ef1, 0x6e6f52c3, 0x164df4fb, 0x7930e9e4, 0xe58857b6,
|
|
0xac7d5f42, 0xd69f6d18, 0x7763cf1d, 0x55034004, 0x87f55ba5, 0x7e31cc7a, 0x7135c886, 0xefb4318a,
|
|
0xed6a1e01, 0x2d9e6832, 0xa907600a, 0x918130c4, 0x6dc778f9, 0x71ad0038, 0x092999a3, 0x33cb8b7a,
|
|
0x1a1db93d, 0x7140003c, 0x2a4ecea9, 0xf98d0acc, 0x0a8291cd, 0xcec97dcf, 0x8ec9b55a, 0x7f88a46b,
|
|
0x4db5a851, 0xf44182e1, 0xc68a007e, 0x5e0dd902, 0x0bfd64b6, 0x45036c7a, 0x4e677d2c, 0x38532a3a,
|
|
0x23ba4442, 0xcaf53ea6, 0x3bb45432, 0x9b7624c8, 0x917bdd64, 0xb1c0fd4c, 0xb38e8c33, 0x4c701c3a,
|
|
0xcdad0657, 0xfccfec71, 0x9b1f5c3e, 0x4e46041f, 0x388147fb, 0x4cfdb477, 0xa52471f7, 0xa9a96910,
|
|
0xb855322e, 0xdb6340d8, 0xa00ef092, 0x350511e3, 0x0abec1ff, 0xf9e3a26e, 0x7fb29f8c, 0x183023c3,
|
|
0x587e38da, 0x0077d9b4, 0x763e4e4b, 0x94b2bbc1, 0x94c6651e, 0x77caf992, 0xeeaac023, 0x2a281bf6,
|
|
0xb3a739c1, 0x22611682, 0x0ae8db58, 0x47a67cbe, 0xf9c9091b, 0x462d538c, 0xd72b0374, 0x6ae77f5e,
|
|
0x62292c31, 0x1562a846, 0x505dc82d, 0xb854338a, 0xe49f5235, 0xc95b9117, 0x8ccf2dd5, 0xcacef403,
|
|
0xec9d1810, 0xc6272b04, 0x5b3b71f9, 0xdc6b80d6, 0x3fdd4a8e, 0x9adb1e69, 0x62a69526, 0xd43161c1,
|
|
0xa41d570d, 0x7938dad4, 0xa40e329c, 0xcff46aaa, 0x36ad004c, 0xf600c838, 0x1e425a31, 0xd951ae64,
|
|
0xfdb23fce, 0xc9509d43, 0x687feb69, 0xedd1cc5e, 0x0b8cc3bd, 0xf64b10ef, 0x86b63142, 0xa3ab8829,
|
|
0x555b2f74, 0x7c932665, 0xcb2c0f1c, 0xc01bd702, 0x29388839, 0xd2af05e4, 0x54504ac7, 0x8b758282,
|
|
0x2846c0ba, 0x35c35f5c, 0x59160cc0, 0x46fd8251, 0x541fc68c, 0x9c86b022, 0xbb709987, 0x6a460e74,
|
|
0x51a8a931, 0x09703fee, 0x1c217e6c, 0x3826e52c, 0x51aa691e, 0x0e423cfc, 0x99e9e316, 0x50c1217b,
|
|
0x624816cd, 0xad9a95f9, 0xd5b80194, 0x88d9c0a0, 0xa1fe3075, 0xa577e231, 0x83f81d4a, 0x3f2fa457,
|
|
0x1efc8ce0, 0xba8a4fe8, 0xb6855dfe, 0x72b0a66e, 0xded2fbab, 0xfbe58a30, 0xfafabe1c, 0x5d71a87e,
|
|
0x2f741ef8, 0xc1fe86fe, 0xa6bbfde5, 0x30677f0d, 0x97d11d49, 0xf7a8443d, 0x0822e506, 0xa9f4614e,
|
|
0x011e2a94, 0x838ff88c, 0xd68c8bb7, 0xc51eef6d, 0x49ea8ab4, 0xf2c3df5b, 0xb4e0735a, 0xb0d68749
|
|
// 0x2fe26dd4, ...
|
|
// 256 32bit words for the mantissa -- about 2464 valid decimal digits
|
|
};
|
|
|
|
// above value was calculated using Big<1,400> type on a 32bit platform
|
|
// and then the first 256 words were taken,
|
|
// the calculating was made by using ExpSurrounding0(1) method
|
|
// which took 1420 iterations
|
|
// (the result was compared with e taken from http://antwrp.gsfc.nasa.gov/htmltest/gifcity/e.2mil)
|
|
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
|
|
// and on 64bit platform value 128 (256/2=128))
|
|
|
|
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
|
|
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
|
|
info = 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the value of ln(2)
|
|
the natural logarithm from 2
|
|
*/
|
|
void SetLn2()
|
|
{
|
|
static const unsigned int temp_table[] = {
|
|
0xb17217f7, 0xd1cf79ab, 0xc9e3b398, 0x03f2f6af, 0x40f34326, 0x7298b62d, 0x8a0d175b, 0x8baafa2b,
|
|
0xe7b87620, 0x6debac98, 0x559552fb, 0x4afa1b10, 0xed2eae35, 0xc1382144, 0x27573b29, 0x1169b825,
|
|
0x3e96ca16, 0x224ae8c5, 0x1acbda11, 0x317c387e, 0xb9ea9bc3, 0xb136603b, 0x256fa0ec, 0x7657f74b,
|
|
0x72ce87b1, 0x9d6548ca, 0xf5dfa6bd, 0x38303248, 0x655fa187, 0x2f20e3a2, 0xda2d97c5, 0x0f3fd5c6,
|
|
0x07f4ca11, 0xfb5bfb90, 0x610d30f8, 0x8fe551a2, 0xee569d6d, 0xfc1efa15, 0x7d2e23de, 0x1400b396,
|
|
0x17460775, 0xdb8990e5, 0xc943e732, 0xb479cd33, 0xcccc4e65, 0x9393514c, 0x4c1a1e0b, 0xd1d6095d,
|
|
0x25669b33, 0x3564a337, 0x6a9c7f8a, 0x5e148e82, 0x074db601, 0x5cfe7aa3, 0x0c480a54, 0x17350d2c,
|
|
0x955d5179, 0xb1e17b9d, 0xae313cdb, 0x6c606cb1, 0x078f735d, 0x1b2db31b, 0x5f50b518, 0x5064c18b,
|
|
0x4d162db3, 0xb365853d, 0x7598a195, 0x1ae273ee, 0x5570b6c6, 0x8f969834, 0x96d4e6d3, 0x30af889b,
|
|
0x44a02554, 0x731cdc8e, 0xa17293d1, 0x228a4ef9, 0x8d6f5177, 0xfbcf0755, 0x268a5c1f, 0x9538b982,
|
|
0x61affd44, 0x6b1ca3cf, 0x5e9222b8, 0x8c66d3c5, 0x422183ed, 0xc9942109, 0x0bbb16fa, 0xf3d949f2,
|
|
0x36e02b20, 0xcee886b9, 0x05c128d5, 0x3d0bd2f9, 0x62136319, 0x6af50302, 0x0060e499, 0x08391a0c,
|
|
0x57339ba2, 0xbeba7d05, 0x2ac5b61c, 0xc4e9207c, 0xef2f0ce2, 0xd7373958, 0xd7622658, 0x901e646a,
|
|
0x95184460, 0xdc4e7487, 0x156e0c29, 0x2413d5e3, 0x61c1696d, 0xd24aaebd, 0x473826fd, 0xa0c238b9,
|
|
0x0ab111bb, 0xbd67c724, 0x972cd18b, 0xfbbd9d42, 0x6c472096, 0xe76115c0, 0x5f6f7ceb, 0xac9f45ae,
|
|
0xcecb72f1, 0x9c38339d, 0x8f682625, 0x0dea891e, 0xf07afff3, 0xa892374e, 0x175eb4af, 0xc8daadd8,
|
|
0x85db6ab0, 0x3a49bd0d, 0xc0b1b31d, 0x8a0e23fa, 0xc5e5767d, 0xf95884e0, 0x6425a415, 0x26fac51c,
|
|
0x3ea8449f, 0xe8f70edd, 0x062b1a63, 0xa6c4c60c, 0x52ab3316, 0x1e238438, 0x897a39ce, 0x78b63c9f,
|
|
0x364f5b8a, 0xef22ec2f, 0xee6e0850, 0xeca42d06, 0xfb0c75df, 0x5497e00c, 0x554b03d7, 0xd2874a00,
|
|
0x0ca8f58d, 0x94f0341c, 0xbe2ec921, 0x56c9f949, 0xdb4a9316, 0xf281501e, 0x53daec3f, 0x64f1b783,
|
|
0x154c6032, 0x0e2ff793, 0x33ce3573, 0xfacc5fdc, 0xf1178590, 0x3155bbd9, 0x0f023b22, 0x0224fcd8,
|
|
0x471bf4f4, 0x45f0a88a, 0x14f0cd97, 0x6ea354bb, 0x20cdb5cc, 0xb3db2392, 0x88d58655, 0x4e2a0e8a,
|
|
0x6fe51a8c, 0xfaa72ef2, 0xad8a43dc, 0x4212b210, 0xb779dfe4, 0x9d7307cc, 0x846532e4, 0xb9694eda,
|
|
0xd162af05, 0x3b1751f3, 0xa3d091f6, 0x56658154, 0x12b5e8c2, 0x02461069, 0xac14b958, 0x784934b8,
|
|
0xd6cce1da, 0xa5053701, 0x1aa4fb42, 0xb9a3def4, 0x1bda1f85, 0xef6fdbf2, 0xf2d89d2a, 0x4b183527,
|
|
0x8fd94057, 0x89f45681, 0x2b552879, 0xa6168695, 0xc12963b0, 0xff01eaab, 0x73e5b5c1, 0x585318e7,
|
|
0x624f14a5, 0x1a4a026b, 0x68082920, 0x57fd99b6, 0x6dc085a9, 0x8ac8d8ca, 0xf9eeeea9, 0x8a2400ca,
|
|
0xc95f260f, 0xd10036f9, 0xf91096ac, 0x3195220a, 0x1a356b2a, 0x73b7eaad, 0xaf6d6058, 0x71ef7afb,
|
|
0x80bc4234, 0x33562e94, 0xb12dfab4, 0x14451579, 0xdf59eae0, 0x51707062, 0x4012a829, 0x62c59cab,
|
|
0x347f8304, 0xd889659e, 0x5a9139db, 0x14efcc30, 0x852be3e8, 0xfc99f14d, 0x1d822dd6, 0xe2f76797,
|
|
0xe30219c8, 0xaa9ce884, 0x8a886eb3, 0xc87b7295, 0x988012e8, 0x314186ed, 0xbaf86856, 0xccd3c3b6,
|
|
0xee94e62f, 0x110a6783, 0xd2aae89c, 0xcc3b76fc, 0x435a0ce1, 0x34c2838f, 0xd571ec6c, 0x1366a993 // last one was: 0x1366a992
|
|
//0xcbb9ac40, ...
|
|
// (the last word 0x1366a992 was rounded up because the next one is 0xcbb9ac40 -- first bit is one 0xc..)
|
|
// 256 32bit words for the mantissa -- about 2464 valid decimal digits
|
|
};
|
|
|
|
// above value was calculated using Big<1,400> type on a 32bit platform
|
|
// and then the first 256 words were taken,
|
|
// the calculating was made by using LnSurrounding1(2) method
|
|
// which took 4035 iterations
|
|
// (the result was compared with ln(2) taken from http://ja0hxv.calico.jp/pai/estart.html)
|
|
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
|
|
// and on 64bit platform value 128 (256/2=128))
|
|
|
|
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
|
|
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT);
|
|
info = 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the value of ln(10)
|
|
the natural logarithm from 10
|
|
|
|
I introduced this constant especially to make the conversion ToString()
|
|
being faster. In fact the method ToString() is keeping values of logarithms
|
|
it has calculated but it must calculate the logarithm at least once.
|
|
If a program, which uses this library, is running for a long time this
|
|
would be ok, but for programs which are running shorter, for example for
|
|
CGI applications which only once are printing values, this would be much
|
|
inconvenience. Then if we're printing with base (radix) 10 and the mantissa
|
|
of our value is smaller than or equal to TTMATH_BUILTIN_VARIABLES_SIZE
|
|
we don't calculate the logarithm but take it from this constant.
|
|
*/
|
|
void SetLn10()
|
|
{
|
|
static const unsigned int temp_table[] = {
|
|
0x935d8ddd, 0xaaa8ac16, 0xea56d62b, 0x82d30a28, 0xe28fecf9, 0xda5df90e, 0x83c61e82, 0x01f02d72,
|
|
0x962f02d7, 0xb1a8105c, 0xcc70cbc0, 0x2c5f0d68, 0x2c622418, 0x410be2da, 0xfb8f7884, 0x02e516d6,
|
|
0x782cf8a2, 0x8a8c911e, 0x765aa6c3, 0xb0d831fb, 0xef66ceb0, 0x4ab3c6fa, 0x5161bb49, 0xd219c7bb,
|
|
0xca67b35b, 0x23605085, 0x8e93368d, 0x44789c4f, 0x5b08b057, 0xd5ede20f, 0x469ea58e, 0x9305e981,
|
|
0xe2478fca, 0xad3aee98, 0x9cd5b42e, 0x6a271619, 0xa47ecb26, 0x978c5d4f, 0xdb1d28ea, 0x57d4fdc0,
|
|
0xe40bf3cc, 0x1e14126a, 0x45765cde, 0x268339db, 0xf47fa96d, 0xeb271060, 0xaf88486e, 0xa9b7401e,
|
|
0x3dfd3c51, 0x748e6d6e, 0x3848c8d2, 0x5faf1bca, 0xe88047f1, 0x7b0d9b50, 0xa949eaaa, 0xdf69e8a5,
|
|
0xf77e3760, 0x4e943960, 0xe38a5700, 0xffde2db1, 0xad6bfbff, 0xd821ba0a, 0x4cb0466d, 0x61ba648e,
|
|
0xef99c8e5, 0xf6974f36, 0x3982a78c, 0xa45ddfc8, 0x09426178, 0x19127a6e, 0x3b70fcda, 0x2d732d47,
|
|
0xb5e4b1c8, 0xc0e5a10a, 0xaa6604a5, 0x324ec3dc, 0xbc64ea80, 0x6e198566, 0x1f1d366c, 0x20663834,
|
|
0x4d5e843f, 0x20642b97, 0x0a62d18e, 0x478f7bd5, 0x8fcd0832, 0x4a7b32a6, 0xdef85a05, 0xeb56323a,
|
|
0x421ef5e0, 0xb00410a0, 0xa0d9c260, 0x794a976f, 0xf6ff363d, 0xb00b6b33, 0xf42c58de, 0xf8a3c52d,
|
|
0xed69b13d, 0xc1a03730, 0xb6524dc1, 0x8c167e86, 0x99d6d20e, 0xa2defd2b, 0xd006f8b4, 0xbe145a2a,
|
|
0xdf3ccbb3, 0x189da49d, 0xbc1261c8, 0xb3e4daad, 0x6a36cecc, 0xb2d5ae5b, 0x89bf752f, 0xb5dfb353,
|
|
0xff3065c4, 0x0cfceec8, 0x1be5a9a9, 0x67fddc57, 0xc4b83301, 0x006bf062, 0x4b40ed7a, 0x56c6cdcd,
|
|
0xa2d6fe91, 0x388e9e3e, 0x48a93f5f, 0x5e3b6eb4, 0xb81c4a5b, 0x53d49ea6, 0x8e668aea, 0xba83c7f8,
|
|
0xfb5f06c3, 0x58ac8f70, 0xfa9d8c59, 0x8c574502, 0xbaf54c96, 0xc84911f0, 0x0482d095, 0x1a0af022,
|
|
0xabbab080, 0xec97efd3, 0x671e4e0e, 0x52f166b6, 0xcd5cd226, 0x0dc67795, 0x2e1e34a3, 0xf799677f,
|
|
0x2c1d48f1, 0x2944b6c5, 0x2ba1307e, 0x704d67f9, 0x1c1035e4, 0x4e927c63, 0x03cf12bf, 0xe2cd2e31,
|
|
0xf8ee4843, 0x344d51b0, 0xf37da42b, 0x9f0b0fd9, 0x134fb2d9, 0xf815e490, 0xd966283f, 0x23962766,
|
|
0xeceab1e4, 0xf3b5fc86, 0x468127e2, 0xb606d10d, 0x3a45f4b6, 0xb776102d, 0x2fdbb420, 0x80c8fa84,
|
|
0xd0ff9f45, 0xc58aef38, 0xdb2410fd, 0x1f1cebad, 0x733b2281, 0x52ca5f36, 0xddf29daa, 0x544334b8,
|
|
0xdeeaf659, 0x4e462713, 0x1ed485b4, 0x6a0822e1, 0x28db471c, 0xa53938a8, 0x44c3bef7, 0xf35215c8,
|
|
0xb382bc4e, 0x3e4c6f15, 0x6285f54c, 0x17ab408e, 0xccbf7f5e, 0xd16ab3f6, 0xced2846d, 0xf457e14f,
|
|
0xbb45d9c5, 0x646ad497, 0xac697494, 0x145de32e, 0x93907128, 0xd263d521, 0x79efb424, 0xd64651d6,
|
|
0xebc0c9f0, 0xbb583a44, 0xc6412c84, 0x85bb29a6, 0x4d31a2cd, 0x92954469, 0xa32b1abd, 0xf7f5202c,
|
|
0xa4aa6c93, 0x2e9b53cf, 0x385ab136, 0x2741f356, 0x5de9c065, 0x6009901c, 0x88abbdd8, 0x74efcf73,
|
|
0x3f761ad4, 0x35f3c083, 0xfd6b8ee0, 0x0bef11c7, 0xc552a89d, 0x58ce4a21, 0xd71e54f2, 0x4157f6c7,
|
|
0xd4622316, 0xe98956d7, 0x450027de, 0xcbd398d8, 0x4b98b36a, 0x0724c25c, 0xdb237760, 0xe9324b68,
|
|
0x7523e506, 0x8edad933, 0x92197f00, 0xb853a326, 0xb330c444, 0x65129296, 0x34bc0670, 0xe177806d,
|
|
0xe338dac4, 0x5537492a, 0xe19add83, 0xcf45000f, 0x5b423bce, 0x6497d209, 0xe30e18a1, 0x3cbf0687,
|
|
0x67973103, 0xd9485366, 0x81506bba, 0x2e93a9a4, 0x7dd59d3f, 0xf17cd746, 0x8c2075be, 0x552a4348 // last one was: 0x552a4347
|
|
// 0xb4a638ef, ...
|
|
//(the last word 0x552a4347 was rounded up because the next one is 0xb4a638ef -- first bit is one 0xb..)
|
|
// 256 32bit words for the mantissa -- about 2464 valid digits (decimal)
|
|
};
|
|
|
|
// above value was calculated using Big<1,400> type on a 32bit platform
|
|
// and then the first 256 32bit words were taken,
|
|
// the calculating was made by using LnSurrounding1(10) method
|
|
// which took 22080 iterations
|
|
// (the result was compared with ln(10) taken from http://ja0hxv.calico.jp/pai/estart.html)
|
|
// (the formula used in LnSurrounding1(x) converges badly when
|
|
// the x is greater than one but in fact we can use it, only the
|
|
// number of iterations will be greater)
|
|
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
|
|
// and on 64bit platform value 128 (256/2=128))
|
|
|
|
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
|
|
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
|
|
info = 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the maximum value which can be held in this type
|
|
*/
|
|
void SetMax()
|
|
{
|
|
info = 0;
|
|
mantissa.SetMax();
|
|
exponent.SetMax();
|
|
|
|
// we don't have to use 'Standardizing()' because the last bit from
|
|
// the mantissa is set
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the minimum value which can be held in this type
|
|
*/
|
|
void SetMin()
|
|
{
|
|
info = 0;
|
|
|
|
mantissa.SetMax();
|
|
exponent.SetMax();
|
|
SetSign();
|
|
|
|
// we don't have to use 'Standardizing()' because the last bit from
|
|
// the mantissa is set
|
|
}
|
|
|
|
|
|
/*!
|
|
testing whether there is a value zero or not
|
|
*/
|
|
bool IsZero() const
|
|
{
|
|
return IsInfoBit(TTMATH_BIG_ZERO);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true when there's the sign set
|
|
also we don't check the NaN flag
|
|
*/
|
|
bool IsSign() const
|
|
{
|
|
return IsInfoBit(TTMATH_BIG_SIGN);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true when there is not a valid number
|
|
*/
|
|
bool IsNan() const
|
|
{
|
|
return IsInfoBit(TTMATH_BIG_NAN);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method clears the sign
|
|
(there'll be an absolute value)
|
|
|
|
e.g.
|
|
-1 -> 1
|
|
2 -> 2
|
|
*/
|
|
void Abs()
|
|
{
|
|
ClearInfoBit(TTMATH_BIG_SIGN);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method remains the 'sign' of the value
|
|
e.g. -2 = -1
|
|
0 = 0
|
|
10 = 1
|
|
*/
|
|
void Sgn()
|
|
{
|
|
// we have to check the NaN flag, because the next SetOne() method would clear it
|
|
if( IsNan() )
|
|
return;
|
|
|
|
if( IsSign() )
|
|
{
|
|
SetOne();
|
|
SetSign();
|
|
}
|
|
else
|
|
if( IsZero() )
|
|
SetZero();
|
|
else
|
|
SetOne();
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method sets the sign
|
|
|
|
e.g.
|
|
-1 -> -1
|
|
2 -> -2
|
|
|
|
we do not check whether there is a zero or not, if you're using this method
|
|
you must be sure that the value is (or will be afterwards) different from zero
|
|
*/
|
|
void SetSign()
|
|
{
|
|
SetInfoBit(TTMATH_BIG_SIGN);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method changes the sign
|
|
when there is a value of zero then the sign is not changed
|
|
|
|
e.g.
|
|
-1 -> 1
|
|
2 -> -2
|
|
*/
|
|
void ChangeSign()
|
|
{
|
|
// we don't have to check the NaN flag here
|
|
|
|
if( IsZero() )
|
|
return;
|
|
|
|
if( IsSign() )
|
|
ClearInfoBit(TTMATH_BIG_SIGN);
|
|
else
|
|
SetInfoBit(TTMATH_BIG_SIGN);
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
this method does the half-to-even rounding (banker's rounding)
|
|
|
|
if is_half is:
|
|
true - that means the rest was equal the half (0.5 decimal)
|
|
false - that means the rest was greater than a half (greater than 0.5 decimal)
|
|
|
|
if the rest was less than a half then don't call this method
|
|
(the rounding should does nothing then)
|
|
*/
|
|
uint RoundHalfToEven(bool is_half, bool rounding_up = true)
|
|
{
|
|
uint c = 0;
|
|
|
|
if( !is_half || mantissa.IsTheLowestBitSet() )
|
|
{
|
|
if( rounding_up )
|
|
{
|
|
if( mantissa.AddOne() )
|
|
{
|
|
mantissa.Rcr(1, 1);
|
|
c = exponent.AddOne();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef TTMATH_DEBUG
|
|
uint c_from_zero =
|
|
#endif
|
|
mantissa.SubOne();
|
|
|
|
// we're using rounding_up=false in Add() when the mantissas have different signs
|
|
// mantissa can be zero only when previous mantissa was equal to ss2.mantissa
|
|
// but in such a case 'last_bit_set' will not be set and consequently 'do_rounding' will be false
|
|
TTMATH_ASSERT( c_from_zero == 0 )
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* basic mathematic functions
|
|
*
|
|
*/
|
|
|
|
private:
|
|
|
|
|
|
/*!
|
|
an auxiliary method for adding
|
|
*/
|
|
void AddCheckExponents( Big<exp, man> & ss2,
|
|
Int<exp> & exp_offset,
|
|
bool & last_bit_set,
|
|
bool & rest_zero,
|
|
bool & do_adding,
|
|
bool & do_rounding)
|
|
{
|
|
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
|
|
|
|
if( exp_offset == mantissa_size_in_bits )
|
|
{
|
|
last_bit_set = ss2.mantissa.IsTheHighestBitSet();
|
|
rest_zero = ss2.mantissa.AreFirstBitsZero(man*TTMATH_BITS_PER_UINT - 1);
|
|
do_rounding = true; // we'are only rounding
|
|
}
|
|
else
|
|
if( exp_offset < mantissa_size_in_bits )
|
|
{
|
|
uint moved = exp_offset.ToInt(); // how many times we must move ss2.mantissa
|
|
rest_zero = true;
|
|
|
|
if( moved > 0 )
|
|
{
|
|
last_bit_set = static_cast<bool>( ss2.mantissa.GetBit(moved-1) );
|
|
|
|
if( moved > 1 )
|
|
rest_zero = ss2.mantissa.AreFirstBitsZero(moved - 1);
|
|
|
|
// (2) moving 'exp_offset' times
|
|
ss2.mantissa.Rcr(moved, 0);
|
|
}
|
|
|
|
do_adding = true;
|
|
do_rounding = true;
|
|
}
|
|
|
|
// if exp_offset is greater than mantissa_size_in_bits then we do nothing
|
|
// ss2 is too small for taking into consideration in the sum
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for adding
|
|
*/
|
|
uint AddMantissas( Big<exp, man> & ss2,
|
|
bool & last_bit_set,
|
|
bool & rest_zero,
|
|
bool & rounding_up)
|
|
{
|
|
uint c = 0;
|
|
|
|
if( IsSign() == ss2.IsSign() )
|
|
{
|
|
// values have the same signs
|
|
if( mantissa.Add(ss2.mantissa) )
|
|
{
|
|
// we have one bit more from addition (carry)
|
|
// now rest_zero means the old rest_zero with the old last_bit_set
|
|
rest_zero = (!last_bit_set && rest_zero);
|
|
last_bit_set = mantissa.Rcr(1,1);
|
|
c += exponent.AddOne();
|
|
}
|
|
|
|
rounding_up = true;
|
|
}
|
|
else
|
|
{
|
|
// values have different signs
|
|
// there shouldn't be a carry here because
|
|
// (1) (2) guarantee that the mantissa of this
|
|
// is greater than or equal to the mantissa of the ss2
|
|
|
|
#ifdef TTMATH_DEBUG
|
|
uint c_temp =
|
|
#endif
|
|
mantissa.Sub(ss2.mantissa);
|
|
|
|
TTMATH_ASSERT( c_temp == 0 )
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
Addition this = this + ss2
|
|
|
|
it returns carry if the sum is too big
|
|
*/
|
|
uint Add(Big<exp, man> ss2, bool round = true)
|
|
{
|
|
bool last_bit_set, rest_zero, do_adding, do_rounding, rounding_up;
|
|
Int<exp> exp_offset( exponent );
|
|
uint c = 0;
|
|
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
exp_offset.Sub( ss2.exponent );
|
|
exp_offset.Abs();
|
|
|
|
// (1) abs(this) will be >= abs(ss2)
|
|
if( SmallerWithoutSignThan(ss2) )
|
|
{
|
|
// !! use Swap here (not implemented yet)
|
|
Big<exp, man> temp(ss2);
|
|
|
|
ss2 = *this;
|
|
*this = temp;
|
|
}
|
|
|
|
if( ss2.IsZero() )
|
|
return 0;
|
|
|
|
last_bit_set = rest_zero = do_adding = do_rounding = rounding_up = false;
|
|
AddCheckExponents(ss2, exp_offset, last_bit_set, rest_zero, do_adding, do_rounding);
|
|
|
|
if( do_adding )
|
|
c += AddMantissas(ss2, last_bit_set, rest_zero, rounding_up);
|
|
|
|
if( !round || !last_bit_set )
|
|
do_rounding = false;
|
|
|
|
if( do_rounding )
|
|
c += RoundHalfToEven(rest_zero, rounding_up);
|
|
|
|
if( do_adding || do_rounding )
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
Subtraction this = this - ss2
|
|
|
|
it returns carry if the result is too big
|
|
*/
|
|
uint Sub(Big<exp, man> ss2, bool round = true)
|
|
{
|
|
ss2.ChangeSign();
|
|
|
|
return Add(ss2, round);
|
|
}
|
|
|
|
|
|
/*!
|
|
bitwise AND
|
|
|
|
this and ss2 must be >= 0
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - this or ss2 was negative
|
|
*/
|
|
uint BitAnd(Big<exp, man> ss2)
|
|
{
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( IsSign() || ss2.IsSign() )
|
|
return 2;
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
if( ss2.IsZero() )
|
|
{
|
|
SetZero();
|
|
return 0;
|
|
}
|
|
|
|
Int<exp> exp_offset( exponent );
|
|
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
|
|
|
|
uint c = 0;
|
|
|
|
exp_offset.Sub( ss2.exponent );
|
|
exp_offset.Abs();
|
|
|
|
// abs(this) will be >= abs(ss2)
|
|
if( SmallerWithoutSignThan(ss2) )
|
|
{
|
|
Big<exp, man> temp(ss2);
|
|
|
|
ss2 = *this;
|
|
*this = temp;
|
|
}
|
|
|
|
if( exp_offset >= mantissa_size_in_bits )
|
|
{
|
|
// the second value is too small
|
|
SetZero();
|
|
return 0;
|
|
}
|
|
|
|
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
|
|
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
|
|
mantissa.BitAnd(ss2.mantissa);
|
|
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
bitwise OR
|
|
|
|
this and ss2 must be >= 0
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - this or ss2 was negative
|
|
*/
|
|
uint BitOr(Big<exp, man> ss2)
|
|
{
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( IsSign() || ss2.IsSign() )
|
|
return 2;
|
|
|
|
if( IsZero() )
|
|
{
|
|
*this = ss2;
|
|
return 0;
|
|
}
|
|
|
|
if( ss2.IsZero() )
|
|
return 0;
|
|
|
|
Int<exp> exp_offset( exponent );
|
|
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
|
|
|
|
uint c = 0;
|
|
|
|
exp_offset.Sub( ss2.exponent );
|
|
exp_offset.Abs();
|
|
|
|
// abs(this) will be >= abs(ss2)
|
|
if( SmallerWithoutSignThan(ss2) )
|
|
{
|
|
Big<exp, man> temp(ss2);
|
|
|
|
ss2 = *this;
|
|
*this = temp;
|
|
}
|
|
|
|
if( exp_offset >= mantissa_size_in_bits )
|
|
// the second value is too small
|
|
return 0;
|
|
|
|
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
|
|
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
|
|
mantissa.BitOr(ss2.mantissa);
|
|
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
bitwise XOR
|
|
|
|
this and ss2 must be >= 0
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - this or ss2 was negative
|
|
*/
|
|
uint BitXor(Big<exp, man> ss2)
|
|
{
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( IsSign() || ss2.IsSign() )
|
|
return 2;
|
|
|
|
if( ss2.IsZero() )
|
|
return 0;
|
|
|
|
if( IsZero() )
|
|
{
|
|
*this = ss2;
|
|
return 0;
|
|
}
|
|
|
|
Int<exp> exp_offset( exponent );
|
|
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
|
|
|
|
uint c = 0;
|
|
|
|
exp_offset.Sub( ss2.exponent );
|
|
exp_offset.Abs();
|
|
|
|
// abs(this) will be >= abs(ss2)
|
|
if( SmallerWithoutSignThan(ss2) )
|
|
{
|
|
Big<exp, man> temp(ss2);
|
|
|
|
ss2 = *this;
|
|
*this = temp;
|
|
}
|
|
|
|
if( exp_offset >= mantissa_size_in_bits )
|
|
// the second value is too small
|
|
return 0;
|
|
|
|
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
|
|
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
|
|
mantissa.BitXor(ss2.mantissa);
|
|
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
Multiplication this = this * ss2 (ss2 is uint)
|
|
|
|
ss2 without a sign
|
|
*/
|
|
uint MulUInt(uint ss2)
|
|
{
|
|
UInt<man+1> man_result;
|
|
uint i,c = 0;
|
|
|
|
if( IsNan() )
|
|
return 1;
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
if( ss2 == 0 )
|
|
{
|
|
SetZero();
|
|
return 0;
|
|
}
|
|
|
|
// man_result = mantissa * ss2.mantissa
|
|
mantissa.MulInt(ss2, man_result);
|
|
|
|
sint bit = UInt<man>::FindLeadingBitInWord(man_result.table[man]); // man - last word
|
|
|
|
if( bit!=-1 && uint(bit) > (TTMATH_BITS_PER_UINT/2) )
|
|
{
|
|
// 'i' will be from 0 to TTMATH_BITS_PER_UINT
|
|
i = man_result.CompensationToLeft();
|
|
c = exponent.Add( TTMATH_BITS_PER_UINT - i );
|
|
|
|
for(i=0 ; i<man ; ++i)
|
|
mantissa.table[i] = man_result.table[i+1];
|
|
}
|
|
else
|
|
{
|
|
if( bit != -1 )
|
|
{
|
|
man_result.Rcr(bit+1, 0);
|
|
c += exponent.Add(bit+1);
|
|
}
|
|
|
|
for(i=0 ; i<man ; ++i)
|
|
mantissa.table[i] = man_result.table[i];
|
|
}
|
|
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
Multiplication this = this * ss2 (ss2 is sint)
|
|
|
|
ss2 with a sign
|
|
*/
|
|
uint MulInt(sint ss2)
|
|
{
|
|
if( IsNan() )
|
|
return 1;
|
|
|
|
if( ss2 == 0 )
|
|
{
|
|
SetZero();
|
|
return 0;
|
|
}
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
if( IsSign() == (ss2<0) )
|
|
{
|
|
// the signs are the same (both are either - or +), the result is positive
|
|
Abs();
|
|
}
|
|
else
|
|
{
|
|
// the signs are different, the result is negative
|
|
SetSign();
|
|
}
|
|
|
|
if( ss2<0 )
|
|
ss2 = -ss2;
|
|
|
|
|
|
return MulUInt( uint(ss2) );
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
|
|
/*!
|
|
this method checks whether a table pointed by 'tab' and 'len'
|
|
has the value 0.5 decimal
|
|
(it is treated as the comma operator would be before the highest bit)
|
|
call this method only if the highest bit is set - you have to test it beforehand
|
|
|
|
return:
|
|
true - tab was equal the half (0.5 decimal)
|
|
false - tab was greater than a half (greater than 0.5 decimal)
|
|
|
|
*/
|
|
bool CheckGreaterOrEqualHalf(uint * tab, uint len)
|
|
{
|
|
uint i;
|
|
|
|
TTMATH_ASSERT( len>0 && (tab[len-1] & TTMATH_UINT_HIGHEST_BIT)!=0 )
|
|
|
|
for(i=0 ; i<len-1 ; ++i)
|
|
if( tab[i] != 0 )
|
|
return false;
|
|
|
|
if( tab[i] != TTMATH_UINT_HIGHEST_BIT )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
multiplication this = this * ss2
|
|
this method returns a carry
|
|
*/
|
|
uint Mul(const Big<exp, man> & ss2, bool round = true)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( ss2 )
|
|
|
|
UInt<man*2> man_result;
|
|
uint c = 0;
|
|
uint i;
|
|
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
if( ss2.IsZero() )
|
|
{
|
|
SetZero();
|
|
return 0;
|
|
}
|
|
|
|
// man_result = mantissa * ss2.mantissa
|
|
mantissa.MulBig(ss2.mantissa, man_result);
|
|
|
|
// 'i' will be from 0 to man*TTMATH_BITS_PER_UINT
|
|
// because mantissa and ss2.mantissa are standardized
|
|
// (the highest bit in man_result is set to 1 or
|
|
// if there is a zero value in man_result the method CompensationToLeft()
|
|
// returns 0 but we'll correct this at the end in Standardizing() method)
|
|
i = man_result.CompensationToLeft();
|
|
uint exp_add = man * TTMATH_BITS_PER_UINT - i;
|
|
|
|
if( exp_add )
|
|
c += exponent.Add( exp_add );
|
|
|
|
c += exponent.Add( ss2.exponent );
|
|
|
|
for(i=0 ; i<man ; ++i)
|
|
mantissa.table[i] = man_result.table[i+man];
|
|
|
|
if( round && (man_result.table[man-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
{
|
|
bool is_half = CheckGreaterOrEqualHalf(man_result.table, man);
|
|
c += RoundHalfToEven(is_half);
|
|
}
|
|
|
|
if( IsSign() == ss2.IsSign() )
|
|
{
|
|
// the signs are the same, the result is positive
|
|
Abs();
|
|
}
|
|
else
|
|
{
|
|
// the signs are different, the result is negative
|
|
// if the value is zero it will be corrected later in Standardizing method
|
|
SetSign();
|
|
}
|
|
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
division this = this / ss2
|
|
|
|
return value:
|
|
0 - ok
|
|
1 - carry (in a division carry can be as well)
|
|
2 - improper argument (ss2 is zero)
|
|
*/
|
|
uint Div(const Big<exp, man> & ss2, bool round = true)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( ss2 )
|
|
|
|
UInt<man*2> man1;
|
|
UInt<man*2> man2;
|
|
uint i,c = 0;
|
|
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( ss2.IsZero() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
for(i=0 ; i<man ; ++i)
|
|
{
|
|
man1.table[i+man] = mantissa.table[i];
|
|
man2.table[i] = ss2.mantissa.table[i];
|
|
}
|
|
|
|
for(i=0 ; i<man ; ++i)
|
|
{
|
|
man1.table[i] = 0;
|
|
man2.table[i+man] = 0;
|
|
}
|
|
|
|
man1.Div(man2);
|
|
|
|
i = man1.CompensationToLeft();
|
|
|
|
if( i )
|
|
c += exponent.Sub(i);
|
|
|
|
c += exponent.Sub(ss2.exponent);
|
|
|
|
for(i=0 ; i<man ; ++i)
|
|
mantissa.table[i] = man1.table[i+man];
|
|
|
|
if( round && (man1.table[man-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
{
|
|
bool is_half = CheckGreaterOrEqualHalf(man1.table, man);
|
|
c += RoundHalfToEven(is_half);
|
|
}
|
|
|
|
if( IsSign() == ss2.IsSign() )
|
|
Abs();
|
|
else
|
|
SetSign(); // if there is a zero it will be corrected in Standardizing()
|
|
|
|
c += Standardizing();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
the remainder from a division
|
|
|
|
e.g.
|
|
12.6 mod 3 = 0.6 because 12.6 = 3*4 + 0.6
|
|
-12.6 mod 3 = -0.6 bacause -12.6 = 3*(-4) + (-0.6)
|
|
12.6 mod -3 = 0.6
|
|
-12.6 mod -3 = -0.6
|
|
|
|
it means:
|
|
in other words: this(old) = ss2 * q + this(new)
|
|
|
|
return value:
|
|
0 - ok
|
|
1 - carry
|
|
2 - improper argument (ss2 is zero)
|
|
*/
|
|
uint Mod(const Big<exp, man> & ss2)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( ss2 )
|
|
|
|
uint c = 0;
|
|
|
|
if( IsNan() || ss2.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( ss2.IsZero() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
if( !SmallerWithoutSignThan(ss2) )
|
|
{
|
|
Big<exp, man> temp(*this);
|
|
|
|
c = temp.Div(ss2);
|
|
temp.SkipFraction();
|
|
c += temp.Mul(ss2);
|
|
c += Sub(temp);
|
|
|
|
if( !SmallerWithoutSignThan( ss2 ) )
|
|
c += 1;
|
|
}
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
power this = this ^ pow
|
|
(pow without a sign)
|
|
|
|
binary algorithm (r-to-l)
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect arguments (0^0)
|
|
*/
|
|
template<uint pow_size>
|
|
uint Pow(UInt<pow_size> pow)
|
|
{
|
|
if( IsNan() )
|
|
return 1;
|
|
|
|
if( IsZero() )
|
|
{
|
|
if( pow.IsZero() )
|
|
{
|
|
// we don't define zero^zero
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
// 0^(+something) is zero
|
|
return 0;
|
|
}
|
|
|
|
Big<exp, man> start(*this), start_temp;
|
|
Big<exp, man> result;
|
|
result.SetOne();
|
|
uint c = 0;
|
|
|
|
while( !c )
|
|
{
|
|
if( pow.table[0] & 1 )
|
|
c += result.Mul(start);
|
|
|
|
pow.Rcr(1);
|
|
|
|
if( pow.IsZero() )
|
|
break;
|
|
|
|
start_temp = start;
|
|
c += start.Mul(start_temp);
|
|
}
|
|
|
|
*this = result;
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
power this = this ^ pow
|
|
p can be negative
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect arguments 0^0 or 0^(-something)
|
|
*/
|
|
template<uint pow_size>
|
|
uint Pow(Int<pow_size> pow)
|
|
{
|
|
if( IsNan() )
|
|
return 1;
|
|
|
|
if( !pow.IsSign() )
|
|
return Pow( UInt<pow_size>(pow) );
|
|
|
|
if( IsZero() )
|
|
{
|
|
// if 'p' is negative then
|
|
// 'this' must be different from zero
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
uint c = pow.ChangeSign();
|
|
|
|
Big<exp, man> t(*this);
|
|
c += t.Pow( UInt<pow_size>(pow) ); // here can only be a carry (return:1)
|
|
|
|
SetOne();
|
|
c += Div(t);
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns: 'this' mod 2
|
|
(either zero or one)
|
|
|
|
this method is much faster than using Mod( object_with_value_two )
|
|
*/
|
|
uint Mod2() const
|
|
{
|
|
if( exponent>sint(0) || exponent<=-sint(man*TTMATH_BITS_PER_UINT) )
|
|
return 0;
|
|
|
|
sint exp_int = exponent.ToInt();
|
|
// 'exp_int' is negative (or zero), we set it as positive
|
|
exp_int = -exp_int;
|
|
|
|
return mantissa.GetBit(exp_int);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
power this = this ^ abs([pow])
|
|
pow is treated as a value without a sign and without a fraction
|
|
if pow has a sign then the method pow.Abs() is used
|
|
if pow has a fraction the fraction is skipped (not used in calculation)
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect arguments (0^0)
|
|
*/
|
|
uint PowUInt(Big<exp, man> pow)
|
|
{
|
|
if( IsNan() || pow.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( IsZero() )
|
|
{
|
|
if( pow.IsZero() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
// 0^(+something) is zero
|
|
return 0;
|
|
}
|
|
|
|
if( pow.IsSign() )
|
|
pow.Abs();
|
|
|
|
Big<exp, man> start(*this), start_temp;
|
|
Big<exp, man> result;
|
|
Big<exp, man> one;
|
|
Int<exp> e_one;
|
|
uint c = 0;
|
|
|
|
e_one.SetOne();
|
|
one.SetOne();
|
|
result = one;
|
|
|
|
while( !c )
|
|
{
|
|
if( pow.Mod2() )
|
|
c += result.Mul(start);
|
|
|
|
c += pow.exponent.Sub( e_one ); // !! may use SubOne() here?
|
|
|
|
if( pow < one )
|
|
break;
|
|
|
|
start_temp = start;
|
|
c += start.Mul(start_temp);
|
|
}
|
|
|
|
*this = result;
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
power this = this ^ [pow]
|
|
pow is treated as a value without a fraction
|
|
pow can be negative
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect arguments 0^0 or 0^(-something)
|
|
*/
|
|
uint PowInt(const Big<exp, man> & pow)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( pow )
|
|
|
|
if( IsNan() || pow.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( !pow.IsSign() )
|
|
return PowUInt(pow);
|
|
|
|
if( IsZero() )
|
|
{
|
|
// if 'pow' is negative then
|
|
// 'this' must be different from zero
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
Big<exp, man> temp(*this);
|
|
uint c = temp.PowUInt(pow); // here can only be a carry (result:1)
|
|
|
|
SetOne();
|
|
c += Div(temp);
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
power this = this ^ pow
|
|
this must be greater than zero (this > 0)
|
|
pow can be negative and with fraction
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect argument ('this' <= 0)
|
|
*/
|
|
uint PowFrac(const Big<exp, man> & pow)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( pow )
|
|
|
|
if( IsNan() || pow.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
Big<exp, man> temp;
|
|
uint c = temp.Ln(*this);
|
|
|
|
if( c != 0 ) // can be 2 from Ln()
|
|
{
|
|
SetNan();
|
|
return c;
|
|
}
|
|
|
|
c += temp.Mul(pow);
|
|
c += Exp(temp);
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
power this = this ^ pow
|
|
pow can be negative and with fraction
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect argument ('this' or 'pow')
|
|
*/
|
|
uint Pow(const Big<exp, man> & pow)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( pow )
|
|
|
|
if( IsNan() || pow.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( IsZero() )
|
|
{
|
|
// 0^pow will be 0 only for pow>0
|
|
if( pow.IsSign() || pow.IsZero() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
SetZero();
|
|
|
|
return 0;
|
|
}
|
|
|
|
if( pow.exponent>-int(man*TTMATH_BITS_PER_UINT) && pow.exponent<=0 )
|
|
{
|
|
if( pow.IsInteger() )
|
|
return PowInt( pow );
|
|
}
|
|
|
|
return PowFrac(pow);
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the square root
|
|
e.g. let this=9 then this.Sqrt() gives 3
|
|
|
|
return: 0 - ok
|
|
1 - carry
|
|
2 - improper argument (this<0 or NaN)
|
|
*/
|
|
uint Sqrt()
|
|
{
|
|
if( IsNan() || IsSign() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
Big<exp, man> old(*this);
|
|
Big<exp, man> ln;
|
|
uint c = 0;
|
|
|
|
// we're using the formula: sqrt(x) = e ^ (ln(x) / 2)
|
|
c += ln.Ln(*this);
|
|
c += ln.exponent.SubOne(); // ln = ln / 2
|
|
c += Exp(ln);
|
|
|
|
// above formula doesn't give accurate results for some integers
|
|
// e.g. Sqrt(81) would not be 9 but a value very closed to 9
|
|
// we're rounding the result, calculating result*result and comparing
|
|
// with the old value, if they are equal then the result is an integer too
|
|
|
|
if( !c && old.IsInteger() && !IsInteger() )
|
|
{
|
|
Big<exp, man> temp(*this);
|
|
c += temp.Round();
|
|
|
|
Big<exp, man> temp2(temp);
|
|
c += temp.Mul(temp2);
|
|
|
|
if( temp == old )
|
|
*this = temp2;
|
|
}
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
#ifdef TTMATH_CONSTANTSGENERATOR
|
|
public:
|
|
#endif
|
|
|
|
/*!
|
|
Exponent this = exp(x) = e^x where x is in (-1,1)
|
|
|
|
we're using the formula exp(x) = 1 + (x)/(1!) + (x^2)/(2!) + (x^3)/(3!) + ...
|
|
*/
|
|
void ExpSurrounding0(const Big<exp,man> & x, uint * steps = 0)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( x )
|
|
|
|
Big<exp,man> denominator, denominator_i;
|
|
Big<exp,man> one, old_value, next_part;
|
|
Big<exp,man> numerator = x;
|
|
|
|
SetOne();
|
|
one.SetOne();
|
|
denominator.SetOne();
|
|
denominator_i.SetOne();
|
|
|
|
uint i;
|
|
old_value = *this;
|
|
|
|
// we begin from 1 in order to not test at the beginning
|
|
#ifdef TTMATH_CONSTANTSGENERATOR
|
|
for(i=1 ; true ; ++i)
|
|
#else
|
|
for(i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
|
|
#endif
|
|
{
|
|
bool testing = ((i & 3) == 0); // it means '(i % 4) == 0'
|
|
|
|
next_part = numerator;
|
|
|
|
if( next_part.Div( denominator ) )
|
|
// if there is a carry here we only break the loop
|
|
// however the result we return as good
|
|
// it means there are too many parts of the formula
|
|
break;
|
|
|
|
// there shouldn't be a carry here
|
|
Add( next_part );
|
|
|
|
if( testing )
|
|
{
|
|
if( old_value == *this )
|
|
// we've added next few parts of the formula but the result
|
|
// is still the same then we break the loop
|
|
break;
|
|
else
|
|
old_value = *this;
|
|
}
|
|
|
|
// we set the denominator and the numerator for a next part of the formula
|
|
if( denominator_i.Add(one) )
|
|
// if there is a carry here the result we return as good
|
|
break;
|
|
|
|
if( denominator.Mul(denominator_i) )
|
|
break;
|
|
|
|
if( numerator.Mul(x) )
|
|
break;
|
|
}
|
|
|
|
if( steps )
|
|
*steps = i;
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
Exponent this = exp(x) = e^x
|
|
|
|
we're using the fact that our value is stored in form of:
|
|
x = mantissa * 2^exponent
|
|
then
|
|
e^x = e^(mantissa* 2^exponent) or
|
|
e^x = (e^mantissa)^(2^exponent)
|
|
|
|
'Exp' returns a carry if we can't count the result ('x' is too big)
|
|
*/
|
|
uint Exp(const Big<exp,man> & x)
|
|
{
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( x.IsZero() )
|
|
{
|
|
SetOne();
|
|
return 0;
|
|
}
|
|
|
|
// m will be the value of the mantissa in range (-1,1)
|
|
Big<exp,man> m(x);
|
|
m.exponent = -sint(man*TTMATH_BITS_PER_UINT);
|
|
|
|
// 'e_' will be the value of '2^exponent'
|
|
// e_.mantissa.table[man-1] = TTMATH_UINT_HIGHEST_BIT; and
|
|
// e_.exponent.Add(1) mean:
|
|
// e_.mantissa.table[0] = 1;
|
|
// e_.Standardizing();
|
|
// e_.exponent.Add(man*TTMATH_BITS_PER_UINT)
|
|
// (we must add 'man*TTMATH_BITS_PER_UINT' because we've taken it from the mantissa)
|
|
Big<exp,man> e_(x);
|
|
e_.mantissa.SetZero();
|
|
e_.mantissa.table[man-1] = TTMATH_UINT_HIGHEST_BIT;
|
|
c += e_.exponent.Add(1);
|
|
e_.Abs();
|
|
|
|
/*
|
|
now we've got:
|
|
m - the value of the mantissa in range (-1,1)
|
|
e_ - 2^exponent
|
|
|
|
e_ can be as:
|
|
...2^-2, 2^-1, 2^0, 2^1, 2^2 ...
|
|
...1/4 , 1/2 , 1 , 2 , 4 ...
|
|
|
|
above one e_ is integer
|
|
|
|
if e_ is greater than 1 we calculate the exponent as:
|
|
e^(m * e_) = ExpSurrounding0(m) ^ e_
|
|
and if e_ is smaller or equal one we calculate the exponent in this way:
|
|
e^(m * e_) = ExpSurrounding0(m* e_)
|
|
because if e_ is smaller or equal 1 then the product of m*e_ is smaller or equal m
|
|
*/
|
|
|
|
if( e_ <= 1 )
|
|
{
|
|
m.Mul(e_);
|
|
ExpSurrounding0(m);
|
|
}
|
|
else
|
|
{
|
|
ExpSurrounding0(m);
|
|
c += PowUInt(e_);
|
|
}
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
#ifdef TTMATH_CONSTANTSGENERATOR
|
|
public:
|
|
#endif
|
|
|
|
/*!
|
|
Natural logarithm this = ln(x) where x in range <1,2)
|
|
|
|
we're using the formula:
|
|
ln x = 2 * [ (x-1)/(x+1) + (1/3)((x-1)/(x+1))^3 + (1/5)((x-1)/(x+1))^5 + ... ]
|
|
*/
|
|
void LnSurrounding1(const Big<exp,man> & x, uint * steps = 0)
|
|
{
|
|
Big<exp,man> old_value, next_part, denominator, one, two, x1(x), x2(x);
|
|
|
|
one.SetOne();
|
|
|
|
if( x == one )
|
|
{
|
|
// LnSurrounding1(1) is 0
|
|
SetZero();
|
|
return;
|
|
}
|
|
|
|
two = 2;
|
|
|
|
x1.Sub(one);
|
|
x2.Add(one);
|
|
|
|
x1.Div(x2);
|
|
x2 = x1;
|
|
x2.Mul(x1);
|
|
|
|
denominator.SetOne();
|
|
SetZero();
|
|
|
|
old_value = *this;
|
|
uint i;
|
|
|
|
|
|
#ifdef TTMATH_CONSTANTSGENERATOR
|
|
for(i=1 ; true ; ++i)
|
|
#else
|
|
// we begin from 1 in order to not test at the beginning
|
|
for(i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
|
|
#endif
|
|
{
|
|
bool testing = ((i & 3) == 0); // it means '(i % 4) == 0'
|
|
|
|
next_part = x1;
|
|
|
|
if( next_part.Div(denominator) )
|
|
// if there is a carry here we only break the loop
|
|
// however the result we return as good
|
|
// it means there are too many parts of the formula
|
|
break;
|
|
|
|
// there shouldn't be a carry here
|
|
Add(next_part);
|
|
|
|
if( testing )
|
|
{
|
|
if( old_value == *this )
|
|
// we've added next (step_test) parts of the formula but the result
|
|
// is still the same then we break the loop
|
|
break;
|
|
else
|
|
old_value = *this;
|
|
}
|
|
|
|
if( x1.Mul(x2) )
|
|
// if there is a carry here the result we return as good
|
|
break;
|
|
|
|
if( denominator.Add(two) )
|
|
break;
|
|
}
|
|
|
|
// this = this * 2
|
|
// ( there can't be a carry here because we calculate the logarithm between <1,2) )
|
|
exponent.AddOne();
|
|
|
|
if( steps )
|
|
*steps = i;
|
|
}
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
Natural logarithm this = ln(x)
|
|
(a logarithm with the base equal 'e')
|
|
|
|
we're using the fact that our value is stored in form of:
|
|
x = mantissa * 2^exponent
|
|
then
|
|
ln(x) = ln (mantissa * 2^exponent) = ln (mantissa) + (exponent * ln (2))
|
|
|
|
the mantissa we'll show as a value from range <1,2) because the logarithm
|
|
is decreasing too fast when 'x' is going to 0
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - overflow (carry)
|
|
2 - incorrect argument (x<=0)
|
|
*/
|
|
uint Ln(const Big<exp,man> & x)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( x )
|
|
|
|
if( x.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( x.IsSign() || x.IsZero() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
// m will be the value of the mantissa in range <1,2)
|
|
Big<exp,man> m(x);
|
|
m.exponent = -sint(man*TTMATH_BITS_PER_UINT - 1);
|
|
|
|
LnSurrounding1(m);
|
|
|
|
Big<exp,man> exponent_temp;
|
|
exponent_temp.FromInt( x.exponent );
|
|
|
|
// we must add 'man*TTMATH_BITS_PER_UINT-1' because we've taken it from the mantissa
|
|
uint c = exponent_temp.Add(man*TTMATH_BITS_PER_UINT-1);
|
|
|
|
Big<exp,man> ln2;
|
|
ln2.SetLn2();
|
|
c += exponent_temp.Mul(ln2);
|
|
c += Add(exponent_temp);
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
Logarithm from 'x' with a 'base'
|
|
|
|
we're using the formula:
|
|
Log(x) with 'base' = ln(x) / ln(base)
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - overflow
|
|
2 - incorrect argument (x<=0)
|
|
3 - incorrect base (a<=0 lub a=1)
|
|
*/
|
|
uint Log(const Big<exp,man> & x, const Big<exp,man> & base)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( base )
|
|
TTMATH_REFERENCE_ASSERT( x )
|
|
|
|
if( x.IsNan() || base.IsNan() )
|
|
return CheckCarry(1);
|
|
|
|
if( x.IsSign() || x.IsZero() )
|
|
{
|
|
SetNan();
|
|
return 2;
|
|
}
|
|
|
|
Big<exp,man> denominator;;
|
|
denominator.SetOne();
|
|
|
|
if( base.IsSign() || base.IsZero() || base==denominator )
|
|
{
|
|
SetNan();
|
|
return 3;
|
|
}
|
|
|
|
if( x == denominator ) // (this is: if x == 1)
|
|
{
|
|
// log(1) is 0
|
|
SetZero();
|
|
return 0;
|
|
}
|
|
|
|
// another error values we've tested at the beginning
|
|
// there can only be a carry
|
|
uint c = Ln(x);
|
|
|
|
c += denominator.Ln(base);
|
|
c += Div(denominator);
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* converting methods
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
converting from another type of a Big object
|
|
*/
|
|
template<uint another_exp, uint another_man>
|
|
uint FromBig(const Big<another_exp, another_man> & another)
|
|
{
|
|
info = another.info;
|
|
|
|
if( IsNan() )
|
|
return 1;
|
|
|
|
if( exponent.FromInt(another.exponent) )
|
|
{
|
|
SetNan();
|
|
return 1;
|
|
}
|
|
|
|
uint man_len_min = (man < another_man)? man : another_man;
|
|
uint i;
|
|
uint c = 0;
|
|
|
|
for( i = 0 ; i<man_len_min ; ++i )
|
|
mantissa.table[man-1-i] = another.mantissa.table[another_man-1-i];
|
|
|
|
for( ; i<man ; ++i )
|
|
mantissa.table[man-1-i] = 0;
|
|
|
|
|
|
// MS Visual Express 2005 reports a warning (in the lines with 'uint man_diff = ...'):
|
|
// warning C4307: '*' : integral constant overflow
|
|
// but we're using 'if( man > another_man )' and 'if( man < another_man )' and there'll be no such situation here
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable: 4307 )
|
|
#endif
|
|
|
|
if( man > another_man )
|
|
{
|
|
uint man_diff = (man - another_man) * TTMATH_BITS_PER_UINT;
|
|
c += exponent.SubInt(man_diff, 0);
|
|
}
|
|
else
|
|
if( man < another_man )
|
|
{
|
|
uint man_diff = (another_man - man) * TTMATH_BITS_PER_UINT;
|
|
c += exponent.AddInt(man_diff, 0);
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( default: 4307 )
|
|
#endif
|
|
|
|
// mantissa doesn't have to be standardized (either the highest bit is set or all bits are equal zero)
|
|
CorrectZero();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts 'this' into 'result'
|
|
|
|
if the value is too big this method returns a carry (1)
|
|
*/
|
|
uint ToUInt(uint & result, bool test_sign = true) const
|
|
{
|
|
result = 0;
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
if( test_sign && IsSign() )
|
|
// the result should be positive
|
|
return 1;
|
|
|
|
sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
|
|
|
|
if( exponent > maxbit + sint(TTMATH_BITS_PER_UINT) )
|
|
// if exponent > (maxbit + sint(TTMATH_BITS_PER_UINT)) the value can't be passed
|
|
// into the 'sint' type (it's too big)
|
|
return 1;
|
|
|
|
if( exponent <= maxbit )
|
|
// our value is from the range of (-1,1) and we return zero
|
|
return 0;
|
|
|
|
UInt<man> mantissa_temp(mantissa);
|
|
// exponent is from a range of (maxbit, maxbit + sint(TTMATH_BITS_PER_UINT) >
|
|
sint how_many_bits = exponent.ToInt();
|
|
|
|
// how_many_bits is negative, we'll make it positive
|
|
how_many_bits = -how_many_bits;
|
|
|
|
// we're taking into account only the last word in a mantissa table
|
|
mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
|
|
result = mantissa_temp.table[ man-1 ];
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method converts 'this' into 'result'
|
|
|
|
if the value is too big this method returns a carry (1)
|
|
*/
|
|
uint ToInt(sint & result) const
|
|
{
|
|
result = 0;
|
|
uint result_uint;
|
|
|
|
if( ToUInt(result_uint, false) )
|
|
return 1;
|
|
|
|
result = static_cast<sint>( result_uint );
|
|
|
|
// the exception for the minimal value
|
|
if( IsSign() && result_uint == TTMATH_UINT_HIGHEST_BIT )
|
|
return 0;
|
|
|
|
if( (result_uint & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
// the value is too big
|
|
return 1;
|
|
|
|
if( IsSign() )
|
|
result = -result;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts 'this' into 'result'
|
|
|
|
if the value is too big this method returns a carry (1)
|
|
*/
|
|
template<uint int_size>
|
|
uint ToInt(Int<int_size> & result) const
|
|
{
|
|
result.SetZero();
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
|
|
|
|
if( exponent > maxbit + sint(int_size*TTMATH_BITS_PER_UINT) )
|
|
// if exponent > (maxbit + sint(int_size*TTMATH_BITS_PER_UINT)) the value can't be passed
|
|
// into the 'Int<int_size>' type (it's too big)
|
|
return 1;
|
|
|
|
if( exponent <= maxbit )
|
|
// our value is from range (-1,1) and we return zero
|
|
return 0;
|
|
|
|
sint how_many_bits = exponent.ToInt();
|
|
|
|
if( how_many_bits < 0 )
|
|
{
|
|
how_many_bits = -how_many_bits;
|
|
uint index = how_many_bits / TTMATH_BITS_PER_UINT;
|
|
|
|
UInt<man> mantissa_temp(mantissa);
|
|
mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
|
|
|
|
for(uint i=index, a=0 ; i<man ; ++i,++a)
|
|
result.table[a] = mantissa_temp.table[i];
|
|
}
|
|
else
|
|
{
|
|
uint index = how_many_bits / TTMATH_BITS_PER_UINT;
|
|
|
|
for(uint i=0 ; i<man ; ++i)
|
|
result.table[index+i] = mantissa.table[i];
|
|
|
|
result.Rcl( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
|
|
}
|
|
|
|
// the exception for the minimal value
|
|
if( IsSign() )
|
|
{
|
|
Int<int_size> min;
|
|
min.SetMin();
|
|
|
|
if( result == min )
|
|
return 0;
|
|
}
|
|
|
|
if( (result.table[int_size-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
// the value is too big
|
|
return 1;
|
|
|
|
if( IsSign() )
|
|
result.ChangeSign();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting 'uint' to this class
|
|
*/
|
|
void FromUInt(uint value)
|
|
{
|
|
info = 0;
|
|
|
|
for(uint i=0 ; i<man-1 ; ++i)
|
|
mantissa.table[i] = 0;
|
|
|
|
mantissa.table[man-1] = value;
|
|
exponent = -sint(man-1) * sint(TTMATH_BITS_PER_UINT);
|
|
|
|
// there shouldn't be a carry because 'value' has the 'uint' type
|
|
Standardizing();
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting 'sint' to this class
|
|
*/
|
|
void FromInt(sint value)
|
|
{
|
|
bool is_sign = false;
|
|
|
|
if( value < 0 )
|
|
{
|
|
value = -value;
|
|
is_sign = true;
|
|
}
|
|
|
|
FromUInt(uint(value));
|
|
|
|
if( is_sign )
|
|
SetSign();
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method converts from standard double into this class
|
|
|
|
standard double means IEEE-754 floating point value with 64 bits
|
|
it is as follows (from http://www.psc.edu/general/software/packages/ieee/ieee.html):
|
|
|
|
The IEEE double precision floating point standard representation requires
|
|
a 64 bit word, which may be represented as numbered from 0 to 63, left to
|
|
right. The first bit is the sign bit, S, the next eleven bits are the
|
|
exponent bits, 'E', and the final 52 bits are the fraction 'F':
|
|
|
|
S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
|
|
0 1 11 12 63
|
|
|
|
The value V represented by the word may be determined as follows:
|
|
|
|
* If E=2047 and F is nonzero, then V=NaN ("Not a number")
|
|
* If E=2047 and F is zero and S is 1, then V=-Infinity
|
|
* If E=2047 and F is zero and S is 0, then V=Infinity
|
|
* If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where "1.F" is intended
|
|
to represent the binary number created by prefixing F with an implicit
|
|
leading 1 and a binary point.
|
|
* If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) These are
|
|
"unnormalized" values.
|
|
* If E=0 and F is zero and S is 1, then V=-0
|
|
* If E=0 and F is zero and S is 0, then V=0
|
|
*/
|
|
|
|
#ifdef TTMATH_PLATFORM32
|
|
|
|
void FromDouble(double value)
|
|
{
|
|
// sizeof(double) should be 8 (64 bits), this is actually not a runtime
|
|
// error but I leave it at the moment as is
|
|
TTMATH_ASSERT( sizeof(double) == 8 )
|
|
|
|
// I am not sure what will be on a platform which has
|
|
// a different endianness... but we use this library only
|
|
// on x86 and amd (intel) 64 bits (as there's a lot of assembler code)
|
|
union
|
|
{
|
|
double d;
|
|
uint u[2]; // two 32bit words
|
|
} temp;
|
|
|
|
temp.d = value;
|
|
|
|
sint e = ( temp.u[1] & 0x7FF00000u) >> 20;
|
|
uint m1 = ((temp.u[1] & 0xFFFFFu) << 11) | (temp.u[0] >> 21);
|
|
uint m2 = temp.u[0] << 11;
|
|
|
|
if( e == 2047 )
|
|
{
|
|
// If E=2047 and F is nonzero, then V=NaN ("Not a number")
|
|
// If E=2047 and F is zero and S is 1, then V=-Infinity
|
|
// If E=2047 and F is zero and S is 0, then V=Infinity
|
|
|
|
// we do not support -Infinity and +Infinity
|
|
// we assume that there is always NaN
|
|
|
|
SetNan();
|
|
}
|
|
else
|
|
if( e > 0 )
|
|
{
|
|
// If 0<E<2047 then
|
|
// V=(-1)**S * 2 ** (E-1023) * (1.F)
|
|
// where "1.F" is intended to represent the binary number
|
|
// created by prefixing F with an implicit leading 1 and a binary point.
|
|
|
|
FromDouble_SetExpAndMan((temp.u[1] & 0x80000000u) != 0,
|
|
e - 1023 - man*TTMATH_BITS_PER_UINT + 1, 0x80000000u,
|
|
m1, m2);
|
|
|
|
// we do not have to call Standardizing() here
|
|
// because the mantissa will have the highest bit set
|
|
}
|
|
else
|
|
{
|
|
// e == 0
|
|
|
|
if( m1 != 0 || m2 != 0 )
|
|
{
|
|
// If E=0 and F is nonzero,
|
|
// then V=(-1)**S * 2 ** (-1022) * (0.F)
|
|
// These are "unnormalized" values.
|
|
|
|
UInt<2> m;
|
|
m.table[1] = m1;
|
|
m.table[0] = m2;
|
|
uint moved = m.CompensationToLeft();
|
|
|
|
FromDouble_SetExpAndMan((temp.u[1] & 0x80000000u) != 0,
|
|
e - 1022 - man*TTMATH_BITS_PER_UINT + 1 - moved, 0,
|
|
m.table[1], m.table[2]);
|
|
}
|
|
else
|
|
{
|
|
// If E=0 and F is zero and S is 1, then V=-0
|
|
// If E=0 and F is zero and S is 0, then V=0
|
|
|
|
// we do not support -0 or 0, only is one 0
|
|
SetZero();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
void FromDouble_SetExpAndMan(bool is_sign, int e, uint mhighest, uint m1, uint m2)
|
|
{
|
|
exponent = e;
|
|
|
|
if( man > 1 )
|
|
{
|
|
mantissa.table[man-1] = m1 | mhighest;
|
|
mantissa.table[sint(man-2)] = m2;
|
|
// although man>1 we're using casting into sint
|
|
// to get rid from a warning which generates Microsoft Visual:
|
|
// warning C4307: '*' : integral constant overflow
|
|
|
|
for(uint i=0 ; i<man-2 ; ++i)
|
|
mantissa.table[i] = 0;
|
|
}
|
|
else
|
|
{
|
|
mantissa.table[0] = m1 | mhighest;
|
|
}
|
|
|
|
info = 0;
|
|
|
|
// the value should be different from zero
|
|
TTMATH_ASSERT( mantissa.IsZero() == false )
|
|
|
|
if( is_sign )
|
|
SetSign();
|
|
}
|
|
|
|
|
|
#else
|
|
|
|
public:
|
|
|
|
// 64bit platforms
|
|
void FromDouble(double value)
|
|
{
|
|
// sizeof(double) should be 8 (64 bits), this is actually not a runtime
|
|
// error but I leave it at the moment as is
|
|
TTMATH_ASSERT( sizeof(double) == 8 )
|
|
|
|
// I am not sure what will be on a plaltform which has
|
|
// a different endianness... but we use this library only
|
|
// on x86 and amd (intel) 64 bits (as there's a lot of assembler code)
|
|
union
|
|
{
|
|
double d;
|
|
uint u; // one 64bit word
|
|
} temp;
|
|
|
|
temp.d = value;
|
|
|
|
sint e = (temp.u & 0x7FF0000000000000ul) >> 52;
|
|
uint m = (temp.u & 0xFFFFFFFFFFFFFul) << 11;
|
|
|
|
if( e == 2047 )
|
|
{
|
|
// If E=2047 and F is nonzero, then V=NaN ("Not a number")
|
|
// If E=2047 and F is zero and S is 1, then V=-Infinity
|
|
// If E=2047 and F is zero and S is 0, then V=Infinity
|
|
|
|
// we do not support -Infinity and +Infinity
|
|
// we assume that there is always NaN
|
|
|
|
SetNan();
|
|
}
|
|
else
|
|
if( e > 0 )
|
|
{
|
|
// If 0<E<2047 then
|
|
// V=(-1)**S * 2 ** (E-1023) * (1.F)
|
|
// where "1.F" is intended to represent the binary number
|
|
// created by prefixing F with an implicit leading 1 and a binary point.
|
|
|
|
FromDouble_SetExpAndMan((temp.u & 0x8000000000000000ul) != 0,
|
|
e - 1023 - man*TTMATH_BITS_PER_UINT + 1,
|
|
0x8000000000000000ul, m);
|
|
|
|
// we do not have to call Standardizing() here
|
|
// because the mantissa will have the highest bit set
|
|
}
|
|
else
|
|
{
|
|
// e == 0
|
|
|
|
if( m != 0 )
|
|
{
|
|
// If E=0 and F is nonzero,
|
|
// then V=(-1)**S * 2 ** (-1022) * (0.F)
|
|
// These are "unnormalized" values.
|
|
|
|
FromDouble_SetExpAndMan(bool(temp.u & 0x8000000000000000ul),
|
|
e - 1022 - man*TTMATH_BITS_PER_UINT + 1, 0, m);
|
|
Standardizing();
|
|
}
|
|
else
|
|
{
|
|
// If E=0 and F is zero and S is 1, then V=-0
|
|
// If E=0 and F is zero and S is 0, then V=0
|
|
|
|
// we do not support -0 or 0, only is one 0
|
|
SetZero();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
void FromDouble_SetExpAndMan(bool is_sign, sint e, uint mhighest, uint m)
|
|
{
|
|
exponent = e;
|
|
mantissa.table[man-1] = m | mhighest;
|
|
|
|
for(uint i=0 ; i<man-1 ; ++i)
|
|
mantissa.table[i] = 0;
|
|
|
|
info = 0;
|
|
|
|
// the value should be different from zero
|
|
TTMATH_ASSERT( mantissa.IsZero() == false )
|
|
|
|
if( is_sign )
|
|
SetSign();
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
/*!
|
|
this method converts from this class into the 'double'
|
|
|
|
if the value is too big:
|
|
'result' will be +/-infinity (depending on the sign)
|
|
and the method returns 1
|
|
if the value is too small:
|
|
'result' will be 0
|
|
and the method returns 1
|
|
*/
|
|
uint ToDouble(double & result) const
|
|
{
|
|
// sizeof(double) should be 8 (64 bits), this is actually not a runtime
|
|
// error but I leave it at the moment as is
|
|
TTMATH_ASSERT( sizeof(double) == 8 )
|
|
|
|
if( IsZero() )
|
|
{
|
|
result = 0.0;
|
|
return 0;
|
|
}
|
|
|
|
if( IsNan() )
|
|
{
|
|
result = ToDouble_SetDouble( false, 2047, 0, false, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
sint e_correction = sint(man*TTMATH_BITS_PER_UINT) - 1;
|
|
|
|
if( exponent >= 1024 - e_correction )
|
|
{
|
|
// +/- infinity
|
|
result = ToDouble_SetDouble( 0, 2047, 0, true);
|
|
|
|
return 1;
|
|
}
|
|
else
|
|
if( exponent <= -1023 - 52 - e_correction )
|
|
{
|
|
// too small value - we assume that there'll be a zero
|
|
result = 0;
|
|
|
|
// and return a carry
|
|
return 1;
|
|
}
|
|
|
|
sint e = exponent.ToInt() + e_correction;
|
|
|
|
if( e <= -1023 )
|
|
{
|
|
// -1023-52 < e <= -1023 (unnormalized value)
|
|
result = ToDouble_SetDouble( IsSign(), 0, -(e + 1023));
|
|
}
|
|
else
|
|
{
|
|
// -1023 < e < 1024
|
|
result = ToDouble_SetDouble( IsSign(), e + 1023, -1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
|
|
#ifdef TTMATH_PLATFORM32
|
|
|
|
// 32bit platforms
|
|
double ToDouble_SetDouble(bool is_sign, uint e, sint move, bool infinity = false, bool nan = false) const
|
|
{
|
|
union
|
|
{
|
|
double d;
|
|
uint u[2]; // two 32bit words
|
|
} temp;
|
|
|
|
temp.u[0] = temp.u[1] = 0;
|
|
|
|
if( is_sign )
|
|
temp.u[1] |= 0x80000000u;
|
|
|
|
temp.u[1] |= (e << 20) & 0x7FF00000u;
|
|
|
|
if( nan )
|
|
{
|
|
temp.u[0] |= 1;
|
|
return temp.d;
|
|
}
|
|
|
|
if( infinity )
|
|
return temp.d;
|
|
|
|
UInt<2> m;
|
|
m.table[1] = mantissa.table[man-1];
|
|
m.table[0] = ( man > 1 ) ? mantissa.table[sint(man-2)] : 0;
|
|
// although man>1 we're using casting into sint
|
|
// to get rid from a warning which generates Microsoft Visual:
|
|
// warning C4307: '*' : integral constant overflow
|
|
|
|
m.Rcr( 12 + move );
|
|
m.table[1] &= 0xFFFFFu; // cutting the 20 bit (when 'move' was -1)
|
|
|
|
temp.u[1] |= m.table[1];
|
|
temp.u[0] |= m.table[0];
|
|
|
|
return temp.d;
|
|
}
|
|
|
|
#else
|
|
|
|
// 64bit platforms
|
|
double ToDouble_SetDouble(bool is_sign, uint e, sint move, bool infinity = false, bool nan = false) const
|
|
{
|
|
union
|
|
{
|
|
double d;
|
|
uint u; // 64bit word
|
|
} temp;
|
|
|
|
temp.u = 0;
|
|
|
|
if( is_sign )
|
|
temp.u |= 0x8000000000000000ul;
|
|
|
|
temp.u |= (e << 52) & 0x7FF0000000000000ul;
|
|
|
|
if( nan )
|
|
{
|
|
temp.u |= 1;
|
|
return temp.d;
|
|
}
|
|
|
|
if( infinity )
|
|
return temp.d;
|
|
|
|
uint m = mantissa.table[man-1];
|
|
|
|
m >>= ( 12 + move );
|
|
m &= 0xFFFFFFFFFFFFFul; // cutting the 20 bit (when 'move' was -1)
|
|
temp.u |= m;
|
|
|
|
return temp.d;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
an operator= for converting 'sint' to this class
|
|
*/
|
|
Big<exp, man> & operator=(sint value)
|
|
{
|
|
FromInt(value);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting 'uint' to this class
|
|
*/
|
|
Big<exp, man> & operator=(uint value)
|
|
{
|
|
FromUInt(value);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting 'double' to this class
|
|
*/
|
|
Big<exp, man> & operator=(double value)
|
|
{
|
|
FromDouble(value);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting 'sint' to this class
|
|
*/
|
|
Big(sint value)
|
|
{
|
|
FromInt(value);
|
|
}
|
|
|
|
/*!
|
|
a constructor for converting 'uint' to this class
|
|
*/
|
|
Big(uint value)
|
|
{
|
|
FromUInt(value);
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting 'double' to this class
|
|
*/
|
|
Big(double value)
|
|
{
|
|
FromDouble(value);
|
|
}
|
|
|
|
|
|
#ifdef TTMATH_PLATFORM64
|
|
|
|
/*!
|
|
in 64bit platforms we must define additional operators and contructors
|
|
in order to allow a user initializing the objects in this way:
|
|
Big<...> type = 20;
|
|
or
|
|
Big<...> type;
|
|
type = 30;
|
|
|
|
decimal constants such as 20, 30 etc. are integer literal of type int,
|
|
if the value is greater it can even be long int,
|
|
0 is an octal integer of type int
|
|
(ISO 14882 p2.13.1 Integer literals)
|
|
*/
|
|
|
|
/*!
|
|
an operator= for converting 'signed int' to this class
|
|
***this operator is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
|
|
|
|
*/
|
|
Big<exp, man> & operator=(signed int value)
|
|
{
|
|
FromInt(sint(value));
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting 'unsigned int' to this class
|
|
***this operator is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
*/
|
|
Big<exp, man> & operator=(unsigned int value)
|
|
{
|
|
FromUInt(uint(value));
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting 'signed int' to this class
|
|
***this constructor is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
*/
|
|
Big(signed int value)
|
|
{
|
|
FromInt(sint(value));
|
|
}
|
|
|
|
/*!
|
|
a constructor for converting 'unsigned int' to this class
|
|
***this constructor is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
*/
|
|
Big(unsigned int value)
|
|
{
|
|
FromUInt(uint(value));
|
|
}
|
|
|
|
#endif
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for converting from UInt and Int
|
|
|
|
we assume that there'll never be a carry here
|
|
(we have an exponent and the value in Big can be bigger than
|
|
that one from the UInt)
|
|
*/
|
|
template<uint int_size>
|
|
void FromUIntOrInt(const UInt<int_size> & value, sint compensation)
|
|
{
|
|
uint minimum_size = (int_size < man)? int_size : man;
|
|
exponent = (sint(int_size)-sint(man)) * sint(TTMATH_BITS_PER_UINT) - compensation;
|
|
|
|
// copying the highest words
|
|
uint i;
|
|
for(i=1 ; i<=minimum_size ; ++i)
|
|
mantissa.table[man-i] = value.table[int_size-i];
|
|
|
|
// setting the rest of mantissa.table into zero (if some has left)
|
|
for( ; i<=man ; ++i)
|
|
mantissa.table[man-i] = 0;
|
|
|
|
// the highest bit is either one or zero (when the whole mantissa is zero)
|
|
// we can only call CorrectZero()
|
|
CorrectZero();
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
a method for converting from 'UInt<int_size>' to this class
|
|
*/
|
|
template<uint int_size>
|
|
void FromUInt(UInt<int_size> value)
|
|
{
|
|
info = 0;
|
|
sint compensation = (sint)value.CompensationToLeft();
|
|
|
|
return FromUIntOrInt(value, compensation);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting from 'Int<int_size>' to this class
|
|
*/
|
|
template<uint int_size>
|
|
void FromInt(Int<int_size> value)
|
|
{
|
|
info = 0;
|
|
bool is_sign = false;
|
|
|
|
if( value.IsSign() )
|
|
{
|
|
value.ChangeSign();
|
|
is_sign = true;
|
|
}
|
|
|
|
sint compensation = (sint)value.CompensationToLeft();
|
|
FromUIntOrInt(value, compensation);
|
|
|
|
if( is_sign )
|
|
SetSign();
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting from 'Int<int_size>' to this class
|
|
*/
|
|
template<uint int_size>
|
|
Big<exp,man> & operator=(const Int<int_size> & value)
|
|
{
|
|
FromInt(value);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting from 'Int<int_size>' to this class
|
|
*/
|
|
template<uint int_size>
|
|
Big(const Int<int_size> & value)
|
|
{
|
|
FromInt(value);
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting from 'UInt<int_size>' to this class
|
|
*/
|
|
template<uint int_size>
|
|
Big<exp,man> & operator=(const UInt<int_size> & value)
|
|
{
|
|
FromUInt(value);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting from 'UInt<int_size>' to this class
|
|
*/
|
|
template<uint int_size>
|
|
Big(const UInt<int_size> & value)
|
|
{
|
|
FromUInt(value);
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting from 'Big<another_exp, another_man>' to this class
|
|
*/
|
|
template<uint another_exp, uint another_man>
|
|
Big<exp,man> & operator=(const Big<another_exp, another_man> & value)
|
|
{
|
|
FromBig(value);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting from 'Big<another_exp, another_man>' to this class
|
|
*/
|
|
template<uint another_exp, uint another_man>
|
|
Big(const Big<another_exp, another_man> & value)
|
|
{
|
|
FromBig(value);
|
|
}
|
|
|
|
|
|
/*!
|
|
a default constructor
|
|
|
|
we don't set any of the members to zero
|
|
only NaN flag is set
|
|
*/
|
|
Big()
|
|
{
|
|
info = TTMATH_BIG_NAN;
|
|
|
|
/*
|
|
we're directly setting 'info' (instead of calling SetNan())
|
|
in order to get rid of a warning saying that 'info' is uninitialized
|
|
*/
|
|
}
|
|
|
|
|
|
/*!
|
|
a destructor
|
|
*/
|
|
~Big()
|
|
{
|
|
}
|
|
|
|
|
|
/*!
|
|
the default assignment operator
|
|
*/
|
|
Big<exp,man> & operator=(const Big<exp,man> & value)
|
|
{
|
|
info = value.info;
|
|
exponent = value.exponent;
|
|
mantissa = value.mantissa;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for copying from another object of this class
|
|
*/
|
|
|
|
Big(const Big<exp,man> & value)
|
|
{
|
|
operator=(value);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
|
|
output:
|
|
return value:
|
|
0 - ok and 'result' will be an object of type std::string (or std::wstring) which holds the value
|
|
1 - if there is a carry (it shoudn't be in a normal situation - if it is that means there
|
|
is somewhere an error in the library)
|
|
*/
|
|
uint ToString( std::string & result,
|
|
uint base = 10,
|
|
bool scient = false,
|
|
sint scient_from = 15,
|
|
sint round = -1,
|
|
bool trim_zeroes = true,
|
|
wchar_t comma = '.' ) const
|
|
{
|
|
Conv conv;
|
|
|
|
conv.base = base;
|
|
conv.scient = scient;
|
|
conv.scient_from = scient_from;
|
|
conv.round = round;
|
|
conv.trim_zeroes = trim_zeroes;
|
|
conv.comma = static_cast<uint>(comma);
|
|
|
|
return ToStringBase<std::string, char>(result, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
uint ToString( std::wstring & result,
|
|
uint base = 10,
|
|
bool scient = false,
|
|
sint scient_from = 15,
|
|
sint round = -1,
|
|
bool trim_zeroes = true,
|
|
wchar_t comma = '.' ) const
|
|
{
|
|
Conv conv;
|
|
|
|
conv.base = base;
|
|
conv.scient = scient;
|
|
conv.scient_from = scient_from;
|
|
conv.round = round;
|
|
conv.trim_zeroes = trim_zeroes;
|
|
conv.comma = static_cast<uint>(comma);
|
|
|
|
return ToStringBase<std::wstring, wchar_t>(result, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
uint ToString(std::string & result, const Conv & conv) const
|
|
{
|
|
return ToStringBase<std::string, char>(result, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
uint ToString(std::wstring & result, const Conv & conv) const
|
|
{
|
|
return ToStringBase<std::wstring, wchar_t>(result, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
std::string ToString(const Conv & conv) const
|
|
{
|
|
std::string result;
|
|
ToStringBase<std::string, char>(result, conv);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
std::string ToString() const
|
|
{
|
|
Conv conv;
|
|
|
|
return ToString(conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
std::wstring ToWString(const Conv & conv) const
|
|
{
|
|
std::wstring result;
|
|
ToStringBase<std::wstring, wchar_t>(result, conv);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting into a string
|
|
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
|
|
*/
|
|
std::wstring ToWString() const
|
|
{
|
|
Conv conv;
|
|
|
|
return ToWString(conv);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
uint ToStringBase(string_type & result, const Conv & conv) const
|
|
{
|
|
static char error_overflow_msg[] = "overflow";
|
|
static char error_nan_msg[] = "NaN";
|
|
result.erase();
|
|
|
|
if( IsNan() )
|
|
{
|
|
Misc::AssignString(result, error_nan_msg);
|
|
return 0;
|
|
}
|
|
|
|
if( conv.base<2 || conv.base>16 )
|
|
{
|
|
Misc::AssignString(result, error_overflow_msg);
|
|
return 1;
|
|
}
|
|
|
|
if( IsZero() )
|
|
{
|
|
result = '0';
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
since 'base' is greater or equal 2 that 'new_exp' of type 'Int<exp>' should
|
|
hold the new value of exponent but we're using 'Int<exp+1>' because
|
|
if the value for example would be 'max()' then we couldn't show it
|
|
|
|
max() -> 11111111 * 2 ^ 11111111111 (bin)(the mantissa and exponent have all bits set)
|
|
if we were using 'Int<exp>' we couldn't show it in this format:
|
|
1,1111111 * 2 ^ 11111111111 (bin)
|
|
because we have to add something to the mantissa and because
|
|
mantissa is full we can't do it and it'll be a carry
|
|
(look at ToString_SetCommaAndExponent(...))
|
|
|
|
when the base would be greater than two (for example 10)
|
|
we could use 'Int<exp>' here
|
|
*/
|
|
Int<exp+1> new_exp;
|
|
|
|
if( ToString_CreateNewMantissaAndExponent<string_type, char_type>(result, conv, new_exp) )
|
|
{
|
|
Misc::AssignString(result, error_overflow_msg);
|
|
return 1;
|
|
}
|
|
|
|
|
|
if( ToString_SetCommaAndExponent<string_type, char_type>(result, conv, new_exp) )
|
|
{
|
|
Misc::AssignString(result, error_overflow_msg);
|
|
return 1;
|
|
}
|
|
|
|
if( IsSign() )
|
|
result.insert(result.begin(), '-');
|
|
|
|
|
|
// converted successfully
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
in the method 'ToString_CreateNewMantissaAndExponent()' we're using
|
|
type 'Big<exp+1,man>' and we should have the ability to use some
|
|
necessary methods from that class (methods which are private here)
|
|
*/
|
|
friend class Big<exp-1,man>;
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
|
|
input:
|
|
base - the base in range <2,16>
|
|
|
|
output:
|
|
return values:
|
|
0 - ok
|
|
1 - if there was a carry
|
|
new_man - the new mantissa for 'base'
|
|
new_exp - the new exponent for 'base'
|
|
|
|
mathematic part:
|
|
|
|
the value is stored as:
|
|
value = mantissa * 2^exponent
|
|
we want to show 'value' as:
|
|
value = new_man * base^new_exp
|
|
|
|
then 'new_man' we'll print using the standard method from UInt<> type for printing
|
|
and 'new_exp' is the offset of the comma operator in a system of a base 'base'
|
|
|
|
value = mantissa * 2^exponent
|
|
value = mantissa * 2^exponent * (base^new_exp / base^new_exp)
|
|
value = mantissa * (2^exponent / base^new_exp) * base^new_exp
|
|
|
|
look at the part (2^exponent / base^new_exp), there'll be good if we take
|
|
a 'new_exp' equal that value when the (2^exponent / base^new_exp) will be equal one
|
|
|
|
on account of the 'base' is not as power of 2 (can be from 2 to 16),
|
|
this formula will not be true for integer 'new_exp' then in our case we take
|
|
'base^new_exp' _greater_ than '2^exponent'
|
|
|
|
if 'base^new_exp' were smaller than '2^exponent' the new mantissa could be
|
|
greater than the max value of the container UInt<man>
|
|
|
|
value = mantissa * (2^exponent / base^new_exp) * base^new_exp
|
|
let M = mantissa * (2^exponent / base^new_exp) then
|
|
value = M * base^new_exp
|
|
|
|
in our calculation we treat M as floating value showing it as:
|
|
M = mm * 2^ee where ee will be <= 0
|
|
|
|
next we'll move all bits of mm into the right when ee is equal zero
|
|
abs(ee) must not be too big that only few bits from mm we can leave
|
|
|
|
then we'll have:
|
|
M = mmm * 2^0
|
|
'mmm' is the new_man which we're looking for
|
|
|
|
|
|
new_exp we calculate in this way:
|
|
2^exponent <= base^new_exp
|
|
new_exp >= log base (2^exponent) <- logarithm with the base 'base' from (2^exponent)
|
|
|
|
but we need new_exp as integer then we test:
|
|
if new_exp is greater than zero and with fraction we add one to new_exp
|
|
new_exp = new_exp + 1 (if new_exp>0 and with fraction)
|
|
and at the end we take the integer part:
|
|
new_exp = int(new_exp)
|
|
*/
|
|
template<class string_type, class char_type>
|
|
uint ToString_CreateNewMantissaAndExponent( string_type & new_man, const Conv & conv,
|
|
Int<exp+1> & new_exp) const
|
|
{
|
|
uint c = 0;
|
|
|
|
if( conv.base<2 || conv.base>16 )
|
|
return 1;
|
|
|
|
// the speciality for base equal 2
|
|
if( conv.base == 2 )
|
|
return ToString_CreateNewMantissaAndExponent_Base2(new_man, new_exp);
|
|
|
|
// the speciality for base equal 4
|
|
if( conv.base == 4 )
|
|
return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 2);
|
|
|
|
// the speciality for base equal 8
|
|
if( conv.base == 8 )
|
|
return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 3);
|
|
|
|
// the speciality for base equal 16
|
|
if( conv.base == 16 )
|
|
return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 4);
|
|
|
|
|
|
// this = mantissa * 2^exponent
|
|
|
|
// temp = +1 * 2^exponent
|
|
// we're using a bigger type than 'big<exp,man>' (look below)
|
|
Big<exp+1,man> temp;
|
|
temp.info = 0;
|
|
temp.exponent = exponent;
|
|
temp.mantissa.SetOne();
|
|
c += temp.Standardizing();
|
|
|
|
// new_exp_ = log base (2^exponent)
|
|
// if new_exp_ is positive and with fraction then we add one
|
|
Big<exp+1,man> new_exp_;
|
|
c += new_exp_.ToString_Log(temp, conv.base); // this logarithm isn't very complicated
|
|
|
|
// adding some epsilon value (to get rid of some floating point errors)
|
|
temp.Set05();
|
|
temp.exponent.SubOne(); // temp = 0.5/2 = 0.25
|
|
c += new_exp_.Add(temp);
|
|
|
|
if( !new_exp_.IsSign() && !new_exp_.IsInteger() )
|
|
{
|
|
// new_exp_ > 0 and with fraction
|
|
temp.SetOne();
|
|
c += new_exp_.Add( temp );
|
|
}
|
|
|
|
// new_exp_ = int(new_exp_)
|
|
new_exp_.SkipFraction();
|
|
|
|
|
|
// because 'base^new_exp' is >= '2^exponent' then
|
|
// because base is >= 2 then we've got:
|
|
// 'new_exp_' must be smaller or equal 'new_exp'
|
|
// and we can pass it into the Int<exp> type
|
|
// (in fact we're using a greater type then it'll be ok)
|
|
c += new_exp_.ToInt(new_exp);
|
|
|
|
// base_ = base
|
|
Big<exp+1,man> base_(conv.base);
|
|
|
|
// base_ = base_ ^ new_exp_
|
|
c += base_.Pow( new_exp_ );
|
|
// if we hadn't used a bigger type than 'Big<exp,man>' then the result
|
|
// of this formula 'Pow(...)' would have been with an overflow
|
|
|
|
// temp = mantissa * 2^exponent / base_^new_exp_
|
|
// the sign don't interest us here
|
|
temp.mantissa = mantissa;
|
|
temp.exponent = exponent;
|
|
c += temp.Div(base_, false); // dividing without rounding
|
|
|
|
// moving all bits of the mantissa into the right
|
|
// (how many times to move depend on the exponent)
|
|
c += temp.ToString_MoveMantissaIntoRight();
|
|
|
|
// because we took 'new_exp' as small as it was
|
|
// possible ([log base (2^exponent)] + 1) that after the division
|
|
// (temp.Div( base_ )) the value of exponent should be equal zero or
|
|
// minimum smaller than zero then we've got the mantissa which has
|
|
// maximum valid bits
|
|
temp.mantissa.ToString(new_man, conv.base);
|
|
|
|
// base rounding
|
|
if( conv.base_round )
|
|
c += ToString_BaseRound<string_type, char_type>(new_man, conv, new_exp);
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method calculates the logarithm
|
|
it is used by ToString_CreateNewMantissaAndExponent() method
|
|
|
|
it's not too complicated
|
|
because x=+1*2^exponent (mantissa is one) then during the calculation
|
|
the Ln(x) will not be making the long formula from LnSurrounding1()
|
|
and only we have to calculate 'Ln(base)' but it'll be calculated
|
|
only once, the next time we will get it from the 'history'
|
|
|
|
x is greater than 0
|
|
base is in <2,16> range
|
|
*/
|
|
uint ToString_Log(const Big<exp,man> & x, uint base)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( x )
|
|
TTMATH_ASSERT( base>=2 && base<=16 )
|
|
|
|
Big<exp,man> temp;
|
|
temp.SetOne();
|
|
|
|
if( x == temp )
|
|
{
|
|
// log(1) is 0
|
|
SetZero();
|
|
|
|
return 0;
|
|
}
|
|
|
|
// there can be only a carry
|
|
// because the 'x' is in '1+2*exponent' form then
|
|
// the long formula from LnSurrounding1() will not be calculated
|
|
// (LnSurrounding1() will return one immediately)
|
|
uint c = Ln(x);
|
|
|
|
if( base==10 && man<=TTMATH_BUILTIN_VARIABLES_SIZE )
|
|
{
|
|
// for the base equal 10 we're using SelLn10() instead of calculating it
|
|
// (only if we have the constant sufficient big)
|
|
temp.SetLn10();
|
|
}
|
|
else
|
|
{
|
|
c += ToString_LogBase(base, temp);
|
|
}
|
|
|
|
c += Div( temp );
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
#ifndef TTMATH_MULTITHREADS
|
|
|
|
/*!
|
|
this method calculates the logarithm of 'base'
|
|
it's used in single thread environment
|
|
*/
|
|
uint ToString_LogBase(uint base, Big<exp,man> & result)
|
|
{
|
|
TTMATH_ASSERT( base>=2 && base<=16 )
|
|
|
|
// this guardians are initialized before the program runs (static POD types)
|
|
static int guardians[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
|
static Big<exp,man> log_history[15];
|
|
uint index = base - 2;
|
|
uint c = 0;
|
|
|
|
if( guardians[index] == 0 )
|
|
{
|
|
Big<exp,man> base_(base);
|
|
c += log_history[index].Ln(base_);
|
|
guardians[index] = 1;
|
|
}
|
|
|
|
result = log_history[index];
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
#else
|
|
|
|
/*!
|
|
this method calculates the logarithm of 'base'
|
|
it's used in multi-thread environment
|
|
*/
|
|
uint ToString_LogBase(uint base, Big<exp,man> & result)
|
|
{
|
|
TTMATH_ASSERT( base>=2 && base<=16 )
|
|
|
|
// this guardians are initialized before the program runs (static POD types)
|
|
volatile static sig_atomic_t guardians[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
|
static Big<exp,man> * plog_history;
|
|
uint index = base - 2;
|
|
uint c = 0;
|
|
|
|
// double-checked locking
|
|
if( guardians[index] == 0 )
|
|
{
|
|
ThreadLock thread_lock;
|
|
|
|
// locking
|
|
if( thread_lock.Lock() )
|
|
{
|
|
static Big<exp,man> log_history[15];
|
|
|
|
if( guardians[index] == 0 )
|
|
{
|
|
plog_history = log_history;
|
|
|
|
Big<exp,man> base_(base);
|
|
c += log_history[index].Ln(base_);
|
|
guardians[index] = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// there was a problem with locking, we store the result directly in 'result' object
|
|
Big<exp,man> base_(base);
|
|
c += result.Ln(base_);
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
// automatically unlocking
|
|
}
|
|
|
|
result = plog_history[index];
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string (private)
|
|
|
|
this method moving all bits from mantissa into the right side
|
|
the exponent tell us how many times moving (the exponent is <=0)
|
|
*/
|
|
uint ToString_MoveMantissaIntoRight()
|
|
{
|
|
if( exponent.IsZero() )
|
|
return 0;
|
|
|
|
// exponent can't be greater than zero
|
|
// because we would cat the highest bits of the mantissa
|
|
if( !exponent.IsSign() )
|
|
return 1;
|
|
|
|
|
|
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
|
|
// if 'exponent' is <= than '-sint(man*TTMATH_BITS_PER_UINT)'
|
|
// it means that we must cut the whole mantissa
|
|
// (there'll not be any of the valid bits)
|
|
return 1;
|
|
|
|
// e will be from (-man*TTMATH_BITS_PER_UINT, 0>
|
|
sint e = -( exponent.ToInt() );
|
|
mantissa.Rcr(e,0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
a special method similar to the 'ToString_CreateNewMantissaAndExponent'
|
|
when the 'base' is equal 2
|
|
|
|
we use it because if base is equal 2 we don't have to make those
|
|
complicated calculations and the output is directly from the source
|
|
(there will not be any small distortions)
|
|
*/
|
|
template<class string_type>
|
|
uint ToString_CreateNewMantissaAndExponent_Base2( string_type & new_man,
|
|
Int<exp+1> & new_exp ) const
|
|
{
|
|
for( sint i=man-1 ; i>=0 ; --i )
|
|
{
|
|
uint value = mantissa.table[i];
|
|
|
|
for( uint bit=0 ; bit<TTMATH_BITS_PER_UINT ; ++bit )
|
|
{
|
|
if( (value & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
new_man += '1';
|
|
else
|
|
new_man += '0';
|
|
|
|
value <<= 1;
|
|
}
|
|
}
|
|
|
|
new_exp = exponent;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
a special method used to calculate the new mantissa and exponent
|
|
when the 'base' is equal 4, 8 or 16
|
|
|
|
when base is 4 then bits is 2
|
|
when base is 8 then bits is 3
|
|
when base is 16 then bits is 4
|
|
(and the algorithm can be used with a base greater than 16)
|
|
*/
|
|
template<class string_type>
|
|
uint ToString_CreateNewMantissaAndExponent_BasePow2( string_type & new_man,
|
|
Int<exp+1> & new_exp,
|
|
uint bits) const
|
|
{
|
|
sint move; // how many times move the mantissa
|
|
UInt<man+1> man_temp(mantissa); // man+1 for moving
|
|
new_exp = exponent;
|
|
new_exp.DivInt((sint)bits, move);
|
|
|
|
if( move != 0 )
|
|
{
|
|
// we're moving the man_temp to left-hand side
|
|
if( move < 0 )
|
|
{
|
|
move = sint(bits) + move;
|
|
new_exp.SubOne(); // when move is < than 0 then new_exp is < 0 too
|
|
}
|
|
|
|
man_temp.Rcl(move);
|
|
}
|
|
|
|
|
|
if( bits == 3 )
|
|
{
|
|
// base 8
|
|
// now 'move' is greater than or equal 0
|
|
uint len = man*TTMATH_BITS_PER_UINT + move;
|
|
return ToString_CreateNewMantissaAndExponent_Base8(new_man, man_temp, len, bits);
|
|
}
|
|
else
|
|
{
|
|
// base 4 or 16
|
|
return ToString_CreateNewMantissaAndExponent_Base4or16(new_man, man_temp, bits);
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
a special method used to calculate the new mantissa
|
|
when the 'base' is equal 8
|
|
|
|
bits is always 3
|
|
|
|
we can use this algorithm when the base is 4 or 16 too
|
|
but we have a faster method ToString_CreateNewMantissaAndExponent_Base4or16()
|
|
*/
|
|
template<class string_type>
|
|
uint ToString_CreateNewMantissaAndExponent_Base8( string_type & new_man,
|
|
UInt<man+1> & man_temp,
|
|
uint len,
|
|
uint bits) const
|
|
{
|
|
uint shift = TTMATH_BITS_PER_UINT - bits;
|
|
uint mask = TTMATH_UINT_MAX_VALUE >> shift;
|
|
uint i;
|
|
|
|
for( i=0 ; i<len ; i+=bits )
|
|
{
|
|
uint digit = man_temp.table[0] & mask;
|
|
new_man.insert(new_man.begin(), static_cast<char>(Misc::DigitToChar(digit)));
|
|
|
|
man_temp.Rcr(bits);
|
|
}
|
|
|
|
TTMATH_ASSERT( man_temp.IsZero() )
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
a special method used to calculate the new mantissa
|
|
when the 'base' is equal 4 or 16
|
|
|
|
when the base is equal 4 or 16 the bits is 2 or 4
|
|
and because TTMATH_BITS_PER_UINT (32 or 64) is divisible by 2 (or 4)
|
|
then we can get digits from the end of our mantissa
|
|
*/
|
|
template<class string_type>
|
|
uint ToString_CreateNewMantissaAndExponent_Base4or16( string_type & new_man,
|
|
UInt<man+1> & man_temp,
|
|
uint bits) const
|
|
{
|
|
TTMATH_ASSERT( TTMATH_BITS_PER_UINT % 2 == 0 )
|
|
TTMATH_ASSERT( TTMATH_BITS_PER_UINT % 4 == 0 )
|
|
|
|
uint shift = TTMATH_BITS_PER_UINT - bits;
|
|
uint mask = TTMATH_UINT_MAX_VALUE << shift;
|
|
uint digit;
|
|
|
|
// table[man] - last word - is different from zero if we moved man_temp
|
|
digit = man_temp.table[man];
|
|
|
|
if( digit != 0 )
|
|
new_man += static_cast<char>(Misc::DigitToChar(digit));
|
|
|
|
|
|
for( int i=man-1 ; i>=0 ; --i )
|
|
{
|
|
uint shift_local = shift;
|
|
uint mask_local = mask;
|
|
|
|
while( mask_local != 0 )
|
|
{
|
|
digit = man_temp.table[i] & mask_local;
|
|
|
|
if( shift_local != 0 )
|
|
digit = digit >> shift_local;
|
|
|
|
new_man += static_cast<char>(Misc::DigitToChar(digit));
|
|
mask_local = mask_local >> bits;
|
|
shift_local = shift_local - bits;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
bool ToString_RoundMantissaWouldBeInteger(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
|
|
{
|
|
// if new_exp is greater or equal to zero then we have an integer value,
|
|
// if new_exp is equal -1 then we have only one digit after the comma
|
|
// and after rounding it would be an integer value
|
|
if( !new_exp.IsSign() || new_exp == -1 )
|
|
return true;
|
|
|
|
if( new_man.size() >= TTMATH_UINT_HIGHEST_BIT || new_man.size() < 2 )
|
|
return true; // oops, the mantissa is too large for calculating (or too small) - we are not doing the base rounding
|
|
|
|
uint i = 0;
|
|
char_type digit;
|
|
|
|
if( new_exp >= -sint(new_man.size()) )
|
|
{
|
|
uint new_exp_abs = -new_exp.ToInt();
|
|
i = new_man.size() - new_exp_abs; // start from the first digit after the comma operator
|
|
}
|
|
|
|
if( Misc::CharToDigit(new_man[new_man.size()-1]) >= conv.base/2 )
|
|
{
|
|
if( new_exp < -sint(new_man.size()) )
|
|
{
|
|
// there are some zeroes after the comma operator
|
|
// (between the comma and the first digit from the mantissa)
|
|
// and the result value will never be an integer
|
|
return false;
|
|
}
|
|
|
|
digit = static_cast<char_type>( Misc::DigitToChar(conv.base-1) );
|
|
}
|
|
else
|
|
{
|
|
digit = '0';
|
|
}
|
|
|
|
for( ; i < new_man.size()-1 ; ++i)
|
|
if( new_man[i] != digit )
|
|
return false; // it will not be an integer
|
|
|
|
return true; // it will be integer after rounding
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
|
|
this method is used for base!=2, base!=4, base!=8 and base!=16
|
|
we do the rounding when the value has fraction (is not an integer)
|
|
*/
|
|
template<class string_type, class char_type>
|
|
uint ToString_BaseRound(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
|
|
{
|
|
// we must have minimum two characters
|
|
if( new_man.size() < 2 )
|
|
return 0;
|
|
|
|
// assert that there will not be an integer after rounding
|
|
if( ToString_RoundMantissaWouldBeInteger<string_type, char_type>(new_man, conv, new_exp) )
|
|
return 0;
|
|
|
|
typename string_type::size_type i = new_man.length() - 1;
|
|
|
|
// we're erasing the last character
|
|
uint digit = Misc::CharToDigit( new_man[i] );
|
|
new_man.erase(i, 1);
|
|
uint c = new_exp.AddOne();
|
|
|
|
// if the last character is greater or equal 'base/2'
|
|
// we are adding one into the new mantissa
|
|
if( digit >= conv.base / 2 )
|
|
ToString_RoundMantissa_AddOneIntoMantissa<string_type, char_type>(new_man, conv);
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
|
|
this method addes one into the new mantissa
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_RoundMantissa_AddOneIntoMantissa(string_type & new_man, const Conv & conv) const
|
|
{
|
|
if( new_man.empty() )
|
|
return;
|
|
|
|
sint i = sint( new_man.length() ) - 1;
|
|
bool was_carry = true;
|
|
|
|
for( ; i>=0 && was_carry ; --i )
|
|
{
|
|
// we can have the comma as well because
|
|
// we're using this method later in ToString_CorrectDigitsAfterComma_Round()
|
|
// (we're only ignoring it)
|
|
if( new_man[i] == static_cast<char_type>(conv.comma) )
|
|
continue;
|
|
|
|
// we're adding one
|
|
uint digit = Misc::CharToDigit( new_man[i] ) + 1;
|
|
|
|
if( digit == conv.base )
|
|
digit = 0;
|
|
else
|
|
was_carry = false;
|
|
|
|
new_man[i] = static_cast<char_type>( Misc::DigitToChar(digit) );
|
|
}
|
|
|
|
if( i<0 && was_carry )
|
|
new_man.insert( new_man.begin() , '1' );
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
|
|
this method sets the comma operator and/or puts the exponent
|
|
into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
uint ToString_SetCommaAndExponent(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
|
|
{
|
|
uint carry = 0;
|
|
|
|
if( new_man.empty() )
|
|
return carry;
|
|
|
|
Int<exp+1> scientific_exp( new_exp );
|
|
|
|
// 'new_exp' depends on the 'new_man' which is stored like this e.g:
|
|
// 32342343234 (the comma is at the end)
|
|
// we'd like to show it in this way:
|
|
// 3.2342343234 (the 'scientific_exp' is connected with this example)
|
|
|
|
sint offset = sint( new_man.length() ) - 1;
|
|
carry += scientific_exp.Add( offset );
|
|
// there shouldn't have been a carry because we're using
|
|
// a greater type -- 'Int<exp+1>' instead of 'Int<exp>'
|
|
|
|
bool print_scientific = conv.scient;
|
|
|
|
if( !print_scientific )
|
|
{
|
|
if( scientific_exp > conv.scient_from || scientific_exp < -sint(conv.scient_from) )
|
|
print_scientific = true;
|
|
}
|
|
|
|
if( !print_scientific )
|
|
ToString_SetCommaAndExponent_Normal<string_type, char_type>(new_man, conv, new_exp);
|
|
else
|
|
// we're passing the 'scientific_exp' instead of 'new_exp' here
|
|
ToString_SetCommaAndExponent_Scientific<string_type, char_type>(new_man, conv, scientific_exp);
|
|
|
|
return (carry==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_SetCommaAndExponent_Normal(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp ) const
|
|
{
|
|
if( !new_exp.IsSign() ) // it means: if( new_exp >= 0 )
|
|
ToString_SetCommaAndExponent_Normal_AddingZero<string_type, char_type>(new_man, new_exp);
|
|
else
|
|
ToString_SetCommaAndExponent_Normal_SetCommaInside<string_type, char_type>(new_man, conv, new_exp);
|
|
|
|
|
|
ToString_Group_man<string_type, char_type>(new_man, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_SetCommaAndExponent_Normal_AddingZero(string_type & new_man,
|
|
Int<exp+1> & new_exp) const
|
|
{
|
|
// we're adding zero characters at the end
|
|
// 'i' will be smaller than 'when_scientific' (or equal)
|
|
uint i = new_exp.ToInt();
|
|
|
|
if( new_man.length() + i > new_man.capacity() )
|
|
// about 6 characters more (we'll need it for the comma or something)
|
|
new_man.reserve( new_man.length() + i + 6 );
|
|
|
|
for( ; i>0 ; --i)
|
|
new_man += '0';
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_SetCommaAndExponent_Normal_SetCommaInside(
|
|
string_type & new_man,
|
|
const Conv & conv,
|
|
Int<exp+1> & new_exp ) const
|
|
{
|
|
// new_exp is < 0
|
|
|
|
sint new_man_len = sint(new_man.length()); // 'new_man_len' with a sign
|
|
sint e = -( new_exp.ToInt() ); // 'e' will be positive
|
|
|
|
if( new_exp > -new_man_len )
|
|
{
|
|
// we're setting the comma within the mantissa
|
|
|
|
sint index = new_man_len - e;
|
|
new_man.insert( new_man.begin() + index, static_cast<char_type>(conv.comma));
|
|
}
|
|
else
|
|
{
|
|
// we're adding zero characters before the mantissa
|
|
|
|
uint how_many = e - new_man_len;
|
|
string_type man_temp(how_many+1, '0');
|
|
|
|
man_temp.insert( man_temp.begin()+1, static_cast<char_type>(conv.comma));
|
|
new_man.insert(0, man_temp);
|
|
}
|
|
|
|
ToString_CorrectDigitsAfterComma<string_type, char_type>(new_man, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_SetCommaAndExponent_Scientific( string_type & new_man,
|
|
const Conv & conv,
|
|
Int<exp+1> & scientific_exp ) const
|
|
{
|
|
if( new_man.empty() )
|
|
return;
|
|
|
|
if( new_man.size() > 1 )
|
|
{
|
|
new_man.insert( new_man.begin()+1, static_cast<char_type>(conv.comma) );
|
|
ToString_CorrectDigitsAfterComma<string_type, char_type>(new_man, conv);
|
|
}
|
|
|
|
ToString_Group_man<string_type, char_type>(new_man, conv);
|
|
|
|
if( conv.base == 10 )
|
|
{
|
|
new_man += 'e';
|
|
|
|
if( !scientific_exp.IsSign() )
|
|
new_man += '+';
|
|
}
|
|
else
|
|
{
|
|
// the 10 here is meant as the base 'base'
|
|
// (no matter which 'base' we're using there'll always be 10 here)
|
|
Misc::AddString(new_man, "*10^");
|
|
}
|
|
|
|
string_type temp_exp;
|
|
scientific_exp.ToString( temp_exp, conv.base );
|
|
|
|
new_man += temp_exp;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_Group_man(string_type & new_man, const Conv & conv) const
|
|
{
|
|
typedef typename string_type::size_type StrSize;
|
|
|
|
if( conv.group == 0 )
|
|
return;
|
|
|
|
// first we're looking for the comma operator
|
|
StrSize index = new_man.find(static_cast<char_type>(conv.comma), 0);
|
|
|
|
if( index == string_type::npos )
|
|
index = new_man.size();
|
|
|
|
ToString_Group_man_before_comma<string_type, char_type>(new_man, conv, index);
|
|
ToString_Group_man_after_comma<string_type, char_type>(new_man, conv, index+1);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_Group_man_before_comma( string_type & new_man, const Conv & conv,
|
|
typename string_type::size_type & index) const
|
|
{
|
|
typedef typename string_type::size_type StrSize;
|
|
uint group = 0;
|
|
|
|
StrSize i = index;
|
|
|
|
// adding group characters before the comma operator
|
|
// i>0 because on the first position we don't put any additional grouping characters
|
|
for( ; i>0 ; --i, ++group)
|
|
{
|
|
if( group >= 3 )
|
|
{
|
|
group = 0;
|
|
new_man.insert(i, 1, static_cast<char_type>(conv.group));
|
|
++index;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_Group_man_after_comma(string_type & new_man, const Conv & conv,
|
|
typename string_type::size_type index) const
|
|
{
|
|
uint group = 0;
|
|
|
|
for( ; index<new_man.size() ; ++index, ++group)
|
|
{
|
|
if( group >= 3 )
|
|
{
|
|
group = 0;
|
|
new_man.insert(index, 1, static_cast<char_type>(conv.group));
|
|
++index;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_CorrectDigitsAfterComma( string_type & new_man,
|
|
const Conv & conv ) const
|
|
{
|
|
if( conv.round >= 0 )
|
|
ToString_CorrectDigitsAfterComma_Round<string_type, char_type>(new_man, conv);
|
|
|
|
if( conv.trim_zeroes )
|
|
ToString_CorrectDigitsAfterComma_CutOffZeroCharacters<string_type, char_type>(new_man, conv);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_CorrectDigitsAfterComma_CutOffZeroCharacters(
|
|
string_type & new_man,
|
|
const Conv & conv) const
|
|
{
|
|
// minimum two characters
|
|
if( new_man.length() < 2 )
|
|
return;
|
|
|
|
// we're looking for the index of the last character which is not zero
|
|
uint i = uint( new_man.length() ) - 1;
|
|
for( ; i>0 && new_man[i]=='0' ; --i );
|
|
|
|
// if there is another character than zero at the end
|
|
// we're finishing
|
|
if( i == new_man.length() - 1 )
|
|
return;
|
|
|
|
// we must have a comma
|
|
// (the comma can be removed by ToString_CorrectDigitsAfterComma_Round
|
|
// which is called before)
|
|
if( new_man.find_last_of(static_cast<char_type>(conv.comma), i) == string_type::npos )
|
|
return;
|
|
|
|
// if directly before the first zero is the comma operator
|
|
// we're cutting it as well
|
|
if( i>0 && new_man[i]==static_cast<char_type>(conv.comma) )
|
|
--i;
|
|
|
|
new_man.erase(i+1, new_man.length()-i-1);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting into the string
|
|
*/
|
|
template<class string_type, class char_type>
|
|
void ToString_CorrectDigitsAfterComma_Round(
|
|
string_type & new_man,
|
|
const Conv & conv ) const
|
|
{
|
|
typedef typename string_type::size_type StrSize;
|
|
|
|
// first we're looking for the comma operator
|
|
StrSize index = new_man.find(static_cast<char_type>(conv.comma), 0);
|
|
|
|
if( index == string_type::npos )
|
|
// nothing was found (actually there can't be this situation)
|
|
return;
|
|
|
|
// we're calculating how many digits there are at the end (after the comma)
|
|
// 'after_comma' will be greater than zero because at the end
|
|
// we have at least one digit
|
|
StrSize after_comma = new_man.length() - index - 1;
|
|
|
|
// if 'max_digit_after_comma' is greater than 'after_comma' (or equal)
|
|
// we don't have anything for cutting
|
|
if( static_cast<StrSize>(conv.round) >= after_comma )
|
|
return;
|
|
|
|
uint last_digit = Misc::CharToDigit( new_man[ index + conv.round + 1 ], conv.base );
|
|
|
|
// we're cutting the rest of the string
|
|
new_man.erase(index + conv.round + 1, after_comma - conv.round);
|
|
|
|
if( conv.round == 0 )
|
|
{
|
|
// we're cutting the comma operator as well
|
|
// (it's not needed now because we've cut the whole rest after the comma)
|
|
new_man.erase(index, 1);
|
|
}
|
|
|
|
if( last_digit >= conv.base / 2 )
|
|
// we must round here
|
|
ToString_RoundMantissa_AddOneIntoMantissa<string_type, char_type>(new_man, conv);
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
|
|
it returns 1 if the value is too big -- we cannot pass it into the range
|
|
of our class Big<exp,man> (or if the base is incorrect)
|
|
|
|
that means only digits before the comma operator can make this value too big,
|
|
all digits after the comma we can ignore
|
|
|
|
'source' - pointer to the string for parsing
|
|
|
|
if 'after_source' is set that when this method finishes
|
|
it sets the pointer to the new first character after parsed value
|
|
|
|
'value_read' - if the pointer is provided that means the value_read will be true
|
|
only when a value has been actually read, there can be situation where only such
|
|
a string '-' or '+' will be parsed -- 'after_source' will be different from 'source' but
|
|
no value has been read (there are no digits)
|
|
on other words if 'value_read' is true -- there is at least one digit in the string
|
|
*/
|
|
uint FromString(const char * source, uint base = 10, const char ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
Conv conv;
|
|
conv.base = base;
|
|
|
|
return FromStringBase(source, conv, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const wchar_t * source, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
Conv conv;
|
|
conv.base = base;
|
|
|
|
return FromStringBase(source, conv, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const char * source, const Conv & conv, const char ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromStringBase(source, conv, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const wchar_t * source, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromStringBase(source, conv, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const std::string & string, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromString(string.c_str(), base, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const std::wstring & string, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromString(string.c_str(), base, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const std::string & string, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromString(string.c_str(), conv, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
a method for converting a string into its value
|
|
*/
|
|
uint FromString(const std::wstring & string, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromString(string.c_str(), conv, after_source, value_read);
|
|
}
|
|
|
|
private:
|
|
|
|
|
|
/*!
|
|
an auxiliary method for converting from a string
|
|
*/
|
|
template<class char_type>
|
|
uint FromStringBase(const char_type * source, const Conv & conv, const char_type ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
bool is_sign;
|
|
bool value_read_temp = false;
|
|
|
|
if( conv.base<2 || conv.base>16 )
|
|
{
|
|
SetNan();
|
|
|
|
if( after_source )
|
|
*after_source = source;
|
|
|
|
if( value_read )
|
|
*value_read = value_read_temp;
|
|
|
|
return 1;
|
|
}
|
|
|
|
SetZero();
|
|
FromString_TestSign( source, is_sign );
|
|
|
|
uint c = FromString_ReadPartBeforeComma( source, conv, value_read_temp );
|
|
|
|
if( FromString_TestCommaOperator(source, conv) )
|
|
c += FromString_ReadPartAfterComma( source, conv, value_read_temp );
|
|
|
|
if( value_read_temp && conv.base == 10 )
|
|
c += FromString_ReadScientificIfExists( source );
|
|
|
|
if( is_sign && !IsZero() )
|
|
ChangeSign();
|
|
|
|
if( after_source )
|
|
*after_source = source;
|
|
|
|
if( value_read )
|
|
*value_read = value_read_temp;
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
/*!
|
|
we're testing whether the value is with the sign
|
|
|
|
(this method is used from 'FromString_ReadPartScientific' too)
|
|
*/
|
|
template<class char_type>
|
|
void FromString_TestSign( const char_type * & source, bool & is_sign )
|
|
{
|
|
Misc::SkipWhiteCharacters(source);
|
|
|
|
is_sign = false;
|
|
|
|
if( *source == '-' )
|
|
{
|
|
is_sign = true;
|
|
++source;
|
|
}
|
|
else
|
|
if( *source == '+' )
|
|
{
|
|
++source;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
we're testing whether there's a comma operator
|
|
*/
|
|
template<class char_type>
|
|
bool FromString_TestCommaOperator(const char_type * & source, const Conv & conv)
|
|
{
|
|
if( (*source == static_cast<char_type>(conv.comma)) ||
|
|
(*source == static_cast<char_type>(conv.comma2) && conv.comma2 != 0 ) )
|
|
{
|
|
++source;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method reads the first part of a string
|
|
(before the comma operator)
|
|
*/
|
|
template<class char_type>
|
|
uint FromString_ReadPartBeforeComma( const char_type * & source, const Conv & conv, bool & value_read )
|
|
{
|
|
sint character;
|
|
Big<exp, man> temp;
|
|
Big<exp, man> base_( conv.base );
|
|
|
|
Misc::SkipWhiteCharacters( source );
|
|
|
|
for( ; true ; ++source )
|
|
{
|
|
if( conv.group!=0 && *source==static_cast<char>(conv.group) )
|
|
continue;
|
|
|
|
character = Misc::CharToDigit(*source, conv.base);
|
|
|
|
if( character == -1 )
|
|
break;
|
|
|
|
value_read = true;
|
|
temp = character;
|
|
|
|
if( Mul(base_) )
|
|
return 1;
|
|
|
|
if( Add(temp) )
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method reads the second part of a string
|
|
(after the comma operator)
|
|
*/
|
|
template<class char_type>
|
|
uint FromString_ReadPartAfterComma( const char_type * & source, const Conv & conv, bool & value_read )
|
|
{
|
|
sint character;
|
|
uint c = 0, index = 1;
|
|
Big<exp, man> sum, part, power, old_value, base_( conv.base );
|
|
|
|
// we don't remove any white characters here
|
|
|
|
// this is only to avoid getting a warning about an uninitialized object 'old_value' which GCC reports
|
|
// (in fact we will initialize it later when the condition 'testing' is fulfilled)
|
|
old_value.SetZero();
|
|
|
|
power.SetOne();
|
|
sum.SetZero();
|
|
|
|
for( ; true ; ++source, ++index )
|
|
{
|
|
if( conv.group!=0 && *source==static_cast<char>(conv.group) )
|
|
continue;
|
|
|
|
character = Misc::CharToDigit(*source, conv.base);
|
|
|
|
if( character == -1 )
|
|
break;
|
|
|
|
value_read = true;
|
|
|
|
part = character;
|
|
|
|
if( power.Mul( base_ ) )
|
|
// there's no sens to add the next parts, but we can't report this
|
|
// as an error (this is only inaccuracy)
|
|
break;
|
|
|
|
if( part.Div( power ) )
|
|
break;
|
|
|
|
// every 5 iteration we make a test whether the value will be changed or not
|
|
// (character must be different from zero to this test)
|
|
bool testing = (character != 0 && (index % 5) == 0);
|
|
|
|
if( testing )
|
|
old_value = sum;
|
|
|
|
// there actually shouldn't be a carry here
|
|
c += sum.Add( part );
|
|
|
|
if( testing && old_value == sum )
|
|
// after adding 'part' the value has not been changed
|
|
// there's no sense to add any next parts
|
|
break;
|
|
}
|
|
|
|
// we could break the parsing somewhere in the middle of the string,
|
|
// but the result (value) still can be good
|
|
// we should set a correct value of 'source' now
|
|
for( ; Misc::CharToDigit(*source, conv.base) != -1 ; ++source );
|
|
|
|
c += Add(sum);
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method checks whether there is a scientific part: [e|E][-|+]value
|
|
|
|
it is called when the base is 10 and some digits were read before
|
|
*/
|
|
template<class char_type>
|
|
uint FromString_ReadScientificIfExists(const char_type * & source)
|
|
{
|
|
uint c = 0;
|
|
|
|
bool scientific_read = false;
|
|
const char_type * before_scientific = source;
|
|
|
|
if( FromString_TestScientific(source) )
|
|
c += FromString_ReadPartScientific( source, scientific_read );
|
|
|
|
if( !scientific_read )
|
|
source = before_scientific;
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
we're testing whether is there the character 'e'
|
|
|
|
this character is only allowed when we're using the base equals 10
|
|
*/
|
|
template<class char_type>
|
|
bool FromString_TestScientific(const char_type * & source)
|
|
{
|
|
Misc::SkipWhiteCharacters(source);
|
|
|
|
if( *source=='e' || *source=='E' )
|
|
{
|
|
++source;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method reads the exponent (after 'e' character) when there's a scientific
|
|
format of value and only when we're using the base equals 10
|
|
*/
|
|
template<class char_type>
|
|
uint FromString_ReadPartScientific( const char_type * & source, bool & scientific_read )
|
|
{
|
|
uint c = 0;
|
|
Big<exp, man> new_exponent, temp;
|
|
bool was_sign = false;
|
|
|
|
FromString_TestSign( source, was_sign );
|
|
c += FromString_ReadPartScientific_ReadExponent( source, new_exponent, scientific_read );
|
|
|
|
if( scientific_read )
|
|
{
|
|
if( was_sign )
|
|
new_exponent.ChangeSign();
|
|
|
|
temp = 10;
|
|
c += temp.Pow( new_exponent );
|
|
c += Mul(temp);
|
|
}
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method reads the value of the extra exponent when scientific format is used
|
|
(only when base == 10)
|
|
*/
|
|
template<class char_type>
|
|
uint FromString_ReadPartScientific_ReadExponent( const char_type * & source, Big<exp, man> & new_exponent, bool & scientific_read )
|
|
{
|
|
sint character;
|
|
Big<exp, man> base, temp;
|
|
|
|
Misc::SkipWhiteCharacters(source);
|
|
|
|
new_exponent.SetZero();
|
|
base = 10;
|
|
|
|
for( ; (character=Misc::CharToDigit(*source, 10)) != -1 ; ++source )
|
|
{
|
|
scientific_read = true;
|
|
|
|
temp = character;
|
|
|
|
if( new_exponent.Mul(base) )
|
|
return 1;
|
|
|
|
if( new_exponent.Add(temp) )
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string into this class
|
|
*/
|
|
Big(const char * string)
|
|
{
|
|
FromString( string );
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string into this class
|
|
*/
|
|
Big(const wchar_t * string)
|
|
{
|
|
FromString( string );
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string into this class
|
|
*/
|
|
Big(const std::string & string)
|
|
{
|
|
FromString( string.c_str() );
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string into this class
|
|
*/
|
|
Big(const std::wstring & string)
|
|
{
|
|
FromString( string.c_str() );
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting a string into its value
|
|
*/
|
|
Big<exp, man> & operator=(const char * string)
|
|
{
|
|
FromString( string );
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting a string into its value
|
|
*/
|
|
Big<exp, man> & operator=(const wchar_t * string)
|
|
{
|
|
FromString( string );
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting a string into its value
|
|
*/
|
|
Big<exp, man> & operator=(const std::string & string)
|
|
{
|
|
FromString( string.c_str() );
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator= for converting a string into its value
|
|
*/
|
|
Big<exp, man> & operator=(const std::wstring & string)
|
|
{
|
|
FromString( string.c_str() );
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* methods for comparing
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this method performs the formula 'abs(this) < abs(ss2)'
|
|
and returns the result
|
|
|
|
(in other words it treats 'this' and 'ss2' as values without a sign)
|
|
we don't check the NaN flag
|
|
*/
|
|
bool SmallerWithoutSignThan(const Big<exp,man> & ss2) const
|
|
{
|
|
if( IsZero() )
|
|
{
|
|
if( ss2.IsZero() )
|
|
// we've got two zeroes
|
|
return false;
|
|
else
|
|
// this==0 and ss2!=0
|
|
return true;
|
|
}
|
|
|
|
if( ss2.IsZero() )
|
|
// this!=0 and ss2==0
|
|
return false;
|
|
|
|
// we're using the fact that all bits in mantissa are pushed
|
|
// into the left side -- Standardizing()
|
|
if( exponent == ss2.exponent )
|
|
return mantissa < ss2.mantissa;
|
|
|
|
return exponent < ss2.exponent;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs the formula 'abs(this) > abs(ss2)'
|
|
and returns the result
|
|
|
|
(in other words it treats 'this' and 'ss2' as values without a sign)
|
|
we don't check the NaN flag
|
|
*/
|
|
bool GreaterWithoutSignThan(const Big<exp,man> & ss2) const
|
|
{
|
|
if( IsZero() )
|
|
{
|
|
if( ss2.IsZero() )
|
|
// we've got two zeroes
|
|
return false;
|
|
else
|
|
// this==0 and ss2!=0
|
|
return false;
|
|
}
|
|
|
|
if( ss2.IsZero() )
|
|
// this!=0 and ss2==0
|
|
return true;
|
|
|
|
// we're using the fact that all bits in mantissa are pushed
|
|
// into the left side -- Standardizing()
|
|
if( exponent == ss2.exponent )
|
|
return mantissa > ss2.mantissa;
|
|
|
|
return exponent > ss2.exponent;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs the formula 'abs(this) == abs(ss2)'
|
|
and returns the result
|
|
|
|
(in other words it treats 'this' and 'ss2' as values without a sign)
|
|
we don't check the NaN flag
|
|
*/
|
|
bool EqualWithoutSign(const Big<exp,man> & ss2) const
|
|
{
|
|
if( IsZero() )
|
|
{
|
|
if( ss2.IsZero() )
|
|
// we've got two zeroes
|
|
return true;
|
|
else
|
|
// this==0 and ss2!=0
|
|
return false;
|
|
}
|
|
|
|
if( ss2.IsZero() )
|
|
// this!=0 and ss2==0
|
|
return false;
|
|
|
|
if( exponent==ss2.exponent && mantissa==ss2.mantissa )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool operator<(const Big<exp,man> & ss2) const
|
|
{
|
|
if( IsSign() && !ss2.IsSign() )
|
|
// this<0 and ss2>=0
|
|
return true;
|
|
|
|
if( !IsSign() && ss2.IsSign() )
|
|
// this>=0 and ss2<0
|
|
return false;
|
|
|
|
// both signs are the same
|
|
|
|
if( IsSign() )
|
|
return ss2.SmallerWithoutSignThan( *this );
|
|
|
|
return SmallerWithoutSignThan( ss2 );
|
|
}
|
|
|
|
|
|
bool operator==(const Big<exp,man> & ss2) const
|
|
{
|
|
if( IsSign() != ss2.IsSign() )
|
|
return false;
|
|
|
|
return EqualWithoutSign( ss2 );
|
|
}
|
|
|
|
|
|
bool operator>(const Big<exp,man> & ss2) const
|
|
{
|
|
if( IsSign() && !ss2.IsSign() )
|
|
// this<0 and ss2>=0
|
|
return false;
|
|
|
|
if( !IsSign() && ss2.IsSign() )
|
|
// this>=0 and ss2<0
|
|
return true;
|
|
|
|
// both signs are the same
|
|
|
|
if( IsSign() )
|
|
return ss2.GreaterWithoutSignThan( *this );
|
|
|
|
return GreaterWithoutSignThan( ss2 );
|
|
}
|
|
|
|
|
|
bool operator>=(const Big<exp,man> & ss2) const
|
|
{
|
|
return !operator<( ss2 );
|
|
}
|
|
|
|
|
|
bool operator<=(const Big<exp,man> & ss2) const
|
|
{
|
|
return !operator>( ss2 );
|
|
}
|
|
|
|
|
|
bool operator!=(const Big<exp,man> & ss2) const
|
|
{
|
|
return !operator==(ss2);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* standard mathematical operators
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
an operator for changing the sign
|
|
|
|
this method is not changing 'this' but the changed value is returned
|
|
*/
|
|
Big<exp,man> operator-() const
|
|
{
|
|
Big<exp,man> temp(*this);
|
|
|
|
temp.ChangeSign();
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
Big<exp,man> operator-(const Big<exp,man> & ss2) const
|
|
{
|
|
Big<exp,man> temp(*this);
|
|
|
|
temp.Sub(ss2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
Big<exp,man> & operator-=(const Big<exp,man> & ss2)
|
|
{
|
|
Sub(ss2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
Big<exp,man> operator+(const Big<exp,man> & ss2) const
|
|
{
|
|
Big<exp,man> temp(*this);
|
|
|
|
temp.Add(ss2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
Big<exp,man> & operator+=(const Big<exp,man> & ss2)
|
|
{
|
|
Add(ss2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
Big<exp,man> operator*(const Big<exp,man> & ss2) const
|
|
{
|
|
Big<exp,man> temp(*this);
|
|
|
|
temp.Mul(ss2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
Big<exp,man> & operator*=(const Big<exp,man> & ss2)
|
|
{
|
|
Mul(ss2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
Big<exp,man> operator/(const Big<exp,man> & ss2) const
|
|
{
|
|
Big<exp,man> temp(*this);
|
|
|
|
temp.Div(ss2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
Big<exp,man> & operator/=(const Big<exp,man> & ss2)
|
|
{
|
|
Div(ss2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method makes an integer value by skipping any fractions
|
|
|
|
for example:
|
|
10.7 will be 10
|
|
12.1 -- 12
|
|
-20.2 -- 20
|
|
-20.9 -- 20
|
|
-0.7 -- 0
|
|
0.8 -- 0
|
|
*/
|
|
void SkipFraction()
|
|
{
|
|
if( IsNan() || IsZero() )
|
|
return;
|
|
|
|
if( !exponent.IsSign() )
|
|
// exponent >=0 -- the value don't have any fractions
|
|
return;
|
|
|
|
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
|
|
{
|
|
// the value is from (-1,1), we return zero
|
|
SetZero();
|
|
return;
|
|
}
|
|
|
|
// exponent is in range (-man*TTMATH_BITS_PER_UINT, 0)
|
|
sint e = exponent.ToInt();
|
|
|
|
mantissa.ClearFirstBits( -e );
|
|
|
|
// we don't have to standardize 'Standardizing()' the value because
|
|
// there's at least one bit in the mantissa
|
|
// (the highest bit which we didn't touch)
|
|
}
|
|
|
|
|
|
/*!
|
|
this method remains only a fraction from the value
|
|
|
|
for example:
|
|
30.56 will be 0.56
|
|
-12.67 -- -0.67
|
|
*/
|
|
void RemainFraction()
|
|
{
|
|
if( IsNan() || IsZero() )
|
|
return;
|
|
|
|
if( !exponent.IsSign() )
|
|
{
|
|
// exponent >= 0 -- the value doesn't have any fractions
|
|
// we return zero
|
|
SetZero();
|
|
return;
|
|
}
|
|
|
|
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
|
|
{
|
|
// the value is from (-1,1)
|
|
// we don't make anything with the value
|
|
return;
|
|
}
|
|
|
|
// e will be from (-man*TTMATH_BITS_PER_UINT, 0)
|
|
sint e = exponent.ToInt();
|
|
|
|
sint how_many_bits_leave = sint(man*TTMATH_BITS_PER_UINT) + e; // there'll be a subtraction -- e is negative
|
|
mantissa.Rcl( how_many_bits_leave, 0);
|
|
|
|
// there'll not be a carry because the exponent is too small
|
|
exponent.Sub( how_many_bits_leave );
|
|
|
|
// we must call Standardizing() here
|
|
Standardizing();
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method returns true if the value is integer
|
|
(there is no a fraction)
|
|
|
|
(we don't check nan)
|
|
*/
|
|
bool IsInteger() const
|
|
{
|
|
if( IsZero() )
|
|
return true;
|
|
|
|
if( !exponent.IsSign() )
|
|
// exponent >=0 -- the value don't have any fractions
|
|
return true;
|
|
|
|
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
|
|
// the value is from (-1,1)
|
|
return false;
|
|
|
|
// exponent is in range (-man*TTMATH_BITS_PER_UINT, 0)
|
|
sint e = exponent.ToInt();
|
|
e = -e; // e means how many bits we must check
|
|
|
|
uint len = e / TTMATH_BITS_PER_UINT;
|
|
uint rest = e % TTMATH_BITS_PER_UINT;
|
|
uint i = 0;
|
|
|
|
for( ; i<len ; ++i )
|
|
if( mantissa.table[i] != 0 )
|
|
return false;
|
|
|
|
if( rest > 0 )
|
|
{
|
|
uint rest_mask = TTMATH_UINT_MAX_VALUE >> (TTMATH_BITS_PER_UINT - rest);
|
|
if( (mantissa.table[i] & rest_mask) != 0 )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method rounds to the nearest integer value
|
|
(it returns a carry if it was)
|
|
|
|
for example:
|
|
2.3 = 2
|
|
2.8 = 3
|
|
|
|
-2.3 = -2
|
|
-2.8 = 3
|
|
*/
|
|
uint Round()
|
|
{
|
|
Big<exp,man> half;
|
|
uint c;
|
|
|
|
if( IsNan() )
|
|
return 1;
|
|
|
|
if( IsZero() )
|
|
return 0;
|
|
|
|
half.Set05();
|
|
|
|
if( IsSign() )
|
|
{
|
|
// 'this' is < 0
|
|
c = Sub( half );
|
|
}
|
|
else
|
|
{
|
|
// 'this' is > 0
|
|
c = Add( half );
|
|
}
|
|
|
|
SkipFraction();
|
|
|
|
return CheckCarry(c);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* input/output operators for standard streams
|
|
*
|
|
*/
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for outputing to standard streams
|
|
*/
|
|
template<class ostream_type, class string_type>
|
|
static ostream_type & OutputToStream(ostream_type & s, const Big<exp,man> & l)
|
|
{
|
|
string_type ss;
|
|
|
|
l.ToString(ss);
|
|
s << ss;
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
output to standard streams
|
|
*/
|
|
friend std::ostream & operator<<(std::ostream & s, const Big<exp,man> & l)
|
|
{
|
|
return OutputToStream<std::ostream, std::string>(s, l);
|
|
}
|
|
|
|
|
|
/*!
|
|
output to standard streams
|
|
*/
|
|
friend std::wostream & operator<<(std::wostream & s, const Big<exp,man> & l)
|
|
{
|
|
return OutputToStream<std::wostream, std::wstring>(s, l);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for converting from a string
|
|
*/
|
|
template<class istream_type, class string_type, class char_type>
|
|
static istream_type & InputFromStream(istream_type & s, Big<exp,man> & l)
|
|
{
|
|
string_type ss;
|
|
|
|
// char or wchar_t for operator>>
|
|
char_type z, old_z;
|
|
bool was_comma = false;
|
|
bool was_e = false;
|
|
|
|
|
|
// operator>> omits white characters if they're set for ommiting
|
|
s >> z;
|
|
|
|
if( z=='-' || z=='+' )
|
|
{
|
|
ss += z;
|
|
s >> z; // we're reading a next character (white characters can be ommited)
|
|
}
|
|
|
|
old_z = 0;
|
|
|
|
// we're reading only digits (base=10) and only one comma operator
|
|
for( ; s.good() ; z=static_cast<char_type>(s.get()) )
|
|
{
|
|
if( z=='.' || z==',' )
|
|
{
|
|
if( was_comma || was_e )
|
|
// second comma operator or comma operator after 'e' character
|
|
break;
|
|
|
|
was_comma = true;
|
|
}
|
|
else
|
|
if( z == 'e' || z == 'E' )
|
|
{
|
|
if( was_e )
|
|
// second 'e' character
|
|
break;
|
|
|
|
was_e = true;
|
|
}
|
|
else
|
|
if( z == '+' || z == '-' )
|
|
{
|
|
if( old_z != 'e' && old_z != 'E' )
|
|
// '+' or '-' is allowed only after 'e' character
|
|
break;
|
|
}
|
|
else
|
|
if( Misc::CharToDigit(z, 10) < 0 )
|
|
break;
|
|
|
|
|
|
ss += z;
|
|
old_z = z;
|
|
}
|
|
|
|
// we're leaving the last read character
|
|
// (it's not belonging to the value)
|
|
s.unget();
|
|
|
|
l.FromString( ss );
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
input from standard streams
|
|
*/
|
|
friend std::istream & operator>>(std::istream & s, Big<exp,man> & l)
|
|
{
|
|
return InputFromStream<std::istream, std::string, char>(s, l);
|
|
}
|
|
|
|
|
|
/*!
|
|
input from standard streams
|
|
*/
|
|
friend std::wistream & operator>>(std::wistream & s, Big<exp,man> & l)
|
|
{
|
|
return InputFromStream<std::wistream, std::wstring, wchar_t>(s, l);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
} // namespace
|
|
|
|
#endif
|