mirror of
https://github.com/dashr9230/SA-MP.git
synced 2025-01-12 03:52:07 +08:00
3521 lines
66 KiB
C++
3521 lines
66 KiB
C++
/*
|
|
* This file is a part of TTMath Bignum Library
|
|
* and is distributed under the (new) BSD licence.
|
|
* Author: Tomasz Sowa <t.sowa@ttmath.org>
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2006-2009, Tomasz Sowa
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* * Neither the name Tomasz Sowa nor the names of contributors to this
|
|
* project may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef headerfilettmathuint
|
|
#define headerfilettmathuint
|
|
|
|
|
|
/*!
|
|
\file ttmathuint.h
|
|
\brief template class UInt<uint>
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
|
|
#include "ttmathtypes.h"
|
|
#include "ttmathmisc.h"
|
|
|
|
|
|
|
|
/*!
|
|
\brief a namespace for the TTMath library
|
|
*/
|
|
namespace ttmath
|
|
{
|
|
|
|
/*!
|
|
\brief UInt implements a big integer value without a sign
|
|
|
|
value_size - how many bytes specify our value
|
|
on 32bit platforms: value_size=1 -> 4 bytes -> 32 bits
|
|
on 64bit platforms: value_size=1 -> 8 bytes -> 64 bits
|
|
value_size = 1,2,3,4,5,6....
|
|
*/
|
|
template<uint value_size>
|
|
class UInt
|
|
{
|
|
public:
|
|
|
|
/*!
|
|
buffer for the integer value
|
|
table[0] - the lowest word of the value
|
|
*/
|
|
uint table[value_size];
|
|
|
|
|
|
|
|
/*!
|
|
some methods used for debugging purposes
|
|
*/
|
|
|
|
|
|
/*!
|
|
this method is only for debugging purposes or when we want to make
|
|
a table of a variable (constant) in ttmathbig.h
|
|
|
|
it prints the table in a nice form of several columns
|
|
*/
|
|
template<class ostream_type>
|
|
void PrintTable(ostream_type & output) const
|
|
{
|
|
// how many columns there'll be
|
|
const int columns = 8;
|
|
|
|
int c = 1;
|
|
for(int i=value_size-1 ; i>=0 ; --i)
|
|
{
|
|
output << "0x" << std::setfill('0');
|
|
|
|
#ifdef TTMATH_PLATFORM32
|
|
output << std::setw(8);
|
|
#else
|
|
output << std::setw(16);
|
|
#endif
|
|
|
|
output << std::hex << table[i];
|
|
|
|
if( i>0 )
|
|
{
|
|
output << ", ";
|
|
|
|
if( ++c > columns )
|
|
{
|
|
output << std::endl;
|
|
c = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
output << std::dec << std::endl;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method is used when macro TTMATH_DEBUG_LOG is defined
|
|
*/
|
|
template<class char_type, class ostream_type>
|
|
static void PrintVectorLog(const char_type * msg, ostream_type & output, const uint * vector, uint vector_len)
|
|
{
|
|
output << msg << std::endl;
|
|
|
|
for(uint i=0 ; i<vector_len ; ++i)
|
|
output << " table[" << i << "]: " << vector[i] << std::endl;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method is used when macro TTMATH_DEBUG_LOG is defined
|
|
*/
|
|
template<class char_type, class ostream_type>
|
|
static void PrintVectorLog(const char_type * msg, uint carry, ostream_type & output, const uint * vector, uint vector_len)
|
|
{
|
|
PrintVectorLog(msg, output, vector, vector_len);
|
|
output << " carry: " << carry << std::endl;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method is used when macro TTMATH_DEBUG_LOG is defined
|
|
*/
|
|
template<class char_type, class ostream_type>
|
|
void PrintLog(const char_type * msg, ostream_type & output) const
|
|
{
|
|
PrintVectorLog(msg, output, table, value_size);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method is used when macro TTMATH_DEBUG_LOG is defined
|
|
*/
|
|
template<class char_type, class ostream_type>
|
|
void PrintLog(const char_type * msg, uint carry, ostream_type & output) const
|
|
{
|
|
PrintVectorLog(msg, output, table, value_size);
|
|
output << " carry: " << carry << std::endl;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns the size of the table
|
|
*/
|
|
uint Size() const
|
|
{
|
|
return value_size;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets zero
|
|
*/
|
|
void SetZero()
|
|
{
|
|
// in the future here can be 'memset'
|
|
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
table[i] = 0;
|
|
|
|
TTMATH_LOG("UInt::SetZero")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets one
|
|
*/
|
|
void SetOne()
|
|
{
|
|
SetZero();
|
|
table[0] = 1;
|
|
|
|
TTMATH_LOG("UInt::SetOne")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the max value which this class can hold
|
|
(all bits will be one)
|
|
*/
|
|
void SetMax()
|
|
{
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
table[i] = TTMATH_UINT_MAX_VALUE;
|
|
|
|
TTMATH_LOG("UInt::SetMax")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method sets the min value which this class can hold
|
|
(for an unsigned integer value the zero is the smallest value)
|
|
*/
|
|
void SetMin()
|
|
{
|
|
SetZero();
|
|
|
|
TTMATH_LOG("UInt::SetMin")
|
|
}
|
|
|
|
|
|
|
|
#ifdef TTMATH_PLATFORM32
|
|
|
|
/*!
|
|
this method copies the value stored in an another table
|
|
(warning: first values in temp_table are the highest words -- it's different
|
|
from our table)
|
|
|
|
we copy as many words as it is possible
|
|
|
|
if temp_table_len is bigger than value_size we'll try to round
|
|
the lowest word from table depending on the last not used bit in temp_table
|
|
(this rounding isn't a perfect rounding -- look at the description below)
|
|
|
|
and if temp_table_len is smaller than value_size we'll clear the rest words
|
|
in the table
|
|
*/
|
|
void SetFromTable(const uint * temp_table, uint temp_table_len)
|
|
{
|
|
uint temp_table_index = 0;
|
|
sint i; // 'i' with a sign
|
|
|
|
for(i=value_size-1 ; i>=0 && temp_table_index<temp_table_len; --i, ++temp_table_index)
|
|
table[i] = temp_table[ temp_table_index ];
|
|
|
|
|
|
// rounding mantissa
|
|
if( temp_table_index < temp_table_len )
|
|
{
|
|
if( (temp_table[temp_table_index] & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
{
|
|
/*
|
|
very simply rounding
|
|
if the bit from not used last word from temp_table is set to one
|
|
we're rouding the lowest word in the table
|
|
|
|
in fact there should be a normal addition but
|
|
we don't use Add() or AddTwoInts() because these methods
|
|
can set a carry and then there'll be a small problem
|
|
for optimization
|
|
*/
|
|
if( table[0] != TTMATH_UINT_MAX_VALUE )
|
|
++table[0];
|
|
}
|
|
}
|
|
|
|
// cleaning the rest of the mantissa
|
|
for( ; i>=0 ; --i)
|
|
table[i] = 0;
|
|
|
|
|
|
TTMATH_LOG("UInt::SetFromTable")
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef TTMATH_PLATFORM64
|
|
/*!
|
|
this method copies the value stored in an another table
|
|
(warning: first values in temp_table are the highest words -- it's different
|
|
from our table)
|
|
|
|
***this method is created only on a 64bit platform***
|
|
|
|
we copy as many words as it is possible
|
|
|
|
if temp_table_len is bigger than value_size we'll try to round
|
|
the lowest word from table depending on the last not used bit in temp_table
|
|
(this rounding isn't a perfect rounding -- look at the description below)
|
|
|
|
and if temp_table_len is smaller than value_size we'll clear the rest words
|
|
in the table
|
|
|
|
warning: we're using 'temp_table' as a pointer at 32bit words
|
|
*/
|
|
void SetFromTable(const unsigned int * temp_table, uint temp_table_len)
|
|
{
|
|
uint temp_table_index = 0;
|
|
sint i; // 'i' with a sign
|
|
|
|
for(i=value_size-1 ; i>=0 && temp_table_index<temp_table_len; --i, ++temp_table_index)
|
|
{
|
|
table[i] = uint(temp_table[ temp_table_index ]) << 32;
|
|
|
|
++temp_table_index;
|
|
|
|
if( temp_table_index<temp_table_len )
|
|
table[i] |= temp_table[ temp_table_index ];
|
|
}
|
|
|
|
|
|
// rounding mantissa
|
|
if( temp_table_index < temp_table_len )
|
|
{
|
|
if( (temp_table[temp_table_index] & TTMATH_UINT_HIGHEST_BIT) != 0 )
|
|
{
|
|
/*
|
|
very simply rounding
|
|
if the bit from not used last word from temp_table is set to one
|
|
we're rouding the lowest word in the table
|
|
|
|
in fact there should be a normal addition but
|
|
we don't use Add() or AddTwoInts() because these methods
|
|
can set a carry and then there'll be a small problem
|
|
for optimization
|
|
*/
|
|
if( table[0] != TTMATH_UINT_MAX_VALUE )
|
|
++table[0];
|
|
}
|
|
}
|
|
|
|
// cleaning the rest of the mantissa
|
|
for( ; i >= 0 ; --i)
|
|
table[i] = 0;
|
|
|
|
TTMATH_LOG("UInt::SetFromTable")
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* basic mathematic functions
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*!
|
|
this method adds one to the existing value
|
|
*/
|
|
uint AddOne()
|
|
{
|
|
return AddInt(1);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method subtracts one from the existing value
|
|
*/
|
|
uint SubOne()
|
|
{
|
|
return SubInt(1);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
|
|
/*!
|
|
an auxiliary method for moving bits into the left hand side
|
|
|
|
this method moves only words
|
|
*/
|
|
void RclMoveAllWords(uint & rest_bits, uint & last_c, uint bits, uint c)
|
|
{
|
|
rest_bits = bits % TTMATH_BITS_PER_UINT;
|
|
uint all_words = bits / TTMATH_BITS_PER_UINT;
|
|
uint mask = ( c ) ? TTMATH_UINT_MAX_VALUE : 0;
|
|
|
|
|
|
if( all_words >= value_size )
|
|
{
|
|
if( all_words == value_size && rest_bits == 0 )
|
|
last_c = table[0] & 1;
|
|
// else: last_c is default set to 0
|
|
|
|
// clearing
|
|
for(uint i = 0 ; i<value_size ; ++i)
|
|
table[i] = mask;
|
|
|
|
rest_bits = 0;
|
|
}
|
|
else
|
|
if( all_words > 0 )
|
|
{
|
|
// 0 < all_words < value_size
|
|
|
|
sint first, second;
|
|
last_c = table[value_size - all_words] & 1; // all_words is greater than 0
|
|
|
|
// copying the first part of the value
|
|
for(first = value_size-1, second=first-all_words ; second>=0 ; --first, --second)
|
|
table[first] = table[second];
|
|
|
|
// setting the rest to 'c'
|
|
for( ; first>=0 ; --first )
|
|
table[first] = mask;
|
|
}
|
|
|
|
TTMATH_LOG("UInt::RclMoveAllWords")
|
|
}
|
|
|
|
public:
|
|
|
|
/*!
|
|
moving all bits into the left side 'bits' times
|
|
return value <- this <- C
|
|
|
|
bits is from a range of <0, man * TTMATH_BITS_PER_UINT>
|
|
or it can be even bigger then all bits will be set to 'c'
|
|
|
|
the value c will be set into the lowest bits
|
|
and the method returns state of the last moved bit
|
|
*/
|
|
uint Rcl(uint bits, uint c=0)
|
|
{
|
|
uint last_c = 0;
|
|
uint rest_bits = bits;
|
|
|
|
if( bits == 0 )
|
|
return 0;
|
|
|
|
if( bits >= TTMATH_BITS_PER_UINT )
|
|
RclMoveAllWords(rest_bits, last_c, bits, c);
|
|
|
|
if( rest_bits == 0 )
|
|
{
|
|
TTMATH_LOG("UInt::Rcl")
|
|
return last_c;
|
|
}
|
|
|
|
// rest_bits is from 1 to TTMATH_BITS_PER_UINT-1 now
|
|
if( rest_bits == 1 )
|
|
{
|
|
last_c = Rcl2_one(c);
|
|
}
|
|
else if( rest_bits == 2 )
|
|
{
|
|
// performance tests showed that for rest_bits==2 it's better to use Rcl2_one twice instead of Rcl2(2,c)
|
|
Rcl2_one(c);
|
|
last_c = Rcl2_one(c);
|
|
}
|
|
else
|
|
{
|
|
last_c = Rcl2(rest_bits, c);
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::Rcl", last_c)
|
|
|
|
return last_c;
|
|
}
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for moving bits into the right hand side
|
|
|
|
this method moves only words
|
|
*/
|
|
void RcrMoveAllWords(uint & rest_bits, uint & last_c, uint bits, uint c)
|
|
{
|
|
rest_bits = bits % TTMATH_BITS_PER_UINT;
|
|
uint all_words = bits / TTMATH_BITS_PER_UINT;
|
|
uint mask = ( c ) ? TTMATH_UINT_MAX_VALUE : 0;
|
|
|
|
|
|
if( all_words >= value_size )
|
|
{
|
|
if( all_words == value_size && rest_bits == 0 )
|
|
last_c = (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0;
|
|
// else: last_c is default set to 0
|
|
|
|
// clearing
|
|
for(uint i = 0 ; i<value_size ; ++i)
|
|
table[i] = mask;
|
|
|
|
rest_bits = 0;
|
|
}
|
|
else if( all_words > 0 )
|
|
{
|
|
// 0 < all_words < value_size
|
|
|
|
uint first, second;
|
|
last_c = (table[all_words - 1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0; // all_words is > 0
|
|
|
|
// copying the first part of the value
|
|
for(first=0, second=all_words ; second<value_size ; ++first, ++second)
|
|
table[first] = table[second];
|
|
|
|
// setting the rest to 'c'
|
|
for( ; first<value_size ; ++first )
|
|
table[first] = mask;
|
|
}
|
|
|
|
TTMATH_LOG("UInt::RcrMoveAllWords")
|
|
}
|
|
|
|
public:
|
|
|
|
/*!
|
|
moving all bits into the right side 'bits' times
|
|
c -> this -> return value
|
|
|
|
bits is from a range of <0, man * TTMATH_BITS_PER_UINT>
|
|
or it can be even bigger then all bits will be set to 'c'
|
|
|
|
the value c will be set into the highest bits
|
|
and the method returns state of the last moved bit
|
|
*/
|
|
uint Rcr(uint bits, uint c=0)
|
|
{
|
|
uint last_c = 0;
|
|
uint rest_bits = bits;
|
|
|
|
if( bits == 0 )
|
|
return 0;
|
|
|
|
if( bits >= TTMATH_BITS_PER_UINT )
|
|
RcrMoveAllWords(rest_bits, last_c, bits, c);
|
|
|
|
if( rest_bits == 0 )
|
|
{
|
|
TTMATH_LOG("UInt::Rcr")
|
|
return last_c;
|
|
}
|
|
|
|
// rest_bits is from 1 to TTMATH_BITS_PER_UINT-1 now
|
|
if( rest_bits == 1 )
|
|
{
|
|
last_c = Rcr2_one(c);
|
|
}
|
|
else if( rest_bits == 2 )
|
|
{
|
|
// performance tests showed that for rest_bits==2 it's better to use Rcr2_one twice instead of Rcr2(2,c)
|
|
Rcr2_one(c);
|
|
last_c = Rcr2_one(c);
|
|
}
|
|
else
|
|
{
|
|
last_c = Rcr2(rest_bits, c);
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::Rcr", last_c)
|
|
|
|
return last_c;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method moves all bits into the left side
|
|
(it returns value how many bits have been moved)
|
|
*/
|
|
uint CompensationToLeft()
|
|
{
|
|
uint moving = 0;
|
|
|
|
// a - index a last word which is different from zero
|
|
sint a;
|
|
for(a=value_size-1 ; a>=0 && table[a]==0 ; --a);
|
|
|
|
if( a < 0 )
|
|
return moving; // all words in table have zero
|
|
|
|
if( a != value_size-1 )
|
|
{
|
|
moving += ( value_size-1 - a ) * TTMATH_BITS_PER_UINT;
|
|
|
|
// moving all words
|
|
sint i;
|
|
for(i=value_size-1 ; a>=0 ; --i, --a)
|
|
table[i] = table[a];
|
|
|
|
// setting the rest word to zero
|
|
for(; i>=0 ; --i)
|
|
table[i] = 0;
|
|
}
|
|
|
|
uint moving2 = FindLeadingBitInWord( table[value_size-1] );
|
|
// moving2 is different from -1 because the value table[value_size-1]
|
|
// is not zero
|
|
|
|
moving2 = TTMATH_BITS_PER_UINT - moving2 - 1;
|
|
Rcl(moving2);
|
|
|
|
TTMATH_LOG("UInt::CompensationToLeft")
|
|
|
|
return moving + moving2;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method looks for the highest set bit
|
|
|
|
result:
|
|
if 'this' is not zero:
|
|
return value - true
|
|
'table_id' - the index of a word <0..value_size-1>
|
|
'index' - the index of this set bit in the word <0..TTMATH_BITS_PER_UINT)
|
|
|
|
if 'this' is zero:
|
|
return value - false
|
|
both 'table_id' and 'index' are zero
|
|
*/
|
|
bool FindLeadingBit(uint & table_id, uint & index) const
|
|
{
|
|
for(table_id=value_size-1 ; table_id!=0 && table[table_id]==0 ; --table_id);
|
|
|
|
if( table_id==0 && table[table_id]==0 )
|
|
{
|
|
// is zero
|
|
index = 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
// table[table_id] is different from 0
|
|
index = FindLeadingBitInWord( table[table_id] );
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method looks for the smallest set bit
|
|
|
|
result:
|
|
if 'this' is not zero:
|
|
return value - true
|
|
'table_id' - the index of a word <0..value_size-1>
|
|
'index' - the index of this set bit in the word <0..TTMATH_BITS_PER_UINT)
|
|
|
|
if 'this' is zero:
|
|
return value - false
|
|
both 'table_id' and 'index' are zero
|
|
*/
|
|
bool FindLowestBit(uint & table_id, uint & index) const
|
|
{
|
|
for(table_id=0 ; table_id<value_size && table[table_id]==0 ; ++table_id);
|
|
|
|
if( table_id >= value_size )
|
|
{
|
|
// is zero
|
|
index = 0;
|
|
table_id = 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
// table[table_id] is different from 0
|
|
index = FindLowestBitInWord( table[table_id] );
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
getting the 'bit_index' bit
|
|
|
|
bit_index bigger or equal zero
|
|
*/
|
|
uint GetBit(uint bit_index) const
|
|
{
|
|
TTMATH_ASSERT( bit_index < value_size * TTMATH_BITS_PER_UINT )
|
|
|
|
uint index = bit_index / TTMATH_BITS_PER_UINT;
|
|
uint bit = bit_index % TTMATH_BITS_PER_UINT;
|
|
|
|
uint temp = table[index];
|
|
uint res = SetBitInWord(temp, bit);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/*!
|
|
setting the 'bit_index' bit
|
|
and returning the last state of the bit
|
|
|
|
bit_index bigger or equal zero
|
|
*/
|
|
uint SetBit(uint bit_index)
|
|
{
|
|
TTMATH_ASSERT( bit_index < value_size * TTMATH_BITS_PER_UINT )
|
|
|
|
uint index = bit_index / TTMATH_BITS_PER_UINT;
|
|
uint bit = bit_index % TTMATH_BITS_PER_UINT;
|
|
uint res = SetBitInWord(table[index], bit);
|
|
|
|
TTMATH_LOG("UInt::SetBit")
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs a bitwise operation AND
|
|
*/
|
|
void BitAnd(const UInt<value_size> & ss2)
|
|
{
|
|
for(uint x=0 ; x<value_size ; ++x)
|
|
table[x] &= ss2.table[x];
|
|
|
|
TTMATH_LOG("UInt::BitAnd")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs a bitwise operation OR
|
|
*/
|
|
void BitOr(const UInt<value_size> & ss2)
|
|
{
|
|
for(uint x=0 ; x<value_size ; ++x)
|
|
table[x] |= ss2.table[x];
|
|
|
|
TTMATH_LOG("UInt::BitOr")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs a bitwise operation XOR
|
|
*/
|
|
void BitXor(const UInt<value_size> & ss2)
|
|
{
|
|
for(uint x=0 ; x<value_size ; ++x)
|
|
table[x] ^= ss2.table[x];
|
|
|
|
TTMATH_LOG("UInt::BitXor")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs a bitwise operation NOT
|
|
*/
|
|
void BitNot()
|
|
{
|
|
for(uint x=0 ; x<value_size ; ++x)
|
|
table[x] = ~table[x];
|
|
|
|
TTMATH_LOG("UInt::BitNot")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method performs a bitwise operation NOT but only
|
|
on the range of <0, leading_bit>
|
|
|
|
for example:
|
|
BitNot2(8) = BitNot2( 1000(bin) ) = 111(bin) = 7
|
|
*/
|
|
void BitNot2()
|
|
{
|
|
uint table_id, index;
|
|
|
|
if( FindLeadingBit(table_id, index) )
|
|
{
|
|
for(uint x=0 ; x<table_id ; ++x)
|
|
table[x] = ~table[x];
|
|
|
|
uint mask = TTMATH_UINT_MAX_VALUE;
|
|
uint shift = TTMATH_BITS_PER_UINT - index - 1;
|
|
|
|
if(shift)
|
|
mask >>= shift;
|
|
|
|
table[table_id] ^= mask;
|
|
}
|
|
else
|
|
table[0] = 1;
|
|
|
|
|
|
TTMATH_LOG("UInt::BitNot2")
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* Multiplication
|
|
*
|
|
*
|
|
*/
|
|
|
|
public:
|
|
|
|
/*!
|
|
multiplication: this = this * ss2
|
|
|
|
it can return a carry
|
|
*/
|
|
uint MulInt(uint ss2)
|
|
{
|
|
uint r1, r2, x1;
|
|
uint c = 0;
|
|
|
|
UInt<value_size> u(*this);
|
|
SetZero();
|
|
|
|
if( ss2 == 0 )
|
|
{
|
|
TTMATH_LOGC("UInt::MulInt(uint)", 0)
|
|
return 0;
|
|
}
|
|
|
|
for(x1=0 ; x1<value_size-1 ; ++x1)
|
|
{
|
|
MulTwoWords(u.table[x1], ss2, &r2, &r1);
|
|
c += AddTwoInts(r2,r1,x1);
|
|
}
|
|
|
|
// x1 = value_size-1 (last word)
|
|
MulTwoWords(u.table[x1], ss2, &r2, &r1);
|
|
c += (r2!=0) ? 1 : 0;
|
|
c += AddInt(r1, x1);
|
|
|
|
TTMATH_LOGC("UInt::MulInt(uint)", c)
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
multiplication: result = this * ss2
|
|
|
|
we're using this method only when result_size is greater than value_size
|
|
if so there will not be a carry
|
|
*/
|
|
template<uint result_size>
|
|
void MulInt(uint ss2, UInt<result_size> & result) const
|
|
{
|
|
TTMATH_ASSERT( result_size > value_size )
|
|
|
|
uint r2,r1;
|
|
uint x1size=value_size;
|
|
uint x1start=0;
|
|
|
|
result.SetZero();
|
|
|
|
if( ss2 == 0 )
|
|
{
|
|
TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size)
|
|
return;
|
|
}
|
|
|
|
if( value_size > 2 )
|
|
{
|
|
// if the value_size is smaller than or equal to 2
|
|
// there is no sense to set x1size and x1start to another values
|
|
|
|
for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size);
|
|
|
|
if( x1size == 0 )
|
|
{
|
|
TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size)
|
|
return;
|
|
}
|
|
|
|
for(x1start=0 ; x1start<x1size && table[x1start]==0 ; ++x1start);
|
|
}
|
|
|
|
for(uint x1=x1start ; x1<x1size ; ++x1)
|
|
{
|
|
MulTwoWords(table[x1], ss2, &r2, &r1 );
|
|
result.AddTwoInts(r2,r1,x1);
|
|
}
|
|
|
|
TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size)
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
the multiplication 'this' = 'this' * ss2
|
|
|
|
algorithm: 100 - means automatically choose the fastest algorithm
|
|
*/
|
|
uint Mul(const UInt<value_size> & ss2, uint algorithm = 100)
|
|
{
|
|
switch( algorithm )
|
|
{
|
|
case 1:
|
|
return Mul1(ss2);
|
|
|
|
case 2:
|
|
return Mul2(ss2);
|
|
|
|
case 3:
|
|
return Mul3(ss2);
|
|
|
|
case 100:
|
|
default:
|
|
return MulFastest(ss2);
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
the multiplication 'result' = 'this' * ss2
|
|
|
|
since the 'result' is twice bigger than 'this' and 'ss2'
|
|
this method never returns a carry
|
|
|
|
algorithm: 100 - means automatically choose the fastest algorithm
|
|
*/
|
|
void MulBig(const UInt<value_size> & ss2,
|
|
UInt<value_size*2> & result,
|
|
uint algorithm = 100)
|
|
{
|
|
switch( algorithm )
|
|
{
|
|
case 1:
|
|
return Mul1Big(ss2, result);
|
|
|
|
case 2:
|
|
return Mul2Big(ss2, result);
|
|
|
|
case 3:
|
|
return Mul3Big(ss2, result);
|
|
|
|
case 100:
|
|
default:
|
|
return MulFastestBig(ss2, result);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
the first version of the multiplication algorithm
|
|
*/
|
|
|
|
/*!
|
|
multiplication: this = this * ss2
|
|
|
|
it returns carry if it has been
|
|
*/
|
|
uint Mul1(const UInt<value_size> & ss2)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( ss2 )
|
|
|
|
UInt<value_size> ss1( *this );
|
|
SetZero();
|
|
|
|
for(uint i=0; i < value_size*TTMATH_BITS_PER_UINT ; ++i)
|
|
{
|
|
if( Add(*this) )
|
|
{
|
|
TTMATH_LOGC("UInt::Mul1", 1)
|
|
return 1;
|
|
}
|
|
|
|
if( ss1.Rcl(1) )
|
|
if( Add(ss2) )
|
|
{
|
|
TTMATH_LOGC("UInt::Mul1", 1)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::Mul1", 0)
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
multiplication: result = this * ss2
|
|
|
|
result is twice bigger than 'this' and 'ss2'
|
|
this method never returns carry
|
|
*/
|
|
void Mul1Big(const UInt<value_size> & ss2_, UInt<value_size*2> & result)
|
|
{
|
|
UInt<value_size*2> ss2;
|
|
uint i;
|
|
|
|
// copying *this into result and ss2_ into ss2
|
|
for(i=0 ; i<value_size ; ++i)
|
|
{
|
|
result.table[i] = table[i];
|
|
ss2.table[i] = ss2_.table[i];
|
|
}
|
|
|
|
// cleaning the highest bytes in result and ss2
|
|
for( ; i < value_size*2 ; ++i)
|
|
{
|
|
result.table[i] = 0;
|
|
ss2.table[i] = 0;
|
|
}
|
|
|
|
// multiply
|
|
// (there will not be a carry)
|
|
result.Mul1( ss2 );
|
|
|
|
TTMATH_LOG("UInt::Mul1Big")
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
the second version of the multiplication algorithm
|
|
|
|
this algorithm is similar to the 'schoolbook method' which is done by hand
|
|
*/
|
|
|
|
/*!
|
|
multiplication: this = this * ss2
|
|
|
|
it returns carry if it has been
|
|
*/
|
|
uint Mul2(const UInt<value_size> & ss2)
|
|
{
|
|
UInt<value_size*2> result;
|
|
uint i, c = 0;
|
|
|
|
Mul2Big(ss2, result);
|
|
|
|
// copying result
|
|
for(i=0 ; i<value_size ; ++i)
|
|
table[i] = result.table[i];
|
|
|
|
// testing carry
|
|
for( ; i<value_size*2 ; ++i)
|
|
if( result.table[i] != 0 )
|
|
{
|
|
c = 1;
|
|
break;
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::Mul2", c)
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
/*!
|
|
multiplication: result = this * ss2
|
|
|
|
result is twice bigger than this and ss2
|
|
this method never returns carry
|
|
*/
|
|
void Mul2Big(const UInt<value_size> & ss2, UInt<value_size*2> & result)
|
|
{
|
|
Mul2Big2<value_size>(table, ss2.table, result);
|
|
|
|
TTMATH_LOG("UInt::Mul2Big")
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for calculating the multiplication
|
|
|
|
arguments we're taking as pointers (this is to improve the Mul3Big2()- avoiding
|
|
unnecessary copying objects), the result should be taken as a pointer too,
|
|
but at the moment there is no method AddTwoInts() which can operate on pointers
|
|
*/
|
|
template<uint ss_size>
|
|
void Mul2Big2(const uint * ss1, const uint * ss2, UInt<ss_size*2> & result)
|
|
{
|
|
uint x1size = ss_size, x2size = ss_size;
|
|
uint x1start = 0, x2start = 0;
|
|
|
|
if( ss_size > 2 )
|
|
{
|
|
// if the ss_size is smaller than or equal to 2
|
|
// there is no sense to set x1size (and others) to another values
|
|
|
|
for(x1size=ss_size ; x1size>0 && ss1[x1size-1]==0 ; --x1size);
|
|
for(x2size=ss_size ; x2size>0 && ss2[x2size-1]==0 ; --x2size);
|
|
|
|
for(x1start=0 ; x1start<x1size && ss1[x1start]==0 ; ++x1start);
|
|
for(x2start=0 ; x2start<x2size && ss2[x2start]==0 ; ++x2start);
|
|
}
|
|
|
|
Mul2Big3<ss_size>(ss1, ss2, result, x1start, x1size, x2start, x2size);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
an auxiliary method for calculating the multiplication
|
|
*/
|
|
template<uint ss_size>
|
|
void Mul2Big3(const uint * ss1, const uint * ss2, UInt<ss_size*2> & result, uint x1start, uint x1size, uint x2start, uint x2size)
|
|
{
|
|
uint r2, r1;
|
|
|
|
result.SetZero();
|
|
|
|
if( x1size==0 || x2size==0 )
|
|
return;
|
|
|
|
for(uint x1=x1start ; x1<x1size ; ++x1)
|
|
{
|
|
for(uint x2=x2start ; x2<x2size ; ++x2)
|
|
{
|
|
MulTwoWords(ss1[x1], ss2[x2], &r2, &r1);
|
|
result.AddTwoInts(r2, r1, x2+x1);
|
|
// here will never be a carry
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
multiplication: this = this * ss2
|
|
|
|
This is Karatsuba Multiplication algorithm, we're using it when value_size is greater than
|
|
or equal to TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE macro (defined in ttmathuint.h).
|
|
If value_size is smaller then we're using Mul2Big() instead.
|
|
|
|
Karatsuba multiplication:
|
|
Assume we have:
|
|
this = x = x1*B^m + x0
|
|
ss2 = y = y1*B^m + y0
|
|
where x0 and y0 are less than B^m
|
|
the product from multiplication we can show as:
|
|
x*y = (x1*B^m + x0)(y1*B^m + y0) = z2*B^(2m) + z1*B^m + z0
|
|
where
|
|
z2 = x1*y1
|
|
z1 = x1*y0 + x0*y1
|
|
z0 = x0*y0
|
|
this is standard schoolbook algorithm with O(n^2), Karatsuba observed that z1 can be given in other form:
|
|
z1 = (x1 + x0)*(y1 + y0) - z2 - z0 / z1 = (x1*y1 + x1*y0 + x0*y1 + x0*y0) - x1*y1 - x0*y0 = x1*y0 + x0*y1 /
|
|
and to calculate the multiplication we need only three multiplications (with some additions and subtractions)
|
|
|
|
Our objects 'this' and 'ss2' we divide into two parts and by using recurrence we calculate the multiplication.
|
|
Karatsuba multiplication has O( n^(ln(3)/ln(2)) )
|
|
*/
|
|
uint Mul3(const UInt<value_size> & ss2)
|
|
{
|
|
UInt<value_size*2> result;
|
|
uint i, c = 0;
|
|
|
|
Mul3Big(ss2, result);
|
|
|
|
// copying result
|
|
for(i=0 ; i<value_size ; ++i)
|
|
table[i] = result.table[i];
|
|
|
|
// testing carry
|
|
for( ; i<value_size*2 ; ++i)
|
|
if( result.table[i] != 0 )
|
|
{
|
|
c = 1;
|
|
break;
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::Mul3", c)
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
multiplication: result = this * ss2
|
|
|
|
result is twice bigger than this and ss2,
|
|
this method never returns carry,
|
|
(Karatsuba multiplication)
|
|
*/
|
|
void Mul3Big(const UInt<value_size> & ss2, UInt<value_size*2> & result)
|
|
{
|
|
Mul3Big2<value_size>(table, ss2.table, result.table);
|
|
|
|
TTMATH_LOG("UInt::Mul3Big")
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for calculating the Karatsuba multiplication
|
|
|
|
result_size is equal ss_size*2
|
|
*/
|
|
template<uint ss_size>
|
|
void Mul3Big2(const uint * ss1, const uint * ss2, uint * result)
|
|
{
|
|
const uint * x1, * x0, * y1, * y0;
|
|
|
|
|
|
if( ss_size>1 && ss_size<TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE )
|
|
{
|
|
UInt<ss_size*2> res;
|
|
Mul2Big2<ss_size>(ss1, ss2, res);
|
|
|
|
for(uint i=0 ; i<ss_size*2 ; ++i)
|
|
result[i] = res.table[i];
|
|
|
|
return;
|
|
}
|
|
else
|
|
if( ss_size == 1 )
|
|
{
|
|
return MulTwoWords(*ss1, *ss2, &result[1], &result[0]);
|
|
}
|
|
|
|
|
|
if( (ss_size & 1) == 1 )
|
|
{
|
|
// ss_size is odd
|
|
x0 = ss1;
|
|
y0 = ss2;
|
|
x1 = ss1 + ss_size / 2 + 1;
|
|
y1 = ss2 + ss_size / 2 + 1;
|
|
|
|
// the second vectors (x1 and y1) are smaller about one from the first ones (x0 and y0)
|
|
Mul3Big3<ss_size/2 + 1, ss_size/2, ss_size*2>(x1, x0, y1, y0, result);
|
|
}
|
|
else
|
|
{
|
|
// ss_size is even
|
|
x0 = ss1;
|
|
y0 = ss2;
|
|
x1 = ss1 + ss_size / 2;
|
|
y1 = ss2 + ss_size / 2;
|
|
|
|
// all four vectors (x0 x1 y0 y1) are equal in size
|
|
Mul3Big3<ss_size/2, ss_size/2, ss_size*2>(x1, x0, y1, y0, result);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning (disable : 4717)
|
|
//warning C4717: recursive on all control paths, function will cause runtime stack overflow
|
|
//we have the stop point in Mul3Big2() method
|
|
#endif
|
|
|
|
|
|
/*!
|
|
an auxiliary method for calculating the Karatsuba multiplication
|
|
|
|
x = x1*B^m + x0
|
|
y = y1*B^m + y0
|
|
|
|
first_size - is the size of vectors: x0 and y0
|
|
second_size - is the size of vectors: x1 and y1 (can be either equal first_size or smaller about one from first_size)
|
|
|
|
x*y = (x1*B^m + x0)(y1*B^m + y0) = z2*B^(2m) + z1*B^m + z0
|
|
where
|
|
z0 = x0*y0
|
|
z2 = x1*y1
|
|
z1 = (x1 + x0)*(y1 + y0) - z2 - z0
|
|
*/
|
|
template<uint first_size, uint second_size, uint result_size>
|
|
void Mul3Big3(const uint * x1, const uint * x0, const uint * y1, const uint * y0, uint * result)
|
|
{
|
|
uint i, c, xc, yc;
|
|
|
|
UInt<first_size> temp, temp2;
|
|
UInt<first_size*3> z1;
|
|
|
|
// z0 and z2 we store directly in the result (we don't use any temporary variables)
|
|
Mul3Big2<first_size>(x0, y0, result); // z0
|
|
Mul3Big2<second_size>(x1, y1, result+first_size*2); // z2
|
|
|
|
// now we calculate z1
|
|
// temp = (x0 + x1)
|
|
// temp2 = (y0 + y1)
|
|
// we're using temp and temp2 with UInt<first_size>, although there can be a carry but
|
|
// we simple remember it in xc and yc (xc and yc can be either 0 or 1),
|
|
// and (x0 + x1)*(y0 + y1) we calculate in this way (schoolbook algorithm):
|
|
//
|
|
// xc | temp
|
|
// yc | temp2
|
|
// --------------------
|
|
// (temp * temp2)
|
|
// xc*temp2 |
|
|
// yc*temp |
|
|
// xc*yc |
|
|
// ---------- z1 --------
|
|
//
|
|
// and the result is never larger in size than 3*first_size
|
|
|
|
xc = AddVector(x0, x1, first_size, second_size, temp.table);
|
|
yc = AddVector(y0, y1, first_size, second_size, temp2.table);
|
|
|
|
Mul3Big2<first_size>(temp.table, temp2.table, z1.table);
|
|
|
|
// clearing the rest of z1
|
|
for(i=first_size*2 ; i<first_size*3 ; ++i)
|
|
z1.table[i] = 0;
|
|
|
|
|
|
if( xc )
|
|
{
|
|
c = AddVector(z1.table+first_size, temp2.table, first_size*3-first_size, first_size, z1.table+first_size);
|
|
TTMATH_ASSERT( c==0 )
|
|
}
|
|
|
|
if( yc )
|
|
{
|
|
c = AddVector(z1.table+first_size, temp.table, first_size*3-first_size, first_size, z1.table+first_size);
|
|
TTMATH_ASSERT( c==0 )
|
|
}
|
|
|
|
|
|
if( xc && yc )
|
|
{
|
|
for( i=first_size*2 ; i<first_size*3 ; ++i )
|
|
if( ++z1.table[i] != 0 )
|
|
break; // break if there was no carry
|
|
}
|
|
|
|
// z1 = z1 - z2
|
|
c = SubVector(z1.table, result+first_size*2, first_size*3, second_size*2, z1.table);
|
|
TTMATH_ASSERT(c==0)
|
|
|
|
// z1 = z1 - z0
|
|
c = SubVector(z1.table, result, first_size*3, first_size*2, z1.table);
|
|
TTMATH_ASSERT(c==0)
|
|
|
|
// here we've calculated the z1
|
|
// now we're adding it to the result
|
|
|
|
if( first_size > second_size )
|
|
{
|
|
uint z1_size = result_size - first_size;
|
|
TTMATH_ASSERT( z1_size <= first_size*3 )
|
|
|
|
for(i=z1_size ; i<first_size*3 ; ++i)
|
|
TTMATH_ASSERT( z1.table[i] == 0 )
|
|
;
|
|
|
|
c = AddVector(result+first_size, z1.table, result_size-first_size, z1_size, result+first_size);
|
|
TTMATH_ASSERT(c==0)
|
|
}
|
|
else
|
|
{
|
|
c = AddVector(result+first_size, z1.table, result_size-first_size, first_size*3, result+first_size);
|
|
TTMATH_ASSERT(c==0)
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning (default : 4717)
|
|
#endif
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
multiplication this = this * ss2
|
|
*/
|
|
uint MulFastest(const UInt<value_size> & ss2)
|
|
{
|
|
UInt<value_size*2> result;
|
|
uint i, c = 0;
|
|
|
|
MulFastestBig(ss2, result);
|
|
|
|
// copying result
|
|
for(i=0 ; i<value_size ; ++i)
|
|
table[i] = result.table[i];
|
|
|
|
// testing carry
|
|
for( ; i<value_size*2 ; ++i)
|
|
if( result.table[i] != 0 )
|
|
{
|
|
c = 1;
|
|
break;
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::MulFastest", c)
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
/*!
|
|
multiplication result = this * ss2
|
|
|
|
this method is trying to select the fastest algorithm
|
|
(in the future this method can be improved)
|
|
*/
|
|
void MulFastestBig(const UInt<value_size> & ss2, UInt<value_size*2> & result)
|
|
{
|
|
if( value_size < TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE )
|
|
return Mul2Big(ss2, result);
|
|
|
|
uint x1size = value_size, x2size = value_size;
|
|
uint x1start = 0, x2start = 0;
|
|
|
|
for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size);
|
|
for(x2size=value_size ; x2size>0 && ss2.table[x2size-1]==0 ; --x2size);
|
|
|
|
if( x1size==0 || x2size==0 )
|
|
{
|
|
// either 'this' or 'ss2' is equal zero - the result is zero too
|
|
result.SetZero();
|
|
return;
|
|
}
|
|
|
|
for(x1start=0 ; x1start<x1size && table[x1start]==0 ; ++x1start);
|
|
for(x2start=0 ; x2start<x2size && ss2.table[x2start]==0 ; ++x2start);
|
|
|
|
uint distancex1 = x1size - x1start;
|
|
uint distancex2 = x2size - x2start;
|
|
|
|
if( distancex1 < 3 || distancex2 < 3 )
|
|
// either 'this' or 'ss2' have only 2 (or 1) items different from zero (side by side)
|
|
// (this condition in the future can be improved)
|
|
return Mul2Big3<value_size>(table, ss2.table, result, x1start, x1size, x2start, x2size);
|
|
|
|
|
|
// Karatsuba multiplication
|
|
Mul3Big(ss2, result);
|
|
|
|
TTMATH_LOG("UInt::MulFastestBig")
|
|
}
|
|
|
|
|
|
/*!
|
|
*
|
|
* Division
|
|
*
|
|
*
|
|
*/
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
division by one unsigned word
|
|
|
|
returns 1 when divisor is zero
|
|
*/
|
|
uint DivInt(uint divisor, uint * remainder = 0)
|
|
{
|
|
if( divisor == 0 )
|
|
{
|
|
if( remainder )
|
|
*remainder = 0; // this is for convenience, without it the compiler can report that 'remainder' is uninitialized
|
|
|
|
TTMATH_LOG("UInt::DivInt")
|
|
|
|
return 1;
|
|
}
|
|
|
|
if( divisor == 1 )
|
|
{
|
|
if( remainder )
|
|
*remainder = 0;
|
|
|
|
TTMATH_LOG("UInt::DivInt")
|
|
|
|
return 0;
|
|
}
|
|
|
|
UInt<value_size> dividend(*this);
|
|
SetZero();
|
|
|
|
sint i; // i must be with a sign
|
|
uint r = 0;
|
|
|
|
// we're looking for the last word in ss1
|
|
for(i=value_size-1 ; i>0 && dividend.table[i]==0 ; --i);
|
|
|
|
for( ; i>=0 ; --i)
|
|
DivTwoWords(r, dividend.table[i], divisor, &table[i], &r);
|
|
|
|
if( remainder )
|
|
*remainder = r;
|
|
|
|
TTMATH_LOG("UInt::DivInt")
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint DivInt(uint divisor, uint & remainder)
|
|
{
|
|
return DivInt(divisor, &remainder);
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
division this = this / ss2
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - division by zero
|
|
'this' will be the quotient
|
|
'remainder' - remainder
|
|
*/
|
|
uint Div( const UInt<value_size> & divisor,
|
|
UInt<value_size> * remainder = 0,
|
|
uint algorithm = 3)
|
|
{
|
|
switch( algorithm )
|
|
{
|
|
case 1:
|
|
return Div1(divisor, remainder);
|
|
|
|
case 2:
|
|
return Div2(divisor, remainder);
|
|
|
|
case 3:
|
|
default:
|
|
return Div3(divisor, remainder);
|
|
}
|
|
}
|
|
|
|
uint Div(const UInt<value_size> & divisor, UInt<value_size> & remainder, uint algorithm = 3)
|
|
{
|
|
return Div(divisor, &remainder, algorithm);
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
return values:
|
|
0 - none has to be done
|
|
1 - division by zero
|
|
2 - division should be made
|
|
*/
|
|
uint Div_StandardTest( const UInt<value_size> & v,
|
|
uint & m, uint & n,
|
|
UInt<value_size> * remainder = 0)
|
|
{
|
|
switch( Div_CalculatingSize(v, m, n) )
|
|
{
|
|
case 4: // 'this' is equal v
|
|
if( remainder )
|
|
remainder->SetZero();
|
|
|
|
SetOne();
|
|
TTMATH_LOG("UInt::Div_StandardTest")
|
|
return 0;
|
|
|
|
case 3: // 'this' is smaller than v
|
|
if( remainder )
|
|
*remainder = *this;
|
|
|
|
SetZero();
|
|
TTMATH_LOG("UInt::Div_StandardTest")
|
|
return 0;
|
|
|
|
case 2: // 'this' is zero
|
|
if( remainder )
|
|
remainder->SetZero();
|
|
|
|
SetZero();
|
|
TTMATH_LOG("UInt::Div_StandardTest")
|
|
return 0;
|
|
|
|
case 1: // v is zero
|
|
TTMATH_LOG("UInt::Div_StandardTest")
|
|
return 1;
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div_StandardTest")
|
|
|
|
return 2;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
return values:
|
|
0 - ok
|
|
'm' - is the index (from 0) of last non-zero word in table ('this')
|
|
'n' - is the index (from 0) of last non-zero word in v.table
|
|
1 - v is zero
|
|
2 - 'this' is zero
|
|
3 - 'this' is smaller than v
|
|
4 - 'this' is equal v
|
|
|
|
if the return value is different than zero the 'm' and 'n' are undefined
|
|
*/
|
|
uint Div_CalculatingSize(const UInt<value_size> & v, uint & m, uint & n)
|
|
{
|
|
m = n = value_size-1;
|
|
|
|
for( ; n!=0 && v.table[n]==0 ; --n);
|
|
|
|
if( n==0 && v.table[n]==0 )
|
|
return 1;
|
|
|
|
for( ; m!=0 && table[m]==0 ; --m);
|
|
|
|
if( m==0 && table[m]==0 )
|
|
return 2;
|
|
|
|
if( m < n )
|
|
return 3;
|
|
else
|
|
if( m == n )
|
|
{
|
|
uint i;
|
|
for(i = n ; i!=0 && table[i]==v.table[i] ; --i);
|
|
|
|
if( table[i] < v.table[i] )
|
|
return 3;
|
|
else
|
|
if (table[i] == v.table[i] )
|
|
return 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
the first division algorithm
|
|
radix 2
|
|
*/
|
|
uint Div1(const UInt<value_size> & divisor, UInt<value_size> * remainder = 0)
|
|
{
|
|
uint m,n, test;
|
|
|
|
test = Div_StandardTest(divisor, m, n, remainder);
|
|
if( test < 2 )
|
|
return test;
|
|
|
|
if( !remainder )
|
|
{
|
|
UInt<value_size> rem;
|
|
|
|
return Div1_Calculate(divisor, rem);
|
|
}
|
|
|
|
return Div1_Calculate(divisor, *remainder);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
|
|
uint Div1_Calculate(const UInt<value_size> & divisor, UInt<value_size> & rest)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( divisor )
|
|
|
|
sint loop;
|
|
sint c;
|
|
|
|
rest.SetZero();
|
|
loop = value_size * TTMATH_BITS_PER_UINT;
|
|
c = 0;
|
|
|
|
|
|
div_a:
|
|
c = Rcl(1, c);
|
|
c = rest.Add(rest,c);
|
|
c = rest.Sub(divisor,c);
|
|
|
|
c = !c;
|
|
|
|
if(!c)
|
|
goto div_d;
|
|
|
|
|
|
div_b:
|
|
--loop;
|
|
if(loop)
|
|
goto div_a;
|
|
|
|
c = Rcl(1, c);
|
|
TTMATH_LOG("UInt::Div1_Calculate")
|
|
return 0;
|
|
|
|
|
|
div_c:
|
|
c = Rcl(1, c);
|
|
c = rest.Add(rest,c);
|
|
c = rest.Add(divisor);
|
|
|
|
if(c)
|
|
goto div_b;
|
|
|
|
|
|
div_d:
|
|
--loop;
|
|
if(loop)
|
|
goto div_c;
|
|
|
|
c = Rcl(1, c);
|
|
c = rest.Add(divisor);
|
|
|
|
TTMATH_LOG("UInt::Div1_Calculate")
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
the second division algorithm
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - division by zero
|
|
*/
|
|
uint Div2(const UInt<value_size> & divisor, UInt<value_size> * remainder = 0)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( divisor )
|
|
|
|
uint bits_diff;
|
|
uint status = Div2_Calculate(divisor, remainder, bits_diff);
|
|
if( status < 2 )
|
|
return status;
|
|
|
|
if( CmpBiggerEqual(divisor) )
|
|
{
|
|
Div2(divisor, remainder);
|
|
SetBit(bits_diff);
|
|
}
|
|
else
|
|
{
|
|
if( remainder )
|
|
*remainder = *this;
|
|
|
|
SetZero();
|
|
SetBit(bits_diff);
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div2")
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
uint Div2(const UInt<value_size> & divisor, UInt<value_size> & remainder)
|
|
{
|
|
return Div2(divisor, &remainder);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
return values:
|
|
0 - we've calculated the division
|
|
1 - division by zero
|
|
2 - we have to still calculate
|
|
|
|
*/
|
|
uint Div2_Calculate(const UInt<value_size> & divisor, UInt<value_size> * remainder,
|
|
uint & bits_diff)
|
|
{
|
|
uint table_id, index;
|
|
uint divisor_table_id, divisor_index;
|
|
|
|
uint status = Div2_FindLeadingBitsAndCheck( divisor, remainder,
|
|
table_id, index,
|
|
divisor_table_id, divisor_index);
|
|
|
|
if( status < 2 )
|
|
{
|
|
TTMATH_LOG("UInt::Div2_Calculate")
|
|
return status;
|
|
}
|
|
|
|
// here we know that 'this' is greater than divisor
|
|
// then 'index' is greater or equal 'divisor_index'
|
|
bits_diff = index - divisor_index;
|
|
|
|
UInt<value_size> divisor_copy(divisor);
|
|
divisor_copy.Rcl(bits_diff, 0);
|
|
|
|
if( CmpSmaller(divisor_copy, table_id) )
|
|
{
|
|
divisor_copy.Rcr(1);
|
|
--bits_diff;
|
|
}
|
|
|
|
Sub(divisor_copy, 0);
|
|
|
|
TTMATH_LOG("UInt::Div2_Calculate")
|
|
|
|
return 2;
|
|
}
|
|
|
|
|
|
/*!
|
|
return values:
|
|
0 - we've calculated the division
|
|
1 - division by zero
|
|
2 - we have to still calculate
|
|
*/
|
|
uint Div2_FindLeadingBitsAndCheck( const UInt<value_size> & divisor,
|
|
UInt<value_size> * remainder,
|
|
uint & table_id, uint & index,
|
|
uint & divisor_table_id, uint & divisor_index)
|
|
{
|
|
if( !divisor.FindLeadingBit(divisor_table_id, divisor_index) )
|
|
{
|
|
// division by zero
|
|
TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
|
|
return 1;
|
|
}
|
|
|
|
if( !FindLeadingBit(table_id, index) )
|
|
{
|
|
// zero is divided by something
|
|
|
|
SetZero();
|
|
|
|
if( remainder )
|
|
remainder->SetZero();
|
|
|
|
TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
|
|
|
|
return 0;
|
|
}
|
|
|
|
divisor_index += divisor_table_id * TTMATH_BITS_PER_UINT;
|
|
index += table_id * TTMATH_BITS_PER_UINT;
|
|
|
|
if( divisor_table_id == 0 )
|
|
{
|
|
// dividor has only one 32-bit word
|
|
|
|
uint r;
|
|
DivInt(divisor.table[0], &r);
|
|
|
|
if( remainder )
|
|
{
|
|
remainder->SetZero();
|
|
remainder->table[0] = r;
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
if( Div2_DivisorGreaterOrEqual( divisor, remainder,
|
|
table_id, index,
|
|
divisor_index) )
|
|
{
|
|
TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
|
|
return 0;
|
|
}
|
|
|
|
|
|
TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
|
|
|
|
return 2;
|
|
}
|
|
|
|
|
|
/*!
|
|
return values:
|
|
true if divisor is equal or greater than 'this'
|
|
*/
|
|
bool Div2_DivisorGreaterOrEqual( const UInt<value_size> & divisor,
|
|
UInt<value_size> * remainder,
|
|
uint table_id, uint index,
|
|
uint divisor_index )
|
|
{
|
|
if( divisor_index > index )
|
|
{
|
|
// divisor is greater than this
|
|
|
|
if( remainder )
|
|
*remainder = *this;
|
|
|
|
SetZero();
|
|
|
|
TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
|
|
|
|
return true;
|
|
}
|
|
|
|
if( divisor_index == index )
|
|
{
|
|
// table_id == divisor_table_id as well
|
|
|
|
uint i;
|
|
for(i = table_id ; i!=0 && table[i]==divisor.table[i] ; --i);
|
|
|
|
if( table[i] < divisor.table[i] )
|
|
{
|
|
// divisor is greater than 'this'
|
|
|
|
if( remainder )
|
|
*remainder = *this;
|
|
|
|
SetZero();
|
|
|
|
TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
|
|
|
|
return true;
|
|
}
|
|
else
|
|
if( table[i] == divisor.table[i] )
|
|
{
|
|
// divisor is equal 'this'
|
|
|
|
if( remainder )
|
|
remainder->SetZero();
|
|
|
|
SetOne();
|
|
|
|
TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
the third division algorithm
|
|
|
|
this algorithm is described in the following book:
|
|
"The art of computer programming 2" (4.3.1 page 272)
|
|
Donald E. Knuth
|
|
*/
|
|
uint Div3(const UInt<value_size> & v, UInt<value_size> * remainder = 0)
|
|
{
|
|
TTMATH_REFERENCE_ASSERT( v )
|
|
|
|
uint m,n, test;
|
|
|
|
test = Div_StandardTest(v, m, n, remainder);
|
|
if( test < 2 )
|
|
return test;
|
|
|
|
if( n == 0 )
|
|
{
|
|
uint r;
|
|
DivInt( v.table[0], &r );
|
|
|
|
if( remainder )
|
|
{
|
|
remainder->SetZero();
|
|
remainder->table[0] = r;
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div3")
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// we can only use the third division algorithm when
|
|
// the divisor is greater or equal 2^32 (has more than one 32-bit word)
|
|
++m;
|
|
++n;
|
|
m = m - n;
|
|
Div3_Division(v, remainder, m, n);
|
|
|
|
TTMATH_LOG("UInt::Div3")
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
void Div3_Division(UInt<value_size> v, UInt<value_size> * remainder, uint m, uint n)
|
|
{
|
|
TTMATH_ASSERT( n>=2 )
|
|
|
|
UInt<value_size+1> uu, vv;
|
|
UInt<value_size> q;
|
|
uint d, u_value_size, u0, u1, u2, v1, v0, j=m;
|
|
|
|
u_value_size = Div3_Normalize(v, n, d);
|
|
|
|
if( j+n == value_size )
|
|
u2 = u_value_size;
|
|
else
|
|
u2 = table[j+n];
|
|
|
|
Div3_MakeBiggerV(v, vv);
|
|
|
|
for(uint i = j+1 ; i<value_size ; ++i)
|
|
q.table[i] = 0;
|
|
|
|
while( true )
|
|
{
|
|
u1 = table[j+n-1];
|
|
u0 = table[j+n-2];
|
|
v1 = v.table[n-1];
|
|
v0 = v.table[n-2];
|
|
|
|
uint qp = Div3_Calculate(u2,u1,u0, v1,v0);
|
|
|
|
Div3_MakeNewU(uu, j, n, u2);
|
|
Div3_MultiplySubtract(uu, vv, qp);
|
|
Div3_CopyNewU(uu, j, n);
|
|
|
|
q.table[j] = qp;
|
|
|
|
// the next loop
|
|
if( j-- == 0 )
|
|
break;
|
|
|
|
u2 = table[j+n];
|
|
}
|
|
|
|
if( remainder )
|
|
Div3_Unnormalize(remainder, n, d);
|
|
|
|
*this = q;
|
|
|
|
TTMATH_LOG("UInt::Div3_Division")
|
|
}
|
|
|
|
|
|
void Div3_MakeNewU(UInt<value_size+1> & uu, uint j, uint n, uint u_max)
|
|
{
|
|
uint i;
|
|
|
|
for(i=0 ; i<n ; ++i, ++j)
|
|
uu.table[i] = table[j];
|
|
|
|
// 'n' is from <1..value_size> so and 'i' is from <0..value_size>
|
|
// then table[i] is always correct (look at the declaration of 'uu')
|
|
uu.table[i] = u_max;
|
|
|
|
for( ++i ; i<value_size+1 ; ++i)
|
|
uu.table[i] = 0;
|
|
|
|
TTMATH_LOG("UInt::Div3_MakeNewU")
|
|
}
|
|
|
|
|
|
void Div3_CopyNewU(const UInt<value_size+1> & uu, uint j, uint n)
|
|
{
|
|
uint i;
|
|
|
|
for(i=0 ; i<n ; ++i)
|
|
table[i+j] = uu.table[i];
|
|
|
|
if( i+j < value_size )
|
|
table[i+j] = uu.table[i];
|
|
|
|
TTMATH_LOG("UInt::Div3_CopyNewU")
|
|
}
|
|
|
|
|
|
/*!
|
|
we're making the new 'vv'
|
|
the value is actually the same but the 'table' is bigger (value_size+1)
|
|
*/
|
|
void Div3_MakeBiggerV(const UInt<value_size> & v, UInt<value_size+1> & vv)
|
|
{
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
vv.table[i] = v.table[i];
|
|
|
|
vv.table[value_size] = 0;
|
|
|
|
TTMATH_LOG("UInt::Div3_MakeBiggerV")
|
|
}
|
|
|
|
|
|
/*!
|
|
we're moving all bits from 'v' into the left side of the n-1 word
|
|
(the highest bit at v.table[n-1] will be equal one,
|
|
the bits from 'this' we're moving the same times as 'v')
|
|
|
|
return values:
|
|
d - how many times we've moved
|
|
return - the next-left value from 'this' (that after table[value_size-1])
|
|
*/
|
|
uint Div3_Normalize(UInt<value_size> & v, uint n, uint & d)
|
|
{
|
|
// v.table[n-1] is != 0
|
|
|
|
uint bit = (uint)FindLeadingBitInWord(v.table[n-1]);
|
|
uint move = (TTMATH_BITS_PER_UINT - bit - 1);
|
|
uint res = table[value_size-1];
|
|
d = move;
|
|
|
|
if( move > 0 )
|
|
{
|
|
v.Rcl(move, 0);
|
|
Rcl(move, 0);
|
|
res = res >> (bit + 1);
|
|
}
|
|
else
|
|
{
|
|
res = 0;
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div3_Normalize")
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
void Div3_Unnormalize(UInt<value_size> * remainder, uint n, uint d)
|
|
{
|
|
for(uint i=n ; i<value_size ; ++i)
|
|
table[i] = 0;
|
|
|
|
Rcr(d,0);
|
|
|
|
*remainder = *this;
|
|
|
|
TTMATH_LOG("UInt::Div3_Unnormalize")
|
|
}
|
|
|
|
|
|
uint Div3_Calculate(uint u2, uint u1, uint u0, uint v1, uint v0)
|
|
{
|
|
UInt<2> u_temp;
|
|
uint rp;
|
|
bool next_test;
|
|
|
|
TTMATH_ASSERT( v1 != 0 )
|
|
|
|
u_temp.table[1] = u2;
|
|
u_temp.table[0] = u1;
|
|
u_temp.DivInt(v1, &rp);
|
|
|
|
TTMATH_ASSERT( u_temp.table[1]==0 || u_temp.table[1]==1 )
|
|
|
|
do
|
|
{
|
|
bool decrease = false;
|
|
|
|
if( u_temp.table[1] == 1 )
|
|
decrease = true;
|
|
else
|
|
{
|
|
UInt<2> temp1, temp2;
|
|
|
|
UInt<2>::MulTwoWords(u_temp.table[0], v0, temp1.table+1, temp1.table);
|
|
temp2.table[1] = rp;
|
|
temp2.table[0] = u0;
|
|
|
|
if( temp1 > temp2 )
|
|
decrease = true;
|
|
}
|
|
|
|
next_test = false;
|
|
|
|
if( decrease )
|
|
{
|
|
u_temp.SubOne();
|
|
|
|
rp += v1;
|
|
|
|
if( rp >= v1 ) // it means that there wasn't a carry (r<b from the book)
|
|
next_test = true;
|
|
}
|
|
}
|
|
while( next_test );
|
|
|
|
TTMATH_LOG("UInt::Div3_Calculate")
|
|
|
|
return u_temp.table[0];
|
|
}
|
|
|
|
|
|
|
|
void Div3_MultiplySubtract( UInt<value_size+1> & uu,
|
|
const UInt<value_size+1> & vv, uint & qp)
|
|
{
|
|
// D4 (in the book)
|
|
|
|
UInt<value_size+1> vv_temp(vv);
|
|
vv_temp.MulInt(qp);
|
|
|
|
if( uu.Sub(vv_temp) )
|
|
{
|
|
// there was a carry
|
|
|
|
//
|
|
// !!! this part of code was not tested
|
|
//
|
|
|
|
--qp;
|
|
uu.Add(vv);
|
|
|
|
// can be a carry from this additions but it should be ignored
|
|
// because it cancels with the borrow from uu.Sub(vv_temp)
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Div3_MultiplySubtract")
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
power this = this ^ pow
|
|
binary algorithm (r-to-l)
|
|
|
|
return values:
|
|
0 - ok
|
|
1 - carry
|
|
2 - incorrect argument (0^0)
|
|
*/
|
|
uint Pow(UInt<value_size> pow)
|
|
{
|
|
if(pow.IsZero() && IsZero())
|
|
// we don't define zero^zero
|
|
return 2;
|
|
|
|
UInt<value_size> start(*this), start_temp;
|
|
UInt<value_size> result;
|
|
result.SetOne();
|
|
uint c = 0;
|
|
|
|
while( !c )
|
|
{
|
|
if( pow.table[0] & 1 )
|
|
c += result.Mul(start);
|
|
|
|
pow.Rcr2_one(0);
|
|
if( pow.IsZero() )
|
|
break;
|
|
|
|
start_temp = start;
|
|
// in the second Mul algorithm we can use start.Mul(start) directly (there is no TTMATH_ASSERT_REFERENCE there)
|
|
c += start.Mul(start_temp);
|
|
}
|
|
|
|
*this = result;
|
|
|
|
TTMATH_LOGC("UInt::Pow(UInt<>)", c)
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
/*!
|
|
square root
|
|
e.g. Sqrt(9) = 3
|
|
('digit-by-digit' algorithm)
|
|
*/
|
|
void Sqrt()
|
|
{
|
|
UInt<value_size> bit, temp;
|
|
|
|
if( IsZero() )
|
|
return;
|
|
|
|
UInt<value_size> value(*this);
|
|
|
|
SetZero();
|
|
bit.SetZero();
|
|
bit.table[value_size-1] = (TTMATH_UINT_HIGHEST_BIT >> 1);
|
|
|
|
while( bit > value )
|
|
bit.Rcr(2);
|
|
|
|
while( !bit.IsZero() )
|
|
{
|
|
temp = *this;
|
|
temp.Add(bit);
|
|
|
|
if( value >= temp )
|
|
{
|
|
value.Sub(temp);
|
|
Rcr(1);
|
|
Add(bit);
|
|
}
|
|
else
|
|
{
|
|
Rcr(1);
|
|
}
|
|
|
|
bit.Rcr(2);
|
|
}
|
|
|
|
TTMATH_LOG("UInt::Sqrt")
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method sets n first bits to value zero
|
|
|
|
For example:
|
|
let n=2 then if there's a value 111 (bin) there'll be '100' (bin)
|
|
*/
|
|
void ClearFirstBits(uint n)
|
|
{
|
|
if( n >= value_size*TTMATH_BITS_PER_UINT )
|
|
{
|
|
SetZero();
|
|
TTMATH_LOG("UInt::ClearFirstBits")
|
|
return;
|
|
}
|
|
|
|
uint * p = table;
|
|
|
|
// first we're clearing the whole words
|
|
while( n >= TTMATH_BITS_PER_UINT )
|
|
{
|
|
*p++ = 0;
|
|
n -= TTMATH_BITS_PER_UINT;
|
|
}
|
|
|
|
if( n == 0 )
|
|
{
|
|
TTMATH_LOG("UInt::ClearFirstBits")
|
|
return;
|
|
}
|
|
|
|
// and then we're clearing one word which has left
|
|
// mask -- all bits are set to one
|
|
uint mask = TTMATH_UINT_MAX_VALUE;
|
|
|
|
mask = mask << n;
|
|
|
|
(*p) &= mask;
|
|
|
|
TTMATH_LOG("UInt::ClearFirstBits")
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true if the highest bit of the value is set
|
|
*/
|
|
bool IsTheHighestBitSet() const
|
|
{
|
|
return (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) != 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true if the lowest bit of the value is set
|
|
*/
|
|
bool IsTheLowestBitSet() const
|
|
{
|
|
return (*table & 1) != 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true if the value is equal zero
|
|
*/
|
|
bool IsZero() const
|
|
{
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
if(table[i] != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
returning true if first 'bits' bits are equal zero
|
|
*/
|
|
bool AreFirstBitsZero(uint bits) const
|
|
{
|
|
TTMATH_ASSERT( bits <= value_size * TTMATH_BITS_PER_UINT )
|
|
|
|
uint index = bits / TTMATH_BITS_PER_UINT;
|
|
uint rest = bits % TTMATH_BITS_PER_UINT;
|
|
uint i;
|
|
|
|
for(i=0 ; i<index ; ++i)
|
|
if(table[i] != 0 )
|
|
return false;
|
|
|
|
if( rest == 0 )
|
|
return true;
|
|
|
|
uint mask = TTMATH_UINT_MAX_VALUE >> (TTMATH_BITS_PER_UINT - rest);
|
|
|
|
return (table[i] & mask) == 0;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
*
|
|
* conversion methods
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
this method converts an UInt<another_size> type to this class
|
|
|
|
this operation has mainly sense if the value from p is
|
|
equal or smaller than that one which is returned from UInt<value_size>::SetMax()
|
|
|
|
it returns a carry if the value 'p' is too big
|
|
*/
|
|
template<uint argument_size>
|
|
uint FromUInt(const UInt<argument_size> & p)
|
|
{
|
|
uint min_size = (value_size < argument_size)? value_size : argument_size;
|
|
uint i;
|
|
|
|
for(i=0 ; i<min_size ; ++i)
|
|
table[i] = p.table[i];
|
|
|
|
|
|
if( value_size > argument_size )
|
|
{
|
|
// 'this' is longer than 'p'
|
|
|
|
for( ; i<value_size ; ++i)
|
|
table[i] = 0;
|
|
}
|
|
else
|
|
{
|
|
for( ; i<argument_size ; ++i)
|
|
if( p.table[i] != 0 )
|
|
{
|
|
TTMATH_LOGC("UInt::FromUInt(UInt<>)", 1)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
TTMATH_LOGC("UInt::FromUInt(UInt<>)", 0)
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts the uint type to this class
|
|
*/
|
|
void FromUInt(uint value)
|
|
{
|
|
for(uint i=1 ; i<value_size ; ++i)
|
|
table[i] = 0;
|
|
|
|
table[0] = value;
|
|
|
|
TTMATH_LOG("UInt::FromUInt(uint)")
|
|
}
|
|
|
|
|
|
/*!
|
|
this operator converts an UInt<another_size> type to this class
|
|
|
|
it doesn't return a carry
|
|
*/
|
|
template<uint argument_size>
|
|
UInt<value_size> & operator=(const UInt<argument_size> & p)
|
|
{
|
|
FromUInt(p);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
the assignment operator
|
|
*/
|
|
UInt<value_size> & operator=(const UInt<value_size> & p)
|
|
{
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
table[i] = p.table[i];
|
|
|
|
TTMATH_LOG("UInt::operator=(UInt<>)")
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts the uint type to this class
|
|
*/
|
|
UInt<value_size> & operator=(uint i)
|
|
{
|
|
FromUInt(i);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting the uint to this class
|
|
*/
|
|
UInt(uint i)
|
|
{
|
|
FromUInt(i);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts the sint type to this class
|
|
|
|
we provide operator(sint) and the constructor(sint) in order to allow
|
|
the programmer do that:
|
|
UInt<..> type = 10;
|
|
|
|
above "10" constant has the int type (signed int), if we don't give such
|
|
operators and constructors the compiler will not compile the program,
|
|
because it has to make a conversion and doesn't know into which type
|
|
(the UInt class has operator=(const char*), operator=(uint) etc.)
|
|
*/
|
|
UInt<value_size> & operator=(sint i)
|
|
{
|
|
FromUInt(uint(i));
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting the sint to this class
|
|
|
|
look at the description of UInt::operator=(sint)
|
|
*/
|
|
UInt(sint i)
|
|
{
|
|
FromUInt(uint(i));
|
|
}
|
|
|
|
|
|
|
|
#ifdef TTMATH_PLATFORM64
|
|
|
|
/*!
|
|
in 64bit platforms we must define additional operators and contructors
|
|
in order to allow a user initializing the objects in this way:
|
|
UInt<...> type = 20;
|
|
or
|
|
UInt<...> type;
|
|
type = 30;
|
|
|
|
decimal constants such as 20, 30 etc. are integer literal of type int,
|
|
if the value is greater it can even be long int,
|
|
0 is an octal integer of type int
|
|
(ISO 14882 p2.13.1 Integer literals)
|
|
*/
|
|
|
|
/*!
|
|
this operator converts the unsigned int type to this class
|
|
|
|
***this operator is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
*/
|
|
UInt<value_size> & operator=(unsigned int i)
|
|
{
|
|
FromUInt(uint(i));
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting the unsigned int to this class
|
|
|
|
***this constructor is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
*/
|
|
UInt(unsigned int i)
|
|
{
|
|
FromUInt(uint(i));
|
|
}
|
|
|
|
|
|
/*!
|
|
an operator for converting the signed int to this class
|
|
|
|
***this constructor is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
|
|
look at the description of UInt::operator=(sint)
|
|
*/
|
|
UInt<value_size> & operator=(signed int i)
|
|
{
|
|
FromUInt(uint(i));
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting the signed int to this class
|
|
|
|
***this constructor is created only on a 64bit platform***
|
|
it takes one argument of 32bit
|
|
|
|
look at the description of UInt::operator=(sint)
|
|
*/
|
|
UInt(signed int i)
|
|
{
|
|
FromUInt(uint(i));
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string to this class (with the base=10)
|
|
*/
|
|
UInt(const char * s)
|
|
{
|
|
FromString(s);
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string to this class (with the base=10)
|
|
*/
|
|
UInt(const wchar_t * s)
|
|
{
|
|
FromString(s);
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string to this class (with the base=10)
|
|
*/
|
|
UInt(const std::string & s)
|
|
{
|
|
FromString( s.c_str() );
|
|
}
|
|
|
|
|
|
/*!
|
|
a constructor for converting a string to this class (with the base=10)
|
|
*/
|
|
UInt(const std::wstring & s)
|
|
{
|
|
FromString( s.c_str() );
|
|
}
|
|
|
|
|
|
/*!
|
|
a default constructor
|
|
|
|
we don't clear the table
|
|
*/
|
|
UInt()
|
|
{
|
|
// when macro TTMATH_DEBUG_LOG is defined
|
|
// we set special values to the table
|
|
// in order to be everywhere the same value of the UInt object
|
|
// without this it would be difficult to analyse the log file
|
|
#ifdef TTMATH_DEBUG_LOG
|
|
#ifdef TTMATH_PLATFORM32
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
table[i] = 0xc1c1c1c1;
|
|
#else
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
table[i] = 0xc1c1c1c1c1c1c1c1;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
|
|
/*!
|
|
a copy constructor
|
|
*/
|
|
UInt(const UInt<value_size> & u)
|
|
{
|
|
for(uint i=0 ; i<value_size ; ++i)
|
|
table[i] = u.table[i];
|
|
|
|
TTMATH_LOG("UInt::UInt(UInt<>)")
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
a template for producting constructors for copying from another types
|
|
*/
|
|
template<uint argument_size>
|
|
UInt(const UInt<argument_size> & u)
|
|
{
|
|
// look that 'size' we still set as 'value_size' and not as u.value_size
|
|
FromUInt(u);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*!
|
|
a destructor
|
|
*/
|
|
~UInt()
|
|
{
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns the lowest value from table
|
|
|
|
we must be sure when we using this method whether the value
|
|
will hold in an uint type or not (the rest value from the table must be zero)
|
|
*/
|
|
uint ToUInt() const
|
|
{
|
|
return table[0];
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for converting to a string
|
|
*/
|
|
template<class string_type>
|
|
void ToStringBase(string_type & result, uint b = 10) const
|
|
{
|
|
UInt<value_size> temp( *this );
|
|
char character;
|
|
uint rem;
|
|
|
|
result.clear();
|
|
|
|
if( b<2 || b>16 )
|
|
return;
|
|
|
|
do
|
|
{
|
|
temp.DivInt(b, &rem);
|
|
character = static_cast<char>( Misc::DigitToChar(rem) );
|
|
result.insert(result.begin(), character);
|
|
}
|
|
while( !temp.IsZero() );
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
this method converts the value to a string with a base equal 'b'
|
|
*/
|
|
void ToString(std::string & result, uint b = 10) const
|
|
{
|
|
return ToStringBase(result, b);
|
|
}
|
|
|
|
void ToString(std::wstring & result, uint b = 10) const
|
|
{
|
|
return ToStringBase(result, b);
|
|
}
|
|
|
|
std::string ToString(uint b = 10) const
|
|
{
|
|
std::string result;
|
|
ToStringBase(result, b);
|
|
|
|
return result;
|
|
}
|
|
|
|
std::wstring ToWString(uint b = 10) const
|
|
{
|
|
std::wstring result;
|
|
ToStringBase(result, b);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for converting from a string
|
|
*/
|
|
template<class char_type>
|
|
uint FromStringBase(const char_type * s, uint b = 10, const char_type ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
UInt<value_size> base( b );
|
|
UInt<value_size> temp;
|
|
sint z;
|
|
uint c = 0;
|
|
|
|
SetZero();
|
|
temp.SetZero();
|
|
Misc::SkipWhiteCharacters(s);
|
|
|
|
if( after_source )
|
|
*after_source = s;
|
|
|
|
if( value_read )
|
|
*value_read = false;
|
|
|
|
if( b<2 || b>16 )
|
|
return 1;
|
|
|
|
|
|
for( ; (z=Misc::CharToDigit(*s, b)) != -1 ; ++s)
|
|
{
|
|
if( value_read )
|
|
*value_read = true;
|
|
|
|
if( c == 0 )
|
|
{
|
|
temp.table[0] = z;
|
|
|
|
c += Mul(base);
|
|
c += Add(temp);
|
|
}
|
|
}
|
|
|
|
if( after_source )
|
|
*after_source = s;
|
|
|
|
TTMATH_LOGC("UInt::FromString", c)
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
this method converts a string into its value
|
|
it returns carry=1 if the value will be too big or an incorrect base 'b' is given
|
|
|
|
string is ended with a non-digit value, for example:
|
|
"12" will be translated to 12
|
|
as well as:
|
|
"12foo" will be translated to 12 too
|
|
|
|
existing first white characters will be ommited
|
|
|
|
if the value from s is too large the rest digits will be skipped
|
|
|
|
after_source (if exists) is pointing at the end of the parsed string
|
|
|
|
value_read (if exists) tells whether something has actually been read (at least one digit)
|
|
*/
|
|
uint FromString(const char * s, uint b = 10, const char ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromStringBase(s, b, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts a string into its value
|
|
*/
|
|
uint FromString(const wchar_t * s, uint b = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
|
|
{
|
|
return FromStringBase(s, b, after_source, value_read);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts a string into its value
|
|
|
|
(it returns carry=1 if the value will be too big or an incorrect base 'b' is given)
|
|
*/
|
|
uint FromString(const std::string & s, uint b = 10)
|
|
{
|
|
return FromString( s.c_str(), b );
|
|
}
|
|
|
|
|
|
/*!
|
|
this method converts a string into its value
|
|
|
|
(it returns carry=1 if the value will be too big or an incorrect base 'b' is given)
|
|
*/
|
|
uint FromString(const std::wstring & s, uint b = 10)
|
|
{
|
|
return FromString( s.c_str(), b );
|
|
}
|
|
|
|
|
|
/*!
|
|
this operator converts a string into its value (with base = 10)
|
|
*/
|
|
UInt<value_size> & operator=(const char * s)
|
|
{
|
|
FromString(s);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
this operator converts a string into its value (with base = 10)
|
|
*/
|
|
UInt<value_size> & operator=(const wchar_t * s)
|
|
{
|
|
FromString(s);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
this operator converts a string into its value (with base = 10)
|
|
*/
|
|
UInt<value_size> & operator=(const std::string & s)
|
|
{
|
|
FromString( s.c_str() );
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
this operator converts a string into its value (with base = 10)
|
|
*/
|
|
UInt<value_size> & operator=(const std::wstring & s)
|
|
{
|
|
FromString( s.c_str() );
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
*
|
|
* methods for comparing
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this method returns true if 'this' is smaller than 'l'
|
|
|
|
'index' is an index of the first word from will be the comparison performed
|
|
(note: we start the comparison from back - from the last word, when index is -1 /default/
|
|
it is automatically set into the last word)
|
|
I introduced it for some kind of optimization made in the second division algorithm (Div2)
|
|
*/
|
|
bool CmpSmaller(const UInt<value_size> & l, sint index = -1) const
|
|
{
|
|
sint i;
|
|
|
|
if( index==-1 || index>=sint(value_size) )
|
|
i = value_size - 1;
|
|
else
|
|
i = index;
|
|
|
|
|
|
for( ; i>=0 ; --i)
|
|
{
|
|
if( table[i] != l.table[i] )
|
|
return table[i] < l.table[i];
|
|
}
|
|
|
|
// they're equal
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method returns true if 'this' is bigger than 'l'
|
|
|
|
'index' is an index of the first word from will be the comparison performed
|
|
(note: we start the comparison from back - from the last word, when index is -1 /default/
|
|
it is automatically set into the last word)
|
|
|
|
I introduced it for some kind of optimization made in the second division algorithm (Div2)
|
|
*/
|
|
bool CmpBigger(const UInt<value_size> & l, sint index = -1) const
|
|
{
|
|
sint i;
|
|
|
|
if( index==-1 || index>=sint(value_size) )
|
|
i = value_size - 1;
|
|
else
|
|
i = index;
|
|
|
|
|
|
for( ; i>=0 ; --i)
|
|
{
|
|
if( table[i] != l.table[i] )
|
|
return table[i] > l.table[i];
|
|
}
|
|
|
|
// they're equal
|
|
return false;
|
|
}
|
|
|
|
|
|
/*!
|
|
this method returns true if 'this' is equal 'l'
|
|
|
|
'index' is an index of the first word from will be the comparison performed
|
|
(note: we start the comparison from back - from the last word, when index is -1 /default/
|
|
it is automatically set into the last word)
|
|
*/
|
|
bool CmpEqual(const UInt<value_size> & l, sint index = -1) const
|
|
{
|
|
sint i;
|
|
|
|
if( index==-1 || index>=sint(value_size) )
|
|
i = value_size - 1;
|
|
else
|
|
i = index;
|
|
|
|
|
|
for( ; i>=0 ; --i)
|
|
if( table[i] != l.table[i] )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method returns true if 'this' is smaller than or equal 'l'
|
|
|
|
'index' is an index of the first word from will be the comparison performed
|
|
(note: we start the comparison from back - from the last word, when index is -1 /default/
|
|
it is automatically set into the last word)
|
|
*/
|
|
bool CmpSmallerEqual(const UInt<value_size> & l, sint index=-1) const
|
|
{
|
|
sint i;
|
|
|
|
if( index==-1 || index>=sint(value_size) )
|
|
i = value_size - 1;
|
|
else
|
|
i = index;
|
|
|
|
|
|
for( ; i>=0 ; --i)
|
|
{
|
|
if( table[i] != l.table[i] )
|
|
return table[i] < l.table[i];
|
|
}
|
|
|
|
// they're equal
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this method returns true if 'this' is bigger than or equal 'l'
|
|
|
|
'index' is an index of the first word from will be the comparison performed
|
|
(note: we start the comparison from back - from the last word, when index is -1 /default/
|
|
it is automatically set into the last word)
|
|
*/
|
|
bool CmpBiggerEqual(const UInt<value_size> & l, sint index=-1) const
|
|
{
|
|
sint i;
|
|
|
|
if( index==-1 || index>=sint(value_size) )
|
|
i = value_size - 1;
|
|
else
|
|
i = index;
|
|
|
|
|
|
for( ; i>=0 ; --i)
|
|
{
|
|
if( table[i] != l.table[i] )
|
|
return table[i] > l.table[i];
|
|
}
|
|
|
|
// they're equal
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
operators for comparising
|
|
*/
|
|
|
|
bool operator<(const UInt<value_size> & l) const
|
|
{
|
|
return CmpSmaller(l);
|
|
}
|
|
|
|
|
|
bool operator>(const UInt<value_size> & l) const
|
|
{
|
|
return CmpBigger(l);
|
|
}
|
|
|
|
|
|
bool operator==(const UInt<value_size> & l) const
|
|
{
|
|
return CmpEqual(l);
|
|
}
|
|
|
|
|
|
bool operator!=(const UInt<value_size> & l) const
|
|
{
|
|
return !operator==(l);
|
|
}
|
|
|
|
|
|
bool operator<=(const UInt<value_size> & l) const
|
|
{
|
|
return CmpSmallerEqual(l);
|
|
}
|
|
|
|
bool operator>=(const UInt<value_size> & l) const
|
|
{
|
|
return CmpBiggerEqual(l);
|
|
}
|
|
|
|
|
|
/*!
|
|
*
|
|
* standard mathematical operators
|
|
*
|
|
*/
|
|
|
|
UInt<value_size> operator-(const UInt<value_size> & p2) const
|
|
{
|
|
UInt<value_size> temp(*this);
|
|
|
|
temp.Sub(p2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
UInt<value_size> & operator-=(const UInt<value_size> & p2)
|
|
{
|
|
Sub(p2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
UInt<value_size> operator+(const UInt<value_size> & p2) const
|
|
{
|
|
UInt<value_size> temp(*this);
|
|
|
|
temp.Add(p2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
UInt<value_size> & operator+=(const UInt<value_size> & p2)
|
|
{
|
|
Add(p2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
UInt<value_size> operator*(const UInt<value_size> & p2) const
|
|
{
|
|
UInt<value_size> temp(*this);
|
|
|
|
temp.Mul(p2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
UInt<value_size> & operator*=(const UInt<value_size> & p2)
|
|
{
|
|
Mul(p2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
UInt<value_size> operator/(const UInt<value_size> & p2) const
|
|
{
|
|
UInt<value_size> temp(*this);
|
|
|
|
temp.Div(p2);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
UInt<value_size> & operator/=(const UInt<value_size> & p2)
|
|
{
|
|
Div(p2);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
UInt<value_size> operator%(const UInt<value_size> & p2) const
|
|
{
|
|
UInt<value_size> temp(*this);
|
|
UInt<value_size> remainder;
|
|
|
|
temp.Div( p2, remainder );
|
|
|
|
return remainder;
|
|
}
|
|
|
|
|
|
UInt<value_size> & operator%=(const UInt<value_size> & p2)
|
|
{
|
|
UInt<value_size> temp(*this);
|
|
UInt<value_size> remainder;
|
|
|
|
temp.Div( p2, remainder );
|
|
|
|
operator=(remainder);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
Prefix operator e.g ++variable
|
|
*/
|
|
UInt<value_size> & operator++()
|
|
{
|
|
AddOne();
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
Postfix operator e.g variable++
|
|
*/
|
|
UInt<value_size> operator++(int)
|
|
{
|
|
UInt<value_size> temp( *this );
|
|
|
|
AddOne();
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
UInt<value_size> & operator--()
|
|
{
|
|
SubOne();
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
UInt<value_size> operator--(int)
|
|
{
|
|
UInt<value_size> temp( *this );
|
|
|
|
SubOne();
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
UInt<value_size> operator>>(int move)
|
|
{
|
|
UInt<value_size> temp( *this );
|
|
|
|
temp.Rcr(move);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
UInt<value_size> & operator>>=(int move)
|
|
{
|
|
Rcr(move);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
UInt<value_size> operator<<(int move)
|
|
{
|
|
UInt<value_size> temp( *this );
|
|
|
|
temp.Rcl(move);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
UInt<value_size> & operator<<=(int move)
|
|
{
|
|
Rcl(move);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*!
|
|
*
|
|
* input/output operators for standard streams
|
|
*
|
|
* (they are very simple, in the future they should be changed)
|
|
*
|
|
*/
|
|
|
|
|
|
private:
|
|
|
|
|
|
/*!
|
|
an auxiliary method for outputing to standard streams
|
|
*/
|
|
template<class ostream_type, class string_type>
|
|
static ostream_type & OutputToStream(ostream_type & s, const UInt<value_size> & l)
|
|
{
|
|
string_type ss;
|
|
|
|
l.ToString(ss);
|
|
s << ss;
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
output to standard streams
|
|
*/
|
|
friend std::ostream & operator<<(std::ostream & s, const UInt<value_size> & l)
|
|
{
|
|
return OutputToStream<std::ostream, std::string>(s, l);
|
|
}
|
|
|
|
|
|
/*!
|
|
output to standard streams
|
|
*/
|
|
friend std::wostream & operator<<(std::wostream & s, const UInt<value_size> & l)
|
|
{
|
|
return OutputToStream<std::wostream, std::wstring>(s, l);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
/*!
|
|
an auxiliary method for reading from standard streams
|
|
*/
|
|
template<class istream_type, class string_type, class char_type>
|
|
static istream_type & InputFromStream(istream_type & s, UInt<value_size> & l)
|
|
{
|
|
string_type ss;
|
|
|
|
// char or wchar_t for operator>>
|
|
char_type z;
|
|
|
|
// operator>> omits white characters if they're set for ommiting
|
|
s >> z;
|
|
|
|
// we're reading only digits (base=10)
|
|
while( s.good() && Misc::CharToDigit(z, 10)>=0 )
|
|
{
|
|
ss += z;
|
|
z = static_cast<char_type>(s.get());
|
|
}
|
|
|
|
// we're leaving the last read character
|
|
// (it's not belonging to the value)
|
|
s.unget();
|
|
|
|
l.FromString(ss);
|
|
|
|
return s;
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
input from standard streams
|
|
*/
|
|
friend std::istream & operator>>(std::istream & s, UInt<value_size> & l)
|
|
{
|
|
return InputFromStream<std::istream, std::string, char>(s, l);
|
|
}
|
|
|
|
|
|
/*!
|
|
input from standard streams
|
|
*/
|
|
friend std::wistream & operator>>(std::wistream & s, UInt<value_size> & l)
|
|
{
|
|
return InputFromStream<std::wistream, std::wstring, wchar_t>(s, l);
|
|
}
|
|
|
|
|
|
/*
|
|
following methods are defined in:
|
|
ttmathuint_x86.h
|
|
ttmathuint_x86_64.h
|
|
ttmathuint_noasm.h
|
|
*/
|
|
|
|
#ifdef TTMATH_NOASM
|
|
static uint AddTwoWords(uint a, uint b, uint carry, uint * result);
|
|
static uint SubTwoWords(uint a, uint b, uint carry, uint * result);
|
|
|
|
#ifdef TTMATH_PLATFORM64
|
|
|
|
union uint_
|
|
{
|
|
struct
|
|
{
|
|
unsigned int low; // 32 bit
|
|
unsigned int high; // 32 bit
|
|
} u_;
|
|
|
|
uint u; // 64 bit
|
|
};
|
|
|
|
|
|
static void DivTwoWords2(uint a,uint b, uint c, uint * r, uint * rest);
|
|
static uint DivTwoWordsNormalize(uint_ & a_, uint_ & b_, uint_ & c_);
|
|
static uint DivTwoWordsUnnormalize(uint u, uint d);
|
|
static unsigned int DivTwoWordsCalculate(uint_ u_, unsigned int u3, uint_ v_);
|
|
static void MultiplySubtract(uint_ & u_, unsigned int & u3, unsigned int & q, uint_ v_);
|
|
|
|
#endif // TTMATH_PLATFORM64
|
|
#endif // TTMATH_NOASM
|
|
|
|
|
|
private:
|
|
uint Rcl2_one(uint c);
|
|
uint Rcr2_one(uint c);
|
|
uint Rcl2(uint bits, uint c);
|
|
uint Rcr2(uint bits, uint c);
|
|
|
|
public:
|
|
static const char * LibTypeStr();
|
|
static LibTypeCode LibType();
|
|
uint Add(const UInt<value_size> & ss2, uint c=0);
|
|
uint AddInt(uint value, uint index = 0);
|
|
uint AddTwoInts(uint x2, uint x1, uint index);
|
|
static uint AddVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result);
|
|
uint Sub(const UInt<value_size> & ss2, uint c=0);
|
|
uint SubInt(uint value, uint index = 0);
|
|
static uint SubVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result);
|
|
static sint FindLeadingBitInWord(uint x);
|
|
static sint FindLowestBitInWord(uint x);
|
|
static uint SetBitInWord(uint & value, uint bit);
|
|
static void MulTwoWords(uint a, uint b, uint * result_high, uint * result_low);
|
|
static void DivTwoWords(uint a,uint b, uint c, uint * r, uint * rest);
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
this specialization is needed in order to not confused the compiler "error: ISO C++ forbids zero-size array"
|
|
when compiling Mul3Big2() method
|
|
*/
|
|
template<>
|
|
class UInt<0>
|
|
{
|
|
public:
|
|
uint table[1];
|
|
|
|
void Mul2Big(const UInt<0> &, UInt<0> &) { TTMATH_ASSERT(false) };
|
|
void SetZero() { TTMATH_ASSERT(false) };
|
|
uint AddTwoInts(uint, uint, uint) { TTMATH_ASSERT(false) return 0; };
|
|
};
|
|
|
|
|
|
} //namespace
|
|
|
|
|
|
#include "ttmathuint_x86.h"
|
|
#include "ttmathuint_x86_64.h"
|
|
#include "ttmathuint_noasm.h"
|
|
|
|
#endif
|