mirror of
https://github.com/dashr9230/SA-MP.git
synced 2025-01-03 16:13:34 +08:00
bcdbedc0be
* Add RakNet source files to the VS project
1146 lines
31 KiB
C++
1146 lines
31 KiB
C++
/// \file
|
|
/// \brief \b [Internal] A binary search tree, and an AVL balanced BST derivation.
|
|
///
|
|
/// This file is part of RakNet Copyright 2003 Kevin Jenkins.
|
|
///
|
|
/// Usage of RakNet is subject to the appropriate license agreement.
|
|
/// Creative Commons Licensees are subject to the
|
|
/// license found at
|
|
/// http://creativecommons.org/licenses/by-nc/2.5/
|
|
/// Single application licensees are subject to the license found at
|
|
/// http://www.rakkarsoft.com/SingleApplicationLicense.html
|
|
/// Custom license users are subject to the terms therein.
|
|
/// GPL license users are subject to the GNU General Public
|
|
/// License as published by the Free
|
|
/// Software Foundation; either version 2 of the License, or (at your
|
|
/// option) any later version.
|
|
|
|
#ifndef __BINARY_SEARCH_TREE_H
|
|
#define __BINARY_SEARCH_TREE_H
|
|
|
|
#include "DS_QueueLinkedList.h"
|
|
#include "Export.h"
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( push )
|
|
#endif
|
|
|
|
/// The namespace DataStructures was only added to avoid compiler errors for commonly named data structures
|
|
/// As these data structures are stand-alone, you can use them outside of RakNet for your own projects if you wish.
|
|
namespace DataStructures
|
|
{
|
|
/**
|
|
* \brief A binary search tree and an AVL balanced binary search tree
|
|
*
|
|
* Initilize with the following structure
|
|
*
|
|
* BinarySearchTree<TYPE>
|
|
*
|
|
* OR
|
|
*
|
|
* AVLBalancedBinarySearchTree<TYPE>
|
|
*
|
|
* Use the AVL balanced tree if you want the tree to be balanced after every deletion and addition. This avoids the potential
|
|
* worst case scenario where ordered input to a binary search tree gives linear search time results. It's not needed
|
|
* if input will be evenly distributed, in which case the search time is O (log n). The search time for the AVL
|
|
* balanced binary tree is O (log n) irregardless of input.
|
|
*
|
|
* Has the following member functions
|
|
* unsigned int Height(<index>) - Returns the height of the tree at the optional specified starting index. Default is the root
|
|
* add(element) - adds an element to the BinarySearchTree
|
|
* bool del(element) - deletes the node containing element if the element is in the tree as defined by a comparison with the == operator. Returns true on success, false if the element is not found
|
|
* bool IsInelement) - returns true if element is in the tree as defined by a comparison with the == operator. Otherwise returns false
|
|
* DisplayInorder(array) - Fills an array with an inorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
|
|
* DisplayPreorder(array) - Fills an array with an preorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
|
|
* DisplayPostorder(array) - Fills an array with an postorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
|
|
* DisplayBreadthFirstSearch(array) - Fills an array with a breadth first search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
|
|
* clear - Destroys the tree. Same as calling the destructor
|
|
* unsigned int Height() - Returns the height of the tree
|
|
* unsigned int size() - returns the size of the BinarySearchTree
|
|
* GetPointerToNode(element) - returns a pointer to the comparision element in the tree, allowing for direct modification when necessary with complex data types.
|
|
* Be warned, it is possible to corrupt the tree if the element used for comparisons is modified. Returns NULL if the item is not found
|
|
*
|
|
*
|
|
* EXAMPLE
|
|
* @code
|
|
* BinarySearchTree<int> A;
|
|
* A.Add(10);
|
|
* A.Add(15);
|
|
* A.Add(5);
|
|
* int* array = new int [A.Size()];
|
|
* A.DisplayInorder(array);
|
|
* array[0]; // returns 5
|
|
* array[1]; // returns 10
|
|
* array[2]; // returns 15
|
|
* @endcode
|
|
* compress - reallocates memory to fit the number of elements. Best used when the number of elements decreases
|
|
*
|
|
* clear - empties the BinarySearchTree and returns storage
|
|
* The assignment and copy constructors are defined
|
|
*
|
|
* \note The template type must have the copy constructor and
|
|
* assignment operator defined and must work with >, <, and == All
|
|
* elements in the tree MUST be distinct The assignment operator is
|
|
* defined between BinarySearchTree and AVLBalancedBinarySearchTree
|
|
* as long as they are of the same template type. However, passing a
|
|
* BinarySearchTree to an AVLBalancedBinarySearchTree will lose its
|
|
* structure unless it happened to be AVL balanced to begin with
|
|
* Requires queue_linked_list.cpp for the breadth first search used
|
|
* in the copy constructor, overloaded assignment operator, and
|
|
* display_breadth_first_search.
|
|
*
|
|
*
|
|
*/
|
|
template <class BinarySearchTreeType>
|
|
class RAK_DLL_EXPORT BinarySearchTree
|
|
{
|
|
|
|
public:
|
|
|
|
struct node
|
|
{
|
|
BinarySearchTreeType* item;
|
|
node* left;
|
|
node* right;
|
|
};
|
|
|
|
BinarySearchTree();
|
|
virtual ~BinarySearchTree();
|
|
BinarySearchTree( const BinarySearchTree& original_type );
|
|
BinarySearchTree& operator= ( const BinarySearchTree& original_copy );
|
|
unsigned int Size( void );
|
|
void Clear( void );
|
|
unsigned int Height( node* starting_node = 0 );
|
|
node* Add ( const BinarySearchTreeType& input );
|
|
node* Del( const BinarySearchTreeType& input );
|
|
bool IsIn( const BinarySearchTreeType& input );
|
|
void DisplayInorder( BinarySearchTreeType* return_array );
|
|
void DisplayPreorder( BinarySearchTreeType* return_array );
|
|
void DisplayPostorder( BinarySearchTreeType* return_array );
|
|
void DisplayBreadthFirstSearch( BinarySearchTreeType* return_array );
|
|
BinarySearchTreeType*& GetPointerToNode( const BinarySearchTreeType& element );
|
|
|
|
protected:
|
|
|
|
node* root;
|
|
|
|
enum Direction_Types
|
|
{
|
|
NOT_FOUND, LEFT, RIGHT, ROOT
|
|
}
|
|
|
|
direction;
|
|
unsigned int HeightRecursive( node* current );
|
|
unsigned int BinarySearchTree_size;
|
|
node*& Find( const BinarySearchTreeType& element, node** parent );
|
|
node*& FindParent( const BinarySearchTreeType& element );
|
|
void DisplayPostorderRecursive( node* current, BinarySearchTreeType* return_array, unsigned int& index );
|
|
void FixTree( node* current );
|
|
|
|
};
|
|
|
|
/// An AVLBalancedBinarySearchTree is a binary tree that is always balanced
|
|
template <class BinarySearchTreeType>
|
|
class RAK_DLL_EXPORT AVLBalancedBinarySearchTree : public BinarySearchTree<BinarySearchTreeType>
|
|
{
|
|
|
|
public:
|
|
AVLBalancedBinarySearchTree() {}
|
|
virtual ~AVLBalancedBinarySearchTree();
|
|
void Add ( const BinarySearchTreeType& input );
|
|
void Del( const BinarySearchTreeType& input );
|
|
BinarySearchTree<BinarySearchTreeType>& operator= ( BinarySearchTree<BinarySearchTreeType>& original_copy )
|
|
{
|
|
return BinarySearchTree<BinarySearchTreeType>::operator= ( original_copy );
|
|
}
|
|
|
|
private:
|
|
void BalanceTree( typename BinarySearchTree<BinarySearchTreeType>::node* current, bool rotateOnce );
|
|
void RotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *C );
|
|
void RotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node* C );
|
|
void DoubleRotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *A );
|
|
void DoubleRotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node* A );
|
|
bool RightHigher( typename BinarySearchTree<BinarySearchTreeType>::node* A );
|
|
bool LeftHigher( typename BinarySearchTree<BinarySearchTreeType>::node* A );
|
|
};
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::BalanceTree( typename BinarySearchTree<BinarySearchTreeType>::node* current, bool rotateOnce )
|
|
{
|
|
int left_height, right_height;
|
|
|
|
while ( current )
|
|
{
|
|
if ( current->left == 0 )
|
|
left_height = 0;
|
|
else
|
|
left_height = Height( current->left );
|
|
|
|
if ( current->right == 0 )
|
|
right_height = 0;
|
|
else
|
|
right_height = Height( current->right );
|
|
|
|
if ( right_height - left_height == 2 )
|
|
{
|
|
if ( RightHigher( current->right ) )
|
|
RotateLeft( current->right );
|
|
else
|
|
DoubleRotateLeft( current );
|
|
|
|
if ( rotateOnce )
|
|
break;
|
|
}
|
|
|
|
else
|
|
if ( right_height - left_height == -2 )
|
|
{
|
|
if ( LeftHigher( current->left ) )
|
|
RotateRight( current->left );
|
|
else
|
|
DoubleRotateRight( current );
|
|
|
|
if ( rotateOnce )
|
|
break;
|
|
}
|
|
|
|
if ( current == this->root )
|
|
break;
|
|
|
|
current = FindParent( *( current->item ) );
|
|
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::Add ( const BinarySearchTreeType& input )
|
|
{
|
|
|
|
typename BinarySearchTree<BinarySearchTreeType>::node * current = BinarySearchTree<BinarySearchTreeType>::Add ( input );
|
|
BalanceTree( current, true );
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::Del( const BinarySearchTreeType& input )
|
|
{
|
|
typename BinarySearchTree<BinarySearchTreeType>::node * current = BinarySearchTree<BinarySearchTreeType>::Del( input );
|
|
BalanceTree( current, false );
|
|
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
bool AVLBalancedBinarySearchTree<BinarySearchTreeType>::RightHigher( typename BinarySearchTree<BinarySearchTreeType>::node *A )
|
|
{
|
|
if ( A == 0 )
|
|
return false;
|
|
|
|
return Height( A->right ) > Height( A->left );
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
bool AVLBalancedBinarySearchTree<BinarySearchTreeType>::LeftHigher( typename BinarySearchTree<BinarySearchTreeType>::node *A )
|
|
{
|
|
if ( A == 0 )
|
|
return false;
|
|
|
|
return Height( A->left ) > Height( A->right );
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::RotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *C )
|
|
{
|
|
typename BinarySearchTree<BinarySearchTreeType>::node * A, *B, *D;
|
|
/*
|
|
RIGHT ROTATION
|
|
|
|
A = parent(b)
|
|
b= parent(c)
|
|
c = node to rotate around
|
|
|
|
A
|
|
| // Either direction
|
|
B
|
|
/ \
|
|
C
|
|
/ \
|
|
D
|
|
|
|
TO
|
|
|
|
A
|
|
| // Either Direction
|
|
C
|
|
/ \
|
|
B
|
|
/ \
|
|
D
|
|
|
|
|
|
<Leave all other branches branches AS-IS whether they point to another node or simply 0>
|
|
|
|
*/
|
|
|
|
B = FindParent( *( C->item ) );
|
|
A = FindParent( *( B->item ) );
|
|
D = C->right;
|
|
|
|
if ( A )
|
|
{
|
|
// Direction was set by the last find_parent call
|
|
|
|
if ( this->direction == this->LEFT )
|
|
A->left = C;
|
|
else
|
|
A->right = C;
|
|
}
|
|
|
|
else
|
|
this->root = C; // If B has no parent parent then B must have been the root node
|
|
|
|
B->left = D;
|
|
|
|
C->right = B;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::DoubleRotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *A )
|
|
{
|
|
// The left side of the left child must be higher for the tree to balance with a right rotation. If it isn't, rotate it left before the normal rotation so it is.
|
|
RotateLeft( A->left->right );
|
|
RotateRight( A->left );
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::RotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node *C )
|
|
{
|
|
typename BinarySearchTree<BinarySearchTreeType>::node * A, *B, *D;
|
|
/*
|
|
RIGHT ROTATION
|
|
|
|
A = parent(b)
|
|
b= parent(c)
|
|
c = node to rotate around
|
|
|
|
A
|
|
| // Either direction
|
|
B
|
|
/ \
|
|
C
|
|
/ \
|
|
D
|
|
|
|
TO
|
|
|
|
A
|
|
| // Either Direction
|
|
C
|
|
/ \
|
|
B
|
|
/ \
|
|
D
|
|
|
|
|
|
<Leave all other branches branches AS-IS whether they point to another node or simply 0>
|
|
|
|
*/
|
|
|
|
B = FindParent( *( C->item ) );
|
|
A = FindParent( *( B->item ) );
|
|
D = C->left;
|
|
|
|
if ( A )
|
|
{
|
|
// Direction was set by the last find_parent call
|
|
|
|
if ( this->direction == this->LEFT )
|
|
A->left = C;
|
|
else
|
|
A->right = C;
|
|
}
|
|
|
|
else
|
|
this->root = C; // If B has no parent parent then B must have been the root node
|
|
|
|
B->right = D;
|
|
|
|
C->left = B;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::DoubleRotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node *A )
|
|
{
|
|
// The left side of the right child must be higher for the tree to balance with a left rotation. If it isn't, rotate it right before the normal rotation so it is.
|
|
RotateRight( A->right->left );
|
|
RotateLeft( A->right );
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
AVLBalancedBinarySearchTree<BinarySearchTreeType>::~AVLBalancedBinarySearchTree()
|
|
{
|
|
this->Clear();
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
unsigned int BinarySearchTree<BinarySearchTreeType>::Size( void )
|
|
{
|
|
return BinarySearchTree_size;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
unsigned int BinarySearchTree<BinarySearchTreeType>::Height( typename BinarySearchTree::node* starting_node )
|
|
{
|
|
if ( BinarySearchTree_size == 0 || starting_node == 0 )
|
|
return 0;
|
|
else
|
|
return HeightRecursive( starting_node );
|
|
}
|
|
|
|
// Recursively return the height of a binary tree
|
|
template <class BinarySearchTreeType>
|
|
unsigned int BinarySearchTree<BinarySearchTreeType>::HeightRecursive( typename BinarySearchTree::node* current )
|
|
{
|
|
unsigned int left_height = 0, right_height = 0;
|
|
|
|
if ( ( current->left == 0 ) && ( current->right == 0 ) )
|
|
return 1; // Leaf
|
|
|
|
if ( current->left != 0 )
|
|
left_height = 1 + HeightRecursive( current->left );
|
|
|
|
if ( current->right != 0 )
|
|
right_height = 1 + HeightRecursive( current->right );
|
|
|
|
if ( left_height > right_height )
|
|
return left_height;
|
|
else
|
|
return right_height;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
BinarySearchTree<BinarySearchTreeType>::BinarySearchTree()
|
|
{
|
|
BinarySearchTree_size = 0;
|
|
root = 0;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
BinarySearchTree<BinarySearchTreeType>::~BinarySearchTree()
|
|
{
|
|
this->Clear();
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
BinarySearchTreeType*& BinarySearchTree<BinarySearchTreeType>::GetPointerToNode( const BinarySearchTreeType& element )
|
|
{
|
|
static typename BinarySearchTree::node * tempnode;
|
|
static BinarySearchTreeType* dummyptr = 0;
|
|
tempnode = Find ( element, &tempnode );
|
|
|
|
if ( this->direction == this->NOT_FOUND )
|
|
return dummyptr;
|
|
|
|
return tempnode->item;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
typename BinarySearchTree<BinarySearchTreeType>::node*& BinarySearchTree<BinarySearchTreeType>::Find( const BinarySearchTreeType& element, typename BinarySearchTree<BinarySearchTreeType>::node** parent )
|
|
{
|
|
static typename BinarySearchTree::node * current;
|
|
|
|
current = this->root;
|
|
*parent = 0;
|
|
this->direction = this->ROOT;
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
{
|
|
this->direction = this->NOT_FOUND;
|
|
return current = 0;
|
|
}
|
|
|
|
// Check if the item is at the root
|
|
if ( element == *( current->item ) )
|
|
{
|
|
this->direction = this->ROOT;
|
|
return current;
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
|
|
#endif
|
|
while ( true )
|
|
{
|
|
// Move pointer
|
|
|
|
if ( element < *( current->item ) )
|
|
{
|
|
*parent = current;
|
|
this->direction = this->LEFT;
|
|
current = current->left;
|
|
}
|
|
|
|
else
|
|
if ( element > *( current->item ) )
|
|
{
|
|
*parent = current;
|
|
this->direction = this->RIGHT;
|
|
current = current->right;
|
|
}
|
|
|
|
if ( current == 0 )
|
|
break;
|
|
|
|
// Check if new position holds the item
|
|
if ( element == *( current->item ) )
|
|
{
|
|
return current;
|
|
}
|
|
}
|
|
|
|
|
|
this->direction = this->NOT_FOUND;
|
|
return current = 0;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
typename BinarySearchTree<BinarySearchTreeType>::node*& BinarySearchTree<BinarySearchTreeType>::FindParent( const BinarySearchTreeType& element )
|
|
{
|
|
static typename BinarySearchTree::node * parent;
|
|
Find ( element, &parent );
|
|
return parent;
|
|
}
|
|
|
|
// Performs a series of value swaps starting with current to fix the tree if needed
|
|
template <class BinarySearchTreeType>
|
|
void BinarySearchTree<BinarySearchTreeType>::FixTree( typename BinarySearchTree::node* current )
|
|
{
|
|
BinarySearchTreeType temp;
|
|
|
|
while ( 1 )
|
|
{
|
|
if ( ( ( current->left ) != 0 ) && ( *( current->item ) < *( current->left->item ) ) )
|
|
{
|
|
// Swap the current value with the one to the left
|
|
temp = *( current->left->item );
|
|
*( current->left->item ) = *( current->item );
|
|
*( current->item ) = temp;
|
|
current = current->left;
|
|
}
|
|
|
|
else
|
|
if ( ( ( current->right ) != 0 ) && ( *( current->item ) > *( current->right->item ) ) )
|
|
{
|
|
// Swap the current value with the one to the right
|
|
temp = *( current->right->item );
|
|
*( current->right->item ) = *( current->item );
|
|
*( current->item ) = temp;
|
|
current = current->right;
|
|
}
|
|
|
|
else
|
|
break; // current points to the right place so quit
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
typename BinarySearchTree<BinarySearchTreeType>::node* BinarySearchTree<BinarySearchTreeType>::Del( const BinarySearchTreeType& input )
|
|
{
|
|
typename BinarySearchTree::node * node_to_delete, *current, *parent;
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
return 0;
|
|
|
|
if ( BinarySearchTree_size == 1 )
|
|
{
|
|
Clear();
|
|
return 0;
|
|
}
|
|
|
|
node_to_delete = Find( input, &parent );
|
|
|
|
if ( direction == NOT_FOUND )
|
|
return 0; // Couldn't find the element
|
|
|
|
current = node_to_delete;
|
|
|
|
// Replace the deleted node with the appropriate value
|
|
if ( ( current->right ) == 0 && ( current->left ) == 0 ) // Leaf node, just remove it
|
|
{
|
|
|
|
if ( parent )
|
|
{
|
|
if ( direction == LEFT )
|
|
parent->left = 0;
|
|
else
|
|
parent->right = 0;
|
|
}
|
|
|
|
delete node_to_delete->item;
|
|
delete node_to_delete;
|
|
BinarySearchTree_size--;
|
|
return parent;
|
|
}
|
|
else
|
|
if ( ( current->right ) != 0 && ( current->left ) == 0 ) // Node has only one child, delete it and cause the parent to point to that child
|
|
{
|
|
|
|
if ( parent )
|
|
{
|
|
if ( direction == RIGHT )
|
|
parent->right = current->right;
|
|
else
|
|
parent->left = current->right;
|
|
}
|
|
|
|
else
|
|
root = current->right; // Without a parent this must be the root node
|
|
|
|
delete node_to_delete->item;
|
|
|
|
delete node_to_delete;
|
|
|
|
BinarySearchTree_size--;
|
|
|
|
return parent;
|
|
}
|
|
else
|
|
if ( ( current->right ) == 0 && ( current->left ) != 0 ) // Node has only one child, delete it and cause the parent to point to that child
|
|
{
|
|
|
|
if ( parent )
|
|
{
|
|
if ( direction == RIGHT )
|
|
parent->right = current->left;
|
|
else
|
|
parent->left = current->left;
|
|
}
|
|
|
|
else
|
|
root = current->left; // Without a parent this must be the root node
|
|
|
|
delete node_to_delete->item;
|
|
|
|
delete node_to_delete;
|
|
|
|
BinarySearchTree_size--;
|
|
|
|
return parent;
|
|
}
|
|
else // Go right, then as left as far as you can
|
|
{
|
|
parent = current;
|
|
direction = RIGHT;
|
|
current = current->right; // Must have a right branch because the if statements above indicated that it has 2 branches
|
|
|
|
while ( current->left )
|
|
{
|
|
direction = LEFT;
|
|
parent = current;
|
|
current = current->left;
|
|
}
|
|
|
|
// Replace the value held by the node to delete with the value pointed to by current;
|
|
*( node_to_delete->item ) = *( current->item );
|
|
|
|
// Delete current.
|
|
// If it is a leaf node just delete it
|
|
if ( current->right == 0 )
|
|
{
|
|
if ( direction == RIGHT )
|
|
parent->right = 0;
|
|
else
|
|
parent->left = 0;
|
|
|
|
delete current->item;
|
|
|
|
delete current;
|
|
|
|
BinarySearchTree_size--;
|
|
|
|
return parent;
|
|
}
|
|
|
|
else
|
|
{
|
|
// Skip this node and make its parent point to its right branch
|
|
|
|
if ( direction == RIGHT )
|
|
parent->right = current->right;
|
|
else
|
|
parent->left = current->right;
|
|
|
|
delete current->item;
|
|
|
|
delete current;
|
|
|
|
BinarySearchTree_size--;
|
|
|
|
return parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
typename BinarySearchTree<BinarySearchTreeType>::node* BinarySearchTree<BinarySearchTreeType>::Add ( const BinarySearchTreeType& input )
|
|
{
|
|
typename BinarySearchTree::node * current, *parent;
|
|
|
|
// Add the new element to the tree according to the following alogrithm:
|
|
// 1. If the current node is empty add the new leaf
|
|
// 2. If the element is less than the current node then go down the left branch
|
|
// 3. If the element is greater than the current node then go down the right branch
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
{
|
|
BinarySearchTree_size = 1;
|
|
root = new typename BinarySearchTree::node;
|
|
root->item = new BinarySearchTreeType;
|
|
*( root->item ) = input;
|
|
root->left = 0;
|
|
root->right = 0;
|
|
|
|
return root;
|
|
}
|
|
|
|
else
|
|
{
|
|
// start at the root
|
|
current = parent = root;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
|
|
#endif
|
|
while ( true ) // This loop traverses the tree to find a spot for insertion
|
|
{
|
|
|
|
if ( input < *( current->item ) )
|
|
{
|
|
if ( current->left == 0 )
|
|
{
|
|
current->left = new typename BinarySearchTree::node;
|
|
current->left->item = new BinarySearchTreeType;
|
|
current = current->left;
|
|
current->left = 0;
|
|
current->right = 0;
|
|
*( current->item ) = input;
|
|
|
|
BinarySearchTree_size++;
|
|
return current;
|
|
}
|
|
|
|
else
|
|
{
|
|
parent = current;
|
|
current = current->left;
|
|
}
|
|
}
|
|
|
|
else
|
|
if ( input > *( current->item ) )
|
|
{
|
|
if ( current->right == 0 )
|
|
{
|
|
current->right = new typename BinarySearchTree::node;
|
|
current->right->item = new BinarySearchTreeType;
|
|
current = current->right;
|
|
current->left = 0;
|
|
current->right = 0;
|
|
*( current->item ) = input;
|
|
|
|
BinarySearchTree_size++;
|
|
return current;
|
|
}
|
|
|
|
else
|
|
{
|
|
parent = current;
|
|
current = current->right;
|
|
}
|
|
}
|
|
|
|
else
|
|
return 0; // ((input == current->item) == true) which is not allowed since the tree only takes discrete values. Do nothing
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
bool BinarySearchTree<BinarySearchTreeType>::IsIn( const BinarySearchTreeType& input )
|
|
{
|
|
typename BinarySearchTree::node * parent;
|
|
find( input, &parent );
|
|
|
|
if ( direction != NOT_FOUND )
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
|
|
template <class BinarySearchTreeType>
|
|
void BinarySearchTree<BinarySearchTreeType>::DisplayInorder( BinarySearchTreeType* return_array )
|
|
{
|
|
typename BinarySearchTree::node * current, *parent;
|
|
bool just_printed = false;
|
|
|
|
unsigned int index = 0;
|
|
|
|
current = root;
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
return ; // Do nothing for an empty tree
|
|
|
|
else
|
|
if ( BinarySearchTree_size == 1 )
|
|
{
|
|
return_array[ 0 ] = *( root->item );
|
|
return ;
|
|
}
|
|
|
|
|
|
direction = ROOT; // Reset the direction
|
|
|
|
while ( index != BinarySearchTree_size )
|
|
{
|
|
// direction is set by the find function and holds the direction of the parent to the last node visited. It is used to prevent revisiting nodes
|
|
|
|
if ( ( current->left != 0 ) && ( direction != LEFT ) && ( direction != RIGHT ) )
|
|
{
|
|
// Go left if the following 2 conditions are true
|
|
// I can go left
|
|
// I did not just move up from a right child
|
|
// I did not just move up from a left child
|
|
|
|
current = current->left;
|
|
direction = ROOT; // Reset the direction
|
|
}
|
|
|
|
else
|
|
if ( ( direction != RIGHT ) && ( just_printed == false ) )
|
|
{
|
|
// Otherwise, print the current node if the following 3 conditions are true:
|
|
// I did not just move up from a right child
|
|
// I did not print this ndoe last cycle
|
|
|
|
return_array[ index++ ] = *( current->item );
|
|
just_printed = true;
|
|
}
|
|
|
|
else
|
|
if ( ( current->right != 0 ) && ( direction != RIGHT ) )
|
|
{
|
|
// Otherwise, go right if the following 2 conditions are true
|
|
// I did not just move up from a right child
|
|
// I can go right
|
|
|
|
current = current->right;
|
|
direction = ROOT; // Reset the direction
|
|
just_printed = false;
|
|
}
|
|
|
|
else
|
|
{
|
|
// Otherwise I've done everything I can. Move up the tree one node
|
|
parent = FindParent( *( current->item ) );
|
|
current = parent;
|
|
just_printed = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
void BinarySearchTree<BinarySearchTreeType>::DisplayPreorder( BinarySearchTreeType* return_array )
|
|
{
|
|
typename BinarySearchTree::node * current, *parent;
|
|
|
|
unsigned int index = 0;
|
|
|
|
current = root;
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
return ; // Do nothing for an empty tree
|
|
|
|
else
|
|
if ( BinarySearchTree_size == 1 )
|
|
{
|
|
return_array[ 0 ] = *( root->item );
|
|
return ;
|
|
}
|
|
|
|
|
|
direction = ROOT; // Reset the direction
|
|
return_array[ index++ ] = *( current->item );
|
|
|
|
while ( index != BinarySearchTree_size )
|
|
{
|
|
// direction is set by the find function and holds the direction of the parent to the last node visited. It is used to prevent revisiting nodes
|
|
|
|
if ( ( current->left != 0 ) && ( direction != LEFT ) && ( direction != RIGHT ) )
|
|
{
|
|
|
|
current = current->left;
|
|
direction = ROOT;
|
|
|
|
// Everytime you move a node print it
|
|
return_array[ index++ ] = *( current->item );
|
|
}
|
|
|
|
else
|
|
if ( ( current->right != 0 ) && ( direction != RIGHT ) )
|
|
{
|
|
current = current->right;
|
|
direction = ROOT;
|
|
|
|
// Everytime you move a node print it
|
|
return_array[ index++ ] = *( current->item );
|
|
}
|
|
|
|
else
|
|
{
|
|
// Otherwise I've done everything I can. Move up the tree one node
|
|
parent = FindParent( *( current->item ) );
|
|
current = parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
inline void BinarySearchTree<BinarySearchTreeType>::DisplayPostorder( BinarySearchTreeType* return_array )
|
|
{
|
|
unsigned int index = 0;
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
return ; // Do nothing for an empty tree
|
|
|
|
else
|
|
if ( BinarySearchTree_size == 1 )
|
|
{
|
|
return_array[ 0 ] = *( root->item );
|
|
return ;
|
|
}
|
|
|
|
DisplayPostorderRecursive( root, return_array, index );
|
|
}
|
|
|
|
|
|
// Recursively do a postorder traversal
|
|
template <class BinarySearchTreeType>
|
|
void BinarySearchTree<BinarySearchTreeType>::DisplayPostorderRecursive( typename BinarySearchTree::node* current, BinarySearchTreeType* return_array, unsigned int& index )
|
|
{
|
|
if ( current->left != 0 )
|
|
DisplayPostorderRecursive( current->left, return_array, index );
|
|
|
|
if ( current->right != 0 )
|
|
DisplayPostorderRecursive( current->right, return_array, index );
|
|
|
|
return_array[ index++ ] = *( current->item );
|
|
|
|
}
|
|
|
|
|
|
template <class BinarySearchTreeType>
|
|
void BinarySearchTree<BinarySearchTreeType>::DisplayBreadthFirstSearch( BinarySearchTreeType* return_array )
|
|
{
|
|
typename BinarySearchTree::node * current;
|
|
unsigned int index = 0;
|
|
|
|
// Display the tree using a breadth first search
|
|
// Put the children of the current node into the queue
|
|
// Pop the queue, put its children into the queue, repeat until queue is empty
|
|
|
|
if ( BinarySearchTree_size == 0 )
|
|
return ; // Do nothing for an empty tree
|
|
|
|
else
|
|
if ( BinarySearchTree_size == 1 )
|
|
{
|
|
return_array[ 0 ] = *( root->item );
|
|
return ;
|
|
}
|
|
|
|
else
|
|
{
|
|
DataStructures::QueueLinkedList<node *> tree_queue;
|
|
|
|
// Add the root of the tree I am copying from
|
|
tree_queue.Push( root );
|
|
|
|
do
|
|
{
|
|
current = tree_queue.Pop();
|
|
return_array[ index++ ] = *( current->item );
|
|
|
|
// Add the child or children of the tree I am copying from to the queue
|
|
|
|
if ( current->left != 0 )
|
|
tree_queue.Push( current->left );
|
|
|
|
if ( current->right != 0 )
|
|
tree_queue.Push( current->right );
|
|
|
|
}
|
|
|
|
while ( tree_queue.Size() > 0 );
|
|
}
|
|
}
|
|
|
|
|
|
template <class BinarySearchTreeType>
|
|
BinarySearchTree<BinarySearchTreeType>::BinarySearchTree( const BinarySearchTree& original_copy )
|
|
{
|
|
typename BinarySearchTree::node * current;
|
|
// Copy the tree using a breadth first search
|
|
// Put the children of the current node into the queue
|
|
// Pop the queue, put its children into the queue, repeat until queue is empty
|
|
|
|
// This is a copy of the constructor. A bug in Visual C++ made it so if I just put the constructor call here the variable assignments were ignored.
|
|
BinarySearchTree_size = 0;
|
|
root = 0;
|
|
|
|
if ( original_copy.BinarySearchTree_size == 0 )
|
|
{
|
|
BinarySearchTree_size = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
DataStructures::QueueLinkedList<node *> tree_queue;
|
|
|
|
// Add the root of the tree I am copying from
|
|
tree_queue.Push( original_copy.root );
|
|
|
|
do
|
|
{
|
|
current = tree_queue.Pop();
|
|
|
|
Add ( *( current->item ) )
|
|
|
|
;
|
|
|
|
// Add the child or children of the tree I am copying from to the queue
|
|
if ( current->left != 0 )
|
|
tree_queue.Push( current->left );
|
|
|
|
if ( current->right != 0 )
|
|
tree_queue.Push( current->right );
|
|
|
|
}
|
|
|
|
while ( tree_queue.Size() > 0 );
|
|
}
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
BinarySearchTree<BinarySearchTreeType>& BinarySearchTree<BinarySearchTreeType>::operator= ( const BinarySearchTree& original_copy )
|
|
{
|
|
typename BinarySearchTree::node * current;
|
|
|
|
if ( ( &original_copy ) == this )
|
|
return *this;
|
|
|
|
Clear(); // Remove the current tree
|
|
|
|
// This is a copy of the constructor. A bug in Visual C++ made it so if I just put the constructor call here the variable assignments were ignored.
|
|
BinarySearchTree_size = 0;
|
|
|
|
root = 0;
|
|
|
|
|
|
// Copy the tree using a breadth first search
|
|
// Put the children of the current node into the queue
|
|
// Pop the queue, put its children into the queue, repeat until queue is empty
|
|
if ( original_copy.BinarySearchTree_size == 0 )
|
|
{
|
|
BinarySearchTree_size = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
DataStructures::QueueLinkedList<node *> tree_queue;
|
|
|
|
// Add the root of the tree I am copying from
|
|
tree_queue.Push( original_copy.root );
|
|
|
|
do
|
|
{
|
|
current = tree_queue.Pop();
|
|
|
|
Add ( *( current->item ) )
|
|
|
|
;
|
|
|
|
// Add the child or children of the tree I am copying from to the queue
|
|
if ( current->left != 0 )
|
|
tree_queue.Push( current->left );
|
|
|
|
if ( current->right != 0 )
|
|
tree_queue.Push( current->right );
|
|
|
|
}
|
|
|
|
while ( tree_queue.Size() > 0 );
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <class BinarySearchTreeType>
|
|
inline void BinarySearchTree<BinarySearchTreeType>::Clear ( void )
|
|
{
|
|
typename BinarySearchTree::node * current, *parent;
|
|
|
|
current = root;
|
|
|
|
while ( BinarySearchTree_size > 0 )
|
|
{
|
|
if ( BinarySearchTree_size == 1 )
|
|
{
|
|
delete root->item;
|
|
delete root;
|
|
root = 0;
|
|
BinarySearchTree_size = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
if ( current->left != 0 )
|
|
{
|
|
current = current->left;
|
|
}
|
|
|
|
else
|
|
if ( current->right != 0 )
|
|
{
|
|
current = current->right;
|
|
}
|
|
|
|
else // leaf
|
|
{
|
|
// Not root node so must have a parent
|
|
parent = FindParent( *( current->item ) );
|
|
|
|
if ( ( parent->left ) == current )
|
|
parent->left = 0;
|
|
else
|
|
parent->right = 0;
|
|
|
|
delete current->item;
|
|
|
|
delete current;
|
|
|
|
current = parent;
|
|
|
|
BinarySearchTree_size--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // End namespace
|
|
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( pop )
|
|
#endif
|