2024-06-21 21:14:12 +08:00

3985 lines
105 KiB
C

/* Pawn Abstract Machine (for the Pawn language)
*
* Copyright (c) ITB CompuPhase, 1997-2005
*
* This software is provided "as-is", without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software in
* a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* Version: $Id: amx.c 3365 2005-07-23 15:57:48Z thiadmer $
*/
#if BUILD_PLATFORM == WINDOWS && BUILD_TYPE == RELEASE && BUILD_COMPILER == MSVC && PAWN_CELL_SIZE == 64
/* bad bad workaround but we have to prevent a compiler crash :/ */
#pragma optimize("g",off)
#endif
#define WIN32_LEAN_AND_MEAN
#if defined _UNICODE || defined __UNICODE__ || defined UNICODE
# if !defined UNICODE /* for Windows API */
# define UNICODE
# endif
# if !defined _UNICODE /* for C library */
# define _UNICODE
# endif
#endif
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stddef.h> /* for wchar_t */
#include <string.h>
#include "osdefs.h"
#if defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
#include <sclinux.h>
#if !defined AMX_NODYNALOAD
#include <dlfcn.h>
#endif
#if defined JIT
#include <sys/types.h>
#include <sys/mman.h>
#endif
#endif
#if defined __LCC__
#include <wchar.h> /* for wcslen() */
#endif
#include "amx.h"
#if (defined _Windows && !defined AMX_NODYNALOAD) || (defined JIT && __WIN32__)
#include <windows.h>
#endif
/* When one or more of the AMX_funcname macris are defined, we want
* to compile only those functions. However, when none of these macros
* is present, we want to compile everything.
*/
#if defined AMX_ALIGN || defined AMX_ALLOT || defined AMX_CLEANUP
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_CLONE || defined AMX_EXEC || defined AMX_FLAGS
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_GETADDR || defined AMX_INIT || defined AMX_MEMINFO
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_NAMELENGTH || defined AMX_NATIVEINFO || defined AMX_RAISEERROR
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_REGISTER || defined AMX_SETCALLBACK || defined AMX_SETDEBUGHOOK
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_XXXNATIVES || defined AMX_XXXPUBLICS || defined AMX_XXXPUBVARS
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_XXXSTRING || defined AMX_XXXTAGS || defined AMX_XXXUSERDATA
#define AMX_EXPLIT_FUNCTIONS
#endif
#if defined AMX_UTF8XXX
#define AMX_EXPLIT_FUNCTIONS
#endif
#if !defined AMX_EXPLIT_FUNCTIONS
/* no constant set, set them all */
#define AMX_ALIGN /* amx_Align16(), amx_Align32() and amx_Align64() */
#define AMX_ALLOT /* amx_Allot() and amx_Release() */
#define AMX_CLEANUP /* amx_Cleanup() */
#define AMX_CLONE /* amx_Clone() */
#define AMX_EXEC /* amx_Exec() plus amx_Push(), amx_PushArray() and amx_PushString() */
#define AMX_FLAGS /* amx_Flags() */
#define AMX_GETADDR /* amx_GetAddr() */
#define AMX_INIT /* amx_Init() and amx_InitJIT() */
#define AMX_MEMINFO /* amx_MemInfo() */
#define AMX_NAMELENGTH /* amx_NameLength() */
#define AMX_NATIVEINFO /* amx_NativeInfo() */
#define AMX_RAISEERROR /* amx_RaiseError() */
#define AMX_REGISTER /* amx_Register() */
#define AMX_SETCALLBACK /* amx_SetCallback() */
#define AMX_SETDEBUGHOOK /* amx_SetDebugHook() */
#define AMX_XXXNATIVES /* amx_NumNatives(), amx_GetNative() and amx_FindNative() */
#define AMX_XXXPUBLICS /* amx_NumPublics(), amx_GetPublic() and amx_FindPublic() */
#define AMX_XXXPUBVARS /* amx_NumPubVars(), amx_GetPubVar() and amx_FindPubVar() */
#define AMX_XXXSTRING /* amx_StrLen(), amx_GetString() and amx_SetString() */
#define AMX_XXXTAGS /* amx_NumTags(), amx_GetTag() and amx_FindTagId() */
#define AMX_XXXUSERDATA /* amx_GetUserData() and amx_SetUserData() */
#define AMX_UTF8XXX /* amx_UTF8Get(), amx_UTF8Put(), amx_UTF8Check() */
#endif
#undef AMX_EXPLIT_FUNCTIONS
#if defined AMX_ANSIONLY
#undef AMX_UTF8XXX /* no UTF-8 support in ANSI/ASCII-only version */
#endif
typedef enum {
OP_NONE, /* invalid opcode */
OP_LOAD_PRI,
OP_LOAD_ALT,
OP_LOAD_S_PRI,
OP_LOAD_S_ALT,
OP_LREF_PRI,
OP_LREF_ALT,
OP_LREF_S_PRI,
OP_LREF_S_ALT,
OP_LOAD_I,
OP_LODB_I,
OP_CONST_PRI,
OP_CONST_ALT,
OP_ADDR_PRI,
OP_ADDR_ALT,
OP_STOR_PRI,
OP_STOR_ALT,
OP_STOR_S_PRI,
OP_STOR_S_ALT,
OP_SREF_PRI,
OP_SREF_ALT,
OP_SREF_S_PRI,
OP_SREF_S_ALT,
OP_STOR_I,
OP_STRB_I,
OP_LIDX,
OP_LIDX_B,
OP_IDXADDR,
OP_IDXADDR_B,
OP_ALIGN_PRI,
OP_ALIGN_ALT,
OP_LCTRL,
OP_SCTRL,
OP_MOVE_PRI,
OP_MOVE_ALT,
OP_XCHG,
OP_PUSH_PRI,
OP_PUSH_ALT,
OP_PUSH_R,
OP_PUSH_C,
OP_PUSH,
OP_PUSH_S,
OP_POP_PRI,
OP_POP_ALT,
OP_STACK,
OP_HEAP,
OP_PROC,
OP_RET,
OP_RETN,
OP_CALL,
OP_CALL_PRI,
OP_JUMP,
OP_JREL,
OP_JZER,
OP_JNZ,
OP_JEQ,
OP_JNEQ,
OP_JLESS,
OP_JLEQ,
OP_JGRTR,
OP_JGEQ,
OP_JSLESS,
OP_JSLEQ,
OP_JSGRTR,
OP_JSGEQ,
OP_SHL,
OP_SHR,
OP_SSHR,
OP_SHL_C_PRI,
OP_SHL_C_ALT,
OP_SHR_C_PRI,
OP_SHR_C_ALT,
OP_SMUL,
OP_SDIV,
OP_SDIV_ALT,
OP_UMUL,
OP_UDIV,
OP_UDIV_ALT,
OP_ADD,
OP_SUB,
OP_SUB_ALT,
OP_AND,
OP_OR,
OP_XOR,
OP_NOT,
OP_NEG,
OP_INVERT,
OP_ADD_C,
OP_SMUL_C,
OP_ZERO_PRI,
OP_ZERO_ALT,
OP_ZERO,
OP_ZERO_S,
OP_SIGN_PRI,
OP_SIGN_ALT,
OP_EQ,
OP_NEQ,
OP_LESS,
OP_LEQ,
OP_GRTR,
OP_GEQ,
OP_SLESS,
OP_SLEQ,
OP_SGRTR,
OP_SGEQ,
OP_EQ_C_PRI,
OP_EQ_C_ALT,
OP_INC_PRI,
OP_INC_ALT,
OP_INC,
OP_INC_S,
OP_INC_I,
OP_DEC_PRI,
OP_DEC_ALT,
OP_DEC,
OP_DEC_S,
OP_DEC_I,
OP_MOVS,
OP_CMPS,
OP_FILL,
OP_HALT,
OP_BOUNDS,
OP_SYSREQ_PRI,
OP_SYSREQ_C,
OP_FILE, /* obsolete */
OP_LINE, /* obsolete */
OP_SYMBOL, /* obsolete */
OP_SRANGE, /* obsolete */
OP_JUMP_PRI,
OP_SWITCH,
OP_CASETBL,
OP_SWAP_PRI,
OP_SWAP_ALT,
OP_PUSHADDR,
OP_NOP,
OP_SYSREQ_D,
OP_SYMTAG, /* obsolete */
OP_BREAK,
/* ----- */
OP_NUM_OPCODES
} OPCODE;
#define USENAMETABLE(hdr) \
((hdr)->defsize==sizeof(AMX_FUNCSTUBNT))
#define NUMENTRIES(hdr,field,nextfield) \
(unsigned)(((hdr)->nextfield - (hdr)->field) / (hdr)->defsize)
#define GETENTRY(hdr,table,index) \
(AMX_FUNCSTUB *)((unsigned char*)(hdr) + (unsigned)(hdr)->table + (unsigned)index*(hdr)->defsize)
#define GETENTRYNAME(hdr,entry) \
( USENAMETABLE(hdr) \
? (char *)((unsigned char*)(hdr) + (unsigned)((AMX_FUNCSTUBNT*)(entry))->nameofs) \
: ((AMX_FUNCSTUB*)(entry))->name )
#if !defined NDEBUG
static int check_endian(void)
{
uint16_t val=0x00ff;
unsigned char *ptr=(unsigned char *)&val;
/* "ptr" points to the starting address of "val". If that address
* holds the byte "0xff", the computer stored the low byte of "val"
* at the lower address, and so the memory lay out is Little Endian.
*/
assert(*ptr==0xff || *ptr==0x00);
#if BYTE_ORDER==BIG_ENDIAN
return *ptr==0x00; /* return "true" if big endian */
#else
return *ptr==0xff; /* return "true" if little endian */
#endif
}
#endif
#if BYTE_ORDER==BIG_ENDIAN || PAWN_CELL_SIZE==16
static void swap16(uint16_t *v)
{
unsigned char *s = (unsigned char *)v;
unsigned char t;
assert(sizeof(*v)==2);
/* swap two bytes */
t=s[0];
s[0]=s[1];
s[1]=t;
}
#endif
#if BYTE_ORDER==BIG_ENDIAN || PAWN_CELL_SIZE==32
static void swap32(uint32_t *v)
{
unsigned char *s = (unsigned char *)v;
unsigned char t;
assert(sizeof(*v)==4);
/* swap outer two bytes */
t=s[0];
s[0]=s[3];
s[3]=t;
/* swap inner two bytes */
t=s[1];
s[1]=s[2];
s[2]=t;
}
#endif
#if (BYTE_ORDER==BIG_ENDIAN || PAWN_CELL_SIZE==64) && (defined _I64_MAX || defined HAVE_I64)
static void swap64(uint64_t *v)
{
unsigned char *s = (unsigned char *)v;
unsigned char t;
assert(sizeof(*v)==8);
t=s[0];
s[0]=s[7];
s[7]=t;
t=s[1];
s[1]=s[6];
s[6]=t;
t=s[2];
s[2]=s[5];
s[5]=t;
t=s[3];
s[3]=s[4];
s[4]=t;
}
#endif
#if defined AMX_ALIGN || defined AMX_INIT
uint16_t * AMXAPI amx_Align16(uint16_t *v)
{
assert(sizeof(*v)==2);
assert(check_endian());
#if BYTE_ORDER==BIG_ENDIAN
swap16(v);
#endif
return v;
}
uint32_t * AMXAPI amx_Align32(uint32_t *v)
{
assert(sizeof(*v)==4);
assert(check_endian());
#if BYTE_ORDER==BIG_ENDIAN
swap32(v);
#endif
return v;
}
#if defined _I64_MAX || defined HAVE_I64
uint64_t * AMXAPI amx_Align64(uint64_t *v)
{
assert(sizeof(*v)==8);
assert(check_endian());
#if BYTE_ORDER==BIG_ENDIAN
swap64(v);
#endif
return v;
}
#endif /* _I64_MAX || HAVE_I64 */
#endif /* AMX_ALIGN || AMX_INIT */
#if PAWN_CELL_SIZE==16
#define swapcell swap16
#elif PAWN_CELL_SIZE==32
#define swapcell swap32
#elif PAWN_CELL_SIZE==64 && (defined _I64_MAX || defined HAVE_I64)
#define swapcell swap64
#else
#error Unsupported cell size
#endif
#if defined AMX_FLAGS
int AMXAPI amx_Flags(AMX *amx,uint16_t *flags)
{
AMX_HEADER *hdr;
*flags=0;
if (amx==NULL)
return AMX_ERR_FORMAT;
hdr=(AMX_HEADER *)amx->base;
if (hdr->magic!=AMX_MAGIC)
return AMX_ERR_FORMAT;
if (hdr->file_version>CUR_FILE_VERSION || hdr->amx_version<MIN_FILE_VERSION)
return AMX_ERR_VERSION;
*flags=hdr->flags;
return AMX_ERR_NONE;
}
#endif /* AMX_FLAGS */
#if defined AMX_INIT
int AMXAPI amx_Callback(AMX *amx, cell index, cell *result, cell *params)
{
AMX_HEADER *hdr;
AMX_FUNCSTUB *func;
AMX_NATIVE f;
assert(amx!=NULL);
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->natives<=hdr->libraries);
#if defined AMX_NATIVETABLE
if (index<NULL) {
assert(-(index+1)<(sizeof(AMX_NATIVETABLE)/sizeof(AMX_NATIVETABLE)[0]));
f=(AMX_NATIVETABLE)[-(index+1)];
} else {
#endif
assert(index>=0 && index<(cell)NUMENTRIES(hdr,natives,libraries));
func=GETENTRY(hdr,natives,index);
f=(AMX_NATIVE)func->address;
#if defined AMX_NATIVETABLE
} /* if */
#endif
assert(f!=NULL);
/* Now that we have found the function, patch the program so that any
* subsequent call will call the function directly (bypassing this
* callback).
* This trick cannot work in the JIT, because the program would need to
* be re-JIT-compiled after patching a P-code instruction.
*/
#if defined JIT && !defined NDEBUG
if ((amx->flags & AMX_FLAG_JITC)!=0)
assert(amx->sysreq_d==0);
#endif
if (amx->sysreq_d!=0) {
/* at the point of the call, the CIP pseudo-register points directly
* behind the SYSREQ instruction and its parameter.
*/
unsigned char *code=amx->base+(int)hdr->cod+(int)amx->cip-4;
assert(amx->cip >= 4 && amx->cip < (hdr->dat - hdr->cod));
assert(sizeof(f)<=sizeof(cell)); /* function pointer must fit in a cell */
#if defined __GNUC__ || defined ASM32
if (*(cell*)code==index) {
#else
if (*(cell*)code!=OP_SYSREQ_PRI) {
assert(*(cell*)(code-sizeof(cell))==OP_SYSREQ_C);
assert(*(cell*)code==index);
#endif
*(cell*)(code-sizeof(cell))=amx->sysreq_d;
*(cell*)code=(cell)f;
} /* if */
} /* if */
/* Note:
* params[0] == number of bytes for the additional parameters passed to the native function
* params[1] == first argument
* etc.
*/
amx->error=AMX_ERR_NONE;
*result = f(amx,params);
return amx->error;
}
#endif /* defined AMX_INIT */
#if defined JIT
extern int AMXAPI getMaxCodeSize(void);
extern int AMXAPI asm_runJIT(void *sourceAMXbase, void *jumparray, void *compiledAMXbase);
#endif
#if PAWN_CELL_SIZE==16
#define JUMPABS(base,ip) ((cell *)((base) + *(ip)))
#define RELOC_ABS(base, off)
#define RELOC_VALUE(base, v)
#else
#define JUMPABS(base, ip) ((cell *)*(ip))
#define RELOC_ABS(base, off) (*(ucell *)((base)+(int)(off)) += (ucell)(base))
#define RELOC_VALUE(base, v) ((v)+((ucell)(base)))
#endif
#define DBGPARAM(v) ( (v)=*(cell *)(code+(int)cip), cip+=sizeof(cell) )
#if defined AMX_INIT
static int amx_BrowseRelocate(AMX *amx)
{
AMX_HEADER *hdr;
unsigned char *code;
cell cip;
long codesize;
OPCODE op;
#if defined __GNUC__ || defined ASM32 || defined JIT
cell *opcode_list;
#endif
#if defined JIT
int opcode_count = 0;
int reloc_count = 0;
#endif
assert(amx!=NULL);
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
code=amx->base+(int)hdr->cod;
codesize=hdr->dat - hdr->cod;
amx->flags=AMX_FLAG_BROWSE;
/* sanity checks */
assert(OP_PUSH_PRI==36);
assert(OP_PROC==46);
assert(OP_SHL==65);
assert(OP_SMUL==72);
assert(OP_EQ==95);
assert(OP_INC_PRI==107);
assert(OP_MOVS==117);
assert(OP_SYMBOL==126);
amx->sysreq_d=0; /* preset */
#if (defined __GNUC__ || defined ASM32 || defined JIT) && !defined __64BIT__
amx_Exec(amx, (cell*)(void*)&opcode_list, 0);
/* to use direct system requests, a function pointer must fit in a cell;
* because the native function's address will be stored as the parameter
* of SYSREQ.D
*/
if ((amx->flags & AMX_FLAG_JITC)==0 && sizeof(AMX_NATIVE)<=sizeof(cell))
amx->sysreq_d=opcode_list[OP_SYSREQ_D];
#else
/* ANSI C
* to use direct system requests, a function pointer must fit in a cell;
* see the comment above
*/
if (sizeof(AMX_NATIVE)<=sizeof(cell))
amx->sysreq_d=OP_SYSREQ_D;
#endif
/* start browsing code */
for (cip=0; cip<codesize; ) {
op=(OPCODE) *(ucell *)(code+(int)cip);
assert(op>0 && op<OP_NUM_OPCODES);
if ((int)op>=256) {
amx->flags &= ~AMX_FLAG_BROWSE;
return AMX_ERR_INVINSTR;
} /* if */
#if defined __GNUC__ || defined ASM32 || defined JIT
/* relocate opcode (only works if the size of an opcode is at least
* as big as the size of a pointer (jump address); so basically we
* rely on the opcode and a pointer being 32-bit
*/
*(cell *)(code+(int)cip) = opcode_list[op];
#endif
#if defined JIT
opcode_count++;
#endif
cip+=sizeof(cell);
switch (op) {
case OP_LOAD_PRI: /* instructions with 1 parameter */
case OP_LOAD_ALT:
case OP_LOAD_S_PRI:
case OP_LOAD_S_ALT:
case OP_LREF_PRI:
case OP_LREF_ALT:
case OP_LREF_S_PRI:
case OP_LREF_S_ALT:
case OP_LODB_I:
case OP_CONST_PRI:
case OP_CONST_ALT:
case OP_ADDR_PRI:
case OP_ADDR_ALT:
case OP_STOR_PRI:
case OP_STOR_ALT:
case OP_STOR_S_PRI:
case OP_STOR_S_ALT:
case OP_SREF_PRI:
case OP_SREF_ALT:
case OP_SREF_S_PRI:
case OP_SREF_S_ALT:
case OP_STRB_I:
case OP_LIDX_B:
case OP_IDXADDR_B:
case OP_ALIGN_PRI:
case OP_ALIGN_ALT:
case OP_LCTRL:
case OP_SCTRL:
case OP_PUSH_R:
case OP_PUSH_C:
case OP_PUSH:
case OP_PUSH_S:
case OP_STACK:
case OP_HEAP:
case OP_JREL:
case OP_SHL_C_PRI:
case OP_SHL_C_ALT:
case OP_SHR_C_PRI:
case OP_SHR_C_ALT:
case OP_ADD_C:
case OP_SMUL_C:
case OP_ZERO:
case OP_ZERO_S:
case OP_EQ_C_PRI:
case OP_EQ_C_ALT:
case OP_INC:
case OP_INC_S:
case OP_DEC:
case OP_DEC_S:
case OP_MOVS:
case OP_CMPS:
case OP_FILL:
case OP_HALT:
case OP_BOUNDS:
case OP_SYSREQ_C:
case OP_PUSHADDR:
case OP_SYSREQ_D:
cip+=sizeof(cell);
break;
case OP_LOAD_I: /* instructions without parameters */
case OP_STOR_I:
case OP_LIDX:
case OP_IDXADDR:
case OP_MOVE_PRI:
case OP_MOVE_ALT:
case OP_XCHG:
case OP_PUSH_PRI:
case OP_PUSH_ALT:
case OP_POP_PRI:
case OP_POP_ALT:
case OP_PROC:
case OP_RET:
case OP_RETN:
case OP_CALL_PRI:
case OP_SHL:
case OP_SHR:
case OP_SSHR:
case OP_SMUL:
case OP_SDIV:
case OP_SDIV_ALT:
case OP_UMUL:
case OP_UDIV:
case OP_UDIV_ALT:
case OP_ADD:
case OP_SUB:
case OP_SUB_ALT:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_NOT:
case OP_NEG:
case OP_INVERT:
case OP_ZERO_PRI:
case OP_ZERO_ALT:
case OP_SIGN_PRI:
case OP_SIGN_ALT:
case OP_EQ:
case OP_NEQ:
case OP_LESS:
case OP_LEQ:
case OP_GRTR:
case OP_GEQ:
case OP_SLESS:
case OP_SLEQ:
case OP_SGRTR:
case OP_SGEQ:
case OP_INC_PRI:
case OP_INC_ALT:
case OP_INC_I:
case OP_DEC_PRI:
case OP_DEC_ALT:
case OP_DEC_I:
case OP_SYSREQ_PRI:
case OP_JUMP_PRI:
case OP_SWAP_PRI:
case OP_SWAP_ALT:
case OP_NOP:
case OP_BREAK:
break;
case OP_CALL: /* opcodes that need relocation */
case OP_JUMP:
case OP_JZER:
case OP_JNZ:
case OP_JEQ:
case OP_JNEQ:
case OP_JLESS:
case OP_JLEQ:
case OP_JGRTR:
case OP_JGEQ:
case OP_JSLESS:
case OP_JSLEQ:
case OP_JSGRTR:
case OP_JSGEQ:
case OP_SWITCH:
#if defined JIT
reloc_count++;
#endif
RELOC_ABS(code, cip);
cip+=sizeof(cell);
break;
case OP_FILE:
case OP_SYMBOL: {
cell num;
DBGPARAM(num);
cip+=num;
break;
} /* case */
case OP_LINE:
case OP_SRANGE:
cip+=2*sizeof(cell);
break;
case OP_SYMTAG:
cip+=sizeof(cell);
break;
case OP_CASETBL: {
cell num;
int i;
DBGPARAM(num); /* number of records follows the opcode */
for (i=0; i<=num; i++) {
RELOC_ABS(code, cip+2*i*sizeof(cell));
#if defined JIT
reloc_count++;
#endif
} /* for */
cip+=(2*num + 1)*sizeof(cell);
break;
} /* case */
default:
amx->flags &= ~AMX_FLAG_BROWSE;
return AMX_ERR_INVINSTR;
} /* switch */
} /* for */
#if defined JIT
amx->code_size = getMaxCodeSize()*opcode_count + hdr->cod
+ (hdr->stp - hdr->dat);
amx->reloc_size = 2*sizeof(cell)*reloc_count;
#endif
amx->flags &= ~AMX_FLAG_BROWSE;
amx->flags |= AMX_FLAG_RELOC;
return AMX_ERR_NONE;
}
#if AMX_COMPACTMARGIN > 2
static void expand(unsigned char *code, long codesize, long memsize)
{
ucell c;
struct {
long memloc;
ucell c;
} spare[AMX_COMPACTMARGIN];
int sh=0,st=0,sc=0;
int shift;
/* for in-place expansion, move from the end backward */
assert(memsize % sizeof(cell) == 0);
while (codesize>0) {
c=0;
shift=0;
do {
codesize--;
/* no input byte should be shifted out completely */
assert(shift<8*sizeof(cell));
/* we work from the end of a sequence backwards; the final code in
* a sequence may not have the continuation bit set */
assert(shift>0 || (code[(size_t)codesize] & 0x80)==0);
c|=(ucell)(code[(size_t)codesize] & 0x7f) << shift;
shift+=7;
} while (codesize>0 && (code[(size_t)codesize-1] & 0x80)!=0);
/* sign expand */
if ((code[(size_t)codesize] & 0x40)!=0) {
while (shift < (int)(8*sizeof(cell))) {
c|=(ucell)0xff << shift;
shift+=8;
} /* while */
} /* if */
/* store */
while (sc && (spare[sh].memloc>codesize)) {
*(ucell *)(code+(int)spare[sh].memloc)=spare[sh].c;
sh=(sh+1)%AMX_COMPACTMARGIN;
sc--;
} /* while */
memsize -= sizeof(cell);
assert(memsize>=0);
if ((memsize>codesize)||((memsize==codesize)&&(memsize==0))) {
*(ucell *)(code+(size_t)memsize)=c;
} else {
assert(sc<AMX_COMPACTMARGIN);
spare[st].memloc=memsize;
spare[st].c=c;
st=(st+1)%AMX_COMPACTMARGIN;
sc++;
} /* if */
} /* while */
/* when all bytes have been expanded, the complete memory block should be done */
assert(memsize==0);
}
#endif /* defined AMX_INIT */
int AMXAPI amx_Init(AMX *amx,void *program)
{
AMX_HEADER *hdr;
#if (defined _Windows || defined LINUX || defined __FreeBSD__ || defined __OpenBSD__) && !defined AMX_NODYNALOAD
char libname[sNAMEMAX+8]; /* +1 for '\0', +3 for 'amx' prefix, +4 for extension */
#if defined _Windows
typedef int (FAR WINAPI *AMX_ENTRY)(AMX _FAR *amx);
HINSTANCE hlib;
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
typedef int (*AMX_ENTRY)(AMX *amx);
void *hlib;
#endif
int numlibraries,i;
AMX_FUNCSTUB *lib;
AMX_ENTRY libinit;
#endif
if ((amx->flags & AMX_FLAG_RELOC)!=0)
return AMX_ERR_INIT; /* already initialized (may not do so twice) */
hdr=(AMX_HEADER *)program;
/* the header is in Little Endian, on a Big Endian machine, swap all
* multi-byte words
*/
assert(check_endian());
#if BYTE_ORDER==BIG_ENDIAN
amx_Align32((uint32_t*)&hdr->size);
amx_Align16(&hdr->magic);
amx_Align16((uint16_t*)&hdr->flags);
amx_Align16((uint16_t*)&hdr->defsize);
amx_Align32((uint32_t*)&hdr->cod);
amx_Align32((uint32_t*)&hdr->dat);
amx_Align32((uint32_t*)&hdr->hea);
amx_Align32((uint32_t*)&hdr->stp);
amx_Align32((uint32_t*)&hdr->cip);
amx_Align32((uint32_t*)&hdr->publics);
amx_Align32((uint32_t*)&hdr->natives);
amx_Align32((uint32_t*)&hdr->libraries);
amx_Align32((uint32_t*)&hdr->pubvars);
amx_Align32((uint32_t*)&hdr->tags);
#endif
if (hdr->magic!=AMX_MAGIC)
return AMX_ERR_FORMAT;
if (hdr->file_version<MIN_FILE_VERSION || hdr->amx_version>CUR_FILE_VERSION)
return AMX_ERR_VERSION;
if (hdr->defsize!=sizeof(AMX_FUNCSTUB) && hdr->defsize!=sizeof(AMX_FUNCSTUBNT))
return AMX_ERR_FORMAT;
if (USENAMETABLE(hdr)) {
uint16_t *namelength;
/* when there is a separate name table, check the maximum name length
* in that table
*/
amx_Align32((uint32_t*)&hdr->nametable);
namelength=(uint16_t*)((unsigned char*)program + (unsigned)hdr->nametable);
amx_Align16(namelength);
if (*namelength>sNAMEMAX)
return AMX_ERR_FORMAT;
} /* if */
if (hdr->stp<=0)
return AMX_ERR_FORMAT;
#if BYTE_ORDER==BIG_ENDIAN
if ((hdr->flags & AMX_FLAG_COMPACT)==0) {
ucell *code=(ucell *)((unsigned char *)program+(int)hdr->cod);
while (code<(ucell *)((unsigned char *)program+(int)hdr->hea))
swapcell(code++);
} /* if */
#endif
assert((hdr->flags & AMX_FLAG_COMPACT)!=0 || hdr->hea == hdr->size);
if ((hdr->flags & AMX_FLAG_COMPACT)!=0) {
#if AMX_COMPACTMARGIN > 2
expand((unsigned char *)program+(int)hdr->cod,
hdr->size - hdr->cod, hdr->hea - hdr->cod);
#else
return AMX_ERR_FORMAT;
#endif
} /* if */
amx->base=(unsigned char *)program;
/* Set a zero cell at the top of the stack, which functions
* as a sentinel for strings.
*/
* (cell *)(amx->base+(int)hdr->stp-sizeof(cell)) = 0;
/* set initial values */
amx->hlw=hdr->hea - hdr->dat; /* stack and heap relative to data segment */
amx->stp=hdr->stp - hdr->dat - sizeof(cell);
amx->hea=amx->hlw;
amx->stk=amx->stp;
if (amx->callback==NULL)
amx->callback=amx_Callback;
amx->data=NULL;
/* also align all addresses in the public function, public variable,
* public tag and native function tables --offsets into the name table
* (if present) must also be swapped.
*/
#if BYTE_ORDER==BIG_ENDIAN
{ /* local */
AMX_FUNCSTUB *fs;
int i,num;
fs=GETENTRY(hdr,natives,0);
num=NUMENTRIES(hdr,natives,libraries);
for (i=0; i<num; i++) {
amx_AlignCell(&fs->address); /* redundant, because it should be zero */
if (USENAMETABLE(hdr))
amx_Align32(&((AMX_FUNCSTUBNT*)fs)->nameofs);
fs=(AMX_FUNCSTUB*)((unsigned char *)fs+hdr->defsize);
} /* for */
fs=GETENTRY(hdr,publics,0);
assert(hdr->publics<=hdr->natives);
num=NUMENTRIES(hdr,publics,natives);
for (i=0; i<num; i++) {
amx_AlignCell(&fs->address);
if (USENAMETABLE(hdr))
amx_Align32(&((AMX_FUNCSTUBNT*)fs)->nameofs);
fs=(AMX_FUNCSTUB*)((unsigned char *)fs+hdr->defsize);
} /* for */
fs=GETENTRY(hdr,pubvars,0);
assert(hdr->pubvars<=hdr->tags);
num=NUMENTRIES(hdr,pubvars,tags);
for (i=0; i<num; i++) {
amx_AlignCell(&fs->address);
if (USENAMETABLE(hdr))
amx_Align32(&((AMX_FUNCSTUBNT*)fs)->nameofs);
fs=(AMX_FUNCSTUB*)((unsigned char *)fs+hdr->defsize);
} /* for */
fs=GETENTRY(hdr,tags,0);
if (hdr->file_version<7) {
assert(hdr->tags<=hdr->cod);
num=NUMENTRIES(hdr,tags,cod);
} else {
assert(hdr->tags<=hdr->nametable);
num=NUMENTRIES(hdr,tags,nametable);
} /* if */
for (i=0; i<num; i++) {
amx_AlignCell(&fs->address);
if (USENAMETABLE(hdr))
amx_Align32(&((AMX_FUNCSTUBNT*)fs)->nameofs);
fs=(AMX_FUNCSTUB*)((unsigned char *)fs+hdr->defsize);
} /* for */
} /* local */
#endif
/* relocate call and jump instructions */
amx_BrowseRelocate(amx);
/* load any extension modules that the AMX refers to */
#if (defined _Windows || defined LINUX || defined __FreeBSD__ || defined __OpenBSD__) && !defined AMX_NODYNALOAD
hdr=(AMX_HEADER *)amx->base;
numlibraries=NUMENTRIES(hdr,libraries,pubvars);
for (i=0; i<numlibraries; i++) {
lib=GETENTRY(hdr,libraries,i);
strcpy(libname,"amx");
strcat(libname,GETENTRYNAME(hdr,lib));
#if defined _Windows
strcat(libname,".dll");
#if defined __WIN32__
hlib=LoadLibraryA(libname);
#else
hlib=LoadLibrary(libname);
if (hlib<=HINSTANCE_ERROR)
hlib=NULL;
#endif
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
strcat(libname,".so");
hlib=dlopen(libname,RTLD_NOW);
#endif
if (hlib!=NULL) {
/* a library that cannot be loaded or that does not have the required
* initialization function is simply ignored
*/
char funcname[sNAMEMAX+9]; /* +1 for '\0', +4 for 'amx_', +4 for 'Init' */
strcpy(funcname,"amx_");
strcat(funcname,GETENTRYNAME(hdr,lib));
strcat(funcname,"Init");
#if defined _Windows
libinit=(AMX_ENTRY)GetProcAddress(hlib,funcname);
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
libinit=(AMX_ENTRY)dlsym(hlib,funcname);
#endif
if (libinit!=NULL)
libinit(amx);
} /* if */
lib->address=(ucell)hlib;
} /* for */
#endif
return AMX_ERR_NONE;
}
#if defined JIT
#define CODESIZE_JIT 8192 /* approximate size of the code for the JIT */
#if defined __WIN32__ /* this also applies to Win32 "console" applications */
#define PROT_READ 0x1 /* page can be read */
#define PROT_WRITE 0x2 /* page can be written */
#define PROT_EXEC 0x4 /* page can be executed */
#define PROT_NONE 0x0 /* page can not be accessed */
static int mprotect(void *addr, size_t len, int prot)
{
DWORD prev, p = 0;
if ((prot & PROT_WRITE)!=0)
p = PAGE_EXECUTE_READWRITE;
else
p |= PAGE_EXECUTE_READ;
return !VirtualProtect(addr, len, p, &prev);
}
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
/* Linux already has mprotect() */
#else
// TODO: Add cases for Linux, Unix, OS/2, ...
/* DOS32 has no imposed limits on its segments */
#define mprotect(addr, len, prot) (0)
#endif /* #if defined __WIN32 __ */
int AMXAPI amx_InitJIT(AMX *amx, void *reloc_table, void *native_code)
{
int res;
AMX_HEADER *hdr;
if ((amx->flags & AMX_FLAG_JITC)==0)
return AMX_ERR_INIT_JIT; /* flag not set, this AMX is not prepared for JIT */
/* Patching SYSREQ opcodes to SYSREQ_D cannot work in the JIT, because the
* program would need to be re-JIT-compiled after patching a P-code
* instruction. If this field is not zero, something went wrong with the
* amx_BrowseRelocate().
*/
assert(amx->sysreq_d==0);
if (mprotect(asm_runJIT, CODESIZE_JIT, PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
return AMX_ERR_INIT_JIT;
/* copy the prefix */
memcpy(native_code, amx->base, ((AMX_HEADER *)(amx->base))->cod);
hdr = native_code;
/* JIT rulz! (TM) */
/* MP: added check for correct compilation */
if ((res = asm_runJIT(amx->base, reloc_table, native_code)) != 0) {
/* update the required memory size (the previous value was a
* conservative estimate, now we know the exact size)
*/
amx->code_size = (hdr->dat + hdr->stp + 3) & ~3;
/* The compiled code is relocatable, since only relative jumps are
* used for destinations within the generated code and absoulute
* addresses for jumps into the runtime, which is fixed in memory.
*/
amx->base = (unsigned char*) native_code;
amx->cip = hdr->cip;
amx->hea = hdr->hea;
amx->stp = hdr->stp - sizeof(cell);
/* also put a sentinel for strings at the top the stack */
*(cell *)((char*)native_code + hdr->dat + hdr->stp - sizeof(cell)) = 0;
amx->stk = amx->stp;
} /* if */
return (res == 0) ? AMX_ERR_NONE : AMX_ERR_INIT_JIT;
}
#else /* #if defined JIT */
int AMXAPI amx_InitJIT(AMX *amx,void *compiled_program,void *reloc_table)
{
(void)amx;
(void)compiled_program;
(void)reloc_table;
return AMX_ERR_INIT_JIT;
}
#endif /* #if defined JIT */
#endif /* AMX_INIT */
#if defined AMX_CLEANUP
int AMXAPI amx_Cleanup(AMX *amx)
{
#if (defined _Windows || defined LINUX || defined __FreeBSD__ || defined __OpenBSD__) && !defined AMX_NODYNALOAD
#if defined _Windows
typedef int (FAR WINAPI *AMX_ENTRY)(AMX FAR *amx);
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
typedef int (*AMX_ENTRY)(AMX *amx);
#endif
AMX_HEADER *hdr;
int numlibraries,i;
AMX_FUNCSTUB *lib;
AMX_ENTRY libcleanup;
#endif
/* unload all extension modules */
#if (defined _Windows || defined LINUX || defined __FreeBSD__ || defined __OpenBSD__) && !defined AMX_NODYNALOAD
hdr=(AMX_HEADER *)amx->base;
assert(hdr->magic==AMX_MAGIC);
numlibraries=NUMENTRIES(hdr,libraries,pubvars);
for (i=0; i<numlibraries; i++) {
lib=GETENTRY(hdr,libraries,i);
if (lib->address!=0) {
char funcname[sNAMEMAX+12]; /* +1 for '\0', +4 for 'amx_', +7 for 'Cleanup' */
strcpy(funcname,"amx_");
strcat(funcname,GETENTRYNAME(hdr,lib));
strcat(funcname,"Cleanup");
#if defined _Windows
libcleanup=(AMX_ENTRY)GetProcAddress((HINSTANCE)lib->address,funcname);
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
libcleanup=(AMX_ENTRY)dlsym((void*)lib->address,funcname);
#endif
if (libcleanup!=NULL)
libcleanup(amx);
#if defined _Windows
FreeLibrary((HINSTANCE)lib->address);
#elif defined LINUX || defined __FreeBSD__ || defined __OpenBSD__
dlclose((void*)lib->address);
#endif
} /* if */
} /* for */
#else
(void)amx;
#endif
return AMX_ERR_NONE;
}
#endif /* AMX_CLEANUP */
#if defined AMX_CLONE
int AMXAPI amx_Clone(AMX *amxClone, AMX *amxSource, void *data)
{
AMX_HEADER *hdr;
unsigned char _FAR *dataSource;
if (amxSource==NULL)
return AMX_ERR_FORMAT;
if (amxClone==NULL)
return AMX_ERR_PARAMS;
if ((amxSource->flags & AMX_FLAG_RELOC)==0)
return AMX_ERR_INIT;
hdr=(AMX_HEADER *)amxSource->base;
if (hdr->magic!=AMX_MAGIC)
return AMX_ERR_FORMAT;
if (hdr->file_version>CUR_FILE_VERSION || hdr->amx_version<MIN_FILE_VERSION)
return AMX_ERR_VERSION;
/* set initial values */
amxClone->base=amxSource->base;
amxClone->hlw=hdr->hea - hdr->dat; /* stack and heap relative to data segment */
amxClone->stp=hdr->stp - hdr->dat - sizeof(cell);
amxClone->hea=amxClone->hlw;
amxClone->stk=amxClone->stp;
if (amxClone->callback==NULL)
amxClone->callback=amxSource->callback;
if (amxClone->debug==NULL)
amxClone->debug=amxSource->debug;
amxClone->flags=amxSource->flags;
/* copy the data segment; the stack and the heap can be left uninitialized */
assert(data!=NULL);
amxClone->data=(unsigned char _FAR *)data;
dataSource=(amxSource->data!=NULL) ? amxSource->data : amxSource->base+(int)hdr->dat;
memcpy(amxClone->data,dataSource,(size_t)(hdr->hea-hdr->dat));
/* Set a zero cell at the top of the stack, which functions
* as a sentinel for strings.
*/
* (cell *)(amxClone->data+(int)amxClone->stp) = 0;
return AMX_ERR_NONE;
}
#endif /* AMX_CLONE */
#if defined AMX_MEMINFO
int AMXAPI amx_MemInfo(AMX *amx, long *codesize, long *datasize, long *stackheap)
{
AMX_HEADER *hdr;
if (amx==NULL)
return AMX_ERR_FORMAT;
hdr=(AMX_HEADER *)amx->base;
if (hdr->magic!=AMX_MAGIC)
return AMX_ERR_FORMAT;
if (hdr->file_version>CUR_FILE_VERSION || hdr->amx_version<MIN_FILE_VERSION)
return AMX_ERR_VERSION;
if (codesize!=NULL)
*codesize=hdr->dat - hdr->cod;
if (datasize!=NULL)
*datasize=hdr->hea - hdr->dat;
if (stackheap!=NULL)
*stackheap=hdr->stp - hdr->hea;
return AMX_ERR_NONE;
}
#endif /* AMX_MEMINFO */
#if defined AMX_NAMELENGTH
int AMXAPI amx_NameLength(AMX *amx, int *length)
{
AMX_HEADER *hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
if (USENAMETABLE(hdr)) {
uint16_t *namelength=(uint16_t*)(amx->base + (unsigned)hdr->nametable);
*length=*namelength;
assert(hdr->file_version>=7); /* name table exists only for file version 7+ */
} else {
*length=hdr->defsize - sizeof(ucell);
} /* if */
return AMX_ERR_NONE;
}
#endif /* AMX_NAMELENGTH */
#if defined AMX_XXXNATIVES
int AMXAPI amx_NumNatives(AMX *amx, int *number)
{
AMX_HEADER *hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->natives<=hdr->libraries);
*number=NUMENTRIES(hdr,natives,libraries);
return AMX_ERR_NONE;
}
int AMXAPI amx_GetNative(AMX *amx, int index, char *funcname)
{
AMX_HEADER *hdr;
AMX_FUNCSTUB *func;
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->natives<=hdr->libraries);
if (index>=(cell)NUMENTRIES(hdr,natives,libraries))
return AMX_ERR_INDEX;
func=GETENTRY(hdr,natives,index);
strcpy(funcname,GETENTRYNAME(hdr,func));
return AMX_ERR_NONE;
}
int AMXAPI amx_FindNative(AMX *amx, const char *name, int *index)
{
int idx,last;
char pname[sNAMEMAX+1];
amx_NumNatives(amx, &last);
/* linear search, the natives table is not sorted alphabetically */
for (idx=0; idx<last; idx++) {
amx_GetNative(amx,idx,pname);
if (strcmp(pname,name)==0) {
*index=idx;
return AMX_ERR_NONE;
} /* if */
} /* for */
*index=INT_MAX;
return AMX_ERR_NOTFOUND;
}
#endif /* AMX_XXXNATIVES */
#if defined AMX_XXXPUBLICS
int AMXAPI amx_NumPublics(AMX *amx, int *number)
{
AMX_HEADER *hdr=(AMX_HEADER *)amx->base;
*number=NUMENTRIES(hdr,publics,natives);
return AMX_ERR_NONE;
}
int AMXAPI amx_GetPublic(AMX *amx, int index, char *funcname)
{
AMX_HEADER *hdr;
AMX_FUNCSTUB *func;
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->publics<=hdr->natives);
if (index>=(cell)NUMENTRIES(hdr,publics,natives))
return AMX_ERR_INDEX;
func=GETENTRY(hdr,publics,index);
strcpy(funcname,GETENTRYNAME(hdr,func));
return AMX_ERR_NONE;
}
int AMXAPI amx_FindPublic(AMX *amx, const char *name, int *index)
{
int first,last,mid,result;
char pname[sNAMEMAX+1];
amx_NumPublics(amx, &last);
last--; /* last valid index is 1 less than the number of functions */
first=0;
/* binary search */
while (first<=last) {
mid=(first+last)/2;
amx_GetPublic(amx, mid, pname);
result=strcmp(pname,name);
if (result>0) {
last=mid-1;
} else if (result<0) {
first=mid+1;
} else {
*index=mid;
return AMX_ERR_NONE;
} /* if */
} /* while */
/* not found, set to an invalid index, so amx_Exec() will fail */
*index=INT_MAX;
return AMX_ERR_NOTFOUND;
}
#endif /* AMX_XXXPUBLICS */
#if defined AMX_XXXPUBVARS
int AMXAPI amx_NumPubVars(AMX *amx, int *number)
{
AMX_HEADER *hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->pubvars<=hdr->tags);
*number=NUMENTRIES(hdr,pubvars,tags);
return AMX_ERR_NONE;
}
int AMXAPI amx_GetPubVar(AMX *amx, int index, char *varname, cell *amx_addr)
{
AMX_HEADER *hdr;
AMX_FUNCSTUB *var;
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->pubvars<=hdr->tags);
if (index>=(cell)NUMENTRIES(hdr,pubvars,tags))
return AMX_ERR_INDEX;
var=GETENTRY(hdr,pubvars,index);
strcpy(varname,GETENTRYNAME(hdr,var));
*amx_addr=var->address;
return AMX_ERR_NONE;
}
int AMXAPI amx_FindPubVar(AMX *amx, const char *varname, cell *amx_addr)
{
int first,last,mid,result;
char pname[sNAMEMAX+1];
cell paddr;
amx_NumPubVars(amx, &last);
last--; /* last valid index is 1 less than the number of functions */
first=0;
/* binary search */
while (first<=last) {
mid=(first+last)/2;
amx_GetPubVar(amx, mid, pname, &paddr);
result=strcmp(pname,varname);
if (result>0) {
last=mid-1;
} else if (result<0) {
first=mid+1;
} else {
*amx_addr=paddr;
return AMX_ERR_NONE;
} /* if */
} /* while */
/* not found */
*amx_addr=0;
return AMX_ERR_NOTFOUND;
}
#endif /* AMX_XXXPUBVARS */
#if defined AMX_XXXTAGS
int AMXAPI amx_NumTags(AMX *amx, int *number)
{
AMX_HEADER *hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
if (hdr->file_version<5) { /* the tagname table appeared in file format 5 */
*number=0;
return AMX_ERR_VERSION;
} /* if */
if (hdr->file_version<7) {
assert(hdr->tags<=hdr->cod);
*number=NUMENTRIES(hdr,tags,cod);
} else {
assert(hdr->tags<=hdr->nametable);
*number=NUMENTRIES(hdr,tags,nametable);
} /* if */
return AMX_ERR_NONE;
}
int AMXAPI amx_GetTag(AMX *amx, int index, char *tagname, cell *tag_id)
{
AMX_HEADER *hdr;
AMX_FUNCSTUB *tag;
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
if (hdr->file_version<5) { /* the tagname table appeared in file format 5 */
*tagname='\0';
*tag_id=0;
return AMX_ERR_VERSION;
} /* if */
if (hdr->file_version<7) {
assert(hdr->tags<=hdr->cod);
if (index>=(cell)NUMENTRIES(hdr,tags,cod))
return AMX_ERR_INDEX;
} else {
assert(hdr->tags<=hdr->nametable);
if (index>=(cell)NUMENTRIES(hdr,tags,nametable))
return AMX_ERR_INDEX;
} /* if */
tag=GETENTRY(hdr,tags,index);
strcpy(tagname,GETENTRYNAME(hdr,tag));
*tag_id=tag->address;
return AMX_ERR_NONE;
}
int AMXAPI amx_FindTagId(AMX *amx, cell tag_id, char *tagname)
{
int first,last,mid;
cell mid_id;
#if !defined NDEBUG
/* verify that the tagname table is sorted on the tag_id */
amx_NumTags(amx, &last);
if (last>0) {
cell cur_id;
amx_GetTag(amx,0,tagname,&cur_id);
for (first=1; first<last; first++) {
amx_GetTag(amx,first,tagname,&mid_id);
assert(cur_id<mid_id);
cur_id=mid_id;
} /* for */
} /* if */
#endif
amx_NumTags(amx, &last);
last--; /* last valid index is 1 less than the number of functions */
first=0;
/* binary search */
while (first<=last) {
mid=(first+last)/2;
amx_GetTag(amx,mid,tagname,&mid_id);
if (mid_id>tag_id)
last=mid-1;
else if (mid_id<tag_id)
first=mid+1;
else
return AMX_ERR_NONE;
} /* while */
/* not found */
*tagname='\0';
return AMX_ERR_NOTFOUND;
}
#endif /* AMX_XXXTAGS */
#if defined AMX_XXXUSERDATA
int AMXAPI amx_GetUserData(AMX *amx, long tag, void **ptr)
{
int index;
assert(amx!=NULL);
assert(tag!=0);
for (index=0; index<AMX_USERNUM && amx->usertags[index]!=tag; index++)
/* nothing */;
if (index>=AMX_USERNUM)
return AMX_ERR_USERDATA;
*ptr=amx->userdata[index];
return AMX_ERR_NONE;
}
int AMXAPI amx_SetUserData(AMX *amx, long tag, void *ptr)
{
int index;
assert(amx!=NULL);
assert(tag!=0);
/* try to find existing tag */
for (index=0; index<AMX_USERNUM && amx->usertags[index]!=tag; index++)
/* nothing */;
/* if not found, try to find empty tag */
if (index>=AMX_USERNUM)
for (index=0; index<AMX_USERNUM && amx->usertags[index]!=0; index++)
/* nothing */;
/* if still not found, quit with error */
if (index>=AMX_USERNUM)
return AMX_ERR_INDEX;
/* set the tag and the value */
amx->usertags[index]=tag;
amx->userdata[index]=ptr;
return AMX_ERR_NONE;
}
#endif /* AMX_XXXUSERDATA */
#if defined AMX_REGISTER || defined AMX_EXEC || defined AMX_INIT
static AMX_NATIVE findfunction(const char *name, const AMX_NATIVE_INFO *list, int number)
{
int i;
assert(list!=NULL);
for (i=0; list[i].name!=NULL && (i<number || number==-1); i++)
if (strcmp(name,list[i].name)==0)
return list[i].func;
return NULL;
}
int AMXAPI amx_Register(AMX *amx, const AMX_NATIVE_INFO *list, int number)
{
AMX_FUNCSTUB *func;
AMX_HEADER *hdr;
int i,numnatives,err;
AMX_NATIVE funcptr;
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
assert(hdr->natives<=hdr->libraries);
numnatives=NUMENTRIES(hdr,natives,libraries);
err=AMX_ERR_NONE;
func=GETENTRY(hdr,natives,0);
for (i=0; i<numnatives; i++) {
if (func->address==0) {
/* this function is not yet located */
funcptr=(list!=NULL) ? findfunction(GETENTRYNAME(hdr,func),list,number) : NULL;
if (funcptr!=NULL)
func->address=(ucell)funcptr;
else
err=AMX_ERR_NOTFOUND;
} /* if */
func=(AMX_FUNCSTUB*)((unsigned char*)func+hdr->defsize);
} /* for */
if (err==AMX_ERR_NONE)
amx->flags|=AMX_FLAG_NTVREG;
return err;
}
#endif /* AMX_REGISTER || AMX_EXEC || AMX_INIT */
#if defined AMX_NATIVEINFO
AMX_NATIVE_INFO * AMXAPI amx_NativeInfo(const char *name, AMX_NATIVE func)
{
static AMX_NATIVE_INFO n;
n.name=name;
n.func=func;
return &n;
}
#endif /* AMX_NATIVEINFO */
#if defined AMX_EXEC || defined AMX_INIT
#define STKMARGIN ((cell)(16*sizeof(cell)))
int AMXAPI amx_Push(AMX *amx, cell value)
{
AMX_HEADER *hdr;
unsigned char *data;
if (amx->hea+STKMARGIN>amx->stk)
return AMX_ERR_STACKERR;
hdr=(AMX_HEADER *)amx->base;
data=(amx->data!=NULL) ? amx->data : amx->base+(int)hdr->dat;
amx->stk-=sizeof(cell);
amx->paramcount+=1;
*(cell *)(data+(int)amx->stk)=value;
return AMX_ERR_NONE;
}
int AMXAPI amx_PushArray(AMX *amx, cell *amx_addr, cell **phys_addr, const cell array[], int numcells)
{
cell *paddr;
int err;
assert(amx!=NULL);
assert(amx_addr!=NULL);
assert(array!=NULL);
err=amx_Allot(amx,numcells,amx_addr,&paddr);
if (err==AMX_ERR_NONE) {
if (phys_addr!=NULL)
*phys_addr=paddr;
memcpy(paddr,array,numcells*sizeof(cell));
err=amx_Push(amx,*amx_addr);
} /* if */
return err;
}
int AMXAPI amx_PushString(AMX *amx, cell *amx_addr, cell **phys_addr, const char *string, int pack, int use_wchar)
{
cell *paddr;
int numcells,err;
assert(amx!=NULL);
assert(amx_addr!=NULL);
assert(string!=NULL);
#if defined AMX_ANSIONLY
numcells=strlen(string) + 1;
#else
numcells= (use_wchar ? wcslen((const wchar_t*)string) : strlen(string)) + 1;
#endif
if (pack)
numcells=(numcells+sizeof(cell)-1)/sizeof(cell);
err=amx_Allot(amx,numcells,amx_addr,&paddr);
if (err==AMX_ERR_NONE) {
if (phys_addr!=NULL)
*phys_addr=paddr;
amx_SetString(paddr,string,pack,use_wchar,UNLIMITED);
err=amx_Push(amx,*amx_addr);
} /* if */
return err;
}
#define GETPARAM(v) ( v=*(cell *)cip++ )
#define SKIPPARAM(n) ( cip=(cell *)cip+(n) )
#define PUSH(v) ( stk-=sizeof(cell), *(cell *)(data+(int)stk)=v )
#define POP(v) ( v=*(cell *)(data+(int)stk), stk+=sizeof(cell) )
#define ABORT(amx,v) { (amx)->stk=reset_stk; (amx)->hea=reset_hea; return v; }
#define CHKMARGIN() if (hea+STKMARGIN>stk) return AMX_ERR_STACKERR
#define CHKSTACK() if (stk>amx->stp) return AMX_ERR_STACKLOW
#define CHKHEAP() if (hea<amx->hlw) return AMX_ERR_HEAPLOW
#if defined __GNUC__ && !(defined ASM32 || defined JIT)
/* GNU C version uses the "labels as values" extension to create
* fast "indirect threaded" interpreter.
*/
#define NEXT(cip) goto **cip++
int AMXAPI amx_Exec(AMX *amx, cell *retval, int index)
{
static const void * const amx_opcodelist[] = {
&&op_none, &&op_load_pri, &&op_load_alt, &&op_load_s_pri,
&&op_load_s_alt,&&op_lref_pri, &&op_lref_alt, &&op_lref_s_pri,
&&op_lref_s_alt,&&op_load_i, &&op_lodb_i, &&op_const_pri,
&&op_const_alt, &&op_addr_pri, &&op_addr_alt, &&op_stor_pri,
&&op_stor_alt, &&op_stor_s_pri,&&op_stor_s_alt,&&op_sref_pri,
&&op_sref_alt, &&op_sref_s_pri,&&op_sref_s_alt,&&op_stor_i,
&&op_strb_i, &&op_lidx, &&op_lidx_b, &&op_idxaddr,
&&op_idxaddr_b, &&op_align_pri, &&op_align_alt, &&op_lctrl,
&&op_sctrl, &&op_move_pri, &&op_move_alt, &&op_xchg,
&&op_push_pri, &&op_push_alt, &&op_push_r, &&op_push_c,
&&op_push, &&op_push_s, &&op_pop_pri, &&op_pop_alt,
&&op_stack, &&op_heap, &&op_proc, &&op_ret,
&&op_retn, &&op_call, &&op_call_pri, &&op_jump,
&&op_jrel, &&op_jzer, &&op_jnz, &&op_jeq,
&&op_jneq, &&op_jless, &&op_jleq, &&op_jgrtr,
&&op_jgeq, &&op_jsless, &&op_jsleq, &&op_jsgrtr,
&&op_jsgeq, &&op_shl, &&op_shr, &&op_sshr,
&&op_shl_c_pri, &&op_shl_c_alt, &&op_shr_c_pri, &&op_shr_c_alt,
&&op_smul, &&op_sdiv, &&op_sdiv_alt, &&op_umul,
&&op_udiv, &&op_udiv_alt, &&op_add, &&op_sub,
&&op_sub_alt, &&op_and, &&op_or, &&op_xor,
&&op_not, &&op_neg, &&op_invert, &&op_add_c,
&&op_smul_c, &&op_zero_pri, &&op_zero_alt, &&op_zero,
&&op_zero_s, &&op_sign_pri, &&op_sign_alt, &&op_eq,
&&op_neq, &&op_less, &&op_leq, &&op_grtr,
&&op_geq, &&op_sless, &&op_sleq, &&op_sgrtr,
&&op_sgeq, &&op_eq_c_pri, &&op_eq_c_alt, &&op_inc_pri,
&&op_inc_alt, &&op_inc, &&op_inc_s, &&op_inc_i,
&&op_dec_pri, &&op_dec_alt, &&op_dec, &&op_dec_s,
&&op_dec_i, &&op_movs, &&op_cmps, &&op_fill,
&&op_halt, &&op_bounds, &&op_sysreq_pri,&&op_sysreq_c,
&&op_file, &&op_line, &&op_symbol, &&op_srange,
&&op_jump_pri, &&op_switch, &&op_casetbl, &&op_swap_pri,
&&op_swap_alt, &&op_pushaddr, &&op_nop, &&op_sysreq_d,
&&op_symtag, &&op_break };
AMX_HEADER *hdr;
AMX_FUNCSTUB *func;
unsigned char *code, *data;
cell pri,alt,stk,frm,hea;
cell reset_stk, reset_hea, *cip;
cell offs;
ucell codesize;
int num,i;
/* HACK: return label table (for amx_BrowseRelocate) if amx structure
* has the AMX_FLAG_BROWSE flag set.
*/
assert(amx!=NULL);
if ((amx->flags & AMX_FLAG_BROWSE)==AMX_FLAG_BROWSE) {
assert(sizeof(cell)==sizeof(void *));
assert(retval!=NULL);
*retval=(cell)amx_opcodelist;
return 0;
} /* if */
if (amx->callback==NULL)
return AMX_ERR_CALLBACK;
if ((amx->flags & AMX_FLAG_NTVREG)==0)
return AMX_ERR_NOTFOUND;
if ((amx->flags & AMX_FLAG_RELOC)==0)
return AMX_ERR_INIT;
//assert((amx->flags & AMX_FLAG_BROWSE)==0);
/* set up the registers */
hdr=(AMX_HEADER *)amx->base;
assert(hdr->magic==AMX_MAGIC);
codesize=(ucell)(hdr->dat-hdr->cod);
code=amx->base+(int)hdr->cod;
data=(amx->data!=NULL) ? amx->data : amx->base+(int)hdr->dat;
hea=amx->hea;
stk=amx->stk;
reset_stk=stk;
reset_hea=hea;
alt=frm=0; /* just to avoid compiler warnings */
num=0; /* just to avoid compiler warnings */
/* get the start address */
if (index==AMX_EXEC_MAIN) {
if (hdr->cip<0)
return AMX_ERR_INDEX;
cip=(cell *)(code + (int)hdr->cip);
} else if (index==AMX_EXEC_CONT) {
/* all registers: pri, alt, frm, cip, hea, stk, reset_stk, reset_hea */
frm=amx->frm;
stk=amx->stk;
hea=amx->hea;
pri=amx->pri;
alt=amx->alt;
reset_stk=amx->reset_stk;
reset_hea=amx->reset_hea;
cip=(cell *)(code + (int)amx->cip);
} else if (index<0) {
return AMX_ERR_INDEX;
} else {
if (index>=(int)NUMENTRIES(hdr,publics,natives))
return AMX_ERR_INDEX;
func=GETENTRY(hdr,publics,index);
cip=(cell *)(code + (int)func->address);
} /* if */
/* check values just copied */
CHKSTACK();
CHKHEAP();
assert(check_endian());
/* sanity checks */
assert(OP_PUSH_PRI==36);
assert(OP_PROC==46);
assert(OP_SHL==65);
assert(OP_SMUL==72);
assert(OP_EQ==95);
assert(OP_INC_PRI==107);
assert(OP_MOVS==117);
assert(OP_SYMBOL==126);
#if PAWN_CELL_SIZE==16
assert(sizeof(cell)==2);
#elif PAWN_CELL_SIZE==32
assert(sizeof(cell)==4);
#elif PAWN_CELL_SIZE==64
assert(sizeof(cell)==8);
#else
#error Unsupported cell size
#endif
if (index!=AMX_EXEC_CONT) {
reset_stk+=amx->paramcount*sizeof(cell);
PUSH(amx->paramcount*sizeof(cell));
amx->paramcount=0; /* push the parameter count to the stack & reset */
PUSH(0); /* zero return address */
} /* if */
/* check stack/heap before starting to run */
CHKMARGIN();
/* start running */
NEXT(cip);
op_none:
ABORT(amx,AMX_ERR_INVINSTR);
op_load_pri:
GETPARAM(offs);
pri= * (cell *)(data+(int)offs);
NEXT(cip);
op_load_alt:
GETPARAM(offs);
alt= * (cell *)(data+(int)offs);
NEXT(cip);
op_load_s_pri:
GETPARAM(offs);
pri= * (cell *)(data+(int)frm+(int)offs);
NEXT(cip);
op_load_s_alt:
GETPARAM(offs);
alt= * (cell *)(data+(int)frm+(int)offs);
NEXT(cip);
op_lref_pri:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
pri= * (cell *)(data+(int)offs);
NEXT(cip);
op_lref_alt:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
alt= * (cell *)(data+(int)offs);
NEXT(cip);
op_lref_s_pri:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
pri= * (cell *)(data+(int)offs);
NEXT(cip);
op_lref_s_alt:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
alt= * (cell *)(data+(int)offs);
NEXT(cip);
op_load_i:
/* verify address */
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri= * (cell *)(data+(int)pri);
NEXT(cip);
op_lodb_i:
GETPARAM(offs);
/* verify address */
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
switch (offs) {
case 1:
pri= * (data+(int)pri);
break;
case 2:
pri= * (uint16_t *)(data+(int)pri);
break;
case 4:
pri= * (uint32_t *)(data+(int)pri);
break;
} /* switch */
NEXT(cip);
op_const_pri:
GETPARAM(pri);
NEXT(cip);
op_const_alt:
GETPARAM(alt);
NEXT(cip);
op_addr_pri:
GETPARAM(pri);
pri+=frm;
NEXT(cip);
op_addr_alt:
GETPARAM(alt);
alt+=frm;
NEXT(cip);
op_stor_pri:
GETPARAM(offs);
*(cell *)(data+(int)offs)=pri;
NEXT(cip);
op_stor_alt:
GETPARAM(offs);
*(cell *)(data+(int)offs)=alt;
NEXT(cip);
op_stor_s_pri:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs)=pri;
NEXT(cip);
op_stor_s_alt:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs)=alt;
NEXT(cip);
op_sref_pri:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
*(cell *)(data+(int)offs)=pri;
NEXT(cip);
op_sref_alt:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
*(cell *)(data+(int)offs)=alt;
NEXT(cip);
op_sref_s_pri:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
*(cell *)(data+(int)offs)=pri;
NEXT(cip);
op_sref_s_alt:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
*(cell *)(data+(int)offs)=alt;
NEXT(cip);
op_stor_i:
/* verify address */
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
*(cell *)(data+(int)alt)=pri;
NEXT(cip);
op_strb_i:
GETPARAM(offs);
/* verify address */
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
switch (offs) {
case 1:
*(data+(int)alt)=(unsigned char)pri;
break;
case 2:
*(uint16_t *)(data+(int)alt)=(uint16_t)pri;
break;
case 4:
*(uint32_t *)(data+(int)alt)=(uint32_t)pri;
break;
} /* switch */
NEXT(cip);
op_lidx:
offs=pri*sizeof(cell)+alt;
/* verify address */
if (offs>=hea && offs<stk || (ucell)offs>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri= * (cell *)(data+(int)offs);
NEXT(cip);
op_lidx_b:
GETPARAM(offs);
offs=(pri << (int)offs)+alt;
/* verify address */
if (offs>=hea && offs<stk || (ucell)offs>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri= * (cell *)(data+(int)offs);
NEXT(cip);
op_idxaddr:
pri=pri*sizeof(cell)+alt;
NEXT(cip);
op_idxaddr_b:
GETPARAM(offs);
pri=(pri << (int)offs)+alt;
NEXT(cip);
op_align_pri:
GETPARAM(offs);
#if BYTE_ORDER==LITTLE_ENDIAN
if (offs<(int)sizeof(cell))
pri ^= sizeof(cell)-offs;
#endif
NEXT(cip);
op_align_alt:
GETPARAM(offs);
#if BYTE_ORDER==LITTLE_ENDIAN
if (offs<(int)sizeof(cell))
alt ^= sizeof(cell)-offs;
#endif
NEXT(cip);
op_lctrl:
GETPARAM(offs);
switch (offs) {
case 0:
pri=hdr->cod;
break;
case 1:
pri=hdr->dat;
break;
case 2:
pri=hea;
break;
case 3:
pri=amx->stp;
break;
case 4:
pri=stk;
break;
case 5:
pri=frm;
break;
case 6:
pri=(cell)((unsigned char *)cip - code);
break;
} /* switch */
NEXT(cip);
op_sctrl:
GETPARAM(offs);
switch (offs) {
case 0:
case 1:
case 3:
/* cannot change these parameters */
break;
case 2:
hea=pri;
break;
case 4:
stk=pri;
break;
case 5:
frm=pri;
break;
case 6:
cip=(cell *)(code + (int)pri);
break;
} /* switch */
NEXT(cip);
op_move_pri:
pri=alt;
NEXT(cip);
op_move_alt:
alt=pri;
NEXT(cip);
op_xchg:
offs=pri; /* offs is a temporary variable */
pri=alt;
alt=offs;
NEXT(cip);
op_push_pri:
PUSH(pri);
NEXT(cip);
op_push_alt:
PUSH(alt);
NEXT(cip);
op_push_c:
GETPARAM(offs);
PUSH(offs);
NEXT(cip);
op_push_r:
GETPARAM(offs);
while (offs--)
PUSH(pri);
NEXT(cip);
op_push:
GETPARAM(offs);
PUSH(* (cell *)(data+(int)offs));
NEXT(cip);
op_push_s:
GETPARAM(offs);
PUSH(* (cell *)(data+(int)frm+(int)offs));
NEXT(cip);
op_pop_pri:
POP(pri);
NEXT(cip);
op_pop_alt:
POP(alt);
NEXT(cip);
op_stack:
GETPARAM(offs);
alt=stk;
stk+=offs;
CHKMARGIN();
CHKSTACK();
NEXT(cip);
op_heap:
GETPARAM(offs);
alt=hea;
hea+=offs;
CHKMARGIN();
CHKHEAP();
NEXT(cip);
op_proc:
PUSH(frm);
frm=stk;
CHKMARGIN();
NEXT(cip);
op_ret:
POP(frm);
POP(offs);
/* verify the return address */
if ((ucell)offs>=codesize)
ABORT(amx,AMX_ERR_MEMACCESS);
cip=(cell *)(code+(int)offs);
NEXT(cip);
op_retn:
POP(frm);
POP(offs);
/* verify the return address */
if ((ucell)offs>=codesize)
ABORT(amx,AMX_ERR_MEMACCESS);
cip=(cell *)(code+(int)offs);
stk+= *(cell *)(data+(int)stk) + sizeof(cell); /* remove parameters from the stack */
NEXT(cip);
op_call:
PUSH(((unsigned char *)cip-code)+sizeof(cell));/* push address behind instruction */
cip=JUMPABS(code, cip); /* jump to the address */
NEXT(cip);
op_call_pri:
/*
PUSH((unsigned char *)cip-code);
cip=(cell *)(code+(int)pri);
*/
assert(0);
NEXT(cip);
op_jump:
/* since the GETPARAM() macro modifies cip, you cannot
* do GETPARAM(cip) directly */
cip=JUMPABS(code, cip);
NEXT(cip);
op_jrel:
offs=*cip;
cip=(cell *)((unsigned char *)cip + (int)offs + sizeof(cell));
NEXT(cip);
op_jzer:
if (pri==0)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jnz:
if (pri!=0)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jeq:
if (pri==alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jneq:
if (pri!=alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jless:
if ((ucell)pri < (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jleq:
if ((ucell)pri <= (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jgrtr:
if ((ucell)pri > (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jgeq:
if ((ucell)pri >= (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jsless:
if (pri<alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jsleq:
if (pri<=alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jsgrtr:
if (pri>alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_jsgeq:
if (pri>=alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
NEXT(cip);
op_shl:
pri<<=alt;
NEXT(cip);
op_shr:
pri=(ucell)pri >> (ucell)alt;
NEXT(cip);
op_sshr:
pri>>=alt;
NEXT(cip);
op_shl_c_pri:
GETPARAM(offs);
pri<<=offs;
NEXT(cip);
op_shl_c_alt:
GETPARAM(offs);
alt<<=offs;
NEXT(cip);
op_shr_c_pri:
GETPARAM(offs);
pri=(ucell)pri >> (ucell)offs;
NEXT(cip);
op_shr_c_alt:
GETPARAM(offs);
alt=(ucell)alt >> (ucell)offs;
NEXT(cip);
op_smul:
pri*=alt;
NEXT(cip);
op_sdiv:
if (alt==0)
ABORT(amx,AMX_ERR_DIVIDE);
/* divide must always round down; this is a bit
* involved to do in a machine-independent way.
*/
offs=(pri % alt + alt) % alt; /* true modulus */
pri=(pri - offs) / alt; /* division result */
alt=offs;
NEXT(cip);
op_sdiv_alt:
if (pri==0)
ABORT(amx,AMX_ERR_DIVIDE);
/* divide must always round down; this is a bit
* involved to do in a machine-independent way.
*/
offs=(alt % pri + pri) % pri; /* true modulus */
pri=(alt - offs) / pri; /* division result */
alt=offs;
NEXT(cip);
op_umul:
pri=(ucell)pri * (ucell)alt;
NEXT(cip);
op_udiv:
if (alt==0)
ABORT(amx,AMX_ERR_DIVIDE);
offs=(ucell)pri % (ucell)alt; /* temporary storage */
pri=(ucell)pri / (ucell)alt;
alt=offs;
NEXT(cip);
op_udiv_alt:
if (pri==0)
ABORT(amx,AMX_ERR_DIVIDE);
offs=(ucell)alt % (ucell)pri; /* temporary storage */
pri=(ucell)alt / (ucell)pri;
alt=offs;
NEXT(cip);
op_add:
pri+=alt;
NEXT(cip);
op_sub:
pri-=alt;
NEXT(cip);
op_sub_alt:
pri=alt-pri;
NEXT(cip);
op_and:
pri&=alt;
NEXT(cip);
op_or:
pri|=alt;
NEXT(cip);
op_xor:
pri^=alt;
NEXT(cip);
op_not:
pri=!pri;
NEXT(cip);
op_neg:
pri=-pri;
NEXT(cip);
op_invert:
pri=~pri;
NEXT(cip);
op_add_c:
GETPARAM(offs);
pri+=offs;
NEXT(cip);
op_smul_c:
GETPARAM(offs);
pri*=offs;
NEXT(cip);
op_zero_pri:
pri=0;
NEXT(cip);
op_zero_alt:
alt=0;
NEXT(cip);
op_zero:
GETPARAM(offs);
*(cell *)(data+(int)offs)=0;
NEXT(cip);
op_zero_s:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs)=0;
NEXT(cip);
op_sign_pri:
if ((pri & 0xff)>=0x80)
pri|= ~ (ucell)0xff;
NEXT(cip);
op_sign_alt:
if ((alt & 0xff)>=0x80)
alt|= ~ (ucell)0xff;
NEXT(cip);
op_eq:
pri= pri==alt ? 1 : 0;
NEXT(cip);
op_neq:
pri= pri!=alt ? 1 : 0;
NEXT(cip);
op_less:
pri= (ucell)pri < (ucell)alt ? 1 : 0;
NEXT(cip);
op_leq:
pri= (ucell)pri <= (ucell)alt ? 1 : 0;
NEXT(cip);
op_grtr:
pri= (ucell)pri > (ucell)alt ? 1 : 0;
NEXT(cip);
op_geq:
pri= (ucell)pri >= (ucell)alt ? 1 : 0;
NEXT(cip);
op_sless:
pri= pri<alt ? 1 : 0;
NEXT(cip);
op_sleq:
pri= pri<=alt ? 1 : 0;
NEXT(cip);
op_sgrtr:
pri= pri>alt ? 1 : 0;
NEXT(cip);
op_sgeq:
pri= pri>=alt ? 1 : 0;
NEXT(cip);
op_eq_c_pri:
GETPARAM(offs);
pri= pri==offs ? 1 : 0;
NEXT(cip);
op_eq_c_alt:
GETPARAM(offs);
pri= alt==offs ? 1 : 0;
NEXT(cip);
op_inc_pri:
pri++;
NEXT(cip);
op_inc_alt:
alt++;
NEXT(cip);
op_inc:
GETPARAM(offs);
*(cell *)(data+(int)offs) += 1;
NEXT(cip);
op_inc_s:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs) += 1;
NEXT(cip);
op_inc_i:
*(cell *)(data+(int)pri) += 1;
NEXT(cip);
op_dec_pri:
pri--;
NEXT(cip);
op_dec_alt:
alt--;
NEXT(cip);
op_dec:
GETPARAM(offs);
*(cell *)(data+(int)offs) -= 1;
NEXT(cip);
op_dec_s:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs) -= 1;
NEXT(cip);
op_dec_i:
*(cell *)(data+(int)pri) -= 1;
NEXT(cip);
op_movs:
GETPARAM(offs);
/* verify top & bottom memory addresses, for both source and destination
* addresses
*/
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((pri+offs)>hea && (pri+offs)<stk || (ucell)(pri+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((alt+offs)>hea && (alt+offs)<stk || (ucell)(alt+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
memcpy(data+(int)alt, data+(int)pri, (int)offs);
NEXT(cip);
op_cmps:
GETPARAM(offs);
/* verify top & bottom memory addresses, for both source and destination
* addresses
*/
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((pri+offs)>hea && (pri+offs)<stk || (ucell)(pri+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((alt+offs)>hea && (alt+offs)<stk || (ucell)(alt+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri=memcmp(data+(int)alt, data+(int)pri, (int)offs);
NEXT(cip);
op_fill:
GETPARAM(offs);
/* verify top & bottom memory addresses */
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((alt+offs)>hea && (alt+offs)<stk || (ucell)(alt+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
for (i=(int)alt; offs>=(int)sizeof(cell); i+=sizeof(cell), offs-=sizeof(cell))
*(cell *)(data+i) = pri;
NEXT(cip);
op_halt:
GETPARAM(offs);
if (retval!=NULL)
*retval=pri;
/* store complete status (stk and hea are already set in the ABORT macro) */
amx->frm=frm;
amx->pri=pri;
amx->alt=alt;
amx->cip=(cell)((unsigned char*)cip-code);
if (offs==AMX_ERR_SLEEP) {
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return (int)offs;
} /* if */
ABORT(amx,(int)offs);
op_bounds:
GETPARAM(offs);
if ((ucell)pri>(ucell)offs)
ABORT(amx,AMX_ERR_BOUNDS);
NEXT(cip);
op_sysreq_pri:
/* save a few registers */
amx->cip=(cell)((unsigned char *)cip-code);
amx->hea=hea;
amx->frm=frm;
amx->stk=stk;
num=amx->callback(amx,pri,&pri,(cell *)(data+(int)stk));
if (num!=AMX_ERR_NONE) {
if (num==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,num);
} /* if */
NEXT(cip);
op_sysreq_c:
GETPARAM(offs);
/* save a few registers */
amx->cip=(cell)((unsigned char *)cip-code);
amx->hea=hea;
amx->frm=frm;
amx->stk=stk;
num=amx->callback(amx,offs,&pri,(cell *)(data+(int)stk));
if (num!=AMX_ERR_NONE) {
if (num==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,num);
} /* if */
NEXT(cip);
op_sysreq_d:
GETPARAM(offs);
/* save a few registers */
amx->cip=(cell)((unsigned char *)cip-code);
amx->hea=hea;
amx->frm=frm;
amx->stk=stk;
pri=((AMX_NATIVE)offs)(amx,(cell *)(data+(int)stk));
if (amx->error!=AMX_ERR_NONE) {
if (amx->error==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,amx->error);
} /* if */
NEXT(cip);
op_file:
GETPARAM(offs);
cip=(cell *)((unsigned char *)cip + (int)offs);
assert(0); /* this code should not occur during execution */
NEXT(cip);
op_line:
SKIPPARAM(2);
NEXT(cip);
op_symbol:
GETPARAM(offs);
cip=(cell *)((unsigned char *)cip + (int)offs);
NEXT(cip);
op_srange:
SKIPPARAM(2);
NEXT(cip);
op_symtag:
SKIPPARAM(1);
NEXT(cip);
op_jump_pri:
/*
cip=(cell *)(code+(int)pri);
*/
assert(0);
NEXT(cip);
op_switch: {
cell *cptr;
cptr=JUMPABS(code,cip)+1; /* +1, to skip the "casetbl" opcode */
cip=JUMPABS(code,cptr+1); /* preset to "none-matched" case */
num=(int)*cptr; /* number of records in the case table */
for (cptr+=2; num>0 && *cptr!=pri; num--,cptr+=2)
/* nothing */;
if (num>0)
cip=JUMPABS(code,cptr+1); /* case found */
NEXT(cip);
}
op_casetbl:
assert(0); /* this should not occur during execution */
NEXT(cip);
op_swap_pri:
offs=*(cell *)(data+(int)stk);
*(cell *)(data+(int)stk)=pri;
pri=offs;
NEXT(cip);
op_swap_alt:
offs=*(cell *)(data+(int)stk);
*(cell *)(data+(int)stk)=alt;
alt=offs;
NEXT(cip);
op_pushaddr:
GETPARAM(offs);
PUSH(frm+offs);
NEXT(cip);
op_nop:
NEXT(cip);
op_break:
if (amx->debug!=NULL) {
/* store status */
amx->frm=frm;
amx->stk=stk;
amx->hea=hea;
amx->cip=(cell)((unsigned char*)cip-code);
num=amx->debug(amx);
if (num!=AMX_ERR_NONE) {
if (num==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,num);
} /* if */
} /* if */
NEXT(cip);
}
#else
/* ANSI C & assembler versions */
#if defined ASM32 || defined JIT
/* For Watcom C/C++ use register calling convention (faster); for
* Microsoft C/C++ (and most other C compilers) use "cdecl".
* The important point is that you assemble AMXEXEC.ASM with the matching
* calling convention, or the right JIT, respectively.
* AMXJITR.ASM is for Watcom's register calling convention, AMXJITS.ASM and
* AMXJITSN.ASM are for "cdecl".
*/
#if defined __WATCOMC__
#if !defined STACKARGS /* for AMX32.DLL */
extern cell amx_exec_asm(cell *regs,cell *retval,cell stp,cell hea);
/* The following pragma tells the compiler into which registers
* the parameters have to go. */
#pragma aux amx_exec_asm parm [eax] [edx] [ebx] [ecx];
extern cell amx_exec_jit(cell *regs,cell *retval,cell stp,cell hea);
#pragma aux amx_exec_jit parm [eax] [edx] [ebx] [ecx];
#else
extern cell __cdecl amx_exec_asm(cell *regs,cell *retval,cell stp,cell hea);
extern cell __cdecl amx_exec_jit(cell *regs,cell *retval,cell stp,cell hea);
#endif
#elif defined __GNUC__
/* force "cdecl" by adding an "attribute" to the declaration */
extern cell amx_exec_asm(cell *regs,cell *retval,cell stp,cell hea) __attribute__((cdecl));
extern cell amx_exec_jit(cell *regs,cell *retval,cell stp,cell hea) __attribute__((cdecl));
#else
/* force "cdecl" by specifying it as a "function class" with the "__cdecl" keyword */
extern cell __cdecl amx_exec_asm(cell *regs,cell *retval,cell stp,cell hea);
extern cell __cdecl amx_exec_jit(cell *regs,cell *retval,cell stp,cell hea);
#endif
#endif
int AMXAPI amx_Exec(AMX *amx, cell *retval, int index)
{
AMX_HEADER *hdr;
AMX_FUNCSTUB *func;
unsigned char *code, *data;
cell pri,alt,stk,frm,hea;
cell reset_stk, reset_hea, *cip;
ucell codesize;
int i;
#if defined ASM32 || defined JIT
cell parms[9]; /* registers and parameters for assembler AMX */
#else
OPCODE op;
cell offs;
int num;
#endif
#if defined ASM32
extern void const *amx_opcodelist[];
#ifdef __WATCOMC__
#pragma aux amx_opcodelist "_*"
#endif
#endif
#if defined JIT
extern void const *amx_opcodelist_jit[];
#ifdef __WATCOMC__
#pragma aux amx_opcodelist_jit "_*"
#endif
#endif
assert(amx!=NULL);
#if defined ASM32 || defined JIT
/* HACK: return label table (for amx_BrowseRelocate) if amx structure
* is not passed.
*/
if ((amx->flags & AMX_FLAG_BROWSE)==AMX_FLAG_BROWSE) {
assert(sizeof(cell)==sizeof(void *));
assert(retval!=NULL);
#if defined ASM32 && defined JIT
if ((amx->flags & AMX_FLAG_JITC)!=0)
*retval=(cell)amx_opcodelist_jit;
else
*retval=(cell)amx_opcodelist;
#elif defined ASM32
*retval=(cell)amx_opcodelist;
#else
*retval=(cell)amx_opcodelist_jit;
#endif
return 0;
} /* if */
#endif
if (amx->callback==NULL)
return AMX_ERR_CALLBACK;
if ((amx->flags & AMX_FLAG_NTVREG)==0)
return AMX_ERR_NOTFOUND;
if ((amx->flags & AMX_FLAG_RELOC)==0)
return AMX_ERR_INIT;
assert((amx->flags & AMX_FLAG_BROWSE)==0);
/* set up the registers */
hdr=(AMX_HEADER *)amx->base;
assert(hdr->magic==AMX_MAGIC);
codesize=(ucell)(hdr->dat-hdr->cod);
code=amx->base+(int)hdr->cod;
data=(amx->data!=NULL) ? amx->data : amx->base+(int)hdr->dat;
hea=amx->hea;
stk=amx->stk;
reset_stk=stk;
reset_hea=hea;
frm=alt=pri=0; /* silence up compiler */
/* get the start address */
if (index==AMX_EXEC_MAIN) {
if (hdr->cip<0)
return AMX_ERR_INDEX;
cip=(cell *)(code + (int)hdr->cip);
} else if (index==AMX_EXEC_CONT) {
/* all registers: pri, alt, frm, cip, hea, stk, reset_stk, reset_hea */
frm=amx->frm;
stk=amx->stk;
hea=amx->hea;
pri=amx->pri;
alt=amx->alt;
reset_stk=amx->reset_stk;
reset_hea=amx->reset_hea;
cip=(cell *)(code + (int)amx->cip);
} else if (index<0) {
return AMX_ERR_INDEX;
} else {
if (index>=(cell)NUMENTRIES(hdr,publics,natives))
return AMX_ERR_INDEX;
func=GETENTRY(hdr,publics,index);
cip=(cell *)(code + (int)func->address);
} /* if */
/* check values just copied */
CHKSTACK();
CHKHEAP();
assert(check_endian());
/* sanity checks */
assert(OP_PUSH_PRI==36);
assert(OP_PROC==46);
assert(OP_SHL==65);
assert(OP_SMUL==72);
assert(OP_EQ==95);
assert(OP_INC_PRI==107);
assert(OP_MOVS==117);
assert(OP_SYMBOL==126);
#if PAWN_CELL_SIZE==16
assert(sizeof(cell)==2);
#elif PAWN_CELL_SIZE==32
assert(sizeof(cell)==4);
#elif PAWN_CELL_SIZE==64
assert(sizeof(cell)==8);
#else
#error Unsupported cell size
#endif
if (index!=AMX_EXEC_CONT) {
reset_stk+=amx->paramcount*sizeof(cell);
PUSH(amx->paramcount*sizeof(cell));
amx->paramcount=0; /* push the parameter count to the stack & reset */
#if defined ASM32 || defined JIT
PUSH(RELOC_VALUE(code,0));/* relocated zero return address */
#else
PUSH(0); /* zero return address */
#endif
} /* if */
/* check stack/heap before starting to run */
CHKMARGIN();
/* start running */
#if defined ASM32 || defined JIT
/* either the assembler abstract machine or the JIT; both by Marc Peter */
parms[0] = pri;
parms[1] = alt;
parms[2] = (cell)cip;
parms[3] = (cell)data;
parms[4] = stk;
parms[5] = frm;
parms[6] = (cell)amx;
parms[7] = (cell)code;
parms[8] = (cell)codesize;
#if defined ASM32 && defined JIT
if ((amx->flags & AMX_FLAG_JITC)!=0)
i = amx_exec_jit(parms,retval,amx->stp,hea);
else
i = amx_exec_asm(parms,retval,amx->stp,hea);
#elif defined ASM32
i = amx_exec_asm(parms,retval,amx->stp,hea);
#else
i = amx_exec_jit(parms,retval,amx->stp,hea);
#endif
if (i == AMX_ERR_SLEEP) {
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
} else {
/* remove parameters from the stack; do this the "hard" way, because
* the assembler version has no internal knowledge of the local
* variables, so any "clean" way would be a kludge anyway.
*/
amx->stk=reset_stk;
amx->hea=reset_hea;
} /* if */
return i;
#else
for ( ;; ) {
op=(OPCODE) *cip++;
switch (op) {
case OP_LOAD_PRI:
GETPARAM(offs);
pri= * (cell *)(data+(int)offs);
break;
case OP_LOAD_ALT:
GETPARAM(offs);
alt= * (cell *)(data+(int)offs);
break;
case OP_LOAD_S_PRI:
GETPARAM(offs);
pri= * (cell *)(data+(int)frm+(int)offs);
break;
case OP_LOAD_S_ALT:
GETPARAM(offs);
alt= * (cell *)(data+(int)frm+(int)offs);
break;
case OP_LREF_PRI:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
pri= * (cell *)(data+(int)offs);
break;
case OP_LREF_ALT:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
alt= * (cell *)(data+(int)offs);
break;
case OP_LREF_S_PRI:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
pri= * (cell *)(data+(int)offs);
break;
case OP_LREF_S_ALT:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
alt= * (cell *)(data+(int)offs);
break;
case OP_LOAD_I:
/* verify address */
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri= * (cell *)(data+(int)pri);
break;
case OP_LODB_I:
GETPARAM(offs);
/* verify address */
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
switch (offs) {
case 1:
pri= * (data+(int)pri);
break;
case 2:
pri= * (uint16_t *)(data+(int)pri);
break;
case 4:
pri= * (uint32_t *)(data+(int)pri);
break;
} /* switch */
break;
case OP_CONST_PRI:
GETPARAM(pri);
break;
case OP_CONST_ALT:
GETPARAM(alt);
break;
case OP_ADDR_PRI:
GETPARAM(pri);
pri+=frm;
break;
case OP_ADDR_ALT:
GETPARAM(alt);
alt+=frm;
break;
case OP_STOR_PRI:
GETPARAM(offs);
*(cell *)(data+(int)offs)=pri;
break;
case OP_STOR_ALT:
GETPARAM(offs);
*(cell *)(data+(int)offs)=alt;
break;
case OP_STOR_S_PRI:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs)=pri;
break;
case OP_STOR_S_ALT:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs)=alt;
break;
case OP_SREF_PRI:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
*(cell *)(data+(int)offs)=pri;
break;
case OP_SREF_ALT:
GETPARAM(offs);
offs= * (cell *)(data+(int)offs);
*(cell *)(data+(int)offs)=alt;
break;
case OP_SREF_S_PRI:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
*(cell *)(data+(int)offs)=pri;
break;
case OP_SREF_S_ALT:
GETPARAM(offs);
offs= * (cell *)(data+(int)frm+(int)offs);
*(cell *)(data+(int)offs)=alt;
break;
case OP_STOR_I:
/* verify address */
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
*(cell *)(data+(int)alt)=pri;
break;
case OP_STRB_I:
GETPARAM(offs);
/* verify address */
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
switch (offs) {
case 1:
*(data+(int)alt)=(unsigned char)pri;
break;
case 2:
*(uint16_t *)(data+(int)alt)=(uint16_t)pri;
break;
case 4:
*(uint32_t *)(data+(int)alt)=(uint32_t)pri;
break;
} /* switch */
break;
case OP_LIDX:
offs=pri*sizeof(cell)+alt;
/* verify address */
if (offs>=hea && offs<stk || (ucell)offs>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri= * (cell *)(data+(int)offs);
break;
case OP_LIDX_B:
GETPARAM(offs);
offs=(pri << (int)offs)+alt;
/* verify address */
if (offs>=hea && offs<stk || (ucell)offs>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri= * (cell *)(data+(int)offs);
break;
case OP_IDXADDR:
pri=pri*sizeof(cell)+alt;
break;
case OP_IDXADDR_B:
GETPARAM(offs);
pri=(pri << (int)offs)+alt;
break;
case OP_ALIGN_PRI:
GETPARAM(offs);
#if BYTE_ORDER==LITTLE_ENDIAN
if ((size_t)offs<sizeof(cell))
pri ^= sizeof(cell)-offs;
#endif
break;
case OP_ALIGN_ALT:
GETPARAM(offs);
#if BYTE_ORDER==LITTLE_ENDIAN
if ((size_t)offs<sizeof(cell))
alt ^= sizeof(cell)-offs;
#endif
break;
case OP_LCTRL:
GETPARAM(offs);
switch (offs) {
case 0:
pri=hdr->cod;
break;
case 1:
pri=hdr->dat;
break;
case 2:
pri=hea;
break;
case 3:
pri=amx->stp;
break;
case 4:
pri=stk;
break;
case 5:
pri=frm;
break;
case 6:
pri=(cell)((unsigned char *)cip - code);
break;
} /* switch */
break;
case OP_SCTRL:
GETPARAM(offs);
switch (offs) {
case 0:
case 1:
case 3:
/* cannot change these parameters */
break;
case 2:
hea=pri;
break;
case 4:
stk=pri;
break;
case 5:
frm=pri;
break;
case 6:
cip=(cell *)(code + (int)pri);
break;
} /* switch */
break;
case OP_MOVE_PRI:
pri=alt;
break;
case OP_MOVE_ALT:
alt=pri;
break;
case OP_XCHG:
offs=pri; /* offs is a temporary variable */
pri=alt;
alt=offs;
break;
case OP_PUSH_PRI:
PUSH(pri);
break;
case OP_PUSH_ALT:
PUSH(alt);
break;
case OP_PUSH_C:
GETPARAM(offs);
PUSH(offs);
break;
case OP_PUSH_R:
GETPARAM(offs);
while (offs--)
PUSH(pri);
break;
case OP_PUSH:
GETPARAM(offs);
PUSH(* (cell *)(data+(int)offs));
break;
case OP_PUSH_S:
GETPARAM(offs);
PUSH(* (cell *)(data+(int)frm+(int)offs));
break;
case OP_POP_PRI:
POP(pri);
break;
case OP_POP_ALT:
POP(alt);
break;
case OP_STACK:
GETPARAM(offs);
alt=stk;
stk+=offs;
CHKMARGIN();
CHKSTACK();
break;
case OP_HEAP:
GETPARAM(offs);
alt=hea;
hea+=offs;
CHKMARGIN();
CHKHEAP();
break;
case OP_PROC:
PUSH(frm);
frm=stk;
CHKMARGIN();
break;
case OP_RET:
POP(frm);
POP(offs);
/* verify the return address */
if ((ucell)offs>=codesize)
ABORT(amx,AMX_ERR_MEMACCESS);
cip=(cell *)(code+(int)offs);
break;
case OP_RETN:
POP(frm);
POP(offs);
/* verify the return address */
if ((ucell)offs>=codesize)
ABORT(amx,AMX_ERR_MEMACCESS);
cip=(cell *)(code+(int)offs);
stk+= *(cell *)(data+(int)stk) + sizeof(cell); /* remove parameters from the stack */
amx->stk=stk;
break;
case OP_CALL:
PUSH(((unsigned char *)cip-code)+sizeof(cell));/* skip address */
cip=JUMPABS(code, cip); /* jump to the address */
break;
case OP_CALL_PRI:
/*
PUSH((unsigned char *)cip-code);
cip=(cell *)(code+(int)pri);
*/
ABORT(amx,AMX_ERR_INVINSTR);
break;
case OP_JUMP:
/* since the GETPARAM() macro modifies cip, you cannot
* do GETPARAM(cip) directly */
cip=JUMPABS(code, cip);
break;
case OP_JREL:
offs=*cip;
cip=(cell *)((unsigned char *)cip + (int)offs + sizeof(cell));
break;
case OP_JZER:
if (pri==0)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JNZ:
if (pri!=0)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JEQ:
if (pri==alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JNEQ:
if (pri!=alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JLESS:
if ((ucell)pri < (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JLEQ:
if ((ucell)pri <= (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JGRTR:
if ((ucell)pri > (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JGEQ:
if ((ucell)pri >= (ucell)alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JSLESS:
if (pri<alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JSLEQ:
if (pri<=alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JSGRTR:
if (pri>alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_JSGEQ:
if (pri>=alt)
cip=JUMPABS(code, cip);
else
cip=(cell *)((unsigned char *)cip+sizeof(cell));
break;
case OP_SHL:
pri<<=alt;
break;
case OP_SHR:
pri=(ucell)pri >> (int)alt;
break;
case OP_SSHR:
pri>>=alt;
break;
case OP_SHL_C_PRI:
GETPARAM(offs);
pri<<=offs;
break;
case OP_SHL_C_ALT:
GETPARAM(offs);
alt<<=offs;
break;
case OP_SHR_C_PRI:
GETPARAM(offs);
pri=(ucell)pri >> (int)offs;
break;
case OP_SHR_C_ALT:
GETPARAM(offs);
alt=(ucell)alt >> (int)offs;
break;
case OP_SMUL:
pri*=alt;
break;
case OP_SDIV:
if (alt==0)
ABORT(amx,AMX_ERR_DIVIDE);
/* divide must always round down; this is a bit
* involved to do in a machine-independent way.
*/
offs=(pri % alt + alt) % alt; /* true modulus */
pri=(pri - offs) / alt; /* division result */
alt=offs;
break;
case OP_SDIV_ALT:
if (pri==0)
ABORT(amx,AMX_ERR_DIVIDE);
/* divide must always round down; this is a bit
* involved to do in a machine-independent way.
*/
offs=(alt % pri + pri) % pri; /* true modulus */
pri=(alt - offs) / pri; /* division result */
alt=offs;
break;
case OP_UMUL:
pri=(ucell)pri * (ucell)alt;
break;
case OP_UDIV:
if (alt==0)
ABORT(amx,AMX_ERR_DIVIDE);
offs=(ucell)pri % (ucell)alt; /* temporary storage */
pri=(ucell)pri / (ucell)alt;
alt=offs;
break;
case OP_UDIV_ALT:
if (pri==0)
ABORT(amx,AMX_ERR_DIVIDE);
offs=(ucell)alt % (ucell)pri; /* temporary storage */
pri=(ucell)alt / (ucell)pri;
alt=offs;
break;
case OP_ADD:
pri+=alt;
break;
case OP_SUB:
pri-=alt;
break;
case OP_SUB_ALT:
pri=alt-pri;
break;
case OP_AND:
pri&=alt;
break;
case OP_OR:
pri|=alt;
break;
case OP_XOR:
pri^=alt;
break;
case OP_NOT:
pri=!pri;
break;
case OP_NEG:
pri=-pri;
break;
case OP_INVERT:
pri=~pri;
break;
case OP_ADD_C:
GETPARAM(offs);
pri+=offs;
break;
case OP_SMUL_C:
GETPARAM(offs);
pri*=offs;
break;
case OP_ZERO_PRI:
pri=0;
break;
case OP_ZERO_ALT:
alt=0;
break;
case OP_ZERO:
GETPARAM(offs);
*(cell *)(data+(int)offs)=0;
break;
case OP_ZERO_S:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs)=0;
break;
case OP_SIGN_PRI:
if ((pri & 0xff)>=0x80)
pri|= ~ (ucell)0xff;
break;
case OP_SIGN_ALT:
if ((alt & 0xff)>=0x80)
alt|= ~ (ucell)0xff;
break;
case OP_EQ:
pri= pri==alt ? 1 : 0;
break;
case OP_NEQ:
pri= pri!=alt ? 1 : 0;
break;
case OP_LESS:
pri= (ucell)pri < (ucell)alt ? 1 : 0;
break;
case OP_LEQ:
pri= (ucell)pri <= (ucell)alt ? 1 : 0;
break;
case OP_GRTR:
pri= (ucell)pri > (ucell)alt ? 1 : 0;
break;
case OP_GEQ:
pri= (ucell)pri >= (ucell)alt ? 1 : 0;
break;
case OP_SLESS:
pri= pri<alt ? 1 : 0;
break;
case OP_SLEQ:
pri= pri<=alt ? 1 : 0;
break;
case OP_SGRTR:
pri= pri>alt ? 1 : 0;
break;
case OP_SGEQ:
pri= pri>=alt ? 1 : 0;
break;
case OP_EQ_C_PRI:
GETPARAM(offs);
pri= pri==offs ? 1 : 0;
break;
case OP_EQ_C_ALT:
GETPARAM(offs);
pri= alt==offs ? 1 : 0;
break;
case OP_INC_PRI:
pri++;
break;
case OP_INC_ALT:
alt++;
break;
case OP_INC:
GETPARAM(offs);
*(cell *)(data+(int)offs) += 1;
break;
case OP_INC_S:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs) += 1;
break;
case OP_INC_I:
*(cell *)(data+(int)pri) += 1;
break;
case OP_DEC_PRI:
pri--;
break;
case OP_DEC_ALT:
alt--;
break;
case OP_DEC:
GETPARAM(offs);
*(cell *)(data+(int)offs) -= 1;
break;
case OP_DEC_S:
GETPARAM(offs);
*(cell *)(data+(int)frm+(int)offs) -= 1;
break;
case OP_DEC_I:
*(cell *)(data+(int)pri) -= 1;
break;
case OP_MOVS:
GETPARAM(offs);
/* verify top & bottom memory addresses, for both source and destination
* addresses
*/
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((pri+offs)>hea && (pri+offs)<stk || (ucell)(pri+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((alt+offs)>hea && (alt+offs)<stk || (ucell)(alt+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
memcpy(data+(int)alt, data+(int)pri, (int)offs);
break;
case OP_CMPS:
GETPARAM(offs);
/* verify top & bottom memory addresses, for both source and destination
* addresses
*/
if (pri>=hea && pri<stk || (ucell)pri>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((pri+offs)>hea && (pri+offs)<stk || (ucell)(pri+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((alt+offs)>hea && (alt+offs)<stk || (ucell)(alt+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
pri=memcmp(data+(int)alt, data+(int)pri, (int)offs);
break;
case OP_FILL:
GETPARAM(offs);
/* verify top & bottom memory addresses (destination only) */
if (alt>=hea && alt<stk || (ucell)alt>=(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
if ((alt+offs)>hea && (alt+offs)<stk || (ucell)(alt+offs)>(ucell)amx->stp)
ABORT(amx,AMX_ERR_MEMACCESS);
for (i=(int)alt; (size_t)offs>=sizeof(cell); i+=sizeof(cell), offs-=sizeof(cell))
*(cell *)(data+i) = pri;
break;
case OP_HALT:
GETPARAM(offs);
if (retval!=NULL)
*retval=pri;
/* store complete status (stk and hea are already set in the ABORT macro) */
amx->frm=frm;
amx->pri=pri;
amx->alt=alt;
amx->cip=(cell)((unsigned char*)cip-code);
if (offs==AMX_ERR_SLEEP) {
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return (int)offs;
} /* if */
ABORT(amx,(int)offs);
case OP_BOUNDS:
GETPARAM(offs);
if ((ucell)pri>(ucell)offs)
ABORT(amx,AMX_ERR_BOUNDS);
break;
case OP_SYSREQ_PRI:
/* save a few registers */
amx->cip=(cell)((unsigned char *)cip-code);
amx->hea=hea;
amx->frm=frm;
amx->stk=stk;
num=amx->callback(amx,pri,&pri,(cell *)(data+(int)stk));
if (num!=AMX_ERR_NONE) {
if (num==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,num);
} /* if */
break;
case OP_SYSREQ_C:
GETPARAM(offs);
/* save a few registers */
amx->cip=(cell)((unsigned char *)cip-code);
amx->hea=hea;
amx->frm=frm;
amx->stk=stk;
num=amx->callback(amx,offs,&pri,(cell *)(data+(int)stk));
if (num!=AMX_ERR_NONE) {
if (num==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,num);
} /* if */
break;
case OP_SYSREQ_D:
GETPARAM(offs);
/* save a few registers */
amx->cip=(cell)((unsigned char *)cip-code);
amx->hea=hea;
amx->frm=frm;
amx->stk=stk;
pri=((AMX_NATIVE)offs)(amx,(cell *)(data+(int)stk));
if (amx->error!=AMX_ERR_NONE) {
if (amx->error==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,amx->error);
} /* if */
break;
case OP_LINE:
SKIPPARAM(2);
break;
case OP_SYMBOL:
GETPARAM(offs);
cip=(cell *)((unsigned char *)cip + (int)offs);
break;
case OP_SRANGE:
SKIPPARAM(2);
break;
case OP_SYMTAG:
SKIPPARAM(1);
break;
case OP_JUMP_PRI:
/*
cip=(cell *)(code+(int)pri);
*/
ABORT(amx,AMX_ERR_INVINSTR);
break;
case OP_SWITCH: {
cell *cptr;
cptr=JUMPABS(code,cip)+1; /* +1, to skip the "casetbl" opcode */
cip=JUMPABS(code,cptr+1); /* preset to "none-matched" case */
num=(int)*cptr; /* number of records in the case table */
for (cptr+=2; num>0 && *cptr!=pri; num--,cptr+=2)
/* nothing */;
if (num>0)
cip=JUMPABS(code,cptr+1); /* case found */
break;
} /* case */
case OP_SWAP_PRI:
offs=*(cell *)(data+(int)stk);
*(cell *)(data+(int)stk)=pri;
pri=offs;
break;
case OP_SWAP_ALT:
offs=*(cell *)(data+(int)stk);
*(cell *)(data+(int)stk)=alt;
alt=offs;
break;
case OP_PUSHADDR:
GETPARAM(offs);
PUSH(frm+offs);
break;
case OP_NOP:
break;
case OP_BREAK:
assert((amx->flags & AMX_FLAG_BROWSE)==0);
if (amx->debug!=NULL) {
/* store status */
amx->frm=frm;
amx->stk=stk;
amx->hea=hea;
amx->cip=(cell)((unsigned char*)cip-code);
num=amx->debug(amx);
if (num!=AMX_ERR_NONE) {
if (num==AMX_ERR_SLEEP) {
amx->pri=pri;
amx->alt=alt;
amx->reset_stk=reset_stk;
amx->reset_hea=reset_hea;
return num;
} /* if */
ABORT(amx,num);
} /* if */
} /* if */
break;
default:
/* case OP_FILE: should not occur during execution
* case OP_CASETBL: should not occur during execution
*/
assert(0);
ABORT(amx,AMX_ERR_INVINSTR);
} /* switch */
} /* for */
#endif
}
#endif /* __GNUC__ */
#endif /* AMX_EXEC || AMX_INIT */
#if defined AMX_SETCALLBACK
int AMXAPI amx_SetCallback(AMX *amx,AMX_CALLBACK callback)
{
assert(amx!=NULL);
assert(callback!=NULL);
amx->callback=callback;
return AMX_ERR_NONE;
}
#endif /* AMX_SETCALLBACK */
#if defined AMX_SETDEBUGHOOK
int AMXAPI amx_SetDebugHook(AMX *amx,AMX_DEBUG debug)
{
assert(amx!=NULL);
amx->debug=debug;
return AMX_ERR_NONE;
}
#endif /* AMX_SETDEBUGHOOK */
#if defined AMX_RAISEERROR
int AMXAPI amx_RaiseError(AMX *amx, int error)
{
assert(error>0);
amx->error=error;
return AMX_ERR_NONE;
}
#endif /* AMX_RAISEERROR */
#if defined AMX_GETADDR
int AMXAPI amx_GetAddr(AMX *amx,cell amx_addr,cell **phys_addr)
{
AMX_HEADER *hdr;
unsigned char *data;
assert(amx!=NULL);
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
data=(amx->data!=NULL) ? amx->data : amx->base+(int)hdr->dat;
assert(phys_addr!=NULL);
if (amx_addr>=amx->hea && amx_addr<amx->stk || amx_addr<0 || amx_addr>=amx->stp) {
*phys_addr=NULL;
return AMX_ERR_MEMACCESS;
} /* if */
*phys_addr=(cell *)(data + (int)amx_addr);
return AMX_ERR_NONE;
}
#endif /* AMX_GETADDR */
#if defined AMX_ALLOT || defined AMX_EXEC
int AMXAPI amx_Allot(AMX *amx,int cells,cell *amx_addr,cell **phys_addr)
{
AMX_HEADER *hdr;
unsigned char *data;
assert(amx!=NULL);
hdr=(AMX_HEADER *)amx->base;
assert(hdr!=NULL);
assert(hdr->magic==AMX_MAGIC);
data=(amx->data!=NULL) ? amx->data : amx->base+(int)hdr->dat;
if (amx->stk - amx->hea - cells*sizeof(cell) < STKMARGIN)
return AMX_ERR_MEMORY;
assert(amx_addr!=NULL);
assert(phys_addr!=NULL);
*amx_addr=amx->hea;
*phys_addr=(cell *)(data + (int)amx->hea);
amx->hea += cells*sizeof(cell);
return AMX_ERR_NONE;
}
int AMXAPI amx_Release(AMX *amx,cell amx_addr)
{
if (amx->hea > amx_addr)
amx->hea=amx_addr;
return AMX_ERR_NONE;
}
#endif /* AMX_ALLOT */
#if defined AMX_XXXSTRING || defined AMX_UTF8XXX
#define CHARBITS (8*sizeof(char))
#if PAWN_CELL_SIZE==16
#define CHARMASK (0xffffu << 8*(2-sizeof(char)))
#elif PAWN_CELL_SIZE==32
#define CHARMASK (0xffffffffuL << 8*(4-sizeof(char)))
#elif PAWN_CELL_SIZE==64
#define CHARMASK (0xffffffffffffffffuLL << 8*(8-sizeof(char)))
#else
#error Unsupported cell size
#endif
int AMXAPI amx_StrLen(const cell *cstr, int *length)
{
int len;
#if BYTE_ORDER==LITTLE_ENDIAN
cell c;
#endif
assert(length!=NULL);
if (cstr==NULL) {
*length=0;
return AMX_ERR_PARAMS;
} /* if */
if ((ucell)*cstr>UNPACKEDMAX) {
/* packed string */
assert(sizeof(char)==1);
len=strlen((char *)cstr); /* find '\0' */
assert(check_endian());
#if BYTE_ORDER==LITTLE_ENDIAN
/* on Little Endian machines, toggle the last bytes */
c=cstr[len/sizeof(cell)]; /* get last cell */
len=len - len % sizeof(cell); /* len = multiple of "cell" bytes */
while ((c & CHARMASK)!=0) {
len++;
c <<= 8*sizeof(char);
} /* if */
#endif
} else {
for (len=0; cstr[len]!=0; len++)
/* nothing */;
} /* if */
*length = len;
return AMX_ERR_NONE;
}
#endif
#if defined AMX_XXXSTRING || defined AMX_EXEC
int AMXAPI amx_SetString(cell *dest,const char *source,int pack,int use_wchar,size_t size)
{ /* the memory blocks should not overlap */
int len, i;
assert(UNLIMITED>0);
#if defined AMX_ANSIONLY
(void)use_wchar;
len=strlen(source);
#else
len= use_wchar ? wcslen((const wchar_t*)source) : strlen(source);
#endif
if (pack) {
/* create a packed string */
if (size<UNLIMITED/sizeof(cell) && (size_t)len>=size*sizeof(cell))
len=size*sizeof(cell)-1;
dest[len/sizeof(cell)]=0; /* clear last bytes of last (semi-filled) cell*/
#if defined AMX_ANSIONLY
memcpy(dest,source,len);
#else
if (use_wchar) {
for (i=0; i<len; i++)
((char*)dest)[i]=(char)(((wchar_t*)source)[i]);
} else {
memcpy(dest,source,len);
} /* if */
#endif
/* On Big Endian machines, the characters are well aligned in the
* cells; on Little Endian machines, we must swap all cells.
*/
assert(check_endian());
#if BYTE_ORDER==LITTLE_ENDIAN
len /= sizeof(cell);
while (len>=0)
swapcell((ucell *)&dest[len--]);
#endif
} else {
/* create an unpacked string */
if (size<UNLIMITED && (size_t)len>=size)
len=size-1;
#if defined AMX_ANSIONLY
for (i=0; i<len; i++)
dest[i]=(cell)source[i];
#else
if (use_wchar) {
for (i=0; i<len; i++)
dest[i]=(cell)(((wchar_t*)source)[i]);
} else {
for (i=0; i<len; i++)
dest[i]=(cell)(unsigned char)source[i];
} /* if */
#endif
dest[len]=0;
} /* if */
return AMX_ERR_NONE;
}
#endif
#if defined AMX_XXXSTRING
int AMXAPI amx_GetString(char *dest,const cell *source,int use_wchar,size_t size)
{
int len=0;
#if defined AMX_ANSIONLY
(void)use_wchar;
#endif
if ((ucell)*source>UNPACKEDMAX) {
/* source string is packed */
cell c = 0; /* to avoid a compiler warning */
int i=sizeof(cell)-1;
while ((size_t)len<size) {
if (i==sizeof(cell)-1)
c=*source++;
#if defined AMX_ANSIONLY
dest[len++]=(char)(c >> i*CHARBITS);
#else
if (use_wchar)
((wchar_t*)dest)[len++]=(char)(c >> i*CHARBITS);
else
dest[len++]=(char)(c >> i*CHARBITS);
#endif
if (dest[len-1]=='\0')
break; /* terminating zero character found */
i=(i+sizeof(cell)-1) % sizeof(cell);
} /* for */
} else {
/* source string is unpacked */
#if defined AMX_ANSIONLY
while (*source!=0 && (size_t)len<size)
dest[len++]=(char)*source++;
#else
if (use_wchar) {
while (*source!=0 && (size_t)len<size)
((wchar_t*)dest)[len++]=(wchar_t)*source++;
} else {
while (*source!=0 && (size_t)len<size)
dest[len++]=(char)*source++;
} /* if */
#endif
} /* if */
if ((size_t)len>=size)
len=size-1;
if (len>=0)
dest[len]='\0'; /* store terminator */
return AMX_ERR_NONE;
}
#endif /* AMX_XXXSTRING */
#if defined AMX_UTF8XXX
#if defined __BORLANDC__
#pragma warn -amb -8000 /* ambiguous operators need parentheses */
#endif
/* amx_UTF8Get()
* Extract a single UTF-8 encoded character from a string and return a pointer
* to the character just behind that UTF-8 character. The parameters "endptr"
* and "value" may be NULL.
* If the code is not valid UTF-8, "endptr" has the value of the input
* parameter "string" and "value" is zero.
*/
int AMXAPI amx_UTF8Get(const char *string, const char **endptr, cell *value)
{
static const char utf8_count[16]={ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4 };
static const long utf8_lowmark[5] = { 0x80, 0x800, 0x10000L, 0x200000L, 0x4000000L };
unsigned char c;
cell result;
int followup;
assert(string!=NULL);
if (value!=NULL) /* preset, in case of an error */
*value=0;
if (endptr!=NULL)
*endptr=string;
c = *(const unsigned char*)string++;
if (c<0x80) {
/* ASCII */
result=c;
} else {
if (c<0xc0 || c>=0xfe)
return AMX_ERR_PARAMS; /* invalid or "follower" code, quit with error */
/* At this point we know that the two top bits of c are ones. The two
* bottom bits are always part of the code. We only need to consider
* the 4 remaining bits; i.e., a 16-byte table. This is "utf8_count[]".
* (Actually the utf8_count[] table records the number of follow-up
* bytes minus 1. This is just for convenience.)
*/
assert((c & 0xc0)==0xc0);
followup=(int)utf8_count[(c >> 2) & 0x0f];
/* The mask depends on the code length; this is just a very simple
* relation.
*/
#define utf8_mask (0x1f >> followup)
result= c & utf8_mask;
/* Collect the follow-up codes using a drop-through switch statement;
* this avoids a loop. In each case, verify the two leading bits.
*/
assert(followup>=0 && followup<=4);
switch (followup) {
case 4:
if (((c=*string++) & 0xc0) != 0x80) goto error;
result = (result << 6) | c & 0x3f;
case 3:
if (((c=*string++) & 0xc0) != 0x80) goto error;
result = (result << 6) | c & 0x3f;
case 2:
if (((c=*string++) & 0xc0) != 0x80) goto error;
result = (result << 6) | c & 0x3f;
case 1:
if (((c=*string++) & 0xc0) != 0x80) goto error;
result = (result << 6) | c & 0x3f;
case 0:
if (((c=*string++) & 0xc0) != 0x80) goto error;
result = (result << 6) | c & 0x3f;
} /* switch */
/* Do additional checks: shortest encoding & reserved positions. The
* lowmark limits also depends on the code length; it can be read from
* a table with 5 elements. This is "utf8_lowmark[]".
*/
if (result<utf8_lowmark[followup])
goto error;
if (result>=0xd800 && result<=0xdfff || result==0xfffe || result==0xffff)
goto error;
} /* if */
if (value!=NULL)
*value=result;
if (endptr!=NULL)
*endptr=string;
return AMX_ERR_NONE;
error:
return AMX_ERR_PARAMS;
}
/* amx_UTF8Put()
* Encode a single character into a byte string. The character may result in
* a string of up to 6 bytes. The function returns an error code if "maxchars"
* is lower than the required number of characters; in this case nothing is
* stored.
* The function does not zero-terminate the string.
*/
int AMXAPI amx_UTF8Put(char *string, char **endptr, int maxchars, cell value)
{
assert(string!=NULL);
if (endptr!=NULL) /* preset, in case of an error */
*endptr=string;
if (value<0x80) {
/* 0xxxxxxx */
if (maxchars < 1) goto error;
*string++ = (char)value;
} else if (value<0x800) {
/* 110xxxxx 10xxxxxx */
if (maxchars < 2) goto error;
*string++ = (char)((value>>6) & 0x1f | 0xc0);
*string++ = (char)(value & 0x3f | 0x80);
} else if (value<0x10000) {
/* 1110xxxx 10xxxxxx 10xxxxxx (16 bits, BMP plane) */
if (maxchars < 3) goto error;
if (value>=0xd800 && value<=0xdfff || value==0xfffe || value==0xffff)
goto error; /* surrogate pairs and invalid characters */
*string++ = (char)((value>>12) & 0x0f | 0xe0);
*string++ = (char)((value>>6) & 0x3f | 0x80);
*string++ = (char)(value & 0x3f | 0x80);
} else if (value<0x200000) {
/* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */
if (maxchars < 4) goto error;
*string++ = (char)((value>>18) & 0x07 | 0xf0);
*string++ = (char)((value>>12) & 0x3f | 0x80);
*string++ = (char)((value>>6) & 0x3f | 0x80);
*string++ = (char)(value & 0x3f | 0x80);
} else if (value<0x4000000) {
/* 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx */
if (maxchars < 5) goto error;
*string++ = (char)((value>>24) & 0x03 | 0xf8);
*string++ = (char)((value>>18) & 0x3f | 0x80);
*string++ = (char)((value>>12) & 0x3f | 0x80);
*string++ = (char)((value>>6) & 0x3f | 0x80);
*string++ = (char)(value & 0x3f | 0x80);
} else {
/* 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx (31 bits) */
if (maxchars < 6) goto error;
*string++ = (char)((value>>30) & 0x01 | 0xfc);
*string++ = (char)((value>>24) & 0x3f | 0x80);
*string++ = (char)((value>>18) & 0x3f | 0x80);
*string++ = (char)((value>>12) & 0x3f | 0x80);
*string++ = (char)((value>>6) & 0x3f | 0x80);
*string++ = (char)(value & 0x3f | 0x80);
} /* if */
if (endptr!=NULL)
*endptr=string;
return AMX_ERR_NONE;
error:
return AMX_ERR_PARAMS;
}
/* amx_UTF8Check()
* Run through a zero-terminated string and check the validity of the UTF-8
* encoding. The function returns an error code, it is AMX_ERR_NONE if the
* string is valid UTF-8 (or valid ASCII for that matter).
*/
int AMXAPI amx_UTF8Check(const char *string, int *length)
{
int err=AMX_ERR_NONE;
int len=0;
while (err==AMX_ERR_NONE && *string!='\0') {
err=amx_UTF8Get(string,&string,NULL);
len++;
} /* while */
if (length!=NULL)
*length=len;
return err;
}
/* amx_UTF8Len()
* Run through a wide string and return how many 8-bit characters are needed to
* store the string in UTF-8 format. The returned cound excludes the terminating
* zero byte. The function returns an error code.
*/
int AMXAPI amx_UTF8Len(const cell *cstr, int *length)
{
int err;
assert(length!=NULL);
err=amx_StrLen(cstr, length);
if (err==AMX_ERR_NONE && (ucell)*cstr<=UNPACKEDMAX) {
char buffer[10]; /* maximum UTF-8 code is 6 characters */
char *endptr;
int len=*length, count=0;
while (len-->0) {
amx_UTF8Put(buffer, &endptr, sizeof buffer, *cstr++);
count+=(int)(endptr-buffer);
} /* while */
*length=count;
} /* while */
return err;
}
#endif /* AMX_UTF8XXX */