SA-MP/raknet/DS_HuffmanEncodingTree.cpp
RD42 bcdbedc0be Revert RakNet source files back to the original v2.518 state
* Add RakNet source files to the VS project
2024-08-16 23:33:48 +08:00

307 lines
9.5 KiB
C++

/// \file
///
/// This file is part of RakNet Copyright 2003 Kevin Jenkins.
///
/// Usage of RakNet is subject to the appropriate license agreement.
/// Creative Commons Licensees are subject to the
/// license found at
/// http://creativecommons.org/licenses/by-nc/2.5/
/// Single application licensees are subject to the license found at
/// http://www.rakkarsoft.com/SingleApplicationLicense.html
/// Custom license users are subject to the terms therein.
/// GPL license users are subject to the GNU General Public
/// License as published by the Free
/// Software Foundation; either version 2 of the License, or (at your
/// option) any later version.
#include "DS_HuffmanEncodingTree.h"
#include "DS_Queue.h"
#include "BitStream.h"
#include <assert.h>
#ifdef _MSC_VER
#pragma warning( push )
#endif
HuffmanEncodingTree::HuffmanEncodingTree()
{
root = 0;
}
HuffmanEncodingTree::~HuffmanEncodingTree()
{
FreeMemory();
}
void HuffmanEncodingTree::FreeMemory( void )
{
if ( root == 0 )
return ;
// Use an in-order traversal to delete the tree
DataStructures::Queue<HuffmanEncodingTreeNode *> nodeQueue;
HuffmanEncodingTreeNode *node;
nodeQueue.Push( root );
while ( nodeQueue.Size() > 0 )
{
node = nodeQueue.Pop();
if ( node->left )
nodeQueue.Push( node->left );
if ( node->right )
nodeQueue.Push( node->right );
delete node;
}
// Delete the encoding table
for ( int i = 0; i < 256; i++ )
delete [] encodingTable[ i ].encoding;
root = 0;
}
////#include <stdio.h>
// Given a frequency table of 256 elements, all with a frequency of 1 or more, generate the tree
void HuffmanEncodingTree::GenerateFromFrequencyTable( unsigned int frequencyTable[ 256 ] )
{
int counter;
HuffmanEncodingTreeNode * node;
HuffmanEncodingTreeNode *leafList[ 256 ]; // Keep a copy of the pointers to all the leaves so we can generate the encryption table bottom-up, which is easier
// 1. Make 256 trees each with a weight equal to the frequency of the corresponding character
DataStructures::LinkedList<HuffmanEncodingTreeNode *> huffmanEncodingTreeNodeList;
FreeMemory();
for ( counter = 0; counter < 256; counter++ )
{
node = new HuffmanEncodingTreeNode;
node->left = 0;
node->right = 0;
node->value = (unsigned char) counter;
node->weight = frequencyTable[ counter ];
if ( node->weight == 0 )
node->weight = 1; // 0 weights are illegal
leafList[ counter ] = node; // Used later to generate the encryption table
InsertNodeIntoSortedList( node, &huffmanEncodingTreeNodeList ); // Insert and maintain sort order.
}
// 2. While there is more than one tree, take the two smallest trees and merge them so that the two trees are the left and right
// children of a new node, where the new node has the weight the sum of the weight of the left and right child nodes.
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( 1 )
{
huffmanEncodingTreeNodeList.Beginning();
HuffmanEncodingTreeNode *lesser, *greater;
lesser = huffmanEncodingTreeNodeList.Pop();
greater = huffmanEncodingTreeNodeList.Pop();
node = new HuffmanEncodingTreeNode;
node->left = lesser;
node->right = greater;
node->weight = lesser->weight + greater->weight;
lesser->parent = node; // This is done to make generating the encryption table easier
greater->parent = node; // This is done to make generating the encryption table easier
if ( huffmanEncodingTreeNodeList.Size() == 0 )
{
// 3. Assign the one remaining node in the list to the root node.
root = node;
root->parent = 0;
break;
}
// Put the new node back into the list at the correct spot to maintain the sort. Linear search time
InsertNodeIntoSortedList( node, &huffmanEncodingTreeNodeList );
}
bool tempPath[ 256 ]; // Maximum path length is 256
unsigned short tempPathLength;
HuffmanEncodingTreeNode *currentNode;
RakNet::BitStream bitStream;
// Generate the encryption table. From before, we have an array of pointers to all the leaves which contain pointers to their parents.
// This can be done more efficiently but this isn't bad and it's way easier to program and debug
for ( counter = 0; counter < 256; counter++ )
{
// Already done at the end of the loop and before it!
tempPathLength = 0;
// Set the current node at the leaf
currentNode = leafList[ counter ];
do
{
if ( currentNode->parent->left == currentNode ) // We're storing the paths in reverse order.since we are going from the leaf to the root
tempPath[ tempPathLength++ ] = false;
else
tempPath[ tempPathLength++ ] = true;
currentNode = currentNode->parent;
}
while ( currentNode != root );
// Write to the bitstream in the reverse order that we stored the path, which gives us the correct order from the root to the leaf
while ( tempPathLength-- > 0 )
{
if ( tempPath[ tempPathLength ] ) // Write 1's and 0's because writing a bool will write the BitStream TYPE_CHECKING validation bits if that is defined along with the actual data bit, which is not what we want
bitStream.Write1();
else
bitStream.Write0();
}
// Read data from the bitstream, which is written to the encoding table in bits and bitlength. Note this function allocates the encodingTable[counter].encoding pointer
encodingTable[ counter ].bitLength = ( unsigned char ) bitStream.CopyData( &encodingTable[ counter ].encoding );
// Reset the bitstream for the next iteration
bitStream.Reset();
}
}
// Pass an array of bytes to array and a preallocated BitStream to receive the output
void HuffmanEncodingTree::EncodeArray( unsigned char *input, unsigned sizeInBytes, RakNet::BitStream * output )
{
unsigned counter;
// For each input byte, Write out the corresponding series of 1's and 0's that give the encoded representation
for ( counter = 0; counter < sizeInBytes; counter++ )
{
output->WriteBits( encodingTable[ input[ counter ] ].encoding, encodingTable[ input[ counter ] ].bitLength, false ); // Data is left aligned
}
// Byte align the output so the unassigned remaining bits don't equate to some actual value
if ( output->GetNumberOfBitsUsed() % 8 != 0 )
{
// Find an input that is longer than the remaining bits. Write out part of it to pad the output to be byte aligned.
unsigned char remainingBits = (unsigned char) ( 8 - ( output->GetNumberOfBitsUsed() % 8 ) );
for ( counter = 0; counter < 256; counter++ )
if ( encodingTable[ counter ].bitLength > remainingBits )
{
output->WriteBits( encodingTable[ counter ].encoding, remainingBits, false ); // Data is left aligned
break;
}
#ifdef _DEBUG
assert( counter != 256 ); // Given 256 elements, we should always be able to find an input that would be >= 7 bits
#endif
}
}
unsigned HuffmanEncodingTree::DecodeArray( RakNet::BitStream * input, unsigned sizeInBits, unsigned maxCharsToWrite, unsigned char *output )
{
HuffmanEncodingTreeNode * currentNode;
unsigned outputWriteIndex;
outputWriteIndex = 0;
currentNode = root;
// For each bit, go left if it is a 0 and right if it is a 1. When we reach a leaf, that gives us the desired value and we restart from the root
for ( unsigned counter = 0; counter < sizeInBits; counter++ )
{
if ( input->ReadBit() == false ) // left!
currentNode = currentNode->left;
else
currentNode = currentNode->right;
if ( currentNode->left == 0 && currentNode->right == 0 ) // Leaf
{
if ( outputWriteIndex < maxCharsToWrite )
output[ outputWriteIndex ] = currentNode->value;
outputWriteIndex++;
currentNode = root;
}
}
return outputWriteIndex;
}
// Pass an array of encoded bytes to array and a preallocated BitStream to receive the output
void HuffmanEncodingTree::DecodeArray( unsigned char *input, unsigned sizeInBits, RakNet::BitStream * output )
{
HuffmanEncodingTreeNode * currentNode;
if ( sizeInBits <= 0 )
return ;
RakNet::BitStream bitStream( input, BITS_TO_BYTES(sizeInBits), false );
currentNode = root;
// For each bit, go left if it is a 0 and right if it is a 1. When we reach a leaf, that gives us the desired value and we restart from the root
for ( unsigned counter = 0; counter < sizeInBits; counter++ )
{
if ( bitStream.ReadBit() == false ) // left!
currentNode = currentNode->left;
else
currentNode = currentNode->right;
if ( currentNode->left == 0 && currentNode->right == 0 ) // Leaf
{
output->WriteBits( &( currentNode->value ), sizeof( char ) * 8, true ); // Use WriteBits instead of Write(char) because we want to avoid TYPE_CHECKING
currentNode = root;
}
}
}
// Insertion sort. Slow but easy to write in this case
void HuffmanEncodingTree::InsertNodeIntoSortedList( HuffmanEncodingTreeNode * node, DataStructures::LinkedList<HuffmanEncodingTreeNode *> *huffmanEncodingTreeNodeList ) const
{
if ( huffmanEncodingTreeNodeList->Size() == 0 )
{
huffmanEncodingTreeNodeList->Insert( node );
return ;
}
huffmanEncodingTreeNodeList->Beginning();
unsigned counter = 0;
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( 1 )
{
if ( huffmanEncodingTreeNodeList->Peek()->weight < node->weight )
++( *huffmanEncodingTreeNodeList );
else
{
huffmanEncodingTreeNodeList->Insert( node );
break;
}
// Didn't find a spot in the middle - add to the end
if ( ++counter == huffmanEncodingTreeNodeList->Size() )
{
huffmanEncodingTreeNodeList->End();
huffmanEncodingTreeNodeList->Add( node )
; // Add to the end
break;
}
}
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif