SA-MP/raknet/BitStream_NoTemplate.cpp
RD42 bcdbedc0be Revert RakNet source files back to the original v2.518 state
* Add RakNet source files to the VS project
2024-08-16 23:33:48 +08:00

1876 lines
47 KiB
C++

/// \depreciated
#if defined(_MSC_VER) && _MSC_VER < 1299 // VC6 doesn't support template specialization
#include "RakNetDefines.h"
#include "BitStream.h"
#include <stdlib.h>
#include <assert.h>
#include <memory.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#if defined ( __APPLE__ ) || defined ( __APPLE_CC__ )
#include <malloc/malloc.h>
#else
#include <malloc.h>
#endif
#ifdef __BITSTREAM_BIG_END
// Set up the read/write routines to produce Big-End network streams.
#define B16_1 0
#define B16_0 1
#define B32_3 0
#define B32_2 1
#define B32_1 2
#define B32_0 3
#define B64_7 0
#define B64_6 1
#define B64_5 2
#define B64_4 3
#define B64_3 4
#define B64_2 5
#define B64_1 6
#define B64_0 7
#else
// Default to producing Little-End network streams.
#define B16_1 1
#define B16_0 0
#define B32_3 3
#define B32_2 2
#define B32_1 1
#define B32_0 0
#define B64_7 7
#define B64_6 6
#define B64_5 5
#define B64_4 4
#define B64_3 3
#define B64_2 2
#define B64_1 1
#define B64_0 0
#endif
using namespace RakNet;
BitStream::BitStream()
{
numberOfBitsUsed = 0;
//numberOfBitsAllocated = 32 * 8;
numberOfBitsAllocated = BITSTREAM_STACK_ALLOCATION_SIZE * 8;
readOffset = 0;
//data = ( unsigned char* ) malloc( 32 );
data = ( unsigned char* ) stackData;
#ifdef _DEBUG
// assert( data );
#endif
//memset(data, 0, 32);
copyData = true;
}
BitStream::BitStream( int initialBytesToAllocate )
{
numberOfBitsUsed = 0;
readOffset = 0;
if (initialBytesToAllocate <= BITSTREAM_STACK_ALLOCATION_SIZE)
{
data = ( unsigned char* ) stackData;
numberOfBitsAllocated = BITSTREAM_STACK_ALLOCATION_SIZE * 8;
}
else
{
data = ( unsigned char* ) malloc( initialBytesToAllocate );
numberOfBitsAllocated = initialBytesToAllocate << 3;
}
#ifdef _DEBUG
assert( data );
#endif
// memset(data, 0, initialBytesToAllocate);
copyData = true;
}
BitStream::BitStream( char* _data, unsigned int lengthInBytes, bool _copyData )
{
numberOfBitsUsed = lengthInBytes << 3;
readOffset = 0;
copyData = _copyData;
numberOfBitsAllocated = lengthInBytes << 3;
if ( copyData )
{
if ( lengthInBytes > 0 )
{
if (lengthInBytes < BITSTREAM_STACK_ALLOCATION_SIZE)
{
data = ( unsigned char* ) stackData;
numberOfBitsAllocated = BITSTREAM_STACK_ALLOCATION_SIZE << 3;
}
else
{
data = ( unsigned char* ) malloc( lengthInBytes );
}
#ifdef _DEBUG
assert( data );
#endif
memcpy( data, _data, lengthInBytes );
}
else
data = 0;
}
else
data = ( unsigned char* ) _data;
}
// Use this if you pass a pointer copy to the constructor (_copyData==false) and want to overallocate to prevent reallocation
void BitStream::SetNumberOfBitsAllocated( const unsigned int lengthInBits )
{
#ifdef _DEBUG
assert( lengthInBits >= ( unsigned int ) numberOfBitsAllocated );
#endif
numberOfBitsAllocated = lengthInBits;
}
BitStream::~BitStream()
{
if ( copyData && numberOfBitsAllocated > BITSTREAM_STACK_ALLOCATION_SIZE << 3)
free( data ); // Use realloc and free so we are more efficient than delete and new for resizing
}
void BitStream::Reset( void )
{
// Note: Do NOT reallocate memory because BitStream is used
// in places to serialize/deserialize a buffer. Reallocation
// is a dangerous operation (may result in leaks).
if ( numberOfBitsUsed > 0 )
{
// memset(data, 0, BITS_TO_BYTES(numberOfBitsUsed));
}
// Don't free memory here for speed efficiency
//free(data); // Use realloc and free so we are more efficient than delete and new for resizing
numberOfBitsUsed = 0;
//numberOfBitsAllocated=8;
readOffset = 0;
//data=(unsigned char*)malloc(1);
// if (numberOfBitsAllocated>0)
// memset(data, 0, BITS_TO_BYTES(numberOfBitsAllocated));
}
// Write the native types to the end of the buffer
void BitStream::Write( const bool input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 0;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
if ( input )
Write1();
else
Write0();
}
void BitStream::Write( const unsigned char input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 1;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
}
void BitStream::Write( const char input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 2;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
}
void BitStream::Write( const unsigned short input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 3;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char uint16w[2];
uint16w[B16_1] = (input >> 8)&(0xff);
uint16w[B16_0] = input&(0xff);
WriteBits( uint16w, sizeof( input ) * 8, true );
#endif
}
void BitStream::Write( const short input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 4;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char int16w[2];
int16w[B16_1] = (input >> 8)&(0xff);
int16w[B16_0] = input&(0xff);
WriteBits( int16w, sizeof( input ) * 8, true );
#endif
}
void BitStream::Write( const unsigned int input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 5;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char uint32w[4];
uint32w[B32_3] = (input >> 24)&(0x000000ff);
uint32w[B32_2] = (input >> 16)&(0x000000ff);
uint32w[B32_1] = (input >> 8)&(0x000000ff);
uint32w[B32_0] = (input)&(0x000000ff);
WriteBits( uint32w, sizeof( input ) * 8, true );
#endif
}
void BitStream::Write( const int input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 6;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char int32w[4];
int32w[B32_3] = (input >> 24)&(0x000000ff);
int32w[B32_2] = (input >> 16)&(0x000000ff);
int32w[B32_1] = (input >> 8)&(0x000000ff);
int32w[B32_0] = (input)&(0x000000ff);
WriteBits( int32w, sizeof( input ) * 8, true );
#endif
}
// This doesn't compile on windows. Find another way to output the warning
#if defined ( __APPLE__ ) || defined ( __APPLE_CC__ )|| defined ( _WIN32 )
//#warning Do NOT use 'long' for network data - it is not cross-compiler nor 32/64-bit safe
void BitStream::Write( const unsigned long input )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
Write( (const unsigned int) input );
}
void BitStream::Write( const long input )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
Write( (const int) input );
}
#endif
#ifdef HAS_INT64
void BitStream::Write( const uint64_t input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 7;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char uint64w[8];
uint64w[B64_7] = (input >> 56) & 0xff;
uint64w[B64_6] = (input >> 48) & 0xff;
uint64w[B64_5] = (input >> 40) & 0xff;
uint64w[B64_4] = (input >> 32) & 0xff;
uint64w[B64_3] = (input >> 24) & 0xff;
uint64w[B64_2] = (input >> 16) & 0xff;
uint64w[B64_1] = (input >> 8) & 0xff;
uint64w[B64_0] = input & 0xff;
WriteBits( uint64w, sizeof( input ) * 8, true );
#endif
}
void BitStream::Write( const int64_t input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 8;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char int64w[8];
int64w[B64_7] = (input >> 56) & 0xff;
int64w[B64_6] = (input >> 48) & 0xff;
int64w[B64_5] = (input >> 40) & 0xff;
int64w[B64_4] = (input >> 32) & 0xff;
int64w[B64_3] = (input >> 24) & 0xff;
int64w[B64_2] = (input >> 16) & 0xff;
int64w[B64_1] = (input >> 8) & 0xff;
int64w[B64_0] = input & 0xff;
WriteBits( int64w, sizeof( input ) * 8, true );
#endif
}
#endif
void BitStream::Write( const float input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 9;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifndef __BITSTREAM_NATIVE_END
unsigned int intval = *((unsigned int *)(&input));
Write(intval);
#else
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#endif
}
void BitStream::Write( const double input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 10;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#if defined ( __BITSTREAM_NATIVE_END ) || ( ! defined (HAS_INT64) )
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
uint64_t intval = *((uint64_t *)(&input));
Write(intval);
#endif
}
// Write an array or casted stream
void BitStream::Write( const char* input, const int numberOfBytes )
{
#ifdef TYPE_CHECKING
unsigned char ID = 11;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
WriteBits( ( unsigned char* ) & numberOfBytes, sizeof( int ) * 8, true );
#endif
WriteBits( ( unsigned char* ) input, numberOfBytes * 8, true );
}
void BitStream::Write( const BitStream *bitStream )
{
WriteBits(bitStream->GetData(), bitStream->GetNumberOfBitsUsed(), false);
}
void BitStream::Write( const NetworkID networkId )
{
Write(networkId.playerId.binaryAddress);
Write(networkId.playerId.port);
Write(networkId.localSystemId);
}
// Write the native types with simple compression.
// Best used with negatives and positives close to 0
void BitStream::WriteCompressed( const unsigned char input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 12;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
}
void BitStream::WriteCompressed( const char input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 13;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, false );
}
void BitStream::WriteCompressed( const unsigned short input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 14;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char uint16wc[2];
uint16wc[B16_1] = (input >> 8)&(0xff);
uint16wc[B16_0] = input&(0xff);
WriteCompressed( uint16wc, sizeof( input ) * 8, true );
#endif
}
void BitStream::WriteCompressed( const short input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 15;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char int16wc[2];
int16wc[B16_1] = (input >> 8)&(0xff);
int16wc[B16_0] = input&(0xff);
WriteCompressed( int16wc, sizeof( input ) * 8, false );
#endif
}
void BitStream::WriteCompressed( const unsigned int input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 16;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char uint32wc[4];
uint32wc[B32_3] = (input >> 24)&(0x000000ff);
uint32wc[B32_2] = (input >> 16)&(0x000000ff);
uint32wc[B32_1] = (input >> 8)&(0x000000ff);
uint32wc[B32_0] = (input)&(0x000000ff);
WriteCompressed( uint32wc, sizeof( input ) * 8, true );
#endif
}
void BitStream::WriteCompressed( const int input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 17;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char int32wc[4];
int32wc[B32_3] = (input >> 24)&(0x000000ff);
int32wc[B32_2] = (input >> 16)&(0x000000ff);
int32wc[B32_1] = (input >> 8)&(0x000000ff);
int32wc[B32_0] = (input)&(0x000000ff);
WriteCompressed( int32wc, sizeof( input ) * 8, false );
#endif
}
// Doesn't work on windows. Find another way to output the warning
#if defined ( __APPLE__ ) || defined ( __APPLE_CC__ )|| defined ( _WIN32 )
void BitStream::WriteCompressed( const unsigned long input )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
WriteCompressed( (const unsigned int) input );
}
void BitStream::WriteCompressed( const long input )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
WriteCompressed( (const int) input );
}
#endif
#ifdef HAS_INT64
void BitStream::WriteCompressed( const uint64_t input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 18;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char uint64wc[8];
uint64wc[B64_7] = (input >> 56) & 0xff;
uint64wc[B64_6] = (input >> 48) & 0xff;
uint64wc[B64_5] = (input >> 40) & 0xff;
uint64wc[B64_4] = (input >> 32) & 0xff;
uint64wc[B64_3] = (input >> 24) & 0xff;
uint64wc[B64_2] = (input >> 16) & 0xff;
uint64wc[B64_1] = (input >> 8) & 0xff;
uint64wc[B64_0] = input & 0xff;
WriteCompressed( uint64wc, sizeof( input ) * 8, true );
#endif
}
void BitStream::WriteCompressed( const int64_t input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 19;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
#ifdef __BITSTREAM_NATIVE_END
WriteCompressed( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
static unsigned char int64wc[8];
int64wc[B64_7] = (input >> 56) & 0xff;
int64wc[B64_6] = (input >> 48) & 0xff;
int64wc[B64_5] = (input >> 40) & 0xff;
int64wc[B64_4] = (input >> 32) & 0xff;
int64wc[B64_3] = (input >> 24) & 0xff;
int64wc[B64_2] = (input >> 16) & 0xff;
int64wc[B64_1] = (input >> 8) & 0xff;
int64wc[B64_0] = input & 0xff;
WriteCompressed( int64wc, sizeof( input ) * 8, false );
#endif
}
#endif
void BitStream::WriteCompressed( const float input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 20;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
// Not yet implemented (no compression)
#if defined ( __BITSTREAM_NATIVE_END )
WriteBits( ( unsigned char* ) &input, sizeof( input ) * 8, true );
#else
Write( input );
#endif
}
void BitStream::WriteNormVector( float x, float y, float z )
{
#ifdef _DEBUG
assert(x <= 1.01f && y <= 1.01f && z <= 1.01f && x >= -1.01f && y >= -1.01f && z >= -1.01f);
#endif
if (x>1.0f)
x=1.0f;
if (y>1.0f)
y=1.0f;
if (z>1.0f)
z=1.0f;
if (x<-1.0f)
x=-1.0f;
if (y<-1.0f)
y=-1.0f;
if (z<-1.0f)
z=-1.0f;
Write((bool) (x < 0.0f));
if (y==0.0f)
Write(true);
else
{
Write(false);
Write((unsigned short)((y+1.0f)*32767.5f));
}
if (z==0.0f)
Write(true);
else
{
Write(false);
Write((unsigned short)((z+1.0f)*32767.5f));
}
}
void BitStream::WriteVector( float x, float y, float z )
{
float magnitude = sqrtf(x * x + y * y + z * z);
Write(magnitude);
if (magnitude > 0.0f)
{
Write((unsigned short)((x/magnitude+1.0f)*32767.5f));
Write((unsigned short)((y/magnitude+1.0f)*32767.5f));
Write((unsigned short)((z/magnitude+1.0f)*32767.5f));
}
}
void BitStream::WriteNormQuat( float w, float x, float y, float z)
{
Write((bool)(w<0.0f));
Write((bool)(x<0.0f));
Write((bool)(y<0.0f));
Write((bool)(z<0.0f));
Write((unsigned short)(fabs(x)*65535.0));
Write((unsigned short)(fabs(y)*65535.0));
Write((unsigned short)(fabs(z)*65535.0));
// Leave out w and calcuate it on the target
}
void BitStream::WriteOrthMatrix(
float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22 )
{
double qw;
double qx;
double qy;
double qz;
// Convert matrix to quat
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
qw = sqrt( 1 + m00 + m11 + m22 ) / 2;
qx = sqrt( 1 + m00 - m11 - m22 ) / 2;
qy = sqrt( 1 - m00 + m11 - m22 ) / 2;
qz = sqrt( 1 - m00 - m11 + m22 ) / 2;
if (qw < 0.0) qw=0.0;
if (qx < 0.0) qx=0.0;
if (qy < 0.0) qy=0.0;
if (qz < 0.0) qz=0.0;
qx = _copysign( qx, m21 - m12 );
qy = _copysign( qy, m02 - m20 );
qz = _copysign( qz, m20 - m02 );
WriteNormQuat((float)qw,(float)qx,(float)qy,(float)qz);
}
void BitStream::WriteCompressed( const double input )
{
#ifdef TYPE_CHECKING
unsigned char ID = 21;
WriteBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8, true );
#endif
// Not yet implemented (no compression)
#if defined ( __BITSTREAM_NATIVE_END )
WriteBits( ( unsigned char* ) & input, sizeof( input ) * 8, true );
#else
Write( input );
#endif
}
// Read the native types from the front of the buffer
// Write the native types to the end of the buffer
bool BitStream::Read( bool& output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
#ifdef _DEBUG
assert( ID == 0 );
#endif
#endif
//assert(readOffset+1 <=numberOfBitsUsed); // If this assert is hit the stream wasn't long enough to read from
if ( readOffset + 1 > numberOfBitsUsed )
return false;
//if (ReadBit()) // Check that bit
if ( data[ readOffset >> 3 ] & ( 0x80 >> ( readOffset++ % 8 ) ) ) // Is it faster to just write it out here?
output = true;
else
output = false;
return true;
}
bool BitStream::Read( unsigned char &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 1 );
#endif
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
}
bool BitStream::Read( char &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 2 );
#endif
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
}
bool BitStream::Read( unsigned short &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 3 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
static unsigned char uint16r[2];
if (ReadBits( uint16r, sizeof( output ) * 8 ) != true) return false;
output = (((unsigned short) uint16r[B16_1])<<8)|((unsigned short)uint16r[B16_0]);
return true;
#endif
}
bool BitStream::Read( short &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 4 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
static unsigned char int16r[2];
if (ReadBits( int16r, sizeof( output ) * 8 ) != true) return false;
output = (((unsigned short) int16r[B16_1])<<8)|((unsigned short)int16r[B16_0]);
return true;
#endif
}
bool BitStream::Read( unsigned int &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 5 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
static unsigned char uint32r[4];
if(ReadBits( uint32r, sizeof( output ) * 8 ) != true)
return false;
output = (((unsigned int) uint32r[B32_3])<<24)|
(((unsigned int) uint32r[B32_2])<<16)|
(((unsigned int) uint32r[B32_1])<<8)|
((unsigned int) uint32r[B32_0]);
return true;
#endif
}
bool BitStream::Read( int &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 6 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
static unsigned char int32r[4];
if(ReadBits( int32r, sizeof( output ) * 8 ) != true)
return false;
output = (((unsigned int) int32r[B32_3])<<24)|
(((unsigned int) int32r[B32_2])<<16)|
(((unsigned int) int32r[B32_1])<<8)|
((unsigned int) int32r[B32_0]);
return true;
#endif
}
// This doesn't compile on windows. Find another way to output the warning
#if defined ( __APPLE__ ) || defined ( __APPLE_CC__ )|| defined ( _WIN32 )
//#warning Do NOT use 'long' for network data - it is not cross-compiler nor 32/64-bit safe
bool BitStream::Read( unsigned long &output )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
unsigned int tmp;
if ( !Read(tmp) ) return false;
output = tmp;
return true;
}
bool BitStream::Read( long &output )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
int tmp;
if ( !Read(tmp) ) return false;
output = tmp;
return true;
}
#endif
#ifdef HAS_INT64
bool BitStream::Read( uint64_t &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 7 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
static unsigned char uint64r[8];
if(ReadBits( uint64r, sizeof( output ) * 8 ) != true)
return false;
output = (((uint64_t) uint64r[B64_7])<<56)|(((uint64_t) uint64r[B64_6])<<48)|
(((uint64_t) uint64r[B64_5])<<40)|(((uint64_t) uint64r[B64_4])<<32)|
(((uint64_t) uint64r[B64_3])<<24)|(((uint64_t) uint64r[B64_2])<<16)|
(((uint64_t) uint64r[B64_1])<<8)|((uint64_t) uint64r[B64_0]);
return true;
#endif
}
bool BitStream::Read( int64_t &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 8 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
static unsigned char int64r[8];
if(ReadBits( int64r, sizeof( output ) * 8 ) != true)
return false;
output = (((uint64_t) int64r[B64_7])<<56)|(((uint64_t) int64r[B64_6])<<48)|
(((uint64_t) int64r[B64_5])<<40)|(((uint64_t) int64r[B64_4])<<32)|
(((uint64_t) int64r[B64_3])<<24)|(((uint64_t) int64r[B64_2])<<16)|
(((uint64_t) int64r[B64_1])<<8)|((uint64_t) int64r[B64_0]);
return true;
#endif
}
#endif
bool BitStream::Read( float &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 9 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
unsigned int val;
if (Read(val) == false) return false;
output = *((float *)(&val));
return true;
#endif
}
bool BitStream::Read( double &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 10 );
#endif
#if defined ( __BITSTREAM_NATIVE_END ) || ( ! defined ( HAS_INT64 ) )
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
uint64_t val;
if (Read(val) == false) return false;
output = *((double *)(&val));
return true;
#endif
}
// Read an array or casted stream
bool BitStream::Read( char* output, const int numberOfBytes )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 11 );
int NOB;
ReadBits( ( unsigned char* ) & NOB, sizeof( int ) * 8 );
assert( NOB == numberOfBytes );
#endif
return ReadBits( ( unsigned char* ) output, numberOfBytes * 8 );
}
bool BitStream::Read( NetworkID &output)
{
Read(output.playerId.binaryAddress);
Read(output.playerId.port);
return Read(output.localSystemId);
}
// Read the types you wrote with WriteCompressed
bool BitStream::ReadCompressed( unsigned char & output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 12 );
#endif
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
}
bool BitStream::ReadCompressed( char &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 13 );
#endif
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, false );
}
bool BitStream::ReadCompressed( unsigned short &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 14 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
#else
static unsigned char uint16rc[2];
if (ReadCompressed( uint16rc, sizeof( output ) * 8, true ) != true) return false;
output = (((unsigned short) uint16rc[B16_1])<<8)|
((unsigned short)uint16rc[B16_0]);
return true;
#endif
}
bool BitStream::ReadCompressed( short &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 15 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
#else
static unsigned char int16rc[2];
if (ReadCompressed( int16rc, sizeof( output ) * 8, false ) != true) return false;
output = (((unsigned short) int16rc[B16_1])<<8)|((unsigned short)int16rc[B16_0]);
return true;
#endif
}
bool BitStream::ReadCompressed( unsigned int &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 16 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
#else
static unsigned char uint32rc[4];
if(ReadCompressed( uint32rc, sizeof( output ) * 8, true ) != true)
return false;
output = (((unsigned int) uint32rc[B32_3])<<24)|
(((unsigned int) uint32rc[B32_2])<<16)|
(((unsigned int) uint32rc[B32_1])<<8)|
((unsigned int) uint32rc[B32_0]);
return true;
#endif
}
bool BitStream::ReadCompressed( int &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 17 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
#else
static unsigned char int32rc[4];
if(ReadCompressed( int32rc, sizeof( output ) * 8, false ) != true)
return false;
output = (((unsigned int) int32rc[B32_3])<<24)|
(((unsigned int) int32rc[B32_2])<<16)|
(((unsigned int) int32rc[B32_1])<<8)|
((unsigned int) int32rc[B32_0]);
return true;
#endif
}
// This doesn't compile on windows. Find another way to output the warning
#if defined ( __APPLE__ ) || defined ( __APPLE_CC__ )|| defined ( _WIN32 )
//#warning Do NOT use 'long' for network data - it is not cross-compiler nor 32/64-bit safe
bool BitStream::ReadCompressed( unsigned long &output )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
unsigned int tmp;
if ( !ReadCompressed(tmp) ) return false;
output = tmp;
return true;
}
bool BitStream::ReadCompressed( long &output )
{
printf("*** WARNING: Do not use 'long' to declare network data.\n");
printf("*** It is not safe betwen compilers or between 32/64-bit systems.\n");
int tmp;
if ( !ReadCompressed(tmp) ) return false;
output = tmp;
return true;
}
#endif
#ifdef HAS_INT64
bool BitStream::ReadCompressed( uint64_t &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 18 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
#else
static unsigned char uint64rc[8];
if(ReadCompressed( uint64rc, sizeof( output ) * 8, true ) != true)
return false;
output = (((uint64_t) uint64rc[B64_7])<<56)|(((uint64_t) uint64rc[B64_6])<<48)|
(((uint64_t) uint64rc[B64_5])<<40)|(((uint64_t) uint64rc[B64_4])<<32)|
(((uint64_t) uint64rc[B64_3])<<24)|(((uint64_t) uint64rc[B64_2])<<16)|
(((uint64_t) uint64rc[B64_1])<<8)|((uint64_t) uint64rc[B64_0]);
return true;
#endif
}
bool BitStream::ReadCompressed( int64_t& output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 19 );
#endif
#ifdef __BITSTREAM_NATIVE_END
return ReadCompressed( ( unsigned char* ) & output, sizeof( output ) * 8, true );
#else
static unsigned char int64rc[8];
if(ReadCompressed( int64rc, sizeof( output ) * 8, false ) != true)
return false;
output = (((uint64_t) int64rc[B64_7])<<56)|(((uint64_t) int64rc[B64_6])<<48)|
(((uint64_t) int64rc[B64_5])<<40)|(((uint64_t) int64rc[B64_4])<<32)|
(((uint64_t) int64rc[B64_3])<<24)|(((uint64_t) int64rc[B64_2])<<16)|
(((uint64_t) int64rc[B64_1])<<8)|((uint64_t) int64rc[B64_0]);
return true;
#endif
}
#endif
bool BitStream::ReadCompressed( float &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 20 );
#endif
// Not yet implemented
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
return Read( output );
#endif
}
bool BitStream::ReadNormVector( float &x, float &y, float &z )
{
unsigned short sy, sz;
bool yZero, zZero;
bool xNeg;
Read(xNeg);
Read(yZero);
if (yZero)
y=0.0f;
else
{
Read(sy);
y=((float)sy / 32767.5f - 1.0f);
}
if (!Read(zZero))
return false;
if (zZero)
z=0.0f;
else
{
if (!Read(sz))
return false;
z=((float)sz / 32767.5f - 1.0f);
}
x = sqrtf(1.0f - y*y - z*z);
if (xNeg)
x=-x;
return true;
}
bool BitStream::ReadVector( float &x, float &y, float &z )
{
float magnitude;
unsigned short sx,sy,sz;
if (!Read(magnitude))
return false;
if (magnitude!=0.0f)
{
Read(sx);
Read(sy);
if (!Read(sz))
return false;
x=((float)sx / 32767.5f - 1.0f) * magnitude;
y=((float)sy / 32767.5f - 1.0f) * magnitude;
z=((float)sz / 32767.5f - 1.0f) * magnitude;
}
else
{
x=0.0f;
y=0.0f;
z=0.0f;
}
return true;
}
bool BitStream::ReadNormQuat( float &w, float &x, float &y, float &z)
{
bool cwNeg, cxNeg, cyNeg, czNeg;
unsigned short cx,cy,cz;
Read(cwNeg);
Read(cxNeg);
Read(cyNeg);
Read(czNeg);
Read(cx);
Read(cy);
if (!Read(cz))
return false;
// Calculate w from x,y,z
x=cx/65535.0f;
y=cy/65535.0f;
z=cz/65535.0f;
if (cxNeg) x=-x;
if (cyNeg) y=-y;
if (czNeg) z=-z;
w = sqrt(1.0f - x*x - y*y - z*z);
if (cwNeg)
w=-w;
return true;
}
bool BitStream::ReadOrthMatrix(
float &m00, float &m01, float &m02,
float &m10, float &m11, float &m12,
float &m20, float &m21, float &m22 )
{
float qw,qx,qy,qz;
if (!ReadNormQuat(qw,qx,qy,qz))
return false;
// Quat to orthogonal rotation matrix
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm
double sqw = (double)qw*(double)qw;
double sqx = (double)qx*(double)qx;
double sqy = (double)qy*(double)qy;
double sqz = (double)qz*(double)qz;
m00 = (float)(sqx - sqy - sqz + sqw); // since sqw + sqx + sqy + sqz =1
m11 = (float)(-sqx + sqy - sqz + sqw);
m22 = (float)(-sqx - sqy + sqz + sqw);
double tmp1 = (double)qx*(double)qy;
double tmp2 = (double)qz*(double)qw;
m10 = (float)(2.0 * (tmp1 + tmp2));
m01 = (float)(2.0 * (tmp1 - tmp2));
tmp1 = (double)qx*(double)qz;
tmp2 = (double)qy*(double)qw;
m20 =(float)(2.0 * (tmp1 - tmp2));
m02 = (float)(2.0 * (tmp1 + tmp2));
tmp1 = (double)qy*(double)qz;
tmp2 = (double)qx*(double)qw;
m21 = (float)(2.0 * (tmp1 + tmp2));
m12 = (float)(2.0 * (tmp1 - tmp2));
return true;
}
bool BitStream::ReadCompressed( double &output )
{
#ifdef TYPE_CHECKING
unsigned char ID;
if ( ReadBits( ( unsigned char* ) & ID, sizeof(unsigned char) * 8 ) == false )
return false;
assert( ID == 21 );
#endif
// ReadCompressed using int has no effect on this data format and would make the data bigger!
#ifdef __BITSTREAM_NATIVE_END
return ReadBits( ( unsigned char* ) & output, sizeof( output ) * 8 );
#else
return Read( output );
#endif
}
// Sets the read pointer back to the beginning of your data.
void BitStream::ResetReadPointer( void )
{
readOffset = 0;
}
// Sets the write pointer back to the beginning of your data.
void BitStream::ResetWritePointer( void )
{
numberOfBitsUsed = 0;
}
// Write a 0
void BitStream::Write0( void )
{
AddBitsAndReallocate( 1 );
// New bytes need to be zeroed
if ( ( numberOfBitsUsed % 8 ) == 0 )
data[ numberOfBitsUsed >> 3 ] = 0;
numberOfBitsUsed++;
}
// Write a 1
void BitStream::Write1( void )
{
AddBitsAndReallocate( 1 );
int numberOfBitsMod8 = numberOfBitsUsed % 8;
if ( numberOfBitsMod8 == 0 )
data[ numberOfBitsUsed >> 3 ] = 0x80;
else
data[ numberOfBitsUsed >> 3 ] |= 0x80 >> ( numberOfBitsMod8 ); // Set the bit to 1
numberOfBitsUsed++;
}
// Returns true if the next data read is a 1, false if it is a 0
bool BitStream::ReadBit( void )
{
#pragma warning( disable : 4800 )
return ( bool ) ( data[ readOffset >> 3 ] & ( 0x80 >> ( readOffset++ % 8 ) ) );
#pragma warning( default : 4800 )
}
// Align the bitstream to the byte boundary and then write the specified number of bits.
// This is faster than WriteBits but wastes the bits to do the alignment and requires you to call
// SetReadToByteAlignment at the corresponding read position
void BitStream::WriteAlignedBytes( const unsigned char* input,
const int numberOfBytesToWrite )
{
#ifdef _DEBUG
assert( numberOfBytesToWrite > 0 );
#endif
AlignWriteToByteBoundary();
// Allocate enough memory to hold everything
AddBitsAndReallocate( numberOfBytesToWrite << 3 );
// Write the data
memcpy( data + ( numberOfBitsUsed >> 3 ), input, numberOfBytesToWrite );
numberOfBitsUsed += numberOfBytesToWrite << 3;
}
// Read bits, starting at the next aligned bits. Note that the modulus 8 starting offset of the
// sequence must be the same as was used with WriteBits. This will be a problem with packet coalescence
// unless you byte align the coalesced packets.
bool BitStream::ReadAlignedBytes( unsigned char* output,
const int numberOfBytesToRead )
{
#ifdef _DEBUG
assert( numberOfBytesToRead > 0 );
#endif
if ( numberOfBytesToRead <= 0 )
return false;
// Byte align
AlignReadToByteBoundary();
if ( readOffset + ( numberOfBytesToRead << 3 ) > numberOfBitsUsed )
return false;
// Write the data
memcpy( output, data + ( readOffset >> 3 ), numberOfBytesToRead );
readOffset += numberOfBytesToRead << 3;
return true;
}
// Align the next write and/or read to a byte boundary. This can be used to 'waste' bits to byte align for efficiency reasons
void BitStream::AlignWriteToByteBoundary( void )
{
if ( numberOfBitsUsed )
numberOfBitsUsed += 8 - ( ( numberOfBitsUsed - 1 ) % 8 + 1 );
}
// Align the next write and/or read to a byte boundary. This can be used to 'waste' bits to byte align for efficiency reasons
void BitStream::AlignReadToByteBoundary( void )
{
if ( readOffset )
readOffset += 8 - ( ( readOffset - 1 ) % 8 + 1 );
}
// Write numberToWrite bits from the input source
void BitStream::WriteBits( const unsigned char *input,
int numberOfBitsToWrite, const bool rightAlignedBits )
{
// if (numberOfBitsToWrite<=0)
// return;
AddBitsAndReallocate( numberOfBitsToWrite );
int offset = 0;
unsigned char dataByte;
int numberOfBitsUsedMod8;
numberOfBitsUsedMod8 = numberOfBitsUsed % 8;
// Faster to put the while at the top surprisingly enough
while ( numberOfBitsToWrite > 0 )
//do
{
dataByte = *( input + offset );
if ( numberOfBitsToWrite < 8 && rightAlignedBits ) // rightAlignedBits means in the case of a partial byte, the bits are aligned from the right (bit 0) rather than the left (as in the normal internal representation)
dataByte <<= 8 - numberOfBitsToWrite; // shift left to get the bits on the left, as in our internal representation
// Writing to a new byte each time
if ( numberOfBitsUsedMod8 == 0 )
* ( data + ( numberOfBitsUsed >> 3 ) ) = dataByte;
else
{
// Copy over the new data.
*( data + ( numberOfBitsUsed >> 3 ) ) |= dataByte >> ( numberOfBitsUsedMod8 ); // First half
if ( 8 - ( numberOfBitsUsedMod8 ) < 8 && 8 - ( numberOfBitsUsedMod8 ) < numberOfBitsToWrite ) // If we didn't write it all out in the first half (8 - (numberOfBitsUsed%8) is the number we wrote in the first half)
{
*( data + ( numberOfBitsUsed >> 3 ) + 1 ) = (unsigned char) ( dataByte << ( 8 - ( numberOfBitsUsedMod8 ) ) ); // Second half (overlaps byte boundary)
}
}
if ( numberOfBitsToWrite >= 8 )
numberOfBitsUsed += 8;
else
numberOfBitsUsed += numberOfBitsToWrite;
numberOfBitsToWrite -= 8;
offset++;
}
// } while(numberOfBitsToWrite>0);
}
// Set the stream to some initial data. For internal use
void BitStream::SetData( const unsigned char* input, const int numberOfBits )
{
#ifdef _DEBUG
assert( numberOfBitsUsed == 0 ); // Make sure the stream is clear
#endif
if ( numberOfBits <= 0 )
return ;
AddBitsAndReallocate( numberOfBits );
memcpy( data, input, BITS_TO_BYTES( numberOfBits ) );
numberOfBitsUsed = numberOfBits;
}
// Assume the input source points to a native type, compress and write it
void BitStream::WriteCompressed( const unsigned char* input,
const int size, const bool unsignedData )
{
int currentByte = ( size >> 3 ) - 1; // PCs
unsigned char byteMatch;
if ( unsignedData )
{
byteMatch = 0;
}
else
{
byteMatch = 0xFF;
}
// Write upper bytes with a single 1
// From high byte to low byte, if high byte is a byteMatch then write a 1 bit. Otherwise write a 0 bit and then write the remaining bytes
while ( currentByte > 0 )
{
if ( input[ currentByte ] == byteMatch ) // If high byte is byteMatch (0 of 0xff) then it would have the same value shifted
{
bool b = true;
Write( b );
}
else
{
// Write the remainder of the data after writing 0
bool b = false;
Write( b );
WriteBits( input, ( currentByte + 1 ) << 3, true );
// currentByte--;
return ;
}
currentByte--;
}
// If the upper half of the last byte is a 0 (positive) or 16 (negative) then write a 1 and the remaining 4 bits. Otherwise write a 0 and the 8 bites.
if ( ( unsignedData && ( ( *( input + currentByte ) ) & 0xF0 ) == 0x00 ) ||
( unsignedData == false && ( ( *( input + currentByte ) ) & 0xF0 ) == 0xF0 ) )
{
bool b = true;
Write( b );
WriteBits( input + currentByte, 4, true );
}
else
{
bool b = false;
Write( b );
WriteBits( input + currentByte, 8, true );
}
}
// Read numberOfBitsToRead bits to the output source
// alignBitsToRight should be set to true to convert internal bitstream data to userdata
// It should be false if you used WriteBits with rightAlignedBits false
bool BitStream::ReadBits( unsigned char* output,
int numberOfBitsToRead, const bool alignBitsToRight )
{
#ifdef _DEBUG
assert( numberOfBitsToRead > 0 );
#endif
// if (numberOfBitsToRead<=0)
// return false;
if ( readOffset + numberOfBitsToRead > numberOfBitsUsed )
return false;
int readOffsetMod8;
int offset = 0;
memset( output, 0, BITS_TO_BYTES( numberOfBitsToRead ) );
readOffsetMod8 = readOffset % 8;
// do
// Faster to put the while at the top surprisingly enough
while ( numberOfBitsToRead > 0 )
{
*( output + offset ) |= *( data + ( readOffset >> 3 ) ) << ( readOffsetMod8 ); // First half
if ( readOffsetMod8 > 0 && numberOfBitsToRead > 8 - ( readOffsetMod8 ) ) // If we have a second half, we didn't read enough bytes in the first half
*( output + offset ) |= *( data + ( readOffset >> 3 ) + 1 ) >> ( 8 - ( readOffsetMod8 ) ); // Second half (overlaps byte boundary)
numberOfBitsToRead -= 8;
if ( numberOfBitsToRead < 0 ) // Reading a partial byte for the last byte, shift right so the data is aligned on the right
{
if ( alignBitsToRight )
* ( output + offset ) >>= -numberOfBitsToRead;
readOffset += 8 + numberOfBitsToRead;
}
else
readOffset += 8;
offset++;
}
//} while(numberOfBitsToRead>0);
return true;
}
// Assume the input source points to a compressed native type. Decompress and read it
bool BitStream::ReadCompressed( unsigned char* output,
const int size, const bool unsignedData )
{
int currentByte = ( size >> 3 ) - 1;
unsigned char byteMatch, halfByteMatch;
if ( unsignedData )
{
byteMatch = 0;
halfByteMatch = 0;
}
else
{
byteMatch = 0xFF;
halfByteMatch = 0xF0;
}
// Upper bytes are specified with a single 1 if they match byteMatch
// From high byte to low byte, if high byte is a byteMatch then write a 1 bit. Otherwise write a 0 bit and then write the remaining bytes
while ( currentByte > 0 )
{
// If we read a 1 then the data is byteMatch.
bool b;
if ( Read( b ) == false )
return false;
if ( b ) // Check that bit
{
output[ currentByte ] = byteMatch;
currentByte--;
}
else
{
// Read the rest of the bytes
if ( ReadBits( output, ( currentByte + 1 ) << 3 ) == false )
return false;
return true;
}
}
// All but the first bytes are byteMatch. If the upper half of the last byte is a 0 (positive) or 16 (negative) then what we read will be a 1 and the remaining 4 bits.
// Otherwise we read a 0 and the 8 bytes
//assert(readOffset+1 <=numberOfBitsUsed); // If this assert is hit the stream wasn't long enough to read from
if ( readOffset + 1 > numberOfBitsUsed )
return false;
bool b;
if ( Read( b ) == false )
return false;
if ( b ) // Check that bit
{
if ( ReadBits( output + currentByte, 4 ) == false )
return false;
output[ currentByte ] |= halfByteMatch; // We have to set the high 4 bits since these are set to 0 by ReadBits
}
else
{
if ( ReadBits( output + currentByte, 8 ) == false )
return false;
}
return true;
}
// Reallocates (if necessary) in preparation of writing numberOfBitsToWrite
void BitStream::AddBitsAndReallocate( const int numberOfBitsToWrite )
{
if ( numberOfBitsToWrite <= 0 )
return;
int newNumberOfBitsAllocated = numberOfBitsToWrite + numberOfBitsUsed;
if ( numberOfBitsToWrite + numberOfBitsUsed > 0 && ( ( numberOfBitsAllocated - 1 ) >> 3 ) < ( ( newNumberOfBitsAllocated - 1 ) >> 3 ) ) // If we need to allocate 1 or more new bytes
{
#ifdef _DEBUG
// If this assert hits then we need to specify true for the third parameter in the constructor
// It needs to reallocate to hold all the data and can't do it unless we allocated to begin with
assert( copyData == true );
#endif
// Less memory efficient but saves on news and deletes
newNumberOfBitsAllocated = ( numberOfBitsToWrite + numberOfBitsUsed ) * 2;
// int newByteOffset = BITS_TO_BYTES( numberOfBitsAllocated );
// Use realloc and free so we are more efficient than delete and new for resizing
int amountToAllocate = BITS_TO_BYTES( newNumberOfBitsAllocated );
if (data==(unsigned char*)stackData)
{
if (amountToAllocate > BITSTREAM_STACK_ALLOCATION_SIZE)
{
data = ( unsigned char* ) malloc( amountToAllocate );
// need to copy the stack data over to our new memory area too
memcpy ((void *)data, (void *)stackData, BITS_TO_BYTES( numberOfBitsAllocated ));
}
}
else
{
data = ( unsigned char* ) realloc( data, amountToAllocate );
}
#ifdef _DEBUG
assert( data ); // Make sure realloc succeeded
#endif
// memset(data+newByteOffset, 0, ((newNumberOfBitsAllocated-1)>>3) - ((numberOfBitsAllocated-1)>>3)); // Set the new data block to 0
}
if ( newNumberOfBitsAllocated > numberOfBitsAllocated )
numberOfBitsAllocated = newNumberOfBitsAllocated;
}
// Should hit if reads didn't match writes
void BitStream::AssertStreamEmpty( void )
{
assert( readOffset == numberOfBitsUsed );
}
void BitStream::PrintBits( void ) const
{
if ( numberOfBitsUsed <= 0 )
{
printf( "No bits\n" );
return ;
}
for ( int counter = 0; counter < BITS_TO_BYTES( numberOfBitsUsed ); counter++ )
{
int stop;
if ( counter == ( numberOfBitsUsed - 1 ) >> 3 )
stop = 8 - ( ( ( numberOfBitsUsed - 1 ) % 8 ) + 1 );
else
stop = 0;
for ( int counter2 = 7; counter2 >= stop; counter2-- )
{
if ( ( data[ counter ] >> counter2 ) & 1 )
putchar( '1' );
else
putchar( '0' );
}
putchar( ' ' );
}
putchar( '\n' );
}
// Exposes the data for you to look at, like PrintBits does.
// Data will point to the stream. Returns the length in bits of the stream.
int BitStream::CopyData( unsigned char** _data ) const
{
#ifdef _DEBUG
assert( numberOfBitsUsed > 0 );
#endif
*_data = new unsigned char [ BITS_TO_BYTES( numberOfBitsUsed ) ];
memcpy( *_data, data, sizeof(unsigned char) * ( BITS_TO_BYTES( numberOfBitsUsed ) ) );
return numberOfBitsUsed;
}
// Ignore data we don't intend to read
void BitStream::IgnoreBits( const int numberOfBits )
{
readOffset += numberOfBits;
}
// Move the write pointer to a position on the array. Dangerous if you don't know what you are doing!
void BitStream::SetWriteOffset( const int offset )
{
numberOfBitsUsed = offset;
}
// Returns the length in bits of the stream
int BitStream::GetNumberOfBitsUsed( void ) const
{
return numberOfBitsUsed;
}
// Returns the length in bytes of the stream
int BitStream::GetNumberOfBytesUsed( void ) const
{
return BITS_TO_BYTES( numberOfBitsUsed );
}
// Returns the number of bits into the stream that we have read
int BitStream::GetReadOffset( void ) const
{
return readOffset;
}
// Returns the number of bits left in the stream that haven't been read
int BitStream::GetNumberOfUnreadBits( void ) const
{
return numberOfBitsUsed - readOffset;
}
// Exposes the internal data
unsigned char* BitStream::GetData( void ) const
{
return data;
}
// If we used the constructor version with copy data off, this makes sure it is set to on and the data pointed to is copied.
void BitStream::AssertCopyData( void )
{
if ( copyData == false )
{
copyData = true;
if ( numberOfBitsAllocated > 0 )
{
unsigned char * newdata = ( unsigned char* ) malloc( BITS_TO_BYTES( numberOfBitsAllocated ) );
#ifdef _DEBUG
assert( data );
#endif
memcpy( newdata, data, BITS_TO_BYTES( numberOfBitsAllocated ) );
data = newdata;
}
else
data = 0;
}
}
#endif