////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Microsoft Corporation. All Rights Reserved. // // File: d3dx9mesh.h // Content: D3DX mesh types and functions // ////////////////////////////////////////////////////////////////////////////// #include "d3dx9.h" #ifndef __D3DX9MESH_H__ #define __D3DX9MESH_H__ // {7ED943DD-52E8-40b5-A8D8-76685C406330} DEFINE_GUID(IID_ID3DXBaseMesh, 0x7ed943dd, 0x52e8, 0x40b5, 0xa8, 0xd8, 0x76, 0x68, 0x5c, 0x40, 0x63, 0x30); // {4020E5C2-1403-4929-883F-E2E849FAC195} DEFINE_GUID(IID_ID3DXMesh, 0x4020e5c2, 0x1403, 0x4929, 0x88, 0x3f, 0xe2, 0xe8, 0x49, 0xfa, 0xc1, 0x95); // {8875769A-D579-4088-AAEB-534D1AD84E96} DEFINE_GUID(IID_ID3DXPMesh, 0x8875769a, 0xd579, 0x4088, 0xaa, 0xeb, 0x53, 0x4d, 0x1a, 0xd8, 0x4e, 0x96); // {667EA4C7-F1CD-4386-B523-7C0290B83CC5} DEFINE_GUID(IID_ID3DXSPMesh, 0x667ea4c7, 0xf1cd, 0x4386, 0xb5, 0x23, 0x7c, 0x2, 0x90, 0xb8, 0x3c, 0xc5); // {11EAA540-F9A6-4d49-AE6A-E19221F70CC4} DEFINE_GUID(IID_ID3DXSkinInfo, 0x11eaa540, 0xf9a6, 0x4d49, 0xae, 0x6a, 0xe1, 0x92, 0x21, 0xf7, 0xc, 0xc4); // {3CE6CC22-DBF2-44f4-894D-F9C34A337139} DEFINE_GUID(IID_ID3DXPatchMesh, 0x3ce6cc22, 0xdbf2, 0x44f4, 0x89, 0x4d, 0xf9, 0xc3, 0x4a, 0x33, 0x71, 0x39); //patch mesh can be quads or tris typedef enum _D3DXPATCHMESHTYPE { D3DXPATCHMESH_RECT = 0x001, D3DXPATCHMESH_TRI = 0x002, D3DXPATCHMESH_NPATCH = 0x003, D3DXPATCHMESH_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ } D3DXPATCHMESHTYPE; // Mesh options - lower 3 bytes only, upper byte used by _D3DXMESHOPT option flags enum _D3DXMESH { D3DXMESH_32BIT = 0x001, // If set, then use 32 bit indices, if not set use 16 bit indices. D3DXMESH_DONOTCLIP = 0x002, // Use D3DUSAGE_DONOTCLIP for VB & IB. D3DXMESH_POINTS = 0x004, // Use D3DUSAGE_POINTS for VB & IB. D3DXMESH_RTPATCHES = 0x008, // Use D3DUSAGE_RTPATCHES for VB & IB. D3DXMESH_NPATCHES = 0x4000,// Use D3DUSAGE_NPATCHES for VB & IB. D3DXMESH_VB_SYSTEMMEM = 0x010, // Use D3DPOOL_SYSTEMMEM for VB. Overrides D3DXMESH_MANAGEDVERTEXBUFFER D3DXMESH_VB_MANAGED = 0x020, // Use D3DPOOL_MANAGED for VB. D3DXMESH_VB_WRITEONLY = 0x040, // Use D3DUSAGE_WRITEONLY for VB. D3DXMESH_VB_DYNAMIC = 0x080, // Use D3DUSAGE_DYNAMIC for VB. D3DXMESH_VB_SOFTWAREPROCESSING = 0x8000, // Use D3DUSAGE_SOFTWAREPROCESSING for VB. D3DXMESH_IB_SYSTEMMEM = 0x100, // Use D3DPOOL_SYSTEMMEM for IB. Overrides D3DXMESH_MANAGEDINDEXBUFFER D3DXMESH_IB_MANAGED = 0x200, // Use D3DPOOL_MANAGED for IB. D3DXMESH_IB_WRITEONLY = 0x400, // Use D3DUSAGE_WRITEONLY for IB. D3DXMESH_IB_DYNAMIC = 0x800, // Use D3DUSAGE_DYNAMIC for IB. D3DXMESH_IB_SOFTWAREPROCESSING= 0x10000, // Use D3DUSAGE_SOFTWAREPROCESSING for IB. D3DXMESH_VB_SHARE = 0x1000, // Valid for Clone* calls only, forces cloned mesh/pmesh to share vertex buffer D3DXMESH_USEHWONLY = 0x2000, // Valid for ID3DXSkinInfo::ConvertToBlendedMesh // Helper options D3DXMESH_SYSTEMMEM = 0x110, // D3DXMESH_VB_SYSTEMMEM | D3DXMESH_IB_SYSTEMMEM D3DXMESH_MANAGED = 0x220, // D3DXMESH_VB_MANAGED | D3DXMESH_IB_MANAGED D3DXMESH_WRITEONLY = 0x440, // D3DXMESH_VB_WRITEONLY | D3DXMESH_IB_WRITEONLY D3DXMESH_DYNAMIC = 0x880, // D3DXMESH_VB_DYNAMIC | D3DXMESH_IB_DYNAMIC D3DXMESH_SOFTWAREPROCESSING = 0x18000, // D3DXMESH_VB_SOFTWAREPROCESSING | D3DXMESH_IB_SOFTWAREPROCESSING }; //patch mesh options enum _D3DXPATCHMESH { D3DXPATCHMESH_DEFAULT = 000, }; // option field values for specifying min value in D3DXGeneratePMesh and D3DXSimplifyMesh enum _D3DXMESHSIMP { D3DXMESHSIMP_VERTEX = 0x1, D3DXMESHSIMP_FACE = 0x2, }; typedef enum _D3DXCLEANTYPE { D3DXCLEAN_BACKFACING = 0x00000001, D3DXCLEAN_BOWTIES = 0x00000002, // Helper options D3DXCLEAN_SKINNING = D3DXCLEAN_BACKFACING, // Bowtie cleaning modifies geometry and breaks skinning D3DXCLEAN_OPTIMIZATION = D3DXCLEAN_BACKFACING, D3DXCLEAN_SIMPLIFICATION= D3DXCLEAN_BACKFACING | D3DXCLEAN_BOWTIES, } D3DXCLEANTYPE; enum _MAX_FVF_DECL_SIZE { MAX_FVF_DECL_SIZE = MAXD3DDECLLENGTH + 1 // +1 for END }; typedef enum _D3DXTANGENT { D3DXTANGENT_WRAP_U = 0x01, D3DXTANGENT_WRAP_V = 0x02, D3DXTANGENT_WRAP_UV = 0x03, D3DXTANGENT_DONT_NORMALIZE_PARTIALS = 0x04, D3DXTANGENT_DONT_ORTHOGONALIZE = 0x08, D3DXTANGENT_ORTHOGONALIZE_FROM_V = 0x010, D3DXTANGENT_ORTHOGONALIZE_FROM_U = 0x020, D3DXTANGENT_WEIGHT_BY_AREA = 0x040, D3DXTANGENT_WEIGHT_EQUAL = 0x080, D3DXTANGENT_WIND_CW = 0x0100, D3DXTANGENT_CALCULATE_NORMALS = 0x0200, D3DXTANGENT_GENERATE_IN_PLACE = 0x0400, } D3DXTANGENT; typedef struct ID3DXBaseMesh *LPD3DXBASEMESH; typedef struct ID3DXMesh *LPD3DXMESH; typedef struct ID3DXPMesh *LPD3DXPMESH; typedef struct ID3DXSPMesh *LPD3DXSPMESH; typedef struct ID3DXSkinInfo *LPD3DXSKININFO; typedef struct ID3DXPatchMesh *LPD3DXPATCHMESH; typedef struct _D3DXATTRIBUTERANGE { DWORD AttribId; DWORD FaceStart; DWORD FaceCount; DWORD VertexStart; DWORD VertexCount; } D3DXATTRIBUTERANGE; typedef D3DXATTRIBUTERANGE* LPD3DXATTRIBUTERANGE; typedef struct _D3DXMATERIAL { D3DMATERIAL9 MatD3D; LPSTR pTextureFilename; } D3DXMATERIAL; typedef D3DXMATERIAL *LPD3DXMATERIAL; typedef enum _D3DXEFFECTDEFAULTTYPE { D3DXEDT_STRING = 0x1, // pValue points to a null terminated ASCII string D3DXEDT_FLOATS = 0x2, // pValue points to an array of floats - number of floats is NumBytes / sizeof(float) D3DXEDT_DWORD = 0x3, // pValue points to a DWORD D3DXEDT_FORCEDWORD = 0x7fffffff } D3DXEFFECTDEFAULTTYPE; typedef struct _D3DXEFFECTDEFAULT { LPSTR pParamName; D3DXEFFECTDEFAULTTYPE Type; // type of the data pointed to by pValue DWORD NumBytes; // size in bytes of the data pointed to by pValue LPVOID pValue; // data for the default of the effect } D3DXEFFECTDEFAULT, *LPD3DXEFFECTDEFAULT; typedef struct _D3DXEFFECTINSTANCE { LPSTR pEffectFilename; DWORD NumDefaults; LPD3DXEFFECTDEFAULT pDefaults; } D3DXEFFECTINSTANCE, *LPD3DXEFFECTINSTANCE; typedef struct _D3DXATTRIBUTEWEIGHTS { FLOAT Position; FLOAT Boundary; FLOAT Normal; FLOAT Diffuse; FLOAT Specular; FLOAT Texcoord[8]; FLOAT Tangent; FLOAT Binormal; } D3DXATTRIBUTEWEIGHTS, *LPD3DXATTRIBUTEWEIGHTS; enum _D3DXWELDEPSILONSFLAGS { D3DXWELDEPSILONS_WELDALL = 0x1, // weld all vertices marked by adjacency as being overlapping D3DXWELDEPSILONS_WELDPARTIALMATCHES = 0x2, // if a given vertex component is within epsilon, modify partial matched // vertices so that both components identical AND if all components "equal" // remove one of the vertices D3DXWELDEPSILONS_DONOTREMOVEVERTICES = 0x4, // instructs weld to only allow modifications to vertices and not removal // ONLY valid if D3DXWELDEPSILONS_WELDPARTIALMATCHES is set // useful to modify vertices to be equal, but not allow vertices to be removed D3DXWELDEPSILONS_DONOTSPLIT = 0x8, // instructs weld to specify the D3DXMESHOPT_DONOTSPLIT flag when doing an Optimize(ATTR_SORT) // if this flag is not set, all vertices that are in separate attribute groups // will remain split and not welded. Setting this flag can slow down software vertex processing }; typedef struct _D3DXWELDEPSILONS { FLOAT Position; // NOTE: This does NOT replace the epsilon in GenerateAdjacency // in general, it should be the same value or greater than the one passed to GeneratedAdjacency FLOAT BlendWeights; FLOAT Normal; FLOAT PSize; FLOAT Specular; FLOAT Diffuse; FLOAT Texcoord[8]; FLOAT Tangent; FLOAT Binormal; FLOAT TessFactor; } D3DXWELDEPSILONS; typedef D3DXWELDEPSILONS* LPD3DXWELDEPSILONS; #undef INTERFACE #define INTERFACE ID3DXBaseMesh DECLARE_INTERFACE_(ID3DXBaseMesh, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXBaseMesh STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE; STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(GetAttributeTable)( THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE; STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE; STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE; STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE; STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; }; #undef INTERFACE #define INTERFACE ID3DXMesh DECLARE_INTERFACE_(ID3DXMesh, ID3DXBaseMesh) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXBaseMesh STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE; STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(GetAttributeTable)( THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE; STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE; STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE; STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE; STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; // ID3DXMesh STDMETHOD(LockAttributeBuffer)(THIS_ DWORD Flags, DWORD** ppData) PURE; STDMETHOD(UnlockAttributeBuffer)(THIS) PURE; STDMETHOD(Optimize)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, LPD3DXMESH* ppOptMesh) PURE; STDMETHOD(OptimizeInplace)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap) PURE; STDMETHOD(SetAttributeTable)(THIS_ CONST D3DXATTRIBUTERANGE *pAttribTable, DWORD cAttribTableSize) PURE; }; #undef INTERFACE #define INTERFACE ID3DXPMesh DECLARE_INTERFACE_(ID3DXPMesh, ID3DXBaseMesh) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXBaseMesh STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE; STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(GetAttributeTable)( THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE; STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE; STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE; STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE; STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; // ID3DXPMesh STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(ClonePMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(SetNumFaces)(THIS_ DWORD Faces) PURE; STDMETHOD(SetNumVertices)(THIS_ DWORD Vertices) PURE; STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE; STDMETHOD_(DWORD, GetMinFaces)(THIS) PURE; STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE; STDMETHOD_(DWORD, GetMinVertices)(THIS) PURE; STDMETHOD(Save)(THIS_ IStream *pStream, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials) PURE; STDMETHOD(Optimize)(THIS_ DWORD Flags, DWORD* pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, LPD3DXMESH* ppOptMesh) PURE; STDMETHOD(OptimizeBaseLOD)(THIS_ DWORD Flags, DWORD* pFaceRemap) PURE; STDMETHOD(TrimByFaces)(THIS_ DWORD NewFacesMin, DWORD NewFacesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE; STDMETHOD(TrimByVertices)(THIS_ DWORD NewVerticesMin, DWORD NewVerticesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE; STDMETHOD(GetAdjacency)(THIS_ DWORD* pAdjacency) PURE; // Used to generate the immediate "ancestor" for each vertex when it is removed by a vsplit. Allows generation of geomorphs // Vertex buffer must be equal to or greater than the maximum number of vertices in the pmesh STDMETHOD(GenerateVertexHistory)(THIS_ DWORD* pVertexHistory) PURE; }; #undef INTERFACE #define INTERFACE ID3DXSPMesh DECLARE_INTERFACE_(ID3DXSPMesh, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXSPMesh STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsByFace, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(ClonePMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsbyFace, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(ReduceFaces)(THIS_ DWORD Faces) PURE; STDMETHOD(ReduceVertices)(THIS_ DWORD Vertices) PURE; STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE; STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE; STDMETHOD(GetVertexAttributeWeights)(THIS_ LPD3DXATTRIBUTEWEIGHTS pVertexAttributeWeights) PURE; STDMETHOD(GetVertexWeights)(THIS_ FLOAT *pVertexWeights) PURE; }; #define UNUSED16 (0xffff) #define UNUSED32 (0xffffffff) // ID3DXMesh::Optimize options - upper byte only, lower 3 bytes used from _D3DXMESH option flags enum _D3DXMESHOPT { D3DXMESHOPT_COMPACT = 0x01000000, D3DXMESHOPT_ATTRSORT = 0x02000000, D3DXMESHOPT_VERTEXCACHE = 0x04000000, D3DXMESHOPT_STRIPREORDER = 0x08000000, D3DXMESHOPT_IGNOREVERTS = 0x10000000, // optimize faces only, don't touch vertices D3DXMESHOPT_DONOTSPLIT = 0x20000000, // do not split vertices shared between attribute groups when attribute sorting D3DXMESHOPT_DEVICEINDEPENDENT = 0x00400000, // Only affects VCache. uses a static known good cache size for all cards // D3DXMESHOPT_SHAREVB has been removed, please use D3DXMESH_VB_SHARE instead }; // Subset of the mesh that has the same attribute and bone combination. // This subset can be rendered in a single draw call typedef struct _D3DXBONECOMBINATION { DWORD AttribId; DWORD FaceStart; DWORD FaceCount; DWORD VertexStart; DWORD VertexCount; DWORD* BoneId; } D3DXBONECOMBINATION, *LPD3DXBONECOMBINATION; // The following types of patch combinations are supported: // Patch type Basis Degree // Rect Bezier 2,3,5 // Rect B-Spline 2,3,5 // Rect Catmull-Rom 3 // Tri Bezier 2,3,5 // N-Patch N/A 3 typedef struct _D3DXPATCHINFO { D3DXPATCHMESHTYPE PatchType; D3DDEGREETYPE Degree; D3DBASISTYPE Basis; } D3DXPATCHINFO, *LPD3DXPATCHINFO; #undef INTERFACE #define INTERFACE ID3DXPatchMesh DECLARE_INTERFACE_(ID3DXPatchMesh, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXPatchMesh // Return creation parameters STDMETHOD_(DWORD, GetNumPatches)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetControlVerticesPerPatch)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9 *ppDevice) PURE; STDMETHOD(GetPatchInfo)(THIS_ LPD3DXPATCHINFO PatchInfo) PURE; // Control mesh access STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(LockAttributeBuffer)(THIS_ DWORD flags, DWORD** ppData) PURE; STDMETHOD(UnlockAttributeBuffer)(THIS) PURE; // This function returns the size of the tessellated mesh given a tessellation level. // This assumes uniform tessellation. For adaptive tessellation the Adaptive parameter must // be set to TRUE and TessellationLevel should be the max tessellation. // This will result in the max mesh size necessary for adaptive tessellation. STDMETHOD(GetTessSize)(THIS_ FLOAT fTessLevel,DWORD Adaptive, DWORD *NumTriangles,DWORD *NumVertices) PURE; //GenerateAdjacency determines which patches are adjacent with provided tolerance //this information is used internally to optimize tessellation STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Tolerance) PURE; //CloneMesh Creates a new patchmesh with the specified decl, and converts the vertex buffer //to the new decl. Entries in the new decl which are new are set to 0. If the current mesh //has adjacency, the new mesh will also have adjacency STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDecl, LPD3DXPATCHMESH *pMesh) PURE; // Optimizes the patchmesh for efficient tessellation. This function is designed // to perform one time optimization for patch meshes that need to be tessellated // repeatedly by calling the Tessellate() method. The optimization performed is // independent of the actual tessellation level used. // Currently Flags is unused. // If vertices are changed, Optimize must be called again STDMETHOD(Optimize)(THIS_ DWORD flags) PURE; //gets and sets displacement parameters //displacement maps can only be 2D textures MIP-MAPPING is ignored for non adapative tessellation STDMETHOD(SetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 Texture, D3DTEXTUREFILTERTYPE MinFilter, D3DTEXTUREFILTERTYPE MagFilter, D3DTEXTUREFILTERTYPE MipFilter, D3DTEXTUREADDRESS Wrap, DWORD dwLODBias) PURE; STDMETHOD(GetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 *Texture, D3DTEXTUREFILTERTYPE *MinFilter, D3DTEXTUREFILTERTYPE *MagFilter, D3DTEXTUREFILTERTYPE *MipFilter, D3DTEXTUREADDRESS *Wrap, DWORD *dwLODBias) PURE; // Performs the uniform tessellation based on the tessellation level. // This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call. STDMETHOD(Tessellate)(THIS_ FLOAT fTessLevel,LPD3DXMESH pMesh) PURE; // Performs adaptive tessellation based on the Z based adaptive tessellation criterion. // pTrans specifies a 4D vector that is dotted with the vertices to get the per vertex // adaptive tessellation amount. Each edge is tessellated to the average of the criterion // at the 2 vertices it connects. // MaxTessLevel specifies the upper limit for adaptive tesselation. // This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call. STDMETHOD(TessellateAdaptive)(THIS_ CONST D3DXVECTOR4 *pTrans, DWORD dwMaxTessLevel, DWORD dwMinTessLevel, LPD3DXMESH pMesh) PURE; }; #undef INTERFACE #define INTERFACE ID3DXSkinInfo DECLARE_INTERFACE_(ID3DXSkinInfo, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // Specify the which vertices do each bones influence and by how much STDMETHOD(SetBoneInfluence)(THIS_ DWORD bone, DWORD numInfluences, CONST DWORD* vertices, CONST FLOAT* weights) PURE; STDMETHOD(SetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float weight) PURE; STDMETHOD_(DWORD, GetNumBoneInfluences)(THIS_ DWORD bone) PURE; STDMETHOD(GetBoneInfluence)(THIS_ DWORD bone, DWORD* vertices, FLOAT* weights) PURE; STDMETHOD(GetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float *pWeight, DWORD *pVertexNum) PURE; STDMETHOD(GetMaxVertexInfluences)(THIS_ DWORD* maxVertexInfluences) PURE; STDMETHOD_(DWORD, GetNumBones)(THIS) PURE; STDMETHOD(FindBoneVertexInfluenceIndex)(THIS_ DWORD boneNum, DWORD vertexNum, DWORD *pInfluenceIndex) PURE; // This gets the max face influences based on a triangle mesh with the specified index buffer STDMETHOD(GetMaxFaceInfluences)(THIS_ LPDIRECT3DINDEXBUFFER9 pIB, DWORD NumFaces, DWORD* maxFaceInfluences) PURE; // Set min bone influence. Bone influences that are smaller than this are ignored STDMETHOD(SetMinBoneInfluence)(THIS_ FLOAT MinInfl) PURE; // Get min bone influence. STDMETHOD_(FLOAT, GetMinBoneInfluence)(THIS) PURE; // Bone names are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object STDMETHOD(SetBoneName)(THIS_ DWORD Bone, LPCSTR pName) PURE; // pName is copied to an internal string buffer STDMETHOD_(LPCSTR, GetBoneName)(THIS_ DWORD Bone) PURE; // A pointer to an internal string buffer is returned. Do not free this. // Bone offset matrices are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object STDMETHOD(SetBoneOffsetMatrix)(THIS_ DWORD Bone, CONST D3DXMATRIX *pBoneTransform) PURE; // pBoneTransform is copied to an internal buffer STDMETHOD_(LPD3DXMATRIX, GetBoneOffsetMatrix)(THIS_ DWORD Bone) PURE; // A pointer to an internal matrix is returned. Do not free this. // Clone a skin info object STDMETHOD(Clone)(THIS_ LPD3DXSKININFO* ppSkinInfo) PURE; // Update bone influence information to match vertices after they are reordered. This should be called // if the target vertex buffer has been reordered externally. STDMETHOD(Remap)(THIS_ DWORD NumVertices, DWORD* pVertexRemap) PURE; // These methods enable the modification of the vertex layout of the vertices that will be skinned STDMETHOD(SetFVF)(THIS_ DWORD FVF) PURE; STDMETHOD(SetDeclaration)(THIS_ CONST D3DVERTEXELEMENT9 *pDeclaration) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; // Apply SW skinning based on current pose matrices to the target vertices. STDMETHOD(UpdateSkinnedMesh)(THIS_ CONST D3DXMATRIX* pBoneTransforms, CONST D3DXMATRIX* pBoneInvTransposeTransforms, LPCVOID pVerticesSrc, PVOID pVerticesDst) PURE; // Takes a mesh and returns a new mesh with per vertex blend weights and a bone combination // table that describes which bones affect which subsets of the mesh STDMETHOD(ConvertToBlendedMesh)(THIS_ LPD3DXMESH pMesh, DWORD Options, CONST DWORD *pAdjacencyIn, LPDWORD pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, DWORD* pMaxFaceInfl, DWORD* pNumBoneCombinations, LPD3DXBUFFER* ppBoneCombinationTable, LPD3DXMESH* ppMesh) PURE; // Takes a mesh and returns a new mesh with per vertex blend weights and indices // and a bone combination table that describes which bones palettes affect which subsets of the mesh STDMETHOD(ConvertToIndexedBlendedMesh)(THIS_ LPD3DXMESH pMesh, DWORD Options, DWORD paletteSize, CONST DWORD *pAdjacencyIn, LPDWORD pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, DWORD* pMaxVertexInfl, DWORD* pNumBoneCombinations, LPD3DXBUFFER* ppBoneCombinationTable, LPD3DXMESH* ppMesh) PURE; }; #ifdef __cplusplus extern "C" { #endif //__cplusplus HRESULT WINAPI D3DXCreateMesh( DWORD NumFaces, DWORD NumVertices, DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppMesh); HRESULT WINAPI D3DXCreateMeshFVF( DWORD NumFaces, DWORD NumVertices, DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppMesh); HRESULT WINAPI D3DXCreateSPMesh( LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights, CONST FLOAT *pVertexWeights, LPD3DXSPMESH* ppSMesh); // clean a mesh up for simplification, try to make manifold HRESULT WINAPI D3DXCleanMesh( D3DXCLEANTYPE CleanType, LPD3DXMESH pMeshIn, CONST DWORD* pAdjacencyIn, LPD3DXMESH* ppMeshOut, DWORD* pAdjacencyOut, LPD3DXBUFFER* ppErrorsAndWarnings); HRESULT WINAPI D3DXValidMesh( LPD3DXMESH pMeshIn, CONST DWORD* pAdjacency, LPD3DXBUFFER* ppErrorsAndWarnings); HRESULT WINAPI D3DXGeneratePMesh( LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights, CONST FLOAT *pVertexWeights, DWORD MinValue, DWORD Options, LPD3DXPMESH* ppPMesh); HRESULT WINAPI D3DXSimplifyMesh( LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights, CONST FLOAT *pVertexWeights, DWORD MinValue, DWORD Options, LPD3DXMESH* ppMesh); HRESULT WINAPI D3DXComputeBoundingSphere( CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position DWORD NumVertices, DWORD dwStride, // count in bytes to subsequent position vectors D3DXVECTOR3 *pCenter, FLOAT *pRadius); HRESULT WINAPI D3DXComputeBoundingBox( CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position DWORD NumVertices, DWORD dwStride, // count in bytes to subsequent position vectors D3DXVECTOR3 *pMin, D3DXVECTOR3 *pMax); HRESULT WINAPI D3DXComputeNormals( LPD3DXBASEMESH pMesh, CONST DWORD *pAdjacency); HRESULT WINAPI D3DXCreateBuffer( DWORD NumBytes, LPD3DXBUFFER *ppBuffer); HRESULT WINAPI D3DXLoadMeshFromXA( LPCSTR pFilename, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh); HRESULT WINAPI D3DXLoadMeshFromXW( LPCWSTR pFilename, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh); #ifdef UNICODE #define D3DXLoadMeshFromX D3DXLoadMeshFromXW #else #define D3DXLoadMeshFromX D3DXLoadMeshFromXA #endif HRESULT WINAPI D3DXLoadMeshFromXInMemory( LPCVOID Memory, DWORD SizeOfMemory, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh); HRESULT WINAPI D3DXLoadMeshFromXResource( HMODULE Module, LPCSTR Name, LPCSTR Type, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh); HRESULT WINAPI D3DXSaveMeshToXA( LPCSTR pFilename, LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials, DWORD Format ); HRESULT WINAPI D3DXSaveMeshToXW( LPCWSTR pFilename, LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials, DWORD Format ); #ifdef UNICODE #define D3DXSaveMeshToX D3DXSaveMeshToXW #else #define D3DXSaveMeshToX D3DXSaveMeshToXA #endif HRESULT WINAPI D3DXCreatePMeshFromStream( IStream *pStream, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD* pNumMaterials, LPD3DXPMESH *ppPMesh); // Creates a skin info object based on the number of vertices, number of bones, and a declaration describing the vertex layout of the target vertices // The bone names and initial bone transforms are not filled in the skin info object by this method. HRESULT WINAPI D3DXCreateSkinInfo( DWORD NumVertices, CONST D3DVERTEXELEMENT9 *pDeclaration, DWORD NumBones, LPD3DXSKININFO* ppSkinInfo); // Creates a skin info object based on the number of vertices, number of bones, and a FVF describing the vertex layout of the target vertices // The bone names and initial bone transforms are not filled in the skin info object by this method. HRESULT WINAPI D3DXCreateSkinInfoFVF( DWORD NumVertices, DWORD FVF, DWORD NumBones, LPD3DXSKININFO* ppSkinInfo); #ifdef __cplusplus } extern "C" { #endif //__cplusplus HRESULT WINAPI D3DXLoadMeshFromXof( LPD3DXFILEDATA pxofMesh, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh); // This similar to D3DXLoadMeshFromXof, except also returns skinning info if present in the file // If skinning info is not present, ppSkinInfo will be NULL HRESULT WINAPI D3DXLoadSkinMeshFromXof( LPD3DXFILEDATA pxofMesh, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER* ppAdjacency, LPD3DXBUFFER* ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pMatOut, LPD3DXSKININFO* ppSkinInfo, LPD3DXMESH* ppMesh); // The inverse of D3DXConvertTo{Indexed}BlendedMesh() functions. It figures out the skinning info from // the mesh and the bone combination table and populates a skin info object with that data. The bone // names and initial bone transforms are not filled in the skin info object by this method. This works // with either a non-indexed or indexed blended mesh. It examines the FVF or declarator of the mesh to // determine what type it is. HRESULT WINAPI D3DXCreateSkinInfoFromBlendedMesh( LPD3DXBASEMESH pMesh, DWORD NumBones, CONST D3DXBONECOMBINATION *pBoneCombinationTable, LPD3DXSKININFO* ppSkinInfo); HRESULT WINAPI D3DXTessellateNPatches( LPD3DXMESH pMeshIn, CONST DWORD* pAdjacencyIn, FLOAT NumSegs, BOOL QuadraticInterpNormals, // if false use linear intrep for normals, if true use quadratic LPD3DXMESH *ppMeshOut, LPD3DXBUFFER *ppAdjacencyOut); //generates implied outputdecl from input decl //the decl generated from this should be used to generate the output decl for //the tessellator subroutines. HRESULT WINAPI D3DXGenerateOutputDecl( D3DVERTEXELEMENT9 *pOutput, CONST D3DVERTEXELEMENT9 *pInput); //loads patches from an XFileData //since an X file can have up to 6 different patch meshes in it, //returns them in an array - pNumPatches will contain the number of //meshes in the actual file. HRESULT WINAPI D3DXLoadPatchMeshFromXof( LPD3DXFILEDATA pXofObjMesh, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, PDWORD pNumMaterials, LPD3DXPATCHMESH *ppMesh); //computes the size a single rect patch. HRESULT WINAPI D3DXRectPatchSize( CONST FLOAT *pfNumSegs, //segments for each edge (4) DWORD *pdwTriangles, //output number of triangles DWORD *pdwVertices); //output number of vertices //computes the size of a single triangle patch HRESULT WINAPI D3DXTriPatchSize( CONST FLOAT *pfNumSegs, //segments for each edge (3) DWORD *pdwTriangles, //output number of triangles DWORD *pdwVertices); //output number of vertices //tessellates a patch into a created mesh //similar to D3D RT patch HRESULT WINAPI D3DXTessellateRectPatch( LPDIRECT3DVERTEXBUFFER9 pVB, CONST FLOAT *pNumSegs, CONST D3DVERTEXELEMENT9 *pdwInDecl, CONST D3DRECTPATCH_INFO *pRectPatchInfo, LPD3DXMESH pMesh); HRESULT WINAPI D3DXTessellateTriPatch( LPDIRECT3DVERTEXBUFFER9 pVB, CONST FLOAT *pNumSegs, CONST D3DVERTEXELEMENT9 *pInDecl, CONST D3DTRIPATCH_INFO *pTriPatchInfo, LPD3DXMESH pMesh); //creates an NPatch PatchMesh from a D3DXMESH HRESULT WINAPI D3DXCreateNPatchMesh( LPD3DXMESH pMeshSysMem, LPD3DXPATCHMESH *pPatchMesh); //creates a patch mesh HRESULT WINAPI D3DXCreatePatchMesh( CONST D3DXPATCHINFO *pInfo, //patch type DWORD dwNumPatches, //number of patches DWORD dwNumVertices, //number of control vertices DWORD dwOptions, //options CONST D3DVERTEXELEMENT9 *pDecl, //format of control vertices LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPATCHMESH *pPatchMesh); //returns the number of degenerates in a patch mesh - //text output put in string. HRESULT WINAPI D3DXValidPatchMesh(LPD3DXPATCHMESH pMesh, DWORD *dwcDegenerateVertices, DWORD *dwcDegeneratePatches, LPD3DXBUFFER *ppErrorsAndWarnings); UINT WINAPI D3DXGetFVFVertexSize(DWORD FVF); UINT WINAPI D3DXGetDeclVertexSize(CONST D3DVERTEXELEMENT9 *pDecl,DWORD Stream); UINT WINAPI D3DXGetDeclLength(CONST D3DVERTEXELEMENT9 *pDecl); HRESULT WINAPI D3DXDeclaratorFromFVF( DWORD FVF, D3DVERTEXELEMENT9 pDeclarator[MAX_FVF_DECL_SIZE]); HRESULT WINAPI D3DXFVFFromDeclarator( CONST D3DVERTEXELEMENT9 *pDeclarator, DWORD *pFVF); HRESULT WINAPI D3DXWeldVertices( LPD3DXMESH pMesh, DWORD Flags, CONST D3DXWELDEPSILONS *pEpsilons, CONST DWORD *pAdjacencyIn, DWORD *pAdjacencyOut, DWORD *pFaceRemap, LPD3DXBUFFER *ppVertexRemap); typedef struct _D3DXINTERSECTINFO { DWORD FaceIndex; // index of face intersected FLOAT U; // Barycentric Hit Coordinates FLOAT V; // Barycentric Hit Coordinates FLOAT Dist; // Ray-Intersection Parameter Distance } D3DXINTERSECTINFO, *LPD3DXINTERSECTINFO; HRESULT WINAPI D3DXIntersect( LPD3DXBASEMESH pMesh, CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir, BOOL *pHit, // True if any faces were intersected DWORD *pFaceIndex, // index of closest face intersected FLOAT *pU, // Barycentric Hit Coordinates FLOAT *pV, // Barycentric Hit Coordinates FLOAT *pDist, // Ray-Intersection Parameter Distance LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest) DWORD *pCountOfHits); // Number of entries in AllHits array HRESULT WINAPI D3DXIntersectSubset( LPD3DXBASEMESH pMesh, DWORD AttribId, CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir, BOOL *pHit, // True if any faces were intersected DWORD *pFaceIndex, // index of closest face intersected FLOAT *pU, // Barycentric Hit Coordinates FLOAT *pV, // Barycentric Hit Coordinates FLOAT *pDist, // Ray-Intersection Parameter Distance LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest) DWORD *pCountOfHits); // Number of entries in AllHits array HRESULT WINAPI D3DXSplitMesh ( LPD3DXMESH pMeshIn, CONST DWORD *pAdjacencyIn, CONST DWORD MaxSize, CONST DWORD Options, DWORD *pMeshesOut, LPD3DXBUFFER *ppMeshArrayOut, LPD3DXBUFFER *ppAdjacencyArrayOut, LPD3DXBUFFER *ppFaceRemapArrayOut, LPD3DXBUFFER *ppVertRemapArrayOut ); BOOL WINAPI D3DXIntersectTri ( CONST D3DXVECTOR3 *p0, // Triangle vertex 0 position CONST D3DXVECTOR3 *p1, // Triangle vertex 1 position CONST D3DXVECTOR3 *p2, // Triangle vertex 2 position CONST D3DXVECTOR3 *pRayPos, // Ray origin CONST D3DXVECTOR3 *pRayDir, // Ray direction FLOAT *pU, // Barycentric Hit Coordinates FLOAT *pV, // Barycentric Hit Coordinates FLOAT *pDist); // Ray-Intersection Parameter Distance BOOL WINAPI D3DXSphereBoundProbe( CONST D3DXVECTOR3 *pCenter, FLOAT Radius, CONST D3DXVECTOR3 *pRayPosition, CONST D3DXVECTOR3 *pRayDirection); BOOL WINAPI D3DXBoxBoundProbe( CONST D3DXVECTOR3 *pMin, CONST D3DXVECTOR3 *pMax, CONST D3DXVECTOR3 *pRayPosition, CONST D3DXVECTOR3 *pRayDirection); HRESULT WINAPI D3DXComputeTangentFrame(ID3DXMesh *pMesh, DWORD dwOptions); HRESULT WINAPI D3DXComputeTangentFrameEx(ID3DXMesh *pMesh, DWORD dwTextureInSemantic, DWORD dwTextureInIndex, DWORD dwUPartialOutSemantic, DWORD dwUPartialOutIndex, DWORD dwVPartialOutSemantic, DWORD dwVPartialOutIndex, DWORD dwNormalOutSemantic, DWORD dwNormalOutIndex, DWORD dwOptions, CONST DWORD *pdwAdjacency, FLOAT fPartialEdgeThreshold, FLOAT fSingularPointThreshold, FLOAT fNormalEdgeThreshold, ID3DXMesh **ppMeshOut, ID3DXBuffer **ppVertexMapping); //D3DXComputeTangent // //Computes the Tangent vectors for the TexStage texture coordinates //and places the results in the TANGENT[TangentIndex] specified in the meshes' DECL //puts the binorm in BINORM[BinormIndex] also specified in the decl. // //If neither the binorm or the tangnet are in the meshes declaration, //the function will fail. // //If a tangent or Binorm field is in the Decl, but the user does not //wish D3DXComputeTangent to replace them, then D3DX_DEFAULT specified //in the TangentIndex or BinormIndex will cause it to ignore the specified //semantic. // //Wrap should be specified if the texture coordinates wrap. HRESULT WINAPI D3DXComputeTangent(LPD3DXMESH Mesh, DWORD TexStage, DWORD TangentIndex, DWORD BinormIndex, DWORD Wrap, CONST DWORD *pAdjacency); //============================================================================ // // UVAtlas apis // //============================================================================ typedef HRESULT (WINAPI *LPD3DXUVATLASCB)(FLOAT fPercentDone, LPVOID lpUserContext); // This function creates atlases for meshes. There are two modes of operation, // either based on the number of charts, or the maximum allowed stretch. If the // maximum allowed stretch is 0, then each triangle will likely be in its own // chart. // // The parameters are as follows: // pMesh - Input mesh to calculate an atlas for. This must have a position // channel and at least a 2-d texture channel. // uMaxChartNumber - The maximum number of charts required for the atlas. // If this is 0, it will be parameterized based solely on // stretch. // fMaxStretch - The maximum amount of stretch, if 0, no stretching is allowed, // if 1, then any amount of stretching is allowed. // uWidth - The width of the texture the atlas will be used on. // uHeight - The height of the texture the atlas will be used on. // fGutter - The minimum distance, in texels between two charts on the atlas. // this gets scaled by the width, so if fGutter is 2.5, and it is // used on a 512x512 texture, then the minimum distance will be // 2.5 / 512 in u-v space. // dwTextureIndex - Specifies which texture coordinate to write to in the // output mesh (which is cloned from the input mesh). Useful // if your vertex has multiple texture coordinates. // pdwAdjacency - a pointer to an array with 3 DWORDs per face, indicating // which triangles are adjacent to each other (unused so far). // pfIMTArray - a pointer to an array with 3 FLOATs per face, describing the // integrated metric tensor for that face. This lets you control // the way this triangle may be stretched in the atlas. The IMT // passed in will be 3 floats (a,b,c) and specify a symmetric // matrix (a b) that, given a vector (s,t), specifies the // (b c) // distance between a vector v1 and a vector v2 = v1 + (s,t) as // sqrt((s, t) * M * (s, t)^T). // In other words, this lets one specify the magnitude of the // stretch in an arbitrary direction in u-v space. For example // if a = b = c = 1, then this scales the vector (1,1) by 2, and // the vector (1,-1) by 0. Note that this is multiplying the edge // length by the square of the matrix, so if you want the face to // stretch to twice its // size with no shearing, the IMT value should be (2, 0, 2), which // is just the identity matrix times 2. // Note that this assumes you have an orientation for the triangle // in some 2-D space. For D3DXUVAtlas, this space is created by // letting S be the direction from the first to the second // vertex, and T be the cross product between the normal and S. // // pCallback - Since the atlas creation process can be very CPU intensive, // this allows the programmer to specify a function to be called // periodically, similarly to how it is done in the PRT simulation // engine. // fCallbackFrequency - This lets you specify how often the callback will be // called. A decent default should be 0.0001f. // pUserContext - a void pointer to be passed back to the callback function // ppMeshOut - A pointer to a location to store a pointer for the newly created // mesh. // ppFacePartitioning - A pointer to a location to store a pointer for an array, // one DWORD per face, giving the final partitioning // created by the atlasing algorithm. // ppVertexRemapArray - A pointer to a location to store a pointer for an array, // one DWORD per vertex, giving the vertex it was copied // from, if any vertices needed to be split. // pfMaxStretchOut - A location to store the maximum stretch resulting from the // atlasing algorithm. // puNumChartsOut - A location to store the number of charts created, or if the // maximum number of charts was too low, this gives the minimum // number of charts needed to create an atlas. HRESULT WINAPI D3DXUVAtlasCreate(LPD3DXMESH pMesh, UINT uMaxChartNumber, FLOAT fMaxStretch, UINT uWidth, UINT uHeight, FLOAT fGutter, DWORD dwTextureIndex, CONST DWORD *pdwAdjacency, FLOAT *pfIMTArray, LPD3DXUVATLASCB pCallback, FLOAT fCallbackFrequency, LPVOID pUserContext, LPD3DXMESH *ppMeshOut, LPD3DXBUFFER *ppFacePartitioning, LPD3DXBUFFER *ppVertexRemapArray, FLOAT *pfMaxStretchOut, UINT *puNumChartsOut); // This has the same exact arguments as Create, except that it does not perform the // final packing step. This method allows one to get a partitioning out, and possibly // modify it before sending it to be repacked. Note that if you change the // partitioning, you'll also need to calculate new texture coordinates for any faces // that have switched charts. HRESULT WINAPI D3DXUVAtlasPartition(LPD3DXMESH pMesh, UINT uMaxChartNumber, FLOAT fMaxStretch, DWORD dwTextureIndex, CONST DWORD *pdwAdjacency, FLOAT *pfIMTArray, LPD3DXUVATLASCB pCallback, FLOAT fCallbackFrequency, LPVOID pUserContext, LPD3DXMESH *ppMeshOut, LPD3DXBUFFER *ppFacePartitioning, LPD3DXBUFFER *ppVertexRemapArray, FLOAT *pfMaxStretchOut, UINT *puNumChartsOut); // This takes the face partitioning result from Partition and packs it into an // atlas of the given size. HRESULT WINAPI D3DXUVAtlasPack(ID3DXMesh *pMesh, UINT uWidth, UINT uHeight, FLOAT fGutter, DWORD dwTextureIndex, LPD3DXUVATLASCB pCallback, FLOAT fCallbackFrequency, LPVOID pUserContext, LPD3DXBUFFER pFacePartitioning); HRESULT WINAPI D3DXConvertMeshSubsetToSingleStrip( LPD3DXBASEMESH MeshIn, DWORD AttribId, DWORD IBOptions, LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer, DWORD *pNumIndices); HRESULT WINAPI D3DXConvertMeshSubsetToStrips( LPD3DXBASEMESH MeshIn, DWORD AttribId, DWORD IBOptions, LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer, DWORD *pNumIndices, LPD3DXBUFFER *ppStripLengths, DWORD *pNumStrips); //============================================================================ // // D3DXOptimizeFaces: // -------------------- // Generate a face remapping for a triangle list that more effectively utilizes // vertex caches. This optimization is identical to the one provided // by ID3DXMesh::Optimize with the hardware independent option enabled. // // Parameters: // pbIndices // Triangle list indices to use for generating a vertex ordering // NumFaces // Number of faces in the triangle list // NumVertices // Number of vertices referenced by the triangle list // b32BitIndices // TRUE if indices are 32 bit, FALSE if indices are 16 bit // pFaceRemap // Destination buffer to store face ordering // The number stored for a given element is where in the new ordering // the face will have come from. See ID3DXMesh::Optimize for more info. // //============================================================================ HRESULT WINAPI D3DXOptimizeFaces( LPCVOID pbIndices, UINT cFaces, UINT cVertices, BOOL b32BitIndices, DWORD* pFaceRemap); //============================================================================ // // D3DXOptimizeVertices: // -------------------- // Generate a vertex remapping to optimize for in order use of vertices for // a given set of indices. This is commonly used after applying the face // remap generated by D3DXOptimizeFaces // // Parameters: // pbIndices // Triangle list indices to use for generating a vertex ordering // NumFaces // Number of faces in the triangle list // NumVertices // Number of vertices referenced by the triangle list // b32BitIndices // TRUE if indices are 32 bit, FALSE if indices are 16 bit // pVertexRemap // Destination buffer to store vertex ordering // The number stored for a given element is where in the new ordering // the vertex will have come from. See ID3DXMesh::Optimize for more info. // //============================================================================ HRESULT WINAPI D3DXOptimizeVertices( LPCVOID pbIndices, UINT cFaces, UINT cVertices, BOOL b32BitIndices, DWORD* pVertexRemap); #ifdef __cplusplus } #endif //__cplusplus //=========================================================================== // // Data structures for Spherical Harmonic Precomputation // // //============================================================================ typedef enum _D3DXSHCOMPRESSQUALITYTYPE { D3DXSHCQUAL_FASTLOWQUALITY = 1, D3DXSHCQUAL_SLOWHIGHQUALITY = 2, D3DXSHCQUAL_FORCE_DWORD = 0x7fffffff } D3DXSHCOMPRESSQUALITYTYPE; typedef enum _D3DXSHGPUSIMOPT { D3DXSHGPUSIMOPT_SHADOWRES256 = 1, D3DXSHGPUSIMOPT_SHADOWRES512 = 0, D3DXSHGPUSIMOPT_SHADOWRES1024 = 2, D3DXSHGPUSIMOPT_SHADOWRES2048 = 3, D3DXSHGPUSIMOPT_HIGHQUALITY = 4, D3DXSHGPUSIMOPT_FORCE_DWORD = 0x7fffffff } D3DXSHGPUSIMOPT; // for all properties that are colors the luminance is computed // if the simulator is run with a single channel using the following // formula: R * 0.2125 + G * 0.7154 + B * 0.0721 typedef struct _D3DXSHMATERIAL { D3DCOLORVALUE Diffuse; // Diffuse albedo of the surface. (Ignored if object is a Mirror) BOOL bMirror; // Must be set to FALSE. bMirror == TRUE not currently supported BOOL bSubSurf; // true if the object does subsurface scattering - can't do this and be a mirror // subsurface scattering parameters FLOAT RelativeIndexOfRefraction; D3DCOLORVALUE Absorption; D3DCOLORVALUE ReducedScattering; } D3DXSHMATERIAL; // allocated in D3DXSHPRTCompSplitMeshSC // vertices are duplicated into multiple super clusters but // only have a valid status in one super cluster (fill in the rest) typedef struct _D3DXSHPRTSPLITMESHVERTDATA { UINT uVertRemap; // vertex in original mesh this corresponds to UINT uSubCluster; // cluster index relative to super cluster UCHAR ucVertStatus; // 1 if vertex has valid data, 0 if it is "fill" } D3DXSHPRTSPLITMESHVERTDATA; // used in D3DXSHPRTCompSplitMeshSC // information for each super cluster that maps into face/vert arrays typedef struct _D3DXSHPRTSPLITMESHCLUSTERDATA { UINT uVertStart; // initial index into remapped vertex array UINT uVertLength; // number of vertices in this super cluster UINT uFaceStart; // initial index into face array UINT uFaceLength; // number of faces in this super cluster UINT uClusterStart; // initial index into cluster array UINT uClusterLength; // number of clusters in this super cluster } D3DXSHPRTSPLITMESHCLUSTERDATA; // call back function for simulator // return S_OK to keep running the simulator - anything else represents // failure and the simulator will abort. typedef HRESULT (WINAPI *LPD3DXSHPRTSIMCB)(float fPercentDone, LPVOID lpUserContext); // interfaces for PRT buffers/simulator // GUIDs // {F1827E47-00A8-49cd-908C-9D11955F8728} DEFINE_GUID(IID_ID3DXPRTBuffer, 0xf1827e47, 0xa8, 0x49cd, 0x90, 0x8c, 0x9d, 0x11, 0x95, 0x5f, 0x87, 0x28); // {A758D465-FE8D-45ad-9CF0-D01E56266A07} DEFINE_GUID(IID_ID3DXPRTCompBuffer, 0xa758d465, 0xfe8d, 0x45ad, 0x9c, 0xf0, 0xd0, 0x1e, 0x56, 0x26, 0x6a, 0x7); // {06F57E0A-BD95-43f1-A3DA-791CF6CA297B} DEFINE_GUID(IID_ID3DXTextureGutterHelper, 0x6f57e0a, 0xbd95, 0x43f1, 0xa3, 0xda, 0x79, 0x1c, 0xf6, 0xca, 0x29, 0x7b); // {683A4278-CD5F-4d24-90AD-C4E1B6855D53} DEFINE_GUID(IID_ID3DXPRTEngine, 0x683a4278, 0xcd5f, 0x4d24, 0x90, 0xad, 0xc4, 0xe1, 0xb6, 0x85, 0x5d, 0x53); // interface defenitions typedef interface ID3DXTextureGutterHelper ID3DXTextureGutterHelper; typedef interface ID3DXTextureGutterHelper *LPD3DXTEXTUREGUTTERHELPER; typedef interface ID3DXPRTBuffer ID3DXPRTBuffer; typedef interface ID3DXPRTBuffer *LPD3DXPRTBUFFER; #undef INTERFACE #define INTERFACE ID3DXPRTBuffer // Buffer interface - contains "NumSamples" samples // each sample in memory is stored as NumCoeffs scalars per channel (1 or 3) // Same interface is used for both Vertex and Pixel PRT buffers DECLARE_INTERFACE_(ID3DXPRTBuffer, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXPRTBuffer STDMETHOD_(UINT, GetNumSamples)(THIS) PURE; STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE; STDMETHOD_(UINT, GetNumChannels)(THIS) PURE; STDMETHOD_(BOOL, IsTexture)(THIS) PURE; STDMETHOD_(UINT, GetWidth)(THIS) PURE; STDMETHOD_(UINT, GetHeight)(THIS) PURE; // changes the number of samples allocated in the buffer STDMETHOD(Resize)(THIS_ UINT NewSize) PURE; // ppData will point to the memory location where sample Start begins // pointer is valid for at least NumSamples samples STDMETHOD(LockBuffer)(THIS_ UINT Start, UINT NumSamples, FLOAT **ppData) PURE; STDMETHOD(UnlockBuffer)(THIS) PURE; // every scalar in buffer is multiplied by Scale STDMETHOD(ScaleBuffer)(THIS_ FLOAT Scale) PURE; // every scalar contains the sum of this and pBuffers values // pBuffer must have the same storage class/dimensions STDMETHOD(AddBuffer)(THIS_ LPD3DXPRTBUFFER pBuffer) PURE; // GutterHelper (described below) will fill in the gutter // regions of a texture by interpolating "internal" values STDMETHOD(AttachGH)(THIS_ LPD3DXTEXTUREGUTTERHELPER) PURE; STDMETHOD(ReleaseGH)(THIS) PURE; // Evaluates attached gutter helper on the contents of this buffer STDMETHOD(EvalGH)(THIS) PURE; // extracts a given channel into texture pTexture // NumCoefficients starting from StartCoefficient are copied STDMETHOD(ExtractTexture)(THIS_ UINT Channel, UINT StartCoefficient, UINT NumCoefficients, LPDIRECT3DTEXTURE9 pTexture) PURE; // extracts NumCoefficients coefficients into mesh - only applicable on single channel // buffers, otherwise just lockbuffer and copy data. With SHPRT data NumCoefficients // should be Order^2 STDMETHOD(ExtractToMesh)(THIS_ UINT NumCoefficients, D3DDECLUSAGE Usage, UINT UsageIndexStart, LPD3DXMESH pScene) PURE; }; typedef interface ID3DXPRTCompBuffer ID3DXPRTCompBuffer; typedef interface ID3DXPRTCompBuffer *LPD3DXPRTCOMPBUFFER; #undef INTERFACE #define INTERFACE ID3DXPRTCompBuffer // compressed buffers stored a compressed version of a PRTBuffer DECLARE_INTERFACE_(ID3DXPRTCompBuffer, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DPRTCompBuffer // NumCoeffs and NumChannels are properties of input buffer STDMETHOD_(UINT, GetNumSamples)(THIS) PURE; STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE; STDMETHOD_(UINT, GetNumChannels)(THIS) PURE; STDMETHOD_(BOOL, IsTexture)(THIS) PURE; STDMETHOD_(UINT, GetWidth)(THIS) PURE; STDMETHOD_(UINT, GetHeight)(THIS) PURE; // number of clusters, and PCA vectors per-cluster STDMETHOD_(UINT, GetNumClusters)(THIS) PURE; STDMETHOD_(UINT, GetNumPCA)(THIS) PURE; // normalizes PCA weights so that they are between [-1,1] // basis vectors are modified to reflect this STDMETHOD(NormalizeData)(THIS) PURE; // copies basis vectors for cluster "Cluster" into pClusterBasis // (NumPCA+1)*NumCoeffs*NumChannels floats STDMETHOD(ExtractBasis)(THIS_ UINT Cluster, FLOAT *pClusterBasis) PURE; // UINT per sample - which cluster it belongs to STDMETHOD(ExtractClusterIDs)(THIS_ UINT *pClusterIDs) PURE; // copies NumExtract PCA projection coefficients starting at StartPCA // into pPCACoefficients - NumSamples*NumExtract floats copied STDMETHOD(ExtractPCA)(THIS_ UINT StartPCA, UINT NumExtract, FLOAT *pPCACoefficients) PURE; // copies NumPCA projection coefficients starting at StartPCA // into pTexture - should be able to cope with signed formats STDMETHOD(ExtractTexture)(THIS_ UINT StartPCA, UINT NumpPCA, LPDIRECT3DTEXTURE9 pTexture) PURE; // copies NumPCA projection coefficients into mesh pScene // Usage is D3DDECLUSAGE where coefficients are to be stored // UsageIndexStart is starting index STDMETHOD(ExtractToMesh)(THIS_ UINT NumPCA, D3DDECLUSAGE Usage, UINT UsageIndexStart, LPD3DXMESH pScene) PURE; }; #undef INTERFACE #define INTERFACE ID3DXTextureGutterHelper // ID3DXTextureGutterHelper will build and manage // "gutter" regions in a texture - this will allow for // bi-linear interpolation to not have artifacts when rendering // It generates a map (in texture space) where each texel // is in one of 3 states: // 0 Invalid - not used at all // 1 Inside triangle // 2 Gutter texel // 4 represents a gutter texel that will be computed during PRT // For each Inside/Gutter texel it stores the face it // belongs to and barycentric coordinates for the 1st two // vertices of that face. Gutter vertices are assigned to // the closest edge in texture space. // // When used with PRT this requires a unique parameterization // of the model - every texel must correspond to a single point // on the surface of the model and vice versa DECLARE_INTERFACE_(ID3DXTextureGutterHelper, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXTextureGutterHelper // dimensions of texture this is bound too STDMETHOD_(UINT, GetWidth)(THIS) PURE; STDMETHOD_(UINT, GetHeight)(THIS) PURE; // Applying gutters recomputes all of the gutter texels of class "2" // based on texels of class "1" or "4" // Applies gutters to a raw float buffer - each texel is NumCoeffs floats // Width and Height must match GutterHelper STDMETHOD(ApplyGuttersFloat)(THIS_ FLOAT *pDataIn, UINT NumCoeffs, UINT Width, UINT Height); // Applies gutters to pTexture // Dimensions must match GutterHelper STDMETHOD(ApplyGuttersTex)(THIS_ LPDIRECT3DTEXTURE9 pTexture); // Applies gutters to a D3DXPRTBuffer // Dimensions must match GutterHelper STDMETHOD(ApplyGuttersPRT)(THIS_ LPD3DXPRTBUFFER pBuffer); // the routines below provide access to the data structures // used by the Apply functions // face map is a UINT per texel that represents the // face of the mesh that texel belongs too - // only valid if same texel is valid in pGutterData // pFaceData must be allocated by the user STDMETHOD(GetFaceMap)(THIS_ UINT *pFaceData) PURE; // BaryMap is a D3DXVECTOR2 per texel // the 1st two barycentric coordinates for the corresponding // face (3rd weight is always 1-sum of first two) // only valid if same texel is valid in pGutterData // pBaryData must be allocated by the user STDMETHOD(GetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE; // TexelMap is a D3DXVECTOR2 per texel that // stores the location in pixel coordinates where the // corresponding texel is mapped // pTexelData must be allocated by the user STDMETHOD(GetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE; // GutterMap is a BYTE per texel // 0/1/2 for Invalid/Internal/Gutter texels // 4 represents a gutter texel that will be computed // during PRT // pGutterData must be allocated by the user STDMETHOD(GetGutterMap)(THIS_ BYTE *pGutterData) PURE; // face map is a UINT per texel that represents the // face of the mesh that texel belongs too - // only valid if same texel is valid in pGutterData STDMETHOD(SetFaceMap)(THIS_ UINT *pFaceData) PURE; // BaryMap is a D3DXVECTOR2 per texel // the 1st two barycentric coordinates for the corresponding // face (3rd weight is always 1-sum of first two) // only valid if same texel is valid in pGutterData STDMETHOD(SetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE; // TexelMap is a D3DXVECTOR2 per texel that // stores the location in pixel coordinates where the // corresponding texel is mapped STDMETHOD(SetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE; // GutterMap is a BYTE per texel // 0/1/2 for Invalid/Internal/Gutter texels // 4 represents a gutter texel that will be computed // during PRT STDMETHOD(SetGutterMap)(THIS_ BYTE *pGutterData) PURE; }; typedef interface ID3DXPRTEngine ID3DXPRTEngine; typedef interface ID3DXPRTEngine *LPD3DXPRTENGINE; #undef INTERFACE #define INTERFACE ID3DXPRTEngine // ID3DXPRTEngine is used to compute a PRT simulation // Use the following steps to compute PRT for SH // (1) create an interface (which includes a scene) // (2) call SetSamplingInfo // (3) [optional] Set MeshMaterials/albedo's (required if doing bounces) // (4) call ComputeDirectLightingSH // (5) [optional] call ComputeBounce // repeat step 5 for as many bounces as wanted. // if you want to model subsurface scattering you // need to call ComputeSS after direct lighting and // each bounce. // If you want to bake the albedo into the PRT signal, you // must call MutliplyAlbedo, otherwise the user has to multiply // the albedo themselves. Not multiplying the albedo allows you // to model albedo variation at a finer scale then illumination, and // can result in better compression results. // Luminance values are computed from RGB values using the following // formula: R * 0.2125 + G * 0.7154 + B * 0.0721 DECLARE_INTERFACE_(ID3DXPRTEngine, IUnknown) { // IUnknown STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE; // ID3DXPRTEngine // This sets a material per attribute in the scene mesh and it is // the only way to specify subsurface scattering parameters. if // bSetAlbedo is FALSE, NumChannels must match the current // configuration of the PRTEngine. If you intend to change // NumChannels (through some other SetAlbedo function) it must // happen before SetMeshMaterials is called. // // NumChannels 1 implies "grayscale" materials, set this to 3 to enable // color bleeding effects // bSetAlbedo sets albedo from material if TRUE - which clobbers per texel/vertex // albedo that might have been set before. FALSE won't clobber. // fLengthScale is used for subsurface scattering - scene is mapped into a 1mm unit cube // and scaled by this amount STDMETHOD(SetMeshMaterials)(THIS_ CONST D3DXSHMATERIAL **ppMaterials, UINT NumMeshes, UINT NumChannels, BOOL bSetAlbedo, FLOAT fLengthScale) PURE; // setting albedo per-vertex or per-texel over rides the albedos stored per mesh // but it does not over ride any other settings // sets an albedo to be used per vertex - the albedo is represented as a float // pDataIn input pointer (pointint to albedo of 1st sample) // NumChannels 1 implies "grayscale" materials, set this to 3 to enable // color bleeding effects // Stride - stride in bytes to get to next samples albedo STDMETHOD(SetPerVertexAlbedo)(THIS_ CONST VOID *pDataIn, UINT NumChannels, UINT Stride) PURE; // represents the albedo per-texel instead of per-vertex (even if per-vertex PRT is used) // pAlbedoTexture - texture that stores the albedo (dimension arbitrary) // NumChannels 1 implies "grayscale" materials, set this to 3 to enable // color bleeding effects // pGH - optional gutter helper, otherwise one is constructed in computation routines and // destroyed (if not attached to buffers) STDMETHOD(SetPerTexelAlbedo)(THIS_ LPDIRECT3DTEXTURE9 pAlbedoTexture, UINT NumChannels, LPD3DXTEXTUREGUTTERHELPER pGH) PURE; // gets the per-vertex albedo STDMETHOD(GetVertexAlbedo)(THIS_ D3DXCOLOR *pVertColors, UINT NumVerts) PURE; // If pixel PRT is being computed normals default to ones that are interpolated // from the vertex normals. This specifies a texture that stores an object // space normal map instead (must use a texture format that can represent signed values) // pNormalTexture - normal map, must be same dimensions as PRTBuffers, signed STDMETHOD(SetPerTexelNormal)(THIS_ LPDIRECT3DTEXTURE9 pNormalTexture) PURE; // Copies per-vertex albedo from mesh // pMesh - mesh that represents the scene. It must have the same // properties as the mesh used to create the PRTEngine // Usage - D3DDECLUSAGE to extract albedos from // NumChannels 1 implies "grayscale" materials, set this to 3 to enable // color bleeding effects STDMETHOD(ExtractPerVertexAlbedo)(THIS_ LPD3DXMESH pMesh, D3DDECLUSAGE Usage, UINT NumChannels) PURE; // Resamples the input buffer into the output buffer // can be used to move between per-vertex and per-texel buffers. This can also be used // to convert single channel buffers to 3-channel buffers and vice-versa. STDMETHOD(ResampleBuffer)(THIS_ LPD3DXPRTBUFFER pBufferIn, LPD3DXPRTBUFFER pBufferOut) PURE; // Returns the scene mesh - including modifications from adaptive spatial sampling // The returned mesh only has positions, normals and texture coordinates (if defined) // pD3DDevice - d3d device that will be used to allocate the mesh // pFaceRemap - each face has a pointer back to the face on the original mesh that it comes from // if the face hasn't been subdivided this will be an identity mapping // pVertRemap - each vertex contains 3 vertices that this is a linear combination of // pVertWeights - weights for each of above indices (sum to 1.0f) // ppMesh - mesh that will be allocated and filled STDMETHOD(GetAdaptedMesh)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice,UINT *pFaceRemap, UINT *pVertRemap, FLOAT *pfVertWeights, LPD3DXMESH *ppMesh) PURE; // Number of vertices currently allocated (includes new vertices from adaptive sampling) STDMETHOD_(UINT, GetNumVerts)(THIS) PURE; // Number of faces currently allocated (includes new faces) STDMETHOD_(UINT, GetNumFaces)(THIS) PURE; // Sets the Minimum/Maximum intersection distances, this can be used to control // maximum distance that objects can shadow/reflect light, and help with "bad" // art that might have near features that you don't want to shadow. This does not // apply for GPU simulations. // fMin - minimum intersection distance, must be positive and less than fMax // fMax - maximum intersection distance, if 0.0f use the previous value, otherwise // must be strictly greater than fMin STDMETHOD(SetMinMaxIntersection)(THIS_ FLOAT fMin, FLOAT fMax) PURE; // This will subdivide faces on a mesh so that adaptively simulations can // use a more conservative threshold (it won't miss features.) // MinEdgeLength - minimum edge length that will be generated, if 0.0f a // reasonable default will be used // MaxSubdiv - maximum level of subdivision, if 0 is specified a default // value will be used (5) STDMETHOD(RobustMeshRefine)(THIS_ FLOAT MinEdgeLength, UINT MaxSubdiv) PURE; // This sets to sampling information used by the simulator. Adaptive sampling // parameters are currently ignored. // NumRays - number of rays to shoot per sample // UseSphere - if TRUE uses spherical samples, otherwise samples over // the hemisphere. Should only be used with GPU and Vol computations // UseCosine - if TRUE uses a cosine weighting - not used for Vol computations // or if only the visiblity function is desired // Adaptive - if TRUE adaptive sampling (angular) is used // AdaptiveThresh - threshold used to terminate adaptive angular sampling // ignored if adaptive sampling is not set STDMETHOD(SetSamplingInfo)(THIS_ UINT NumRays, BOOL UseSphere, BOOL UseCosine, BOOL Adaptive, FLOAT AdaptiveThresh) PURE; // Methods that compute the direct lighting contribution for objects // always represente light using spherical harmonics (SH) // the albedo is not multiplied by the signal - it just integrates // incoming light. If NumChannels is not 1 the vector is replicated // // SHOrder - order of SH to use // pDataOut - PRT buffer that is generated. Can be single channel STDMETHOD(ComputeDirectLightingSH)(THIS_ UINT SHOrder, LPD3DXPRTBUFFER pDataOut) PURE; // Adaptive variant of above function. This will refine the mesh // generating new vertices/faces to approximate the PRT signal // more faithfully. // SHOrder - order of SH to use // AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error) // if value is less then 1e-6f, 1e-6f is specified // MinEdgeLength - minimum edge length that will be generated // if value is too small a fairly conservative model dependent value // is used // MaxSubdiv - maximum subdivision level, if 0 is specified it // will default to 4 // pDataOut - PRT buffer that is generated. Can be single channel. STDMETHOD(ComputeDirectLightingSHAdaptive)(THIS_ UINT SHOrder, FLOAT AdaptiveThresh, FLOAT MinEdgeLength, UINT MaxSubdiv, LPD3DXPRTBUFFER pDataOut) PURE; // Function that computes the direct lighting contribution for objects // light is always represented using spherical harmonics (SH) // This is done on the GPU and is much faster then using the CPU. // The albedo is not multiplied by the signal - it just integrates // incoming light. If NumChannels is not 1 the vector is replicated. // ZBias/ZAngleBias are akin to parameters used with shadow zbuffers. // A reasonable default for both values is 0.005, but the user should // experiment (ZAngleBias can be zero, ZBias should not be.) // Callbacks should not use the Direct3D9Device the simulator is using. // SetSamplingInfo must be called with TRUE for UseSphere and // FALSE for UseCosine before this method is called. // // pD3DDevice - device used to run GPU simulator - must support PS2.0 // and FP render targets // Flags - parameters for the GPU simulator, combination of one or more // D3DXSHGPUSIMOPT flags. Only one SHADOWRES setting should be set and // the defaults is 512 // SHOrder - order of SH to use // ZBias - bias in normal direction (for depth test) // ZAngleBias - scaled by one minus cosine of angle with light (offset in depth) // pDataOut - PRT buffer that is filled in. Can be single channel STDMETHOD(ComputeDirectLightingSHGPU)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice, UINT Flags, UINT SHOrder, FLOAT ZBias, FLOAT ZAngleBias, LPD3DXPRTBUFFER pDataOut) PURE; // Functions that computes subsurface scattering (using material properties) // Albedo is not multiplied by result. This only works for per-vertex data // use ResampleBuffer to move per-vertex data into a texture and back. // // pDataIn - input data (previous bounce) // pDataOut - result of subsurface scattering simulation // pDataTotal - [optional] results can be summed into this buffer STDMETHOD(ComputeSS)(THIS_ LPD3DXPRTBUFFER pDataIn, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE; // Adaptive version of ComputeSS. // // pDataIn - input data (previous bounce) // AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error) // if value is less then 1e-6f, 1e-6f is specified // MinEdgeLength - minimum edge length that will be generated // if value is too small a fairly conservative model dependent value // is used // MaxSubdiv - maximum subdivision level, if 0 is specified it // will default to 4 // pDataOut - result of subsurface scattering simulation // pDataTotal - [optional] results can be summed into this buffer STDMETHOD(ComputeSSAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn, FLOAT AdaptiveThresh, FLOAT MinEdgeLength, UINT MaxSubdiv, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE; // computes a single bounce of inter-reflected light // works for SH based PRT or generic lighting // Albedo is not multiplied by result // // pDataIn - previous bounces data // pDataOut - PRT buffer that is generated // pDataTotal - [optional] can be used to keep a running sum STDMETHOD(ComputeBounce)(THIS_ LPD3DXPRTBUFFER pDataIn, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE; // Adaptive version of above function. // // pDataIn - previous bounces data, can be single channel // AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error) // if value is less then 1e-6f, 1e-6f is specified // MinEdgeLength - minimum edge length that will be generated // if value is too small a fairly conservative model dependent value // is used // MaxSubdiv - maximum subdivision level, if 0 is specified it // will default to 4 // pDataOut - PRT buffer that is generated // pDataTotal - [optional] can be used to keep a running sum STDMETHOD(ComputeBounceAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn, FLOAT AdaptiveThresh, FLOAT MinEdgeLength, UINT MaxSubdiv, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE; // Computes projection of distant SH radiance into a local SH radiance // function. This models how direct lighting is attenuated by the // scene and is a form of "neighborhood transfer." The result is // a linear operator (matrix) at every sample point, if you multiply // this matrix by the distant SH lighting coefficients you get an // approximation of the local incident radiance function from // direct lighting. These resulting lighting coefficients can // than be projected into another basis or used with any rendering // technique that uses spherical harmonics as input. // SetSamplingInfo must be called with TRUE for UseSphere and // FALSE for UseCosine before this method is called. // Generates SHOrderIn*SHOrderIn*SHOrderOut*SHOrderOut scalars // per channel at each sample location. // // SHOrderIn - Order of the SH representation of distant lighting // SHOrderOut - Order of the SH representation of local lighting // NumVolSamples - Number of sample locations // pSampleLocs - position of sample locations // pDataOut - PRT Buffer that will store output results STDMETHOD(ComputeVolumeSamplesDirectSH)(THIS_ UINT SHOrderIn, UINT SHOrderOut, UINT NumVolSamples, CONST D3DXVECTOR3 *pSampleLocs, LPD3DXPRTBUFFER pDataOut) PURE; // At each sample location computes a linear operator (matrix) that maps // the representation of source radiance (NumCoeffs in pSurfDataIn) // into a local incident radiance function approximated with spherical // harmonics. For example if a light map data is specified in pSurfDataIn // the result is an SH representation of the flow of light at each sample // point. If PRT data for an outdoor scene is used, each sample point // contains a matrix that models how distant lighting bounces of the objects // in the scene and arrives at the given sample point. Combined with // ComputeVolumeSamplesDirectSH this gives the complete representation for // how light arrives at each sample point parameterized by distant lighting. // SetSamplingInfo must be called with TRUE for UseSphere and // FALSE for UseCosine before this method is called. // Generates pSurfDataIn->NumCoeffs()*SHOrder*SHOrder scalars // per channel at each sample location. // // pSurfDataIn - previous bounce data // SHOrder - order of SH to generate projection with // NumVolSamples - Number of sample locations // pSampleLocs - position of sample locations // pDataOut - PRT Buffer that will store output results STDMETHOD(ComputeVolumeSamples)(THIS_ LPD3DXPRTBUFFER pSurfDataIn, UINT SHOrder, UINT NumVolSamples, CONST D3DXVECTOR3 *pSampleLocs, LPD3DXPRTBUFFER pDataOut) PURE; // Computes direct lighting (SH) for a point not on the mesh // with a given normal - cannot use texture buffers. // // SHOrder - order of SH to use // NumSamples - number of sample locations // pSampleLocs - position for each sample // pSampleNorms - normal for each sample // pDataOut - PRT Buffer that will store output results STDMETHOD(ComputeSurfSamplesDirectSH)(THIS_ UINT SHOrder, UINT NumSamples, CONST D3DXVECTOR3 *pSampleLocs, CONST D3DXVECTOR3 *pSampleNorms, LPD3DXPRTBUFFER pDataOut) PURE; // given the solution for PRT or light maps, computes transfer vector at arbitrary // position/normal pairs in space // // pSurfDataIn - input data // NumSamples - number of sample locations // pSampleLocs - position for each sample // pSampleNorms - normal for each sample // pDataOut - PRT Buffer that will store output results // pDataTotal - optional buffer to sum results into - can be NULL STDMETHOD(ComputeSurfSamplesBounce)(THIS_ LPD3DXPRTBUFFER pSurfDataIn, UINT NumSamples, CONST D3DXVECTOR3 *pSampleLocs, CONST D3DXVECTOR3 *pSampleNorms, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE; // Frees temporary data structures that can be created for subsurface scattering // this data is freed when the PRTComputeEngine is freed and is lazily created STDMETHOD(FreeSSData)(THIS) PURE; // Frees temporary data structures that can be created for bounce simulations // this data is freed when the PRTComputeEngine is freed and is lazily created STDMETHOD(FreeBounceData)(THIS) PURE; // This computes the Local Deformable PRT (LDPRT) coefficients relative to the // per sample normals that minimize error in a least squares sense with respect // to the input PRT data set. These coefficients can be used with skinned/transformed // normals to model global effects with dynamic objects. Shading normals can // optionally be solved for - these normals (along with the LDPRT coefficients) can // more accurately represent the PRT signal. The coefficients are for zonal // harmonics oriented in the normal/shading normal direction. // // pDataIn - SH PRT dataset that is input // SHOrder - Order of SH to compute conv coefficients for // pNormOut - Optional array of vectors (passed in) that will be filled with // "shading normals", LDPRT coefficients are optimized for // these normals. This array must be the same size as the number of // samples in pDataIn // pDataOut - Output buffer (SHOrder zonal harmonic coefficients per channel per sample) STDMETHOD(ComputeLDPRTCoeffs)(THIS_ LPD3DXPRTBUFFER pDataIn, UINT SHOrder, D3DXVECTOR3 *pNormOut, LPD3DXPRTBUFFER pDataOut) PURE; // scales all the samples associated with a given sub mesh // can be useful when using subsurface scattering // fScale - value to scale each vector in submesh by STDMETHOD(ScaleMeshChunk)(THIS_ UINT uMeshChunk, FLOAT fScale, LPD3DXPRTBUFFER pDataOut) PURE; // mutliplies each PRT vector by the albedo - can be used if you want to have the albedo // burned into the dataset, often better not to do this. If this is not done the user // must mutliply the albedo themselves when rendering - just multiply the albedo times // the result of the PRT dot product. // If pDataOut is a texture simulation result and there is an albedo texture it // must be represented at the same resolution as the simulation buffer. You can use // LoadSurfaceFromSurface and set a new albedo texture if this is an issue - but must // be careful about how the gutters are handled. // // pDataOut - dataset that will get albedo pushed into it STDMETHOD(MultiplyAlbedo)(THIS_ LPD3DXPRTBUFFER pDataOut) PURE; // Sets a pointer to an optional call back function that reports back to the // user percentage done and gives them the option of quitting // pCB - pointer to call back function, return S_OK for the simulation // to continue // Frequency - 1/Frequency is roughly the number of times the call back // will be invoked // lpUserContext - will be passed back to the users call back STDMETHOD(SetCallBack)(THIS_ LPD3DXSHPRTSIMCB pCB, FLOAT Frequency, LPVOID lpUserContext) PURE; // Returns TRUE if the ray intersects the mesh, FALSE if it does not. This function // takes into account settings from SetMinMaxIntersection. If the closest intersection // is not needed this function is more efficient compared to the ClosestRayIntersection // method. // pRayPos - origin of ray // pRayDir - normalized ray direction (normalization required for SetMinMax to be meaningful) STDMETHOD_(BOOL, ShadowRayIntersects)(THIS_ CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir) PURE; // Returns TRUE if the ray intersects the mesh, FALSE if it does not. If there is an // intersection the closest face that was intersected and its first two barycentric coordinates // are returned. This function takes into account settings from SetMinMaxIntersection. // This is a slower function compared to ShadowRayIntersects and should only be used where // needed. The third vertices barycentric coordinates will be 1 - pU - pV. // pRayPos - origin of ray // pRayDir - normalized ray direction (normalization required for SetMinMax to be meaningful) // pFaceIndex - Closest face that intersects. This index is based on stacking the pBlockerMesh // faces before the faces from pMesh // pU - Barycentric coordinate for vertex 0 // pV - Barycentric coordinate for vertex 1 // pDist - Distance along ray where the intersection occured STDMETHOD_(BOOL, ClosestRayIntersects)(THIS_ CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir, DWORD *pFaceIndex, FLOAT *pU, FLOAT *pV, FLOAT *pDist) PURE; }; // API functions for creating interfaces #ifdef __cplusplus extern "C" { #endif //__cplusplus //============================================================================ // // D3DXCreatePRTBuffer: // -------------------- // Generates a PRT Buffer that can be compressed or filled by a simulator // This function should be used to create per-vertex or volume buffers. // When buffers are created all values are initialized to zero. // // Parameters: // NumSamples // Number of sample locations represented // NumCoeffs // Number of coefficients per sample location (order^2 for SH) // NumChannels // Number of color channels to represent (1 or 3) // ppBuffer // Buffer that will be allocated // //============================================================================ HRESULT WINAPI D3DXCreatePRTBuffer( UINT NumSamples, UINT NumCoeffs, UINT NumChannels, LPD3DXPRTBUFFER* ppBuffer); //============================================================================ // // D3DXCreatePRTBufferTex: // -------------------- // Generates a PRT Buffer that can be compressed or filled by a simulator // This function should be used to create per-pixel buffers. // When buffers are created all values are initialized to zero. // // Parameters: // Width // Width of texture // Height // Height of texture // NumCoeffs // Number of coefficients per sample location (order^2 for SH) // NumChannels // Number of color channels to represent (1 or 3) // ppBuffer // Buffer that will be allocated // //============================================================================ HRESULT WINAPI D3DXCreatePRTBufferTex( UINT Width, UINT Height, UINT NumCoeffs, UINT NumChannels, LPD3DXPRTBUFFER* ppBuffer); //============================================================================ // // D3DXLoadPRTBufferFromFile: // -------------------- // Loads a PRT buffer that has been saved to disk. // // Parameters: // pFilename // Name of the file to load // ppBuffer // Buffer that will be allocated // //============================================================================ HRESULT WINAPI D3DXLoadPRTBufferFromFileA( LPCSTR pFilename, LPD3DXPRTBUFFER* ppBuffer); HRESULT WINAPI D3DXLoadPRTBufferFromFileW( LPCWSTR pFilename, LPD3DXPRTBUFFER* ppBuffer); #ifdef UNICODE #define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileW #else #define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileA #endif //============================================================================ // // D3DXSavePRTBufferToFile: // -------------------- // Saves a PRTBuffer to disk. // // Parameters: // pFilename // Name of the file to save // pBuffer // Buffer that will be saved // //============================================================================ HRESULT WINAPI D3DXSavePRTBufferToFileA( LPCSTR pFileName, LPD3DXPRTBUFFER pBuffer); HRESULT WINAPI D3DXSavePRTBufferToFileW( LPCWSTR pFileName, LPD3DXPRTBUFFER pBuffer); #ifdef UNICODE #define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileW #else #define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileA #endif //============================================================================ // // D3DXLoadPRTCompBufferFromFile: // -------------------- // Loads a PRTComp buffer that has been saved to disk. // // Parameters: // pFilename // Name of the file to load // ppBuffer // Buffer that will be allocated // //============================================================================ HRESULT WINAPI D3DXLoadPRTCompBufferFromFileA( LPCSTR pFilename, LPD3DXPRTCOMPBUFFER* ppBuffer); HRESULT WINAPI D3DXLoadPRTCompBufferFromFileW( LPCWSTR pFilename, LPD3DXPRTCOMPBUFFER* ppBuffer); #ifdef UNICODE #define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileW #else #define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileA #endif //============================================================================ // // D3DXSavePRTCompBufferToFile: // -------------------- // Saves a PRTCompBuffer to disk. // // Parameters: // pFilename // Name of the file to save // pBuffer // Buffer that will be saved // //============================================================================ HRESULT WINAPI D3DXSavePRTCompBufferToFileA( LPCSTR pFileName, LPD3DXPRTCOMPBUFFER pBuffer); HRESULT WINAPI D3DXSavePRTCompBufferToFileW( LPCWSTR pFileName, LPD3DXPRTCOMPBUFFER pBuffer); #ifdef UNICODE #define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileW #else #define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileA #endif //============================================================================ // // D3DXCreatePRTCompBuffer: // -------------------- // Compresses a PRT buffer (vertex or texel) // // Parameters: // D3DXSHCOMPRESSQUALITYTYPE // Quality of compression - low is faster (computes PCA per voronoi cluster) // high is slower but better quality (clusters based on distance to affine subspace) // NumClusters // Number of clusters to compute // NumPCA // Number of basis vectors to compute // pCB // Optional Callback function // lpUserContext // Optional user context // pBufferIn // Buffer that will be compressed // ppBufferOut // Compressed buffer that will be created // //============================================================================ HRESULT WINAPI D3DXCreatePRTCompBuffer( D3DXSHCOMPRESSQUALITYTYPE Quality, UINT NumClusters, UINT NumPCA, LPD3DXSHPRTSIMCB pCB, LPVOID lpUserContext, LPD3DXPRTBUFFER pBufferIn, LPD3DXPRTCOMPBUFFER *ppBufferOut ); //============================================================================ // // D3DXCreateTextureGutterHelper: // -------------------- // Generates a "GutterHelper" for a given set of meshes and texture // resolution // // Parameters: // Width // Width of texture // Height // Height of texture // pMesh // Mesh that represents the scene // GutterSize // Number of texels to over rasterize in texture space // this should be at least 1.0 // ppBuffer // GutterHelper that will be created // //============================================================================ HRESULT WINAPI D3DXCreateTextureGutterHelper( UINT Width, UINT Height, LPD3DXMESH pMesh, FLOAT GutterSize, LPD3DXTEXTUREGUTTERHELPER* ppBuffer); //============================================================================ // // D3DXCreatePRTEngine: // -------------------- // Computes a PRTEngine which can efficiently generate PRT simulations // of a scene // // Parameters: // pMesh // Mesh that represents the scene - must have an AttributeTable // where vertices are in a unique attribute. // pAdjacency // Optional adjacency information // ExtractUVs // Set this to true if textures are going to be used for albedos // or to store PRT vectors // pBlockerMesh // Optional mesh that just blocks the scene // ppEngine // PRTEngine that will be created // //============================================================================ HRESULT WINAPI D3DXCreatePRTEngine( LPD3DXMESH pMesh, DWORD *pAdjacency, BOOL ExtractUVs, LPD3DXMESH pBlockerMesh, LPD3DXPRTENGINE* ppEngine); //============================================================================ // // D3DXConcatenateMeshes: // -------------------- // Concatenates a group of meshes into one common mesh. This can optionaly transform // each sub mesh or its texture coordinates. If no DECL is given it will // generate a union of all of the DECL's of the sub meshes, promoting channels // and types if neccesary. It will create an AttributeTable if possible, one can // call OptimizeMesh with attribute sort and compacting enabled to ensure this. // // Parameters: // ppMeshes // Array of pointers to meshes that can store PRT vectors // NumMeshes // Number of meshes // Options // Passed through to D3DXCreateMesh // pGeomXForms // [optional] Each sub mesh is transformed by the corresponding // matrix if this array is supplied // pTextureXForms // [optional] UV coordinates for each sub mesh are transformed // by corresponding matrix if supplied // pDecl // [optional] Only information in this DECL is used when merging // data // pD3DDevice // D3D device that is used to create the new mesh // ppMeshOut // Mesh that will be created // //============================================================================ HRESULT WINAPI D3DXConcatenateMeshes( LPD3DXMESH *ppMeshes, UINT NumMeshes, DWORD Options, CONST D3DXMATRIX *pGeomXForms, CONST D3DXMATRIX *pTextureXForms, CONST D3DVERTEXELEMENT9 *pDecl, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH *ppMeshOut); //============================================================================ // // D3DXSHPRTCompSuperCluster: // -------------------------- // Used with compressed results of D3DXSHPRTSimulation. // Generates "super clusters" - groups of clusters that can be drawn in // the same draw call. A greedy algorithm that minimizes overdraw is used // to group the clusters. // // Parameters: // pClusterIDs // NumVerts cluster ID's (extracted from a compressed buffer) // pScene // Mesh that represents composite scene passed to the simulator // MaxNumClusters // Maximum number of clusters allocated per super cluster // NumClusters // Number of clusters computed in the simulator // pSuperClusterIDs // Array of length NumClusters, contains index of super cluster // that corresponding cluster was assigned to // pNumSuperClusters // Returns the number of super clusters allocated // //============================================================================ HRESULT WINAPI D3DXSHPRTCompSuperCluster( UINT *pClusterIDs, LPD3DXMESH pScene, UINT MaxNumClusters, UINT NumClusters, UINT *pSuperClusterIDs, UINT *pNumSuperClusters); //============================================================================ // // D3DXSHPRTCompSplitMeshSC: // ------------------------- // Used with compressed results of the vertex version of the PRT simulator. // After D3DXSHRTCompSuperCluster has been called this function can be used // to split the mesh into a group of faces/vertices per super cluster. // Each super cluster contains all of the faces that contain any vertex // classified in one of its clusters. All of the vertices connected to this // set of faces are also included with the returned array ppVertStatus // indicating whether or not the vertex belongs to the supercluster. // // Parameters: // pClusterIDs // NumVerts cluster ID's (extracted from a compressed buffer) // NumVertices // Number of vertices in original mesh // NumClusters // Number of clusters (input parameter to compression) // pSuperClusterIDs // Array of size NumClusters that will contain super cluster ID's (from // D3DXSHCompSuerCluster) // NumSuperClusters // Number of superclusters allocated in D3DXSHCompSuerCluster // pInputIB // Raw index buffer for mesh - format depends on bInputIBIs32Bit // InputIBIs32Bit // Indicates whether the input index buffer is 32-bit (otherwise 16-bit // is assumed) // NumFaces // Number of faces in the original mesh (pInputIB is 3 times this length) // ppIBData // LPD3DXBUFFER holds raw index buffer that will contain the resulting split faces. // Format determined by bIBIs32Bit. Allocated by function // pIBDataLength // Length of ppIBData, assigned in function // OutputIBIs32Bit // Indicates whether the output index buffer is to be 32-bit (otherwise // 16-bit is assumed) // ppFaceRemap // LPD3DXBUFFER mapping of each face in ppIBData to original faces. Length is // *pIBDataLength/3. Optional paramter, allocated in function // ppVertData // LPD3DXBUFFER contains new vertex data structure. Size of pVertDataLength // pVertDataLength // Number of new vertices in split mesh. Assigned in function // pSCClusterList // Array of length NumClusters which pSCData indexes into (Cluster* fields) // for each SC, contains clusters sorted by super cluster // pSCData // Structure per super cluster - contains indices into ppIBData, // pSCClusterList and ppVertData // //============================================================================ HRESULT WINAPI D3DXSHPRTCompSplitMeshSC( UINT *pClusterIDs, UINT NumVertices, UINT NumClusters, UINT *pSuperClusterIDs, UINT NumSuperClusters, LPVOID pInputIB, BOOL InputIBIs32Bit, UINT NumFaces, LPD3DXBUFFER *ppIBData, UINT *pIBDataLength, BOOL OutputIBIs32Bit, LPD3DXBUFFER *ppFaceRemap, LPD3DXBUFFER *ppVertData, UINT *pVertDataLength, UINT *pSCClusterList, D3DXSHPRTSPLITMESHCLUSTERDATA *pSCData); #ifdef __cplusplus } #endif //__cplusplus ////////////////////////////////////////////////////////////////////////////// // // Definitions of .X file templates used by mesh load/save functions // that are not RM standard // ////////////////////////////////////////////////////////////////////////////// // {3CF169CE-FF7C-44ab-93C0-F78F62D172E2} DEFINE_GUID(DXFILEOBJ_XSkinMeshHeader, 0x3cf169ce, 0xff7c, 0x44ab, 0x93, 0xc0, 0xf7, 0x8f, 0x62, 0xd1, 0x72, 0xe2); // {B8D65549-D7C9-4995-89CF-53A9A8B031E3} DEFINE_GUID(DXFILEOBJ_VertexDuplicationIndices, 0xb8d65549, 0xd7c9, 0x4995, 0x89, 0xcf, 0x53, 0xa9, 0xa8, 0xb0, 0x31, 0xe3); // {A64C844A-E282-4756-8B80-250CDE04398C} DEFINE_GUID(DXFILEOBJ_FaceAdjacency, 0xa64c844a, 0xe282, 0x4756, 0x8b, 0x80, 0x25, 0xc, 0xde, 0x4, 0x39, 0x8c); // {6F0D123B-BAD2-4167-A0D0-80224F25FABB} DEFINE_GUID(DXFILEOBJ_SkinWeights, 0x6f0d123b, 0xbad2, 0x4167, 0xa0, 0xd0, 0x80, 0x22, 0x4f, 0x25, 0xfa, 0xbb); // {A3EB5D44-FC22-429d-9AFB-3221CB9719A6} DEFINE_GUID(DXFILEOBJ_Patch, 0xa3eb5d44, 0xfc22, 0x429d, 0x9a, 0xfb, 0x32, 0x21, 0xcb, 0x97, 0x19, 0xa6); // {D02C95CC-EDBA-4305-9B5D-1820D7704BBF} DEFINE_GUID(DXFILEOBJ_PatchMesh, 0xd02c95cc, 0xedba, 0x4305, 0x9b, 0x5d, 0x18, 0x20, 0xd7, 0x70, 0x4b, 0xbf); // {B9EC94E1-B9A6-4251-BA18-94893F02C0EA} DEFINE_GUID(DXFILEOBJ_PatchMesh9, 0xb9ec94e1, 0xb9a6, 0x4251, 0xba, 0x18, 0x94, 0x89, 0x3f, 0x2, 0xc0, 0xea); // {B6C3E656-EC8B-4b92-9B62-681659522947} DEFINE_GUID(DXFILEOBJ_PMInfo, 0xb6c3e656, 0xec8b, 0x4b92, 0x9b, 0x62, 0x68, 0x16, 0x59, 0x52, 0x29, 0x47); // {917E0427-C61E-4a14-9C64-AFE65F9E9844} DEFINE_GUID(DXFILEOBJ_PMAttributeRange, 0x917e0427, 0xc61e, 0x4a14, 0x9c, 0x64, 0xaf, 0xe6, 0x5f, 0x9e, 0x98, 0x44); // {574CCC14-F0B3-4333-822D-93E8A8A08E4C} DEFINE_GUID(DXFILEOBJ_PMVSplitRecord, 0x574ccc14, 0xf0b3, 0x4333, 0x82, 0x2d, 0x93, 0xe8, 0xa8, 0xa0, 0x8e, 0x4c); // {B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897} DEFINE_GUID(DXFILEOBJ_FVFData, 0xb6e70a0e, 0x8ef9, 0x4e83, 0x94, 0xad, 0xec, 0xc8, 0xb0, 0xc0, 0x48, 0x97); // {F752461C-1E23-48f6-B9F8-8350850F336F} DEFINE_GUID(DXFILEOBJ_VertexElement, 0xf752461c, 0x1e23, 0x48f6, 0xb9, 0xf8, 0x83, 0x50, 0x85, 0xf, 0x33, 0x6f); // {BF22E553-292C-4781-9FEA-62BD554BDD93} DEFINE_GUID(DXFILEOBJ_DeclData, 0xbf22e553, 0x292c, 0x4781, 0x9f, 0xea, 0x62, 0xbd, 0x55, 0x4b, 0xdd, 0x93); // {F1CFE2B3-0DE3-4e28-AFA1-155A750A282D} DEFINE_GUID(DXFILEOBJ_EffectFloats, 0xf1cfe2b3, 0xde3, 0x4e28, 0xaf, 0xa1, 0x15, 0x5a, 0x75, 0xa, 0x28, 0x2d); // {D55B097E-BDB6-4c52-B03D-6051C89D0E42} DEFINE_GUID(DXFILEOBJ_EffectString, 0xd55b097e, 0xbdb6, 0x4c52, 0xb0, 0x3d, 0x60, 0x51, 0xc8, 0x9d, 0xe, 0x42); // {622C0ED0-956E-4da9-908A-2AF94F3CE716} DEFINE_GUID(DXFILEOBJ_EffectDWord, 0x622c0ed0, 0x956e, 0x4da9, 0x90, 0x8a, 0x2a, 0xf9, 0x4f, 0x3c, 0xe7, 0x16); // {3014B9A0-62F5-478c-9B86-E4AC9F4E418B} DEFINE_GUID(DXFILEOBJ_EffectParamFloats, 0x3014b9a0, 0x62f5, 0x478c, 0x9b, 0x86, 0xe4, 0xac, 0x9f, 0x4e, 0x41, 0x8b); // {1DBC4C88-94C1-46ee-9076-2C28818C9481} DEFINE_GUID(DXFILEOBJ_EffectParamString, 0x1dbc4c88, 0x94c1, 0x46ee, 0x90, 0x76, 0x2c, 0x28, 0x81, 0x8c, 0x94, 0x81); // {E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5} DEFINE_GUID(DXFILEOBJ_EffectParamDWord, 0xe13963bc, 0xae51, 0x4c5d, 0xb0, 0xf, 0xcf, 0xa3, 0xa9, 0xd9, 0x7c, 0xe5); // {E331F7E4-0559-4cc2-8E99-1CEC1657928F} DEFINE_GUID(DXFILEOBJ_EffectInstance, 0xe331f7e4, 0x559, 0x4cc2, 0x8e, 0x99, 0x1c, 0xec, 0x16, 0x57, 0x92, 0x8f); // {9E415A43-7BA6-4a73-8743-B73D47E88476} DEFINE_GUID(DXFILEOBJ_AnimTicksPerSecond, 0x9e415a43, 0x7ba6, 0x4a73, 0x87, 0x43, 0xb7, 0x3d, 0x47, 0xe8, 0x84, 0x76); // {7F9B00B3-F125-4890-876E-1CFFBF697C4D} DEFINE_GUID(DXFILEOBJ_CompressedAnimationSet, 0x7f9b00b3, 0xf125, 0x4890, 0x87, 0x6e, 0x1c, 0x42, 0xbf, 0x69, 0x7c, 0x4d); #pragma pack(push, 1) typedef struct _XFILECOMPRESSEDANIMATIONSET { DWORD CompressedBlockSize; FLOAT TicksPerSec; DWORD PlaybackType; DWORD BufferLength; } XFILECOMPRESSEDANIMATIONSET; #pragma pack(pop) #define XSKINEXP_TEMPLATES \ "xof 0303txt 0032\ template XSkinMeshHeader \ { \ <3CF169CE-FF7C-44ab-93C0-F78F62D172E2> \ WORD nMaxSkinWeightsPerVertex; \ WORD nMaxSkinWeightsPerFace; \ WORD nBones; \ } \ template VertexDuplicationIndices \ { \ \ DWORD nIndices; \ DWORD nOriginalVertices; \ array DWORD indices[nIndices]; \ } \ template FaceAdjacency \ { \ \ DWORD nIndices; \ array DWORD indices[nIndices]; \ } \ template SkinWeights \ { \ <6F0D123B-BAD2-4167-A0D0-80224F25FABB> \ STRING transformNodeName; \ DWORD nWeights; \ array DWORD vertexIndices[nWeights]; \ array float weights[nWeights]; \ Matrix4x4 matrixOffset; \ } \ template Patch \ { \ \ DWORD nControlIndices; \ array DWORD controlIndices[nControlIndices]; \ } \ template PatchMesh \ { \ \ DWORD nVertices; \ array Vector vertices[nVertices]; \ DWORD nPatches; \ array Patch patches[nPatches]; \ [ ... ] \ } \ template PatchMesh9 \ { \ \ DWORD Type; \ DWORD Degree; \ DWORD Basis; \ DWORD nVertices; \ array Vector vertices[nVertices]; \ DWORD nPatches; \ array Patch patches[nPatches]; \ [ ... ] \ } " \ "template EffectFloats \ { \ \ DWORD nFloats; \ array float Floats[nFloats]; \ } \ template EffectString \ { \ \ STRING Value; \ } \ template EffectDWord \ { \ <622C0ED0-956E-4da9-908A-2AF94F3CE716> \ DWORD Value; \ } " \ "template EffectParamFloats \ { \ <3014B9A0-62F5-478c-9B86-E4AC9F4E418B> \ STRING ParamName; \ DWORD nFloats; \ array float Floats[nFloats]; \ } " \ "template EffectParamString \ { \ <1DBC4C88-94C1-46ee-9076-2C28818C9481> \ STRING ParamName; \ STRING Value; \ } \ template EffectParamDWord \ { \ \ STRING ParamName; \ DWORD Value; \ } \ template EffectInstance \ { \ \ STRING EffectFilename; \ [ ... ] \ } " \ "template AnimTicksPerSecond \ { \ <9E415A43-7BA6-4a73-8743-B73D47E88476> \ DWORD AnimTicksPerSecond; \ } \ template CompressedAnimationSet \ { \ <7F9B00B3-F125-4890-876E-1C42BF697C4D> \ DWORD CompressedBlockSize; \ FLOAT TicksPerSec; \ DWORD PlaybackType; \ DWORD BufferLength; \ array DWORD CompressedData[BufferLength]; \ } " #define XEXTENSIONS_TEMPLATES \ "xof 0303txt 0032\ template FVFData \ { \ \ DWORD dwFVF; \ DWORD nDWords; \ array DWORD data[nDWords]; \ } \ template VertexElement \ { \ \ DWORD Type; \ DWORD Method; \ DWORD Usage; \ DWORD UsageIndex; \ } \ template DeclData \ { \ \ DWORD nElements; \ array VertexElement Elements[nElements]; \ DWORD nDWords; \ array DWORD data[nDWords]; \ } \ template PMAttributeRange \ { \ <917E0427-C61E-4a14-9C64-AFE65F9E9844> \ DWORD iFaceOffset; \ DWORD nFacesMin; \ DWORD nFacesMax; \ DWORD iVertexOffset; \ DWORD nVerticesMin; \ DWORD nVerticesMax; \ } \ template PMVSplitRecord \ { \ <574CCC14-F0B3-4333-822D-93E8A8A08E4C> \ DWORD iFaceCLW; \ DWORD iVlrOffset; \ DWORD iCode; \ } \ template PMInfo \ { \ \ DWORD nAttributes; \ array PMAttributeRange attributeRanges[nAttributes]; \ DWORD nMaxValence; \ DWORD nMinLogicalVertices; \ DWORD nMaxLogicalVertices; \ DWORD nVSplits; \ array PMVSplitRecord splitRecords[nVSplits]; \ DWORD nAttributeMispredicts; \ array DWORD attributeMispredicts[nAttributeMispredicts]; \ } " #endif //__D3DX9MESH_H__