SA-MP/ttmath/ttmathbig.h

5237 lines
119 KiB
C
Raw Normal View History

2023-11-13 20:32:38 +08:00
/*
* This file is a part of TTMath Bignum Library
* and is distributed under the (new) BSD licence.
* Author: Tomasz Sowa <t.sowa@ttmath.org>
*/
/*
* Copyright (c) 2006-2010, Tomasz Sowa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name Tomasz Sowa nor the names of contributors to this
* project may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef headerfilettmathbig
#define headerfilettmathbig
/*!
\file ttmathbig.h
\brief A Class for representing floating point numbers
*/
#include "ttmathint.h"
#include "ttmaththreads.h"
#include <iostream>
#ifdef TTMATH_MULTITHREADS
#include <signal.h>
#endif
namespace ttmath
{
/*!
\brief Big implements the floating point numbers
*/
template <uint exp, uint man>
class Big
{
/*
value = mantissa * 2^exponent
exponent - an integer value with a sign
mantissa - an integer value without a sing
mantissa must be pushed into the left side that is the highest bit from
mantissa must be one (of course if there's another value than zero) -- this job
(pushing bits into the left side) making Standardizing() method
for example:
if we want to store value one (1) into our Big object we must:
set mantissa to 1
set exponent to 0
set info to 0
and call method Standardizing()
*/
public:
Int<exp> exponent;
UInt<man> mantissa;
unsigned char info;
/*!
Sign
the mask of a bit from 'info' which means that there is a sign
(when the bit is set)
*/
#define TTMATH_BIG_SIGN 128
/*!
Not a number
if this bit is set that there is not a valid number
*/
#define TTMATH_BIG_NAN 64
/*!
Zero
if this bit is set that there is value zero
mantissa should be zero and exponent should be zero too
(the Standardizing() method does this)
*/
#define TTMATH_BIG_ZERO 32
/*!
this method sets NaN if there was a carry (and returns 1 in such a case)
c can be 0, 1 or other value different from zero
*/
uint CheckCarry(uint c)
{
if( c != 0 )
{
SetNan();
return 1;
}
return 0;
}
public:
/*!
returning the string represents the currect type of the library
we have following types:
asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
asm_gcc_32 - with asm code designed for GCC (32 bits)
asm_vc_64 - with asm for VC (64 bit)
asm_gcc_64 - with asm for GCC (64 bit)
no_asm_32 - pure C++ version (32 bit) - without any asm code
no_asm_64 - pure C++ version (64 bit) - without any asm code
*/
static const char * LibTypeStr()
{
return UInt<man>::LibTypeStr();
}
/*!
returning the currect type of the library
*/
static LibTypeCode LibType()
{
return UInt<man>::LibType();
}
/*!
this method moves all bits from mantissa into its left side
(suitably changes the exponent) or if the mantissa is zero
it sets the exponent to zero as well
(and clears the sign bit and sets the zero bit)
it can return a carry
the carry will be when we don't have enough space in the exponent
you don't have to use this method if you don't change the mantissa
and exponent directly
*/
uint Standardizing()
{
if( mantissa.IsTheHighestBitSet() )
{
ClearInfoBit(TTMATH_BIG_ZERO);
return 0;
}
if( CorrectZero() )
return 0;
uint comp = mantissa.CompensationToLeft();
return exponent.Sub( comp );
}
private:
/*!
if the mantissa is equal zero this method sets exponent to zero and
info without the sign
it returns true if there was the correction
*/
bool CorrectZero()
{
if( mantissa.IsZero() )
{
SetInfoBit(TTMATH_BIG_ZERO);
ClearInfoBit(TTMATH_BIG_SIGN);
exponent.SetZero();
return true;
}
else
{
ClearInfoBit(TTMATH_BIG_ZERO);
}
return false;
}
public:
/*!
this method clears a specific bit in the 'info' variable
bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
*/
void ClearInfoBit(unsigned char bit)
{
info = info & (~bit);
}
/*!
this method sets a specific bit in the 'info' variable
bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
*/
void SetInfoBit(unsigned char bit)
{
info = info | bit;
}
/*!
this method returns true if a specific bit in the 'info' variable is set
bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
*/
bool IsInfoBit(unsigned char bit) const
{
return (info & bit) != 0;
}
/*!
this method sets zero
*/
void SetZero()
{
info = TTMATH_BIG_ZERO;
exponent.SetZero();
mantissa.SetZero();
/*
we don't have to compensate zero
*/
}
/*!
this method sets one
*/
void SetOne()
{
FromUInt(1);
}
/*!
this method sets value 0.5
*/
void Set05()
{
FromUInt(1);
exponent.SubOne();
}
/*!
this method sets NaN flag (Not a Number)
when this flag is set that means there is no a valid number
*/
void SetNan()
{
SetInfoBit(TTMATH_BIG_NAN);
}
private:
/*!
this method sets the mantissa of the value of pi
*/
void SetMantissaPi()
{
// this is a static table which represents the value of Pi (mantissa of it)
// (first is the highest word)
// we must define this table as 'unsigned int' because
// both on 32bit and 64bit platforms this table is 32bit
static const unsigned int temp_table[] = {
0xc90fdaa2, 0x2168c234, 0xc4c6628b, 0x80dc1cd1, 0x29024e08, 0x8a67cc74, 0x020bbea6, 0x3b139b22,
0x514a0879, 0x8e3404dd, 0xef9519b3, 0xcd3a431b, 0x302b0a6d, 0xf25f1437, 0x4fe1356d, 0x6d51c245,
0xe485b576, 0x625e7ec6, 0xf44c42e9, 0xa637ed6b, 0x0bff5cb6, 0xf406b7ed, 0xee386bfb, 0x5a899fa5,
0xae9f2411, 0x7c4b1fe6, 0x49286651, 0xece45b3d, 0xc2007cb8, 0xa163bf05, 0x98da4836, 0x1c55d39a,
0x69163fa8, 0xfd24cf5f, 0x83655d23, 0xdca3ad96, 0x1c62f356, 0x208552bb, 0x9ed52907, 0x7096966d,
0x670c354e, 0x4abc9804, 0xf1746c08, 0xca18217c, 0x32905e46, 0x2e36ce3b, 0xe39e772c, 0x180e8603,
0x9b2783a2, 0xec07a28f, 0xb5c55df0, 0x6f4c52c9, 0xde2bcbf6, 0x95581718, 0x3995497c, 0xea956ae5,
0x15d22618, 0x98fa0510, 0x15728e5a, 0x8aaac42d, 0xad33170d, 0x04507a33, 0xa85521ab, 0xdf1cba64,
0xecfb8504, 0x58dbef0a, 0x8aea7157, 0x5d060c7d, 0xb3970f85, 0xa6e1e4c7, 0xabf5ae8c, 0xdb0933d7,
0x1e8c94e0, 0x4a25619d, 0xcee3d226, 0x1ad2ee6b, 0xf12ffa06, 0xd98a0864, 0xd8760273, 0x3ec86a64,
0x521f2b18, 0x177b200c, 0xbbe11757, 0x7a615d6c, 0x770988c0, 0xbad946e2, 0x08e24fa0, 0x74e5ab31,
0x43db5bfc, 0xe0fd108e, 0x4b82d120, 0xa9210801, 0x1a723c12, 0xa787e6d7, 0x88719a10, 0xbdba5b26,
0x99c32718, 0x6af4e23c, 0x1a946834, 0xb6150bda, 0x2583e9ca, 0x2ad44ce8, 0xdbbbc2db, 0x04de8ef9,
0x2e8efc14, 0x1fbecaa6, 0x287c5947, 0x4e6bc05d, 0x99b2964f, 0xa090c3a2, 0x233ba186, 0x515be7ed,
0x1f612970, 0xcee2d7af, 0xb81bdd76, 0x2170481c, 0xd0069127, 0xd5b05aa9, 0x93b4ea98, 0x8d8fddc1,
0x86ffb7dc, 0x90a6c08f, 0x4df435c9, 0x34028492, 0x36c3fab4, 0xd27c7026, 0xc1d4dcb2, 0x602646de,
0xc9751e76, 0x3dba37bd, 0xf8ff9406, 0xad9e530e, 0xe5db382f, 0x413001ae, 0xb06a53ed, 0x9027d831,
0x179727b0, 0x865a8918, 0xda3edbeb, 0xcf9b14ed, 0x44ce6cba, 0xced4bb1b, 0xdb7f1447, 0xe6cc254b,
0x33205151, 0x2bd7af42, 0x6fb8f401, 0x378cd2bf, 0x5983ca01, 0xc64b92ec, 0xf032ea15, 0xd1721d03,
0xf482d7ce, 0x6e74fef6, 0xd55e702f, 0x46980c82, 0xb5a84031, 0x900b1c9e, 0x59e7c97f, 0xbec7e8f3,
0x23a97a7e, 0x36cc88be, 0x0f1d45b7, 0xff585ac5, 0x4bd407b2, 0x2b4154aa, 0xcc8f6d7e, 0xbf48e1d8,
0x14cc5ed2, 0x0f8037e0, 0xa79715ee, 0xf29be328, 0x06a1d58b, 0xb7c5da76, 0xf550aa3d, 0x8a1fbff0,
0xeb19ccb1, 0xa313d55c, 0xda56c9ec, 0x2ef29632, 0x387fe8d7, 0x6e3c0468, 0x043e8f66, 0x3f4860ee,
0x12bf2d5b, 0x0b7474d6, 0xe694f91e, 0x6dbe1159, 0x74a3926f, 0x12fee5e4, 0x38777cb6, 0xa932df8c,
0xd8bec4d0, 0x73b931ba, 0x3bc832b6, 0x8d9dd300, 0x741fa7bf, 0x8afc47ed, 0x2576f693, 0x6ba42466,
0x3aab639c, 0x5ae4f568, 0x3423b474, 0x2bf1c978, 0x238f16cb, 0xe39d652d, 0xe3fdb8be, 0xfc848ad9,
0x22222e04, 0xa4037c07, 0x13eb57a8, 0x1a23f0c7, 0x3473fc64, 0x6cea306b, 0x4bcbc886, 0x2f8385dd,
0xfa9d4b7f, 0xa2c087e8, 0x79683303, 0xed5bdd3a, 0x062b3cf5, 0xb3a278a6, 0x6d2a13f8, 0x3f44f82d,
0xdf310ee0, 0x74ab6a36, 0x4597e899, 0xa0255dc1, 0x64f31cc5, 0x0846851d, 0xf9ab4819, 0x5ded7ea1,
0xb1d510bd, 0x7ee74d73, 0xfaf36bc3, 0x1ecfa268, 0x359046f4, 0xeb879f92, 0x4009438b, 0x481c6cd7,
0x889a002e, 0xd5ee382b, 0xc9190da6, 0xfc026e47, 0x9558e447, 0x5677e9aa, 0x9e3050e2, 0x765694df,
0xc81f56e8, 0x80b96e71, 0x60c980dd, 0x98a573ea, 0x4472065a, 0x139cd290, 0x6cd1cb72, 0x9ec52a53 // last one was: 0x9ec52a52
//0x86d44014, ...
// (the last word 0x9ec52a52 was rounded up because the next one is 0x86d44014 -- first bit is one 0x8..)
// 256 32bit words for the mantissa -- about 2464 valid decimal digits
};
// the value of PI is comming from the website http://zenwerx.com/pi.php
// 3101 digits were taken from this website
// (later the digits were compared with:
// http://www.eveandersson.com/pi/digits/1000000 and http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html )
// and they were set into Big<1,400> type (using operator=(const char*) on a 32bit platform)
// and then the first 256 words were taken into this table
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
// and on 64bit platform value 128 (256/2=128))
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
}
public:
/*!
this method sets the value of pi
*/
void SetPi()
{
SetMantissaPi();
info = 0;
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
}
/*!
this method sets the value of 0.5 * pi
*/
void Set05Pi()
{
SetMantissaPi();
info = 0;
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 1;
}
/*!
this method sets the value of 2 * pi
*/
void Set2Pi()
{
SetMantissaPi();
info = 0;
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 3;
}
/*!
this method sets the value of e
(the base of the natural logarithm)
*/
void SetE()
{
static const unsigned int temp_table[] = {
0xadf85458, 0xa2bb4a9a, 0xafdc5620, 0x273d3cf1, 0xd8b9c583, 0xce2d3695, 0xa9e13641, 0x146433fb,
0xcc939dce, 0x249b3ef9, 0x7d2fe363, 0x630c75d8, 0xf681b202, 0xaec4617a, 0xd3df1ed5, 0xd5fd6561,
0x2433f51f, 0x5f066ed0, 0x85636555, 0x3ded1af3, 0xb557135e, 0x7f57c935, 0x984f0c70, 0xe0e68b77,
0xe2a689da, 0xf3efe872, 0x1df158a1, 0x36ade735, 0x30acca4f, 0x483a797a, 0xbc0ab182, 0xb324fb61,
0xd108a94b, 0xb2c8e3fb, 0xb96adab7, 0x60d7f468, 0x1d4f42a3, 0xde394df4, 0xae56ede7, 0x6372bb19,
0x0b07a7c8, 0xee0a6d70, 0x9e02fce1, 0xcdf7e2ec, 0xc03404cd, 0x28342f61, 0x9172fe9c, 0xe98583ff,
0x8e4f1232, 0xeef28183, 0xc3fe3b1b, 0x4c6fad73, 0x3bb5fcbc, 0x2ec22005, 0xc58ef183, 0x7d1683b2,
0xc6f34a26, 0xc1b2effa, 0x886b4238, 0x611fcfdc, 0xde355b3b, 0x6519035b, 0xbc34f4de, 0xf99c0238,
0x61b46fc9, 0xd6e6c907, 0x7ad91d26, 0x91f7f7ee, 0x598cb0fa, 0xc186d91c, 0xaefe1309, 0x85139270,
0xb4130c93, 0xbc437944, 0xf4fd4452, 0xe2d74dd3, 0x64f2e21e, 0x71f54bff, 0x5cae82ab, 0x9c9df69e,
0xe86d2bc5, 0x22363a0d, 0xabc52197, 0x9b0deada, 0x1dbf9a42, 0xd5c4484e, 0x0abcd06b, 0xfa53ddef,
0x3c1b20ee, 0x3fd59d7c, 0x25e41d2b, 0x669e1ef1, 0x6e6f52c3, 0x164df4fb, 0x7930e9e4, 0xe58857b6,
0xac7d5f42, 0xd69f6d18, 0x7763cf1d, 0x55034004, 0x87f55ba5, 0x7e31cc7a, 0x7135c886, 0xefb4318a,
0xed6a1e01, 0x2d9e6832, 0xa907600a, 0x918130c4, 0x6dc778f9, 0x71ad0038, 0x092999a3, 0x33cb8b7a,
0x1a1db93d, 0x7140003c, 0x2a4ecea9, 0xf98d0acc, 0x0a8291cd, 0xcec97dcf, 0x8ec9b55a, 0x7f88a46b,
0x4db5a851, 0xf44182e1, 0xc68a007e, 0x5e0dd902, 0x0bfd64b6, 0x45036c7a, 0x4e677d2c, 0x38532a3a,
0x23ba4442, 0xcaf53ea6, 0x3bb45432, 0x9b7624c8, 0x917bdd64, 0xb1c0fd4c, 0xb38e8c33, 0x4c701c3a,
0xcdad0657, 0xfccfec71, 0x9b1f5c3e, 0x4e46041f, 0x388147fb, 0x4cfdb477, 0xa52471f7, 0xa9a96910,
0xb855322e, 0xdb6340d8, 0xa00ef092, 0x350511e3, 0x0abec1ff, 0xf9e3a26e, 0x7fb29f8c, 0x183023c3,
0x587e38da, 0x0077d9b4, 0x763e4e4b, 0x94b2bbc1, 0x94c6651e, 0x77caf992, 0xeeaac023, 0x2a281bf6,
0xb3a739c1, 0x22611682, 0x0ae8db58, 0x47a67cbe, 0xf9c9091b, 0x462d538c, 0xd72b0374, 0x6ae77f5e,
0x62292c31, 0x1562a846, 0x505dc82d, 0xb854338a, 0xe49f5235, 0xc95b9117, 0x8ccf2dd5, 0xcacef403,
0xec9d1810, 0xc6272b04, 0x5b3b71f9, 0xdc6b80d6, 0x3fdd4a8e, 0x9adb1e69, 0x62a69526, 0xd43161c1,
0xa41d570d, 0x7938dad4, 0xa40e329c, 0xcff46aaa, 0x36ad004c, 0xf600c838, 0x1e425a31, 0xd951ae64,
0xfdb23fce, 0xc9509d43, 0x687feb69, 0xedd1cc5e, 0x0b8cc3bd, 0xf64b10ef, 0x86b63142, 0xa3ab8829,
0x555b2f74, 0x7c932665, 0xcb2c0f1c, 0xc01bd702, 0x29388839, 0xd2af05e4, 0x54504ac7, 0x8b758282,
0x2846c0ba, 0x35c35f5c, 0x59160cc0, 0x46fd8251, 0x541fc68c, 0x9c86b022, 0xbb709987, 0x6a460e74,
0x51a8a931, 0x09703fee, 0x1c217e6c, 0x3826e52c, 0x51aa691e, 0x0e423cfc, 0x99e9e316, 0x50c1217b,
0x624816cd, 0xad9a95f9, 0xd5b80194, 0x88d9c0a0, 0xa1fe3075, 0xa577e231, 0x83f81d4a, 0x3f2fa457,
0x1efc8ce0, 0xba8a4fe8, 0xb6855dfe, 0x72b0a66e, 0xded2fbab, 0xfbe58a30, 0xfafabe1c, 0x5d71a87e,
0x2f741ef8, 0xc1fe86fe, 0xa6bbfde5, 0x30677f0d, 0x97d11d49, 0xf7a8443d, 0x0822e506, 0xa9f4614e,
0x011e2a94, 0x838ff88c, 0xd68c8bb7, 0xc51eef6d, 0x49ea8ab4, 0xf2c3df5b, 0xb4e0735a, 0xb0d68749
// 0x2fe26dd4, ...
// 256 32bit words for the mantissa -- about 2464 valid decimal digits
};
// above value was calculated using Big<1,400> type on a 32bit platform
// and then the first 256 words were taken,
// the calculating was made by using ExpSurrounding0(1) method
// which took 1420 iterations
// (the result was compared with e taken from http://antwrp.gsfc.nasa.gov/htmltest/gifcity/e.2mil)
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
// and on 64bit platform value 128 (256/2=128))
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
info = 0;
}
/*!
this method sets the value of ln(2)
the natural logarithm from 2
*/
void SetLn2()
{
static const unsigned int temp_table[] = {
0xb17217f7, 0xd1cf79ab, 0xc9e3b398, 0x03f2f6af, 0x40f34326, 0x7298b62d, 0x8a0d175b, 0x8baafa2b,
0xe7b87620, 0x6debac98, 0x559552fb, 0x4afa1b10, 0xed2eae35, 0xc1382144, 0x27573b29, 0x1169b825,
0x3e96ca16, 0x224ae8c5, 0x1acbda11, 0x317c387e, 0xb9ea9bc3, 0xb136603b, 0x256fa0ec, 0x7657f74b,
0x72ce87b1, 0x9d6548ca, 0xf5dfa6bd, 0x38303248, 0x655fa187, 0x2f20e3a2, 0xda2d97c5, 0x0f3fd5c6,
0x07f4ca11, 0xfb5bfb90, 0x610d30f8, 0x8fe551a2, 0xee569d6d, 0xfc1efa15, 0x7d2e23de, 0x1400b396,
0x17460775, 0xdb8990e5, 0xc943e732, 0xb479cd33, 0xcccc4e65, 0x9393514c, 0x4c1a1e0b, 0xd1d6095d,
0x25669b33, 0x3564a337, 0x6a9c7f8a, 0x5e148e82, 0x074db601, 0x5cfe7aa3, 0x0c480a54, 0x17350d2c,
0x955d5179, 0xb1e17b9d, 0xae313cdb, 0x6c606cb1, 0x078f735d, 0x1b2db31b, 0x5f50b518, 0x5064c18b,
0x4d162db3, 0xb365853d, 0x7598a195, 0x1ae273ee, 0x5570b6c6, 0x8f969834, 0x96d4e6d3, 0x30af889b,
0x44a02554, 0x731cdc8e, 0xa17293d1, 0x228a4ef9, 0x8d6f5177, 0xfbcf0755, 0x268a5c1f, 0x9538b982,
0x61affd44, 0x6b1ca3cf, 0x5e9222b8, 0x8c66d3c5, 0x422183ed, 0xc9942109, 0x0bbb16fa, 0xf3d949f2,
0x36e02b20, 0xcee886b9, 0x05c128d5, 0x3d0bd2f9, 0x62136319, 0x6af50302, 0x0060e499, 0x08391a0c,
0x57339ba2, 0xbeba7d05, 0x2ac5b61c, 0xc4e9207c, 0xef2f0ce2, 0xd7373958, 0xd7622658, 0x901e646a,
0x95184460, 0xdc4e7487, 0x156e0c29, 0x2413d5e3, 0x61c1696d, 0xd24aaebd, 0x473826fd, 0xa0c238b9,
0x0ab111bb, 0xbd67c724, 0x972cd18b, 0xfbbd9d42, 0x6c472096, 0xe76115c0, 0x5f6f7ceb, 0xac9f45ae,
0xcecb72f1, 0x9c38339d, 0x8f682625, 0x0dea891e, 0xf07afff3, 0xa892374e, 0x175eb4af, 0xc8daadd8,
0x85db6ab0, 0x3a49bd0d, 0xc0b1b31d, 0x8a0e23fa, 0xc5e5767d, 0xf95884e0, 0x6425a415, 0x26fac51c,
0x3ea8449f, 0xe8f70edd, 0x062b1a63, 0xa6c4c60c, 0x52ab3316, 0x1e238438, 0x897a39ce, 0x78b63c9f,
0x364f5b8a, 0xef22ec2f, 0xee6e0850, 0xeca42d06, 0xfb0c75df, 0x5497e00c, 0x554b03d7, 0xd2874a00,
0x0ca8f58d, 0x94f0341c, 0xbe2ec921, 0x56c9f949, 0xdb4a9316, 0xf281501e, 0x53daec3f, 0x64f1b783,
0x154c6032, 0x0e2ff793, 0x33ce3573, 0xfacc5fdc, 0xf1178590, 0x3155bbd9, 0x0f023b22, 0x0224fcd8,
0x471bf4f4, 0x45f0a88a, 0x14f0cd97, 0x6ea354bb, 0x20cdb5cc, 0xb3db2392, 0x88d58655, 0x4e2a0e8a,
0x6fe51a8c, 0xfaa72ef2, 0xad8a43dc, 0x4212b210, 0xb779dfe4, 0x9d7307cc, 0x846532e4, 0xb9694eda,
0xd162af05, 0x3b1751f3, 0xa3d091f6, 0x56658154, 0x12b5e8c2, 0x02461069, 0xac14b958, 0x784934b8,
0xd6cce1da, 0xa5053701, 0x1aa4fb42, 0xb9a3def4, 0x1bda1f85, 0xef6fdbf2, 0xf2d89d2a, 0x4b183527,
0x8fd94057, 0x89f45681, 0x2b552879, 0xa6168695, 0xc12963b0, 0xff01eaab, 0x73e5b5c1, 0x585318e7,
0x624f14a5, 0x1a4a026b, 0x68082920, 0x57fd99b6, 0x6dc085a9, 0x8ac8d8ca, 0xf9eeeea9, 0x8a2400ca,
0xc95f260f, 0xd10036f9, 0xf91096ac, 0x3195220a, 0x1a356b2a, 0x73b7eaad, 0xaf6d6058, 0x71ef7afb,
0x80bc4234, 0x33562e94, 0xb12dfab4, 0x14451579, 0xdf59eae0, 0x51707062, 0x4012a829, 0x62c59cab,
0x347f8304, 0xd889659e, 0x5a9139db, 0x14efcc30, 0x852be3e8, 0xfc99f14d, 0x1d822dd6, 0xe2f76797,
0xe30219c8, 0xaa9ce884, 0x8a886eb3, 0xc87b7295, 0x988012e8, 0x314186ed, 0xbaf86856, 0xccd3c3b6,
0xee94e62f, 0x110a6783, 0xd2aae89c, 0xcc3b76fc, 0x435a0ce1, 0x34c2838f, 0xd571ec6c, 0x1366a993 // last one was: 0x1366a992
//0xcbb9ac40, ...
// (the last word 0x1366a992 was rounded up because the next one is 0xcbb9ac40 -- first bit is one 0xc..)
// 256 32bit words for the mantissa -- about 2464 valid decimal digits
};
// above value was calculated using Big<1,400> type on a 32bit platform
// and then the first 256 words were taken,
// the calculating was made by using LnSurrounding1(2) method
// which took 4035 iterations
// (the result was compared with ln(2) taken from http://ja0hxv.calico.jp/pai/estart.html)
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
// and on 64bit platform value 128 (256/2=128))
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT);
info = 0;
}
/*!
this method sets the value of ln(10)
the natural logarithm from 10
I introduced this constant especially to make the conversion ToString()
being faster. In fact the method ToString() is keeping values of logarithms
it has calculated but it must calculate the logarithm at least once.
If a program, which uses this library, is running for a long time this
would be ok, but for programs which are running shorter, for example for
CGI applications which only once are printing values, this would be much
inconvenience. Then if we're printing with base (radix) 10 and the mantissa
of our value is smaller than or equal to TTMATH_BUILTIN_VARIABLES_SIZE
we don't calculate the logarithm but take it from this constant.
*/
void SetLn10()
{
static const unsigned int temp_table[] = {
0x935d8ddd, 0xaaa8ac16, 0xea56d62b, 0x82d30a28, 0xe28fecf9, 0xda5df90e, 0x83c61e82, 0x01f02d72,
0x962f02d7, 0xb1a8105c, 0xcc70cbc0, 0x2c5f0d68, 0x2c622418, 0x410be2da, 0xfb8f7884, 0x02e516d6,
0x782cf8a2, 0x8a8c911e, 0x765aa6c3, 0xb0d831fb, 0xef66ceb0, 0x4ab3c6fa, 0x5161bb49, 0xd219c7bb,
0xca67b35b, 0x23605085, 0x8e93368d, 0x44789c4f, 0x5b08b057, 0xd5ede20f, 0x469ea58e, 0x9305e981,
0xe2478fca, 0xad3aee98, 0x9cd5b42e, 0x6a271619, 0xa47ecb26, 0x978c5d4f, 0xdb1d28ea, 0x57d4fdc0,
0xe40bf3cc, 0x1e14126a, 0x45765cde, 0x268339db, 0xf47fa96d, 0xeb271060, 0xaf88486e, 0xa9b7401e,
0x3dfd3c51, 0x748e6d6e, 0x3848c8d2, 0x5faf1bca, 0xe88047f1, 0x7b0d9b50, 0xa949eaaa, 0xdf69e8a5,
0xf77e3760, 0x4e943960, 0xe38a5700, 0xffde2db1, 0xad6bfbff, 0xd821ba0a, 0x4cb0466d, 0x61ba648e,
0xef99c8e5, 0xf6974f36, 0x3982a78c, 0xa45ddfc8, 0x09426178, 0x19127a6e, 0x3b70fcda, 0x2d732d47,
0xb5e4b1c8, 0xc0e5a10a, 0xaa6604a5, 0x324ec3dc, 0xbc64ea80, 0x6e198566, 0x1f1d366c, 0x20663834,
0x4d5e843f, 0x20642b97, 0x0a62d18e, 0x478f7bd5, 0x8fcd0832, 0x4a7b32a6, 0xdef85a05, 0xeb56323a,
0x421ef5e0, 0xb00410a0, 0xa0d9c260, 0x794a976f, 0xf6ff363d, 0xb00b6b33, 0xf42c58de, 0xf8a3c52d,
0xed69b13d, 0xc1a03730, 0xb6524dc1, 0x8c167e86, 0x99d6d20e, 0xa2defd2b, 0xd006f8b4, 0xbe145a2a,
0xdf3ccbb3, 0x189da49d, 0xbc1261c8, 0xb3e4daad, 0x6a36cecc, 0xb2d5ae5b, 0x89bf752f, 0xb5dfb353,
0xff3065c4, 0x0cfceec8, 0x1be5a9a9, 0x67fddc57, 0xc4b83301, 0x006bf062, 0x4b40ed7a, 0x56c6cdcd,
0xa2d6fe91, 0x388e9e3e, 0x48a93f5f, 0x5e3b6eb4, 0xb81c4a5b, 0x53d49ea6, 0x8e668aea, 0xba83c7f8,
0xfb5f06c3, 0x58ac8f70, 0xfa9d8c59, 0x8c574502, 0xbaf54c96, 0xc84911f0, 0x0482d095, 0x1a0af022,
0xabbab080, 0xec97efd3, 0x671e4e0e, 0x52f166b6, 0xcd5cd226, 0x0dc67795, 0x2e1e34a3, 0xf799677f,
0x2c1d48f1, 0x2944b6c5, 0x2ba1307e, 0x704d67f9, 0x1c1035e4, 0x4e927c63, 0x03cf12bf, 0xe2cd2e31,
0xf8ee4843, 0x344d51b0, 0xf37da42b, 0x9f0b0fd9, 0x134fb2d9, 0xf815e490, 0xd966283f, 0x23962766,
0xeceab1e4, 0xf3b5fc86, 0x468127e2, 0xb606d10d, 0x3a45f4b6, 0xb776102d, 0x2fdbb420, 0x80c8fa84,
0xd0ff9f45, 0xc58aef38, 0xdb2410fd, 0x1f1cebad, 0x733b2281, 0x52ca5f36, 0xddf29daa, 0x544334b8,
0xdeeaf659, 0x4e462713, 0x1ed485b4, 0x6a0822e1, 0x28db471c, 0xa53938a8, 0x44c3bef7, 0xf35215c8,
0xb382bc4e, 0x3e4c6f15, 0x6285f54c, 0x17ab408e, 0xccbf7f5e, 0xd16ab3f6, 0xced2846d, 0xf457e14f,
0xbb45d9c5, 0x646ad497, 0xac697494, 0x145de32e, 0x93907128, 0xd263d521, 0x79efb424, 0xd64651d6,
0xebc0c9f0, 0xbb583a44, 0xc6412c84, 0x85bb29a6, 0x4d31a2cd, 0x92954469, 0xa32b1abd, 0xf7f5202c,
0xa4aa6c93, 0x2e9b53cf, 0x385ab136, 0x2741f356, 0x5de9c065, 0x6009901c, 0x88abbdd8, 0x74efcf73,
0x3f761ad4, 0x35f3c083, 0xfd6b8ee0, 0x0bef11c7, 0xc552a89d, 0x58ce4a21, 0xd71e54f2, 0x4157f6c7,
0xd4622316, 0xe98956d7, 0x450027de, 0xcbd398d8, 0x4b98b36a, 0x0724c25c, 0xdb237760, 0xe9324b68,
0x7523e506, 0x8edad933, 0x92197f00, 0xb853a326, 0xb330c444, 0x65129296, 0x34bc0670, 0xe177806d,
0xe338dac4, 0x5537492a, 0xe19add83, 0xcf45000f, 0x5b423bce, 0x6497d209, 0xe30e18a1, 0x3cbf0687,
0x67973103, 0xd9485366, 0x81506bba, 0x2e93a9a4, 0x7dd59d3f, 0xf17cd746, 0x8c2075be, 0x552a4348 // last one was: 0x552a4347
// 0xb4a638ef, ...
//(the last word 0x552a4347 was rounded up because the next one is 0xb4a638ef -- first bit is one 0xb..)
// 256 32bit words for the mantissa -- about 2464 valid digits (decimal)
};
// above value was calculated using Big<1,400> type on a 32bit platform
// and then the first 256 32bit words were taken,
// the calculating was made by using LnSurrounding1(10) method
// which took 22080 iterations
// (the result was compared with ln(10) taken from http://ja0hxv.calico.jp/pai/estart.html)
// (the formula used in LnSurrounding1(x) converges badly when
// the x is greater than one but in fact we can use it, only the
// number of iterations will be greater)
// (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
// and on 64bit platform value 128 (256/2=128))
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
info = 0;
}
/*!
this method sets the maximum value which can be held in this type
*/
void SetMax()
{
info = 0;
mantissa.SetMax();
exponent.SetMax();
// we don't have to use 'Standardizing()' because the last bit from
// the mantissa is set
}
/*!
this method sets the minimum value which can be held in this type
*/
void SetMin()
{
info = 0;
mantissa.SetMax();
exponent.SetMax();
SetSign();
// we don't have to use 'Standardizing()' because the last bit from
// the mantissa is set
}
/*!
testing whether there is a value zero or not
*/
bool IsZero() const
{
return IsInfoBit(TTMATH_BIG_ZERO);
}
/*!
this method returns true when there's the sign set
also we don't check the NaN flag
*/
bool IsSign() const
{
return IsInfoBit(TTMATH_BIG_SIGN);
}
/*!
this method returns true when there is not a valid number
*/
bool IsNan() const
{
return IsInfoBit(TTMATH_BIG_NAN);
}
/*!
this method clears the sign
(there'll be an absolute value)
e.g.
-1 -> 1
2 -> 2
*/
void Abs()
{
ClearInfoBit(TTMATH_BIG_SIGN);
}
/*!
this method remains the 'sign' of the value
e.g. -2 = -1
0 = 0
10 = 1
*/
void Sgn()
{
// we have to check the NaN flag, because the next SetOne() method would clear it
if( IsNan() )
return;
if( IsSign() )
{
SetOne();
SetSign();
}
else
if( IsZero() )
SetZero();
else
SetOne();
}
/*!
this method sets the sign
e.g.
-1 -> -1
2 -> -2
we do not check whether there is a zero or not, if you're using this method
you must be sure that the value is (or will be afterwards) different from zero
*/
void SetSign()
{
SetInfoBit(TTMATH_BIG_SIGN);
}
/*!
this method changes the sign
when there is a value of zero then the sign is not changed
e.g.
-1 -> 1
2 -> -2
*/
void ChangeSign()
{
// we don't have to check the NaN flag here
if( IsZero() )
return;
if( IsSign() )
ClearInfoBit(TTMATH_BIG_SIGN);
else
SetInfoBit(TTMATH_BIG_SIGN);
}
private:
/*!
this method does the half-to-even rounding (banker's rounding)
if is_half is:
true - that means the rest was equal the half (0.5 decimal)
false - that means the rest was greater than a half (greater than 0.5 decimal)
if the rest was less than a half then don't call this method
(the rounding should does nothing then)
*/
uint RoundHalfToEven(bool is_half, bool rounding_up = true)
{
uint c = 0;
if( !is_half || mantissa.IsTheLowestBitSet() )
{
if( rounding_up )
{
if( mantissa.AddOne() )
{
mantissa.Rcr(1, 1);
c = exponent.AddOne();
}
}
else
{
#ifdef TTMATH_DEBUG
uint c_from_zero =
#endif
mantissa.SubOne();
// we're using rounding_up=false in Add() when the mantissas have different signs
// mantissa can be zero only when previous mantissa was equal to ss2.mantissa
// but in such a case 'last_bit_set' will not be set and consequently 'do_rounding' will be false
TTMATH_ASSERT( c_from_zero == 0 )
}
}
return c;
}
/*!
*
* basic mathematic functions
*
*/
private:
/*!
an auxiliary method for adding
*/
void AddCheckExponents( Big<exp, man> & ss2,
Int<exp> & exp_offset,
bool & last_bit_set,
bool & rest_zero,
bool & do_adding,
bool & do_rounding)
{
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
if( exp_offset == mantissa_size_in_bits )
{
last_bit_set = ss2.mantissa.IsTheHighestBitSet();
rest_zero = ss2.mantissa.AreFirstBitsZero(man*TTMATH_BITS_PER_UINT - 1);
do_rounding = true; // we'are only rounding
}
else
if( exp_offset < mantissa_size_in_bits )
{
uint moved = exp_offset.ToInt(); // how many times we must move ss2.mantissa
rest_zero = true;
if( moved > 0 )
{
last_bit_set = static_cast<bool>( ss2.mantissa.GetBit(moved-1) );
if( moved > 1 )
rest_zero = ss2.mantissa.AreFirstBitsZero(moved - 1);
// (2) moving 'exp_offset' times
ss2.mantissa.Rcr(moved, 0);
}
do_adding = true;
do_rounding = true;
}
// if exp_offset is greater than mantissa_size_in_bits then we do nothing
// ss2 is too small for taking into consideration in the sum
}
/*!
an auxiliary method for adding
*/
uint AddMantissas( Big<exp, man> & ss2,
bool & last_bit_set,
bool & rest_zero,
bool & rounding_up)
{
uint c = 0;
if( IsSign() == ss2.IsSign() )
{
// values have the same signs
if( mantissa.Add(ss2.mantissa) )
{
// we have one bit more from addition (carry)
// now rest_zero means the old rest_zero with the old last_bit_set
rest_zero = (!last_bit_set && rest_zero);
last_bit_set = mantissa.Rcr(1,1);
c += exponent.AddOne();
}
rounding_up = true;
}
else
{
// values have different signs
// there shouldn't be a carry here because
// (1) (2) guarantee that the mantissa of this
// is greater than or equal to the mantissa of the ss2
#ifdef TTMATH_DEBUG
uint c_temp =
#endif
mantissa.Sub(ss2.mantissa);
TTMATH_ASSERT( c_temp == 0 )
}
return c;
}
public:
/*!
Addition this = this + ss2
it returns carry if the sum is too big
*/
uint Add(Big<exp, man> ss2, bool round = true)
{
bool last_bit_set, rest_zero, do_adding, do_rounding, rounding_up;
Int<exp> exp_offset( exponent );
uint c = 0;
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// (1) abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
// !! use Swap here (not implemented yet)
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( ss2.IsZero() )
return 0;
last_bit_set = rest_zero = do_adding = do_rounding = rounding_up = false;
AddCheckExponents(ss2, exp_offset, last_bit_set, rest_zero, do_adding, do_rounding);
if( do_adding )
c += AddMantissas(ss2, last_bit_set, rest_zero, rounding_up);
if( !round || !last_bit_set )
do_rounding = false;
if( do_rounding )
c += RoundHalfToEven(rest_zero, rounding_up);
if( do_adding || do_rounding )
c += Standardizing();
return CheckCarry(c);
}
/*!
Subtraction this = this - ss2
it returns carry if the result is too big
*/
uint Sub(Big<exp, man> ss2, bool round = true)
{
ss2.ChangeSign();
return Add(ss2, round);
}
/*!
bitwise AND
this and ss2 must be >= 0
return values:
0 - ok
1 - carry
2 - this or ss2 was negative
*/
uint BitAnd(Big<exp, man> ss2)
{
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
if( IsSign() || ss2.IsSign() )
return 2;
if( IsZero() )
return 0;
if( ss2.IsZero() )
{
SetZero();
return 0;
}
Int<exp> exp_offset( exponent );
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
uint c = 0;
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( exp_offset >= mantissa_size_in_bits )
{
// the second value is too small
SetZero();
return 0;
}
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
mantissa.BitAnd(ss2.mantissa);
c += Standardizing();
return CheckCarry(c);
}
/*!
bitwise OR
this and ss2 must be >= 0
return values:
0 - ok
1 - carry
2 - this or ss2 was negative
*/
uint BitOr(Big<exp, man> ss2)
{
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
if( IsSign() || ss2.IsSign() )
return 2;
if( IsZero() )
{
*this = ss2;
return 0;
}
if( ss2.IsZero() )
return 0;
Int<exp> exp_offset( exponent );
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
uint c = 0;
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( exp_offset >= mantissa_size_in_bits )
// the second value is too small
return 0;
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
mantissa.BitOr(ss2.mantissa);
c += Standardizing();
return CheckCarry(c);
}
/*!
bitwise XOR
this and ss2 must be >= 0
return values:
0 - ok
1 - carry
2 - this or ss2 was negative
*/
uint BitXor(Big<exp, man> ss2)
{
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
if( IsSign() || ss2.IsSign() )
return 2;
if( ss2.IsZero() )
return 0;
if( IsZero() )
{
*this = ss2;
return 0;
}
Int<exp> exp_offset( exponent );
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
uint c = 0;
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( exp_offset >= mantissa_size_in_bits )
// the second value is too small
return 0;
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
mantissa.BitXor(ss2.mantissa);
c += Standardizing();
return CheckCarry(c);
}
/*!
Multiplication this = this * ss2 (ss2 is uint)
ss2 without a sign
*/
uint MulUInt(uint ss2)
{
UInt<man+1> man_result;
uint i,c = 0;
if( IsNan() )
return 1;
if( IsZero() )
return 0;
if( ss2 == 0 )
{
SetZero();
return 0;
}
// man_result = mantissa * ss2.mantissa
mantissa.MulInt(ss2, man_result);
sint bit = UInt<man>::FindLeadingBitInWord(man_result.table[man]); // man - last word
if( bit!=-1 && uint(bit) > (TTMATH_BITS_PER_UINT/2) )
{
// 'i' will be from 0 to TTMATH_BITS_PER_UINT
i = man_result.CompensationToLeft();
c = exponent.Add( TTMATH_BITS_PER_UINT - i );
for(i=0 ; i<man ; ++i)
mantissa.table[i] = man_result.table[i+1];
}
else
{
if( bit != -1 )
{
man_result.Rcr(bit+1, 0);
c += exponent.Add(bit+1);
}
for(i=0 ; i<man ; ++i)
mantissa.table[i] = man_result.table[i];
}
c += Standardizing();
return CheckCarry(c);
}
/*!
Multiplication this = this * ss2 (ss2 is sint)
ss2 with a sign
*/
uint MulInt(sint ss2)
{
if( IsNan() )
return 1;
if( ss2 == 0 )
{
SetZero();
return 0;
}
if( IsZero() )
return 0;
if( IsSign() == (ss2<0) )
{
// the signs are the same (both are either - or +), the result is positive
Abs();
}
else
{
// the signs are different, the result is negative
SetSign();
}
if( ss2<0 )
ss2 = -ss2;
return MulUInt( uint(ss2) );
}
private:
/*!
this method checks whether a table pointed by 'tab' and 'len'
has the value 0.5 decimal
(it is treated as the comma operator would be before the highest bit)
call this method only if the highest bit is set - you have to test it beforehand
return:
true - tab was equal the half (0.5 decimal)
false - tab was greater than a half (greater than 0.5 decimal)
*/
bool CheckGreaterOrEqualHalf(uint * tab, uint len)
{
uint i;
TTMATH_ASSERT( len>0 && (tab[len-1] & TTMATH_UINT_HIGHEST_BIT)!=0 )
for(i=0 ; i<len-1 ; ++i)
if( tab[i] != 0 )
return false;
if( tab[i] != TTMATH_UINT_HIGHEST_BIT )
return false;
return true;
}
public:
/*!
multiplication this = this * ss2
this method returns a carry
*/
uint Mul(const Big<exp, man> & ss2, bool round = true)
{
TTMATH_REFERENCE_ASSERT( ss2 )
UInt<man*2> man_result;
uint c = 0;
uint i;
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
if( IsZero() )
return 0;
if( ss2.IsZero() )
{
SetZero();
return 0;
}
// man_result = mantissa * ss2.mantissa
mantissa.MulBig(ss2.mantissa, man_result);
// 'i' will be from 0 to man*TTMATH_BITS_PER_UINT
// because mantissa and ss2.mantissa are standardized
// (the highest bit in man_result is set to 1 or
// if there is a zero value in man_result the method CompensationToLeft()
// returns 0 but we'll correct this at the end in Standardizing() method)
i = man_result.CompensationToLeft();
uint exp_add = man * TTMATH_BITS_PER_UINT - i;
if( exp_add )
c += exponent.Add( exp_add );
c += exponent.Add( ss2.exponent );
for(i=0 ; i<man ; ++i)
mantissa.table[i] = man_result.table[i+man];
if( round && (man_result.table[man-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
{
bool is_half = CheckGreaterOrEqualHalf(man_result.table, man);
c += RoundHalfToEven(is_half);
}
if( IsSign() == ss2.IsSign() )
{
// the signs are the same, the result is positive
Abs();
}
else
{
// the signs are different, the result is negative
// if the value is zero it will be corrected later in Standardizing method
SetSign();
}
c += Standardizing();
return CheckCarry(c);
}
/*!
division this = this / ss2
return value:
0 - ok
1 - carry (in a division carry can be as well)
2 - improper argument (ss2 is zero)
*/
uint Div(const Big<exp, man> & ss2, bool round = true)
{
TTMATH_REFERENCE_ASSERT( ss2 )
UInt<man*2> man1;
UInt<man*2> man2;
uint i,c = 0;
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
if( ss2.IsZero() )
{
SetNan();
return 2;
}
if( IsZero() )
return 0;
for(i=0 ; i<man ; ++i)
{
man1.table[i+man] = mantissa.table[i];
man2.table[i] = ss2.mantissa.table[i];
}
for(i=0 ; i<man ; ++i)
{
man1.table[i] = 0;
man2.table[i+man] = 0;
}
man1.Div(man2);
i = man1.CompensationToLeft();
if( i )
c += exponent.Sub(i);
c += exponent.Sub(ss2.exponent);
for(i=0 ; i<man ; ++i)
mantissa.table[i] = man1.table[i+man];
if( round && (man1.table[man-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
{
bool is_half = CheckGreaterOrEqualHalf(man1.table, man);
c += RoundHalfToEven(is_half);
}
if( IsSign() == ss2.IsSign() )
Abs();
else
SetSign(); // if there is a zero it will be corrected in Standardizing()
c += Standardizing();
return CheckCarry(c);
}
/*!
the remainder from a division
e.g.
12.6 mod 3 = 0.6 because 12.6 = 3*4 + 0.6
-12.6 mod 3 = -0.6 bacause -12.6 = 3*(-4) + (-0.6)
12.6 mod -3 = 0.6
-12.6 mod -3 = -0.6
it means:
in other words: this(old) = ss2 * q + this(new)
return value:
0 - ok
1 - carry
2 - improper argument (ss2 is zero)
*/
uint Mod(const Big<exp, man> & ss2)
{
TTMATH_REFERENCE_ASSERT( ss2 )
uint c = 0;
if( IsNan() || ss2.IsNan() )
return CheckCarry(1);
if( ss2.IsZero() )
{
SetNan();
return 2;
}
if( !SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(*this);
c = temp.Div(ss2);
temp.SkipFraction();
c += temp.Mul(ss2);
c += Sub(temp);
if( !SmallerWithoutSignThan( ss2 ) )
c += 1;
}
return CheckCarry(c);
}
/*!
power this = this ^ pow
(pow without a sign)
binary algorithm (r-to-l)
return values:
0 - ok
1 - carry
2 - incorrect arguments (0^0)
*/
template<uint pow_size>
uint Pow(UInt<pow_size> pow)
{
if( IsNan() )
return 1;
if( IsZero() )
{
if( pow.IsZero() )
{
// we don't define zero^zero
SetNan();
return 2;
}
// 0^(+something) is zero
return 0;
}
Big<exp, man> start(*this), start_temp;
Big<exp, man> result;
result.SetOne();
uint c = 0;
while( !c )
{
if( pow.table[0] & 1 )
c += result.Mul(start);
pow.Rcr(1);
if( pow.IsZero() )
break;
start_temp = start;
c += start.Mul(start_temp);
}
*this = result;
return CheckCarry(c);
}
/*!
power this = this ^ pow
p can be negative
return values:
0 - ok
1 - carry
2 - incorrect arguments 0^0 or 0^(-something)
*/
template<uint pow_size>
uint Pow(Int<pow_size> pow)
{
if( IsNan() )
return 1;
if( !pow.IsSign() )
return Pow( UInt<pow_size>(pow) );
if( IsZero() )
{
// if 'p' is negative then
// 'this' must be different from zero
SetNan();
return 2;
}
uint c = pow.ChangeSign();
Big<exp, man> t(*this);
c += t.Pow( UInt<pow_size>(pow) ); // here can only be a carry (return:1)
SetOne();
c += Div(t);
return CheckCarry(c);
}
/*!
this method returns: 'this' mod 2
(either zero or one)
this method is much faster than using Mod( object_with_value_two )
*/
uint Mod2() const
{
if( exponent>sint(0) || exponent<=-sint(man*TTMATH_BITS_PER_UINT) )
return 0;
sint exp_int = exponent.ToInt();
// 'exp_int' is negative (or zero), we set it as positive
exp_int = -exp_int;
return mantissa.GetBit(exp_int);
}
/*!
power this = this ^ abs([pow])
pow is treated as a value without a sign and without a fraction
if pow has a sign then the method pow.Abs() is used
if pow has a fraction the fraction is skipped (not used in calculation)
return values:
0 - ok
1 - carry
2 - incorrect arguments (0^0)
*/
uint PowUInt(Big<exp, man> pow)
{
if( IsNan() || pow.IsNan() )
return CheckCarry(1);
if( IsZero() )
{
if( pow.IsZero() )
{
SetNan();
return 2;
}
// 0^(+something) is zero
return 0;
}
if( pow.IsSign() )
pow.Abs();
Big<exp, man> start(*this), start_temp;
Big<exp, man> result;
Big<exp, man> one;
Int<exp> e_one;
uint c = 0;
e_one.SetOne();
one.SetOne();
result = one;
while( !c )
{
if( pow.Mod2() )
c += result.Mul(start);
c += pow.exponent.Sub( e_one ); // !! may use SubOne() here?
if( pow < one )
break;
start_temp = start;
c += start.Mul(start_temp);
}
*this = result;
return CheckCarry(c);
}
/*!
power this = this ^ [pow]
pow is treated as a value without a fraction
pow can be negative
return values:
0 - ok
1 - carry
2 - incorrect arguments 0^0 or 0^(-something)
*/
uint PowInt(const Big<exp, man> & pow)
{
TTMATH_REFERENCE_ASSERT( pow )
if( IsNan() || pow.IsNan() )
return CheckCarry(1);
if( !pow.IsSign() )
return PowUInt(pow);
if( IsZero() )
{
// if 'pow' is negative then
// 'this' must be different from zero
SetNan();
return 2;
}
Big<exp, man> temp(*this);
uint c = temp.PowUInt(pow); // here can only be a carry (result:1)
SetOne();
c += Div(temp);
return CheckCarry(c);
}
/*!
power this = this ^ pow
this must be greater than zero (this > 0)
pow can be negative and with fraction
return values:
0 - ok
1 - carry
2 - incorrect argument ('this' <= 0)
*/
uint PowFrac(const Big<exp, man> & pow)
{
TTMATH_REFERENCE_ASSERT( pow )
if( IsNan() || pow.IsNan() )
return CheckCarry(1);
Big<exp, man> temp;
uint c = temp.Ln(*this);
if( c != 0 ) // can be 2 from Ln()
{
SetNan();
return c;
}
c += temp.Mul(pow);
c += Exp(temp);
return CheckCarry(c);
}
/*!
power this = this ^ pow
pow can be negative and with fraction
return values:
0 - ok
1 - carry
2 - incorrect argument ('this' or 'pow')
*/
uint Pow(const Big<exp, man> & pow)
{
TTMATH_REFERENCE_ASSERT( pow )
if( IsNan() || pow.IsNan() )
return CheckCarry(1);
if( IsZero() )
{
// 0^pow will be 0 only for pow>0
if( pow.IsSign() || pow.IsZero() )
{
SetNan();
return 2;
}
SetZero();
return 0;
}
if( pow.exponent>-int(man*TTMATH_BITS_PER_UINT) && pow.exponent<=0 )
{
if( pow.IsInteger() )
return PowInt( pow );
}
return PowFrac(pow);
}
/*!
this function calculates the square root
e.g. let this=9 then this.Sqrt() gives 3
return: 0 - ok
1 - carry
2 - improper argument (this<0 or NaN)
*/
uint Sqrt()
{
if( IsNan() || IsSign() )
{
SetNan();
return 2;
}
if( IsZero() )
return 0;
Big<exp, man> old(*this);
Big<exp, man> ln;
uint c = 0;
// we're using the formula: sqrt(x) = e ^ (ln(x) / 2)
c += ln.Ln(*this);
c += ln.exponent.SubOne(); // ln = ln / 2
c += Exp(ln);
// above formula doesn't give accurate results for some integers
// e.g. Sqrt(81) would not be 9 but a value very closed to 9
// we're rounding the result, calculating result*result and comparing
// with the old value, if they are equal then the result is an integer too
if( !c && old.IsInteger() && !IsInteger() )
{
Big<exp, man> temp(*this);
c += temp.Round();
Big<exp, man> temp2(temp);
c += temp.Mul(temp2);
if( temp == old )
*this = temp2;
}
return CheckCarry(c);
}
private:
#ifdef TTMATH_CONSTANTSGENERATOR
public:
#endif
/*!
Exponent this = exp(x) = e^x where x is in (-1,1)
we're using the formula exp(x) = 1 + (x)/(1!) + (x^2)/(2!) + (x^3)/(3!) + ...
*/
void ExpSurrounding0(const Big<exp,man> & x, uint * steps = 0)
{
TTMATH_REFERENCE_ASSERT( x )
Big<exp,man> denominator, denominator_i;
Big<exp,man> one, old_value, next_part;
Big<exp,man> numerator = x;
SetOne();
one.SetOne();
denominator.SetOne();
denominator_i.SetOne();
uint i;
old_value = *this;
// we begin from 1 in order to not test at the beginning
#ifdef TTMATH_CONSTANTSGENERATOR
for(i=1 ; true ; ++i)
#else
for(i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
#endif
{
bool testing = ((i & 3) == 0); // it means '(i % 4) == 0'
next_part = numerator;
if( next_part.Div( denominator ) )
// if there is a carry here we only break the loop
// however the result we return as good
// it means there are too many parts of the formula
break;
// there shouldn't be a carry here
Add( next_part );
if( testing )
{
if( old_value == *this )
// we've added next few parts of the formula but the result
// is still the same then we break the loop
break;
else
old_value = *this;
}
// we set the denominator and the numerator for a next part of the formula
if( denominator_i.Add(one) )
// if there is a carry here the result we return as good
break;
if( denominator.Mul(denominator_i) )
break;
if( numerator.Mul(x) )
break;
}
if( steps )
*steps = i;
}
public:
/*!
Exponent this = exp(x) = e^x
we're using the fact that our value is stored in form of:
x = mantissa * 2^exponent
then
e^x = e^(mantissa* 2^exponent) or
e^x = (e^mantissa)^(2^exponent)
'Exp' returns a carry if we can't count the result ('x' is too big)
*/
uint Exp(const Big<exp,man> & x)
{
uint c = 0;
if( x.IsNan() )
return CheckCarry(1);
if( x.IsZero() )
{
SetOne();
return 0;
}
// m will be the value of the mantissa in range (-1,1)
Big<exp,man> m(x);
m.exponent = -sint(man*TTMATH_BITS_PER_UINT);
// 'e_' will be the value of '2^exponent'
// e_.mantissa.table[man-1] = TTMATH_UINT_HIGHEST_BIT; and
// e_.exponent.Add(1) mean:
// e_.mantissa.table[0] = 1;
// e_.Standardizing();
// e_.exponent.Add(man*TTMATH_BITS_PER_UINT)
// (we must add 'man*TTMATH_BITS_PER_UINT' because we've taken it from the mantissa)
Big<exp,man> e_(x);
e_.mantissa.SetZero();
e_.mantissa.table[man-1] = TTMATH_UINT_HIGHEST_BIT;
c += e_.exponent.Add(1);
e_.Abs();
/*
now we've got:
m - the value of the mantissa in range (-1,1)
e_ - 2^exponent
e_ can be as:
...2^-2, 2^-1, 2^0, 2^1, 2^2 ...
...1/4 , 1/2 , 1 , 2 , 4 ...
above one e_ is integer
if e_ is greater than 1 we calculate the exponent as:
e^(m * e_) = ExpSurrounding0(m) ^ e_
and if e_ is smaller or equal one we calculate the exponent in this way:
e^(m * e_) = ExpSurrounding0(m* e_)
because if e_ is smaller or equal 1 then the product of m*e_ is smaller or equal m
*/
if( e_ <= 1 )
{
m.Mul(e_);
ExpSurrounding0(m);
}
else
{
ExpSurrounding0(m);
c += PowUInt(e_);
}
return CheckCarry(c);
}
private:
#ifdef TTMATH_CONSTANTSGENERATOR
public:
#endif
/*!
Natural logarithm this = ln(x) where x in range <1,2)
we're using the formula:
ln x = 2 * [ (x-1)/(x+1) + (1/3)((x-1)/(x+1))^3 + (1/5)((x-1)/(x+1))^5 + ... ]
*/
void LnSurrounding1(const Big<exp,man> & x, uint * steps = 0)
{
Big<exp,man> old_value, next_part, denominator, one, two, x1(x), x2(x);
one.SetOne();
if( x == one )
{
// LnSurrounding1(1) is 0
SetZero();
return;
}
two = 2;
x1.Sub(one);
x2.Add(one);
x1.Div(x2);
x2 = x1;
x2.Mul(x1);
denominator.SetOne();
SetZero();
old_value = *this;
uint i;
#ifdef TTMATH_CONSTANTSGENERATOR
for(i=1 ; true ; ++i)
#else
// we begin from 1 in order to not test at the beginning
for(i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
#endif
{
bool testing = ((i & 3) == 0); // it means '(i % 4) == 0'
next_part = x1;
if( next_part.Div(denominator) )
// if there is a carry here we only break the loop
// however the result we return as good
// it means there are too many parts of the formula
break;
// there shouldn't be a carry here
Add(next_part);
if( testing )
{
if( old_value == *this )
// we've added next (step_test) parts of the formula but the result
// is still the same then we break the loop
break;
else
old_value = *this;
}
if( x1.Mul(x2) )
// if there is a carry here the result we return as good
break;
if( denominator.Add(two) )
break;
}
// this = this * 2
// ( there can't be a carry here because we calculate the logarithm between <1,2) )
exponent.AddOne();
if( steps )
*steps = i;
}
public:
/*!
Natural logarithm this = ln(x)
(a logarithm with the base equal 'e')
we're using the fact that our value is stored in form of:
x = mantissa * 2^exponent
then
ln(x) = ln (mantissa * 2^exponent) = ln (mantissa) + (exponent * ln (2))
the mantissa we'll show as a value from range <1,2) because the logarithm
is decreasing too fast when 'x' is going to 0
return values:
0 - ok
1 - overflow (carry)
2 - incorrect argument (x<=0)
*/
uint Ln(const Big<exp,man> & x)
{
TTMATH_REFERENCE_ASSERT( x )
if( x.IsNan() )
return CheckCarry(1);
if( x.IsSign() || x.IsZero() )
{
SetNan();
return 2;
}
// m will be the value of the mantissa in range <1,2)
Big<exp,man> m(x);
m.exponent = -sint(man*TTMATH_BITS_PER_UINT - 1);
LnSurrounding1(m);
Big<exp,man> exponent_temp;
exponent_temp.FromInt( x.exponent );
// we must add 'man*TTMATH_BITS_PER_UINT-1' because we've taken it from the mantissa
uint c = exponent_temp.Add(man*TTMATH_BITS_PER_UINT-1);
Big<exp,man> ln2;
ln2.SetLn2();
c += exponent_temp.Mul(ln2);
c += Add(exponent_temp);
return CheckCarry(c);
}
/*!
Logarithm from 'x' with a 'base'
we're using the formula:
Log(x) with 'base' = ln(x) / ln(base)
return values:
0 - ok
1 - overflow
2 - incorrect argument (x<=0)
3 - incorrect base (a<=0 lub a=1)
*/
uint Log(const Big<exp,man> & x, const Big<exp,man> & base)
{
TTMATH_REFERENCE_ASSERT( base )
TTMATH_REFERENCE_ASSERT( x )
if( x.IsNan() || base.IsNan() )
return CheckCarry(1);
if( x.IsSign() || x.IsZero() )
{
SetNan();
return 2;
}
Big<exp,man> denominator;;
denominator.SetOne();
if( base.IsSign() || base.IsZero() || base==denominator )
{
SetNan();
return 3;
}
if( x == denominator ) // (this is: if x == 1)
{
// log(1) is 0
SetZero();
return 0;
}
// another error values we've tested at the beginning
// there can only be a carry
uint c = Ln(x);
c += denominator.Ln(base);
c += Div(denominator);
return CheckCarry(c);
}
/*!
*
* converting methods
*
*/
/*!
converting from another type of a Big object
*/
template<uint another_exp, uint another_man>
uint FromBig(const Big<another_exp, another_man> & another)
{
info = another.info;
if( IsNan() )
return 1;
if( exponent.FromInt(another.exponent) )
{
SetNan();
return 1;
}
uint man_len_min = (man < another_man)? man : another_man;
uint i;
uint c = 0;
for( i = 0 ; i<man_len_min ; ++i )
mantissa.table[man-1-i] = another.mantissa.table[another_man-1-i];
for( ; i<man ; ++i )
mantissa.table[man-1-i] = 0;
// MS Visual Express 2005 reports a warning (in the lines with 'uint man_diff = ...'):
// warning C4307: '*' : integral constant overflow
// but we're using 'if( man > another_man )' and 'if( man < another_man )' and there'll be no such situation here
#ifdef _MSC_VER
#pragma warning( disable: 4307 )
#endif
if( man > another_man )
{
uint man_diff = (man - another_man) * TTMATH_BITS_PER_UINT;
c += exponent.SubInt(man_diff, 0);
}
else
if( man < another_man )
{
uint man_diff = (another_man - man) * TTMATH_BITS_PER_UINT;
c += exponent.AddInt(man_diff, 0);
}
#ifdef _MSC_VER
#pragma warning( default: 4307 )
#endif
// mantissa doesn't have to be standardized (either the highest bit is set or all bits are equal zero)
CorrectZero();
return CheckCarry(c);
}
/*!
this method converts 'this' into 'result'
if the value is too big this method returns a carry (1)
*/
uint ToUInt(uint & result, bool test_sign = true) const
{
result = 0;
if( IsZero() )
return 0;
if( test_sign && IsSign() )
// the result should be positive
return 1;
sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
if( exponent > maxbit + sint(TTMATH_BITS_PER_UINT) )
// if exponent > (maxbit + sint(TTMATH_BITS_PER_UINT)) the value can't be passed
// into the 'sint' type (it's too big)
return 1;
if( exponent <= maxbit )
// our value is from the range of (-1,1) and we return zero
return 0;
UInt<man> mantissa_temp(mantissa);
// exponent is from a range of (maxbit, maxbit + sint(TTMATH_BITS_PER_UINT) >
sint how_many_bits = exponent.ToInt();
// how_many_bits is negative, we'll make it positive
how_many_bits = -how_many_bits;
// we're taking into account only the last word in a mantissa table
mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
result = mantissa_temp.table[ man-1 ];
return 0;
}
/*!
this method converts 'this' into 'result'
if the value is too big this method returns a carry (1)
*/
uint ToInt(sint & result) const
{
result = 0;
uint result_uint;
if( ToUInt(result_uint, false) )
return 1;
result = static_cast<sint>( result_uint );
// the exception for the minimal value
if( IsSign() && result_uint == TTMATH_UINT_HIGHEST_BIT )
return 0;
if( (result_uint & TTMATH_UINT_HIGHEST_BIT) != 0 )
// the value is too big
return 1;
if( IsSign() )
result = -result;
return 0;
}
/*!
this method converts 'this' into 'result'
if the value is too big this method returns a carry (1)
*/
template<uint int_size>
uint ToInt(Int<int_size> & result) const
{
result.SetZero();
if( IsZero() )
return 0;
sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
if( exponent > maxbit + sint(int_size*TTMATH_BITS_PER_UINT) )
// if exponent > (maxbit + sint(int_size*TTMATH_BITS_PER_UINT)) the value can't be passed
// into the 'Int<int_size>' type (it's too big)
return 1;
if( exponent <= maxbit )
// our value is from range (-1,1) and we return zero
return 0;
sint how_many_bits = exponent.ToInt();
if( how_many_bits < 0 )
{
how_many_bits = -how_many_bits;
uint index = how_many_bits / TTMATH_BITS_PER_UINT;
UInt<man> mantissa_temp(mantissa);
mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
for(uint i=index, a=0 ; i<man ; ++i,++a)
result.table[a] = mantissa_temp.table[i];
}
else
{
uint index = how_many_bits / TTMATH_BITS_PER_UINT;
for(uint i=0 ; i<man ; ++i)
result.table[index+i] = mantissa.table[i];
result.Rcl( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
}
// the exception for the minimal value
if( IsSign() )
{
Int<int_size> min;
min.SetMin();
if( result == min )
return 0;
}
if( (result.table[int_size-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
// the value is too big
return 1;
if( IsSign() )
result.ChangeSign();
return 0;
}
/*!
a method for converting 'uint' to this class
*/
void FromUInt(uint value)
{
info = 0;
for(uint i=0 ; i<man-1 ; ++i)
mantissa.table[i] = 0;
mantissa.table[man-1] = value;
exponent = -sint(man-1) * sint(TTMATH_BITS_PER_UINT);
// there shouldn't be a carry because 'value' has the 'uint' type
Standardizing();
}
/*!
a method for converting 'sint' to this class
*/
void FromInt(sint value)
{
bool is_sign = false;
if( value < 0 )
{
value = -value;
is_sign = true;
}
FromUInt(uint(value));
if( is_sign )
SetSign();
}
/*!
this method converts from standard double into this class
standard double means IEEE-754 floating point value with 64 bits
it is as follows (from http://www.psc.edu/general/software/packages/ieee/ieee.html):
The IEEE double precision floating point standard representation requires
a 64 bit word, which may be represented as numbered from 0 to 63, left to
right. The first bit is the sign bit, S, the next eleven bits are the
exponent bits, 'E', and the final 52 bits are the fraction 'F':
S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0 1 11 12 63
The value V represented by the word may be determined as follows:
* If E=2047 and F is nonzero, then V=NaN ("Not a number")
* If E=2047 and F is zero and S is 1, then V=-Infinity
* If E=2047 and F is zero and S is 0, then V=Infinity
* If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where "1.F" is intended
to represent the binary number created by prefixing F with an implicit
leading 1 and a binary point.
* If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) These are
"unnormalized" values.
* If E=0 and F is zero and S is 1, then V=-0
* If E=0 and F is zero and S is 0, then V=0
*/
#ifdef TTMATH_PLATFORM32
void FromDouble(double value)
{
// sizeof(double) should be 8 (64 bits), this is actually not a runtime
// error but I leave it at the moment as is
TTMATH_ASSERT( sizeof(double) == 8 )
// I am not sure what will be on a platform which has
// a different endianness... but we use this library only
// on x86 and amd (intel) 64 bits (as there's a lot of assembler code)
union
{
double d;
uint u[2]; // two 32bit words
} temp;
temp.d = value;
sint e = ( temp.u[1] & 0x7FF00000u) >> 20;
uint m1 = ((temp.u[1] & 0xFFFFFu) << 11) | (temp.u[0] >> 21);
uint m2 = temp.u[0] << 11;
if( e == 2047 )
{
// If E=2047 and F is nonzero, then V=NaN ("Not a number")
// If E=2047 and F is zero and S is 1, then V=-Infinity
// If E=2047 and F is zero and S is 0, then V=Infinity
// we do not support -Infinity and +Infinity
// we assume that there is always NaN
SetNan();
}
else
if( e > 0 )
{
// If 0<E<2047 then
// V=(-1)**S * 2 ** (E-1023) * (1.F)
// where "1.F" is intended to represent the binary number
// created by prefixing F with an implicit leading 1 and a binary point.
FromDouble_SetExpAndMan((temp.u[1] & 0x80000000u) != 0,
e - 1023 - man*TTMATH_BITS_PER_UINT + 1, 0x80000000u,
m1, m2);
// we do not have to call Standardizing() here
// because the mantissa will have the highest bit set
}
else
{
// e == 0
if( m1 != 0 || m2 != 0 )
{
// If E=0 and F is nonzero,
// then V=(-1)**S * 2 ** (-1022) * (0.F)
// These are "unnormalized" values.
UInt<2> m;
m.table[1] = m1;
m.table[0] = m2;
uint moved = m.CompensationToLeft();
FromDouble_SetExpAndMan((temp.u[1] & 0x80000000u) != 0,
e - 1022 - man*TTMATH_BITS_PER_UINT + 1 - moved, 0,
m.table[1], m.table[2]);
}
else
{
// If E=0 and F is zero and S is 1, then V=-0
// If E=0 and F is zero and S is 0, then V=0
// we do not support -0 or 0, only is one 0
SetZero();
}
}
}
private:
void FromDouble_SetExpAndMan(bool is_sign, int e, uint mhighest, uint m1, uint m2)
{
exponent = e;
if( man > 1 )
{
mantissa.table[man-1] = m1 | mhighest;
mantissa.table[sint(man-2)] = m2;
// although man>1 we're using casting into sint
// to get rid from a warning which generates Microsoft Visual:
// warning C4307: '*' : integral constant overflow
for(uint i=0 ; i<man-2 ; ++i)
mantissa.table[i] = 0;
}
else
{
mantissa.table[0] = m1 | mhighest;
}
info = 0;
// the value should be different from zero
TTMATH_ASSERT( mantissa.IsZero() == false )
if( is_sign )
SetSign();
}
#else
public:
// 64bit platforms
void FromDouble(double value)
{
// sizeof(double) should be 8 (64 bits), this is actually not a runtime
// error but I leave it at the moment as is
TTMATH_ASSERT( sizeof(double) == 8 )
// I am not sure what will be on a plaltform which has
// a different endianness... but we use this library only
// on x86 and amd (intel) 64 bits (as there's a lot of assembler code)
union
{
double d;
uint u; // one 64bit word
} temp;
temp.d = value;
sint e = (temp.u & 0x7FF0000000000000ul) >> 52;
uint m = (temp.u & 0xFFFFFFFFFFFFFul) << 11;
if( e == 2047 )
{
// If E=2047 and F is nonzero, then V=NaN ("Not a number")
// If E=2047 and F is zero and S is 1, then V=-Infinity
// If E=2047 and F is zero and S is 0, then V=Infinity
// we do not support -Infinity and +Infinity
// we assume that there is always NaN
SetNan();
}
else
if( e > 0 )
{
// If 0<E<2047 then
// V=(-1)**S * 2 ** (E-1023) * (1.F)
// where "1.F" is intended to represent the binary number
// created by prefixing F with an implicit leading 1 and a binary point.
FromDouble_SetExpAndMan((temp.u & 0x8000000000000000ul) != 0,
e - 1023 - man*TTMATH_BITS_PER_UINT + 1,
0x8000000000000000ul, m);
// we do not have to call Standardizing() here
// because the mantissa will have the highest bit set
}
else
{
// e == 0
if( m != 0 )
{
// If E=0 and F is nonzero,
// then V=(-1)**S * 2 ** (-1022) * (0.F)
// These are "unnormalized" values.
FromDouble_SetExpAndMan(bool(temp.u & 0x8000000000000000ul),
e - 1022 - man*TTMATH_BITS_PER_UINT + 1, 0, m);
Standardizing();
}
else
{
// If E=0 and F is zero and S is 1, then V=-0
// If E=0 and F is zero and S is 0, then V=0
// we do not support -0 or 0, only is one 0
SetZero();
}
}
}
private:
void FromDouble_SetExpAndMan(bool is_sign, sint e, uint mhighest, uint m)
{
exponent = e;
mantissa.table[man-1] = m | mhighest;
for(uint i=0 ; i<man-1 ; ++i)
mantissa.table[i] = 0;
info = 0;
// the value should be different from zero
TTMATH_ASSERT( mantissa.IsZero() == false )
if( is_sign )
SetSign();
}
#endif
public:
/*!
this method converts from this class into the 'double'
if the value is too big:
'result' will be +/-infinity (depending on the sign)
and the method returns 1
if the value is too small:
'result' will be 0
and the method returns 1
*/
uint ToDouble(double & result) const
{
// sizeof(double) should be 8 (64 bits), this is actually not a runtime
// error but I leave it at the moment as is
TTMATH_ASSERT( sizeof(double) == 8 )
if( IsZero() )
{
result = 0.0;
return 0;
}
if( IsNan() )
{
result = ToDouble_SetDouble( false, 2047, 0, false, true);
return 0;
}
sint e_correction = sint(man*TTMATH_BITS_PER_UINT) - 1;
if( exponent >= 1024 - e_correction )
{
// +/- infinity
result = ToDouble_SetDouble( 0, 2047, 0, true);
return 1;
}
else
if( exponent <= -1023 - 52 - e_correction )
{
// too small value - we assume that there'll be a zero
result = 0;
// and return a carry
return 1;
}
sint e = exponent.ToInt() + e_correction;
if( e <= -1023 )
{
// -1023-52 < e <= -1023 (unnormalized value)
result = ToDouble_SetDouble( IsSign(), 0, -(e + 1023));
}
else
{
// -1023 < e < 1024
result = ToDouble_SetDouble( IsSign(), e + 1023, -1);
}
return 0;
}
private:
#ifdef TTMATH_PLATFORM32
// 32bit platforms
double ToDouble_SetDouble(bool is_sign, uint e, sint move, bool infinity = false, bool nan = false) const
{
union
{
double d;
uint u[2]; // two 32bit words
} temp;
temp.u[0] = temp.u[1] = 0;
if( is_sign )
temp.u[1] |= 0x80000000u;
temp.u[1] |= (e << 20) & 0x7FF00000u;
if( nan )
{
temp.u[0] |= 1;
return temp.d;
}
if( infinity )
return temp.d;
UInt<2> m;
m.table[1] = mantissa.table[man-1];
m.table[0] = ( man > 1 ) ? mantissa.table[sint(man-2)] : 0;
// although man>1 we're using casting into sint
// to get rid from a warning which generates Microsoft Visual:
// warning C4307: '*' : integral constant overflow
m.Rcr( 12 + move );
m.table[1] &= 0xFFFFFu; // cutting the 20 bit (when 'move' was -1)
temp.u[1] |= m.table[1];
temp.u[0] |= m.table[0];
return temp.d;
}
#else
// 64bit platforms
double ToDouble_SetDouble(bool is_sign, uint e, sint move, bool infinity = false, bool nan = false) const
{
union
{
double d;
uint u; // 64bit word
} temp;
temp.u = 0;
if( is_sign )
temp.u |= 0x8000000000000000ul;
temp.u |= (e << 52) & 0x7FF0000000000000ul;
if( nan )
{
temp.u |= 1;
return temp.d;
}
if( infinity )
return temp.d;
uint m = mantissa.table[man-1];
m >>= ( 12 + move );
m &= 0xFFFFFFFFFFFFFul; // cutting the 20 bit (when 'move' was -1)
temp.u |= m;
return temp.d;
}
#endif
public:
/*!
an operator= for converting 'sint' to this class
*/
Big<exp, man> & operator=(sint value)
{
FromInt(value);
return *this;
}
/*!
an operator= for converting 'uint' to this class
*/
Big<exp, man> & operator=(uint value)
{
FromUInt(value);
return *this;
}
/*!
an operator= for converting 'double' to this class
*/
Big<exp, man> & operator=(double value)
{
FromDouble(value);
return *this;
}
/*!
a constructor for converting 'sint' to this class
*/
Big(sint value)
{
FromInt(value);
}
/*!
a constructor for converting 'uint' to this class
*/
Big(uint value)
{
FromUInt(value);
}
/*!
a constructor for converting 'double' to this class
*/
Big(double value)
{
FromDouble(value);
}
#ifdef TTMATH_PLATFORM64
/*!
in 64bit platforms we must define additional operators and contructors
in order to allow a user initializing the objects in this way:
Big<...> type = 20;
or
Big<...> type;
type = 30;
decimal constants such as 20, 30 etc. are integer literal of type int,
if the value is greater it can even be long int,
0 is an octal integer of type int
(ISO 14882 p2.13.1 Integer literals)
*/
/*!
an operator= for converting 'signed int' to this class
***this operator is created only on a 64bit platform***
it takes one argument of 32bit
*/
Big<exp, man> & operator=(signed int value)
{
FromInt(sint(value));
return *this;
}
/*!
an operator= for converting 'unsigned int' to this class
***this operator is created only on a 64bit platform***
it takes one argument of 32bit
*/
Big<exp, man> & operator=(unsigned int value)
{
FromUInt(uint(value));
return *this;
}
/*!
a constructor for converting 'signed int' to this class
***this constructor is created only on a 64bit platform***
it takes one argument of 32bit
*/
Big(signed int value)
{
FromInt(sint(value));
}
/*!
a constructor for converting 'unsigned int' to this class
***this constructor is created only on a 64bit platform***
it takes one argument of 32bit
*/
Big(unsigned int value)
{
FromUInt(uint(value));
}
#endif
private:
/*!
an auxiliary method for converting from UInt and Int
we assume that there'll never be a carry here
(we have an exponent and the value in Big can be bigger than
that one from the UInt)
*/
template<uint int_size>
void FromUIntOrInt(const UInt<int_size> & value, sint compensation)
{
uint minimum_size = (int_size < man)? int_size : man;
exponent = (sint(int_size)-sint(man)) * sint(TTMATH_BITS_PER_UINT) - compensation;
// copying the highest words
uint i;
for(i=1 ; i<=minimum_size ; ++i)
mantissa.table[man-i] = value.table[int_size-i];
// setting the rest of mantissa.table into zero (if some has left)
for( ; i<=man ; ++i)
mantissa.table[man-i] = 0;
// the highest bit is either one or zero (when the whole mantissa is zero)
// we can only call CorrectZero()
CorrectZero();
}
public:
/*!
a method for converting from 'UInt<int_size>' to this class
*/
template<uint int_size>
void FromUInt(UInt<int_size> value)
{
info = 0;
sint compensation = (sint)value.CompensationToLeft();
return FromUIntOrInt(value, compensation);
}
/*!
a method for converting from 'Int<int_size>' to this class
*/
template<uint int_size>
void FromInt(Int<int_size> value)
{
info = 0;
bool is_sign = false;
if( value.IsSign() )
{
value.ChangeSign();
is_sign = true;
}
sint compensation = (sint)value.CompensationToLeft();
FromUIntOrInt(value, compensation);
if( is_sign )
SetSign();
}
/*!
an operator= for converting from 'Int<int_size>' to this class
*/
template<uint int_size>
Big<exp,man> & operator=(const Int<int_size> & value)
{
FromInt(value);
return *this;
}
/*!
a constructor for converting from 'Int<int_size>' to this class
*/
template<uint int_size>
Big(const Int<int_size> & value)
{
FromInt(value);
}
/*!
an operator= for converting from 'UInt<int_size>' to this class
*/
template<uint int_size>
Big<exp,man> & operator=(const UInt<int_size> & value)
{
FromUInt(value);
return *this;
}
/*!
a constructor for converting from 'UInt<int_size>' to this class
*/
template<uint int_size>
Big(const UInt<int_size> & value)
{
FromUInt(value);
}
/*!
an operator= for converting from 'Big<another_exp, another_man>' to this class
*/
template<uint another_exp, uint another_man>
Big<exp,man> & operator=(const Big<another_exp, another_man> & value)
{
FromBig(value);
return *this;
}
/*!
a constructor for converting from 'Big<another_exp, another_man>' to this class
*/
template<uint another_exp, uint another_man>
Big(const Big<another_exp, another_man> & value)
{
FromBig(value);
}
/*!
a default constructor
we don't set any of the members to zero
only NaN flag is set
*/
Big()
{
info = TTMATH_BIG_NAN;
/*
we're directly setting 'info' (instead of calling SetNan())
in order to get rid of a warning saying that 'info' is uninitialized
*/
}
/*!
a destructor
*/
~Big()
{
}
/*!
the default assignment operator
*/
Big<exp,man> & operator=(const Big<exp,man> & value)
{
info = value.info;
exponent = value.exponent;
mantissa = value.mantissa;
return *this;
}
/*!
a constructor for copying from another object of this class
*/
Big(const Big<exp,man> & value)
{
operator=(value);
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
output:
return value:
0 - ok and 'result' will be an object of type std::string (or std::wstring) which holds the value
1 - if there is a carry (it shoudn't be in a normal situation - if it is that means there
is somewhere an error in the library)
*/
uint ToString( std::string & result,
uint base = 10,
bool scient = false,
sint scient_from = 15,
sint round = -1,
bool trim_zeroes = true,
wchar_t comma = '.' ) const
{
Conv conv;
conv.base = base;
conv.scient = scient;
conv.scient_from = scient_from;
conv.round = round;
conv.trim_zeroes = trim_zeroes;
conv.comma = static_cast<uint>(comma);
return ToStringBase<std::string, char>(result, conv);
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
uint ToString( std::wstring & result,
uint base = 10,
bool scient = false,
sint scient_from = 15,
sint round = -1,
bool trim_zeroes = true,
wchar_t comma = '.' ) const
{
Conv conv;
conv.base = base;
conv.scient = scient;
conv.scient_from = scient_from;
conv.round = round;
conv.trim_zeroes = trim_zeroes;
conv.comma = static_cast<uint>(comma);
return ToStringBase<std::wstring, wchar_t>(result, conv);
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
uint ToString(std::string & result, const Conv & conv) const
{
return ToStringBase<std::string, char>(result, conv);
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
uint ToString(std::wstring & result, const Conv & conv) const
{
return ToStringBase<std::wstring, wchar_t>(result, conv);
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
std::string ToString(const Conv & conv) const
{
std::string result;
ToStringBase<std::string, char>(result, conv);
return result;
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
std::string ToString() const
{
Conv conv;
return ToString(conv);
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
std::wstring ToWString(const Conv & conv) const
{
std::wstring result;
ToStringBase<std::wstring, wchar_t>(result, conv);
return result;
}
/*!
a method for converting into a string
struct Conv is defined in ttmathtypes.h, look there for more information about parameters
*/
std::wstring ToWString() const
{
Conv conv;
return ToWString(conv);
}
private:
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
uint ToStringBase(string_type & result, const Conv & conv) const
{
static char error_overflow_msg[] = "overflow";
static char error_nan_msg[] = "NaN";
result.erase();
if( IsNan() )
{
Misc::AssignString(result, error_nan_msg);
return 0;
}
if( conv.base<2 || conv.base>16 )
{
Misc::AssignString(result, error_overflow_msg);
return 1;
}
if( IsZero() )
{
result = '0';
return 0;
}
/*
since 'base' is greater or equal 2 that 'new_exp' of type 'Int<exp>' should
hold the new value of exponent but we're using 'Int<exp+1>' because
if the value for example would be 'max()' then we couldn't show it
max() -> 11111111 * 2 ^ 11111111111 (bin)(the mantissa and exponent have all bits set)
if we were using 'Int<exp>' we couldn't show it in this format:
1,1111111 * 2 ^ 11111111111 (bin)
because we have to add something to the mantissa and because
mantissa is full we can't do it and it'll be a carry
(look at ToString_SetCommaAndExponent(...))
when the base would be greater than two (for example 10)
we could use 'Int<exp>' here
*/
Int<exp+1> new_exp;
if( ToString_CreateNewMantissaAndExponent<string_type, char_type>(result, conv, new_exp) )
{
Misc::AssignString(result, error_overflow_msg);
return 1;
}
if( ToString_SetCommaAndExponent<string_type, char_type>(result, conv, new_exp) )
{
Misc::AssignString(result, error_overflow_msg);
return 1;
}
if( IsSign() )
result.insert(result.begin(), '-');
// converted successfully
return 0;
}
/*!
in the method 'ToString_CreateNewMantissaAndExponent()' we're using
type 'Big<exp+1,man>' and we should have the ability to use some
necessary methods from that class (methods which are private here)
*/
friend class Big<exp-1,man>;
/*!
an auxiliary method for converting into the string
input:
base - the base in range <2,16>
output:
return values:
0 - ok
1 - if there was a carry
new_man - the new mantissa for 'base'
new_exp - the new exponent for 'base'
mathematic part:
the value is stored as:
value = mantissa * 2^exponent
we want to show 'value' as:
value = new_man * base^new_exp
then 'new_man' we'll print using the standard method from UInt<> type for printing
and 'new_exp' is the offset of the comma operator in a system of a base 'base'
value = mantissa * 2^exponent
value = mantissa * 2^exponent * (base^new_exp / base^new_exp)
value = mantissa * (2^exponent / base^new_exp) * base^new_exp
look at the part (2^exponent / base^new_exp), there'll be good if we take
a 'new_exp' equal that value when the (2^exponent / base^new_exp) will be equal one
on account of the 'base' is not as power of 2 (can be from 2 to 16),
this formula will not be true for integer 'new_exp' then in our case we take
'base^new_exp' _greater_ than '2^exponent'
if 'base^new_exp' were smaller than '2^exponent' the new mantissa could be
greater than the max value of the container UInt<man>
value = mantissa * (2^exponent / base^new_exp) * base^new_exp
let M = mantissa * (2^exponent / base^new_exp) then
value = M * base^new_exp
in our calculation we treat M as floating value showing it as:
M = mm * 2^ee where ee will be <= 0
next we'll move all bits of mm into the right when ee is equal zero
abs(ee) must not be too big that only few bits from mm we can leave
then we'll have:
M = mmm * 2^0
'mmm' is the new_man which we're looking for
new_exp we calculate in this way:
2^exponent <= base^new_exp
new_exp >= log base (2^exponent) <- logarithm with the base 'base' from (2^exponent)
but we need new_exp as integer then we test:
if new_exp is greater than zero and with fraction we add one to new_exp
new_exp = new_exp + 1 (if new_exp>0 and with fraction)
and at the end we take the integer part:
new_exp = int(new_exp)
*/
template<class string_type, class char_type>
uint ToString_CreateNewMantissaAndExponent( string_type & new_man, const Conv & conv,
Int<exp+1> & new_exp) const
{
uint c = 0;
if( conv.base<2 || conv.base>16 )
return 1;
// the speciality for base equal 2
if( conv.base == 2 )
return ToString_CreateNewMantissaAndExponent_Base2(new_man, new_exp);
// the speciality for base equal 4
if( conv.base == 4 )
return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 2);
// the speciality for base equal 8
if( conv.base == 8 )
return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 3);
// the speciality for base equal 16
if( conv.base == 16 )
return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 4);
// this = mantissa * 2^exponent
// temp = +1 * 2^exponent
// we're using a bigger type than 'big<exp,man>' (look below)
Big<exp+1,man> temp;
temp.info = 0;
temp.exponent = exponent;
temp.mantissa.SetOne();
c += temp.Standardizing();
// new_exp_ = log base (2^exponent)
// if new_exp_ is positive and with fraction then we add one
Big<exp+1,man> new_exp_;
c += new_exp_.ToString_Log(temp, conv.base); // this logarithm isn't very complicated
// adding some epsilon value (to get rid of some floating point errors)
temp.Set05();
temp.exponent.SubOne(); // temp = 0.5/2 = 0.25
c += new_exp_.Add(temp);
if( !new_exp_.IsSign() && !new_exp_.IsInteger() )
{
// new_exp_ > 0 and with fraction
temp.SetOne();
c += new_exp_.Add( temp );
}
// new_exp_ = int(new_exp_)
new_exp_.SkipFraction();
// because 'base^new_exp' is >= '2^exponent' then
// because base is >= 2 then we've got:
// 'new_exp_' must be smaller or equal 'new_exp'
// and we can pass it into the Int<exp> type
// (in fact we're using a greater type then it'll be ok)
c += new_exp_.ToInt(new_exp);
// base_ = base
Big<exp+1,man> base_(conv.base);
// base_ = base_ ^ new_exp_
c += base_.Pow( new_exp_ );
// if we hadn't used a bigger type than 'Big<exp,man>' then the result
// of this formula 'Pow(...)' would have been with an overflow
// temp = mantissa * 2^exponent / base_^new_exp_
// the sign don't interest us here
temp.mantissa = mantissa;
temp.exponent = exponent;
c += temp.Div(base_, false); // dividing without rounding
// moving all bits of the mantissa into the right
// (how many times to move depend on the exponent)
c += temp.ToString_MoveMantissaIntoRight();
// because we took 'new_exp' as small as it was
// possible ([log base (2^exponent)] + 1) that after the division
// (temp.Div( base_ )) the value of exponent should be equal zero or
// minimum smaller than zero then we've got the mantissa which has
// maximum valid bits
temp.mantissa.ToString(new_man, conv.base);
// base rounding
if( conv.base_round )
c += ToString_BaseRound<string_type, char_type>(new_man, conv, new_exp);
return (c==0)? 0 : 1;
}
/*!
this method calculates the logarithm
it is used by ToString_CreateNewMantissaAndExponent() method
it's not too complicated
because x=+1*2^exponent (mantissa is one) then during the calculation
the Ln(x) will not be making the long formula from LnSurrounding1()
and only we have to calculate 'Ln(base)' but it'll be calculated
only once, the next time we will get it from the 'history'
x is greater than 0
base is in <2,16> range
*/
uint ToString_Log(const Big<exp,man> & x, uint base)
{
TTMATH_REFERENCE_ASSERT( x )
TTMATH_ASSERT( base>=2 && base<=16 )
Big<exp,man> temp;
temp.SetOne();
if( x == temp )
{
// log(1) is 0
SetZero();
return 0;
}
// there can be only a carry
// because the 'x' is in '1+2*exponent' form then
// the long formula from LnSurrounding1() will not be calculated
// (LnSurrounding1() will return one immediately)
uint c = Ln(x);
if( base==10 && man<=TTMATH_BUILTIN_VARIABLES_SIZE )
{
// for the base equal 10 we're using SelLn10() instead of calculating it
// (only if we have the constant sufficient big)
temp.SetLn10();
}
else
{
c += ToString_LogBase(base, temp);
}
c += Div( temp );
return (c==0)? 0 : 1;
}
#ifndef TTMATH_MULTITHREADS
/*!
this method calculates the logarithm of 'base'
it's used in single thread environment
*/
uint ToString_LogBase(uint base, Big<exp,man> & result)
{
TTMATH_ASSERT( base>=2 && base<=16 )
// this guardians are initialized before the program runs (static POD types)
static int guardians[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static Big<exp,man> log_history[15];
uint index = base - 2;
uint c = 0;
if( guardians[index] == 0 )
{
Big<exp,man> base_(base);
c += log_history[index].Ln(base_);
guardians[index] = 1;
}
result = log_history[index];
return (c==0)? 0 : 1;
}
#else
/*!
this method calculates the logarithm of 'base'
it's used in multi-thread environment
*/
uint ToString_LogBase(uint base, Big<exp,man> & result)
{
TTMATH_ASSERT( base>=2 && base<=16 )
// this guardians are initialized before the program runs (static POD types)
volatile static sig_atomic_t guardians[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static Big<exp,man> * plog_history;
uint index = base - 2;
uint c = 0;
// double-checked locking
if( guardians[index] == 0 )
{
ThreadLock thread_lock;
// locking
if( thread_lock.Lock() )
{
static Big<exp,man> log_history[15];
if( guardians[index] == 0 )
{
plog_history = log_history;
Big<exp,man> base_(base);
c += log_history[index].Ln(base_);
guardians[index] = 1;
}
}
else
{
// there was a problem with locking, we store the result directly in 'result' object
Big<exp,man> base_(base);
c += result.Ln(base_);
return (c==0)? 0 : 1;
}
// automatically unlocking
}
result = plog_history[index];
return (c==0)? 0 : 1;
}
#endif
/*!
an auxiliary method for converting into the string (private)
this method moving all bits from mantissa into the right side
the exponent tell us how many times moving (the exponent is <=0)
*/
uint ToString_MoveMantissaIntoRight()
{
if( exponent.IsZero() )
return 0;
// exponent can't be greater than zero
// because we would cat the highest bits of the mantissa
if( !exponent.IsSign() )
return 1;
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
// if 'exponent' is <= than '-sint(man*TTMATH_BITS_PER_UINT)'
// it means that we must cut the whole mantissa
// (there'll not be any of the valid bits)
return 1;
// e will be from (-man*TTMATH_BITS_PER_UINT, 0>
sint e = -( exponent.ToInt() );
mantissa.Rcr(e,0);
return 0;
}
/*!
a special method similar to the 'ToString_CreateNewMantissaAndExponent'
when the 'base' is equal 2
we use it because if base is equal 2 we don't have to make those
complicated calculations and the output is directly from the source
(there will not be any small distortions)
*/
template<class string_type>
uint ToString_CreateNewMantissaAndExponent_Base2( string_type & new_man,
Int<exp+1> & new_exp ) const
{
for( sint i=man-1 ; i>=0 ; --i )
{
uint value = mantissa.table[i];
for( uint bit=0 ; bit<TTMATH_BITS_PER_UINT ; ++bit )
{
if( (value & TTMATH_UINT_HIGHEST_BIT) != 0 )
new_man += '1';
else
new_man += '0';
value <<= 1;
}
}
new_exp = exponent;
return 0;
}
/*!
a special method used to calculate the new mantissa and exponent
when the 'base' is equal 4, 8 or 16
when base is 4 then bits is 2
when base is 8 then bits is 3
when base is 16 then bits is 4
(and the algorithm can be used with a base greater than 16)
*/
template<class string_type>
uint ToString_CreateNewMantissaAndExponent_BasePow2( string_type & new_man,
Int<exp+1> & new_exp,
uint bits) const
{
sint move; // how many times move the mantissa
UInt<man+1> man_temp(mantissa); // man+1 for moving
new_exp = exponent;
new_exp.DivInt((sint)bits, move);
if( move != 0 )
{
// we're moving the man_temp to left-hand side
if( move < 0 )
{
move = sint(bits) + move;
new_exp.SubOne(); // when move is < than 0 then new_exp is < 0 too
}
man_temp.Rcl(move);
}
if( bits == 3 )
{
// base 8
// now 'move' is greater than or equal 0
uint len = man*TTMATH_BITS_PER_UINT + move;
return ToString_CreateNewMantissaAndExponent_Base8(new_man, man_temp, len, bits);
}
else
{
// base 4 or 16
return ToString_CreateNewMantissaAndExponent_Base4or16(new_man, man_temp, bits);
}
}
/*!
a special method used to calculate the new mantissa
when the 'base' is equal 8
bits is always 3
we can use this algorithm when the base is 4 or 16 too
but we have a faster method ToString_CreateNewMantissaAndExponent_Base4or16()
*/
template<class string_type>
uint ToString_CreateNewMantissaAndExponent_Base8( string_type & new_man,
UInt<man+1> & man_temp,
uint len,
uint bits) const
{
uint shift = TTMATH_BITS_PER_UINT - bits;
uint mask = TTMATH_UINT_MAX_VALUE >> shift;
uint i;
for( i=0 ; i<len ; i+=bits )
{
uint digit = man_temp.table[0] & mask;
new_man.insert(new_man.begin(), static_cast<char>(Misc::DigitToChar(digit)));
man_temp.Rcr(bits);
}
TTMATH_ASSERT( man_temp.IsZero() )
return 0;
}
/*!
a special method used to calculate the new mantissa
when the 'base' is equal 4 or 16
when the base is equal 4 or 16 the bits is 2 or 4
and because TTMATH_BITS_PER_UINT (32 or 64) is divisible by 2 (or 4)
then we can get digits from the end of our mantissa
*/
template<class string_type>
uint ToString_CreateNewMantissaAndExponent_Base4or16( string_type & new_man,
UInt<man+1> & man_temp,
uint bits) const
{
TTMATH_ASSERT( TTMATH_BITS_PER_UINT % 2 == 0 )
TTMATH_ASSERT( TTMATH_BITS_PER_UINT % 4 == 0 )
uint shift = TTMATH_BITS_PER_UINT - bits;
uint mask = TTMATH_UINT_MAX_VALUE << shift;
uint digit;
// table[man] - last word - is different from zero if we moved man_temp
digit = man_temp.table[man];
if( digit != 0 )
new_man += static_cast<char>(Misc::DigitToChar(digit));
for( int i=man-1 ; i>=0 ; --i )
{
uint shift_local = shift;
uint mask_local = mask;
while( mask_local != 0 )
{
digit = man_temp.table[i] & mask_local;
if( shift_local != 0 )
digit = digit >> shift_local;
new_man += static_cast<char>(Misc::DigitToChar(digit));
mask_local = mask_local >> bits;
shift_local = shift_local - bits;
}
}
return 0;
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
bool ToString_RoundMantissaWouldBeInteger(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
{
// if new_exp is greater or equal to zero then we have an integer value,
// if new_exp is equal -1 then we have only one digit after the comma
// and after rounding it would be an integer value
if( !new_exp.IsSign() || new_exp == -1 )
return true;
if( new_man.size() >= TTMATH_UINT_HIGHEST_BIT || new_man.size() < 2 )
return true; // oops, the mantissa is too large for calculating (or too small) - we are not doing the base rounding
uint i = 0;
char_type digit;
if( new_exp >= -sint(new_man.size()) )
{
uint new_exp_abs = -new_exp.ToInt();
i = new_man.size() - new_exp_abs; // start from the first digit after the comma operator
}
if( Misc::CharToDigit(new_man[new_man.size()-1]) >= conv.base/2 )
{
if( new_exp < -sint(new_man.size()) )
{
// there are some zeroes after the comma operator
// (between the comma and the first digit from the mantissa)
// and the result value will never be an integer
return false;
}
digit = static_cast<char_type>( Misc::DigitToChar(conv.base-1) );
}
else
{
digit = '0';
}
for( ; i < new_man.size()-1 ; ++i)
if( new_man[i] != digit )
return false; // it will not be an integer
return true; // it will be integer after rounding
}
/*!
an auxiliary method for converting into the string
this method is used for base!=2, base!=4, base!=8 and base!=16
we do the rounding when the value has fraction (is not an integer)
*/
template<class string_type, class char_type>
uint ToString_BaseRound(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
{
// we must have minimum two characters
if( new_man.size() < 2 )
return 0;
// assert that there will not be an integer after rounding
if( ToString_RoundMantissaWouldBeInteger<string_type, char_type>(new_man, conv, new_exp) )
return 0;
typename string_type::size_type i = new_man.length() - 1;
// we're erasing the last character
uint digit = Misc::CharToDigit( new_man[i] );
new_man.erase(i, 1);
uint c = new_exp.AddOne();
// if the last character is greater or equal 'base/2'
// we are adding one into the new mantissa
if( digit >= conv.base / 2 )
ToString_RoundMantissa_AddOneIntoMantissa<string_type, char_type>(new_man, conv);
return c;
}
/*!
an auxiliary method for converting into the string
this method addes one into the new mantissa
*/
template<class string_type, class char_type>
void ToString_RoundMantissa_AddOneIntoMantissa(string_type & new_man, const Conv & conv) const
{
if( new_man.empty() )
return;
sint i = sint( new_man.length() ) - 1;
bool was_carry = true;
for( ; i>=0 && was_carry ; --i )
{
// we can have the comma as well because
// we're using this method later in ToString_CorrectDigitsAfterComma_Round()
// (we're only ignoring it)
if( new_man[i] == static_cast<char_type>(conv.comma) )
continue;
// we're adding one
uint digit = Misc::CharToDigit( new_man[i] ) + 1;
if( digit == conv.base )
digit = 0;
else
was_carry = false;
new_man[i] = static_cast<char_type>( Misc::DigitToChar(digit) );
}
if( i<0 && was_carry )
new_man.insert( new_man.begin() , '1' );
}
/*!
an auxiliary method for converting into the string
this method sets the comma operator and/or puts the exponent
into the string
*/
template<class string_type, class char_type>
uint ToString_SetCommaAndExponent(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
{
uint carry = 0;
if( new_man.empty() )
return carry;
Int<exp+1> scientific_exp( new_exp );
// 'new_exp' depends on the 'new_man' which is stored like this e.g:
// 32342343234 (the comma is at the end)
// we'd like to show it in this way:
// 3.2342343234 (the 'scientific_exp' is connected with this example)
sint offset = sint( new_man.length() ) - 1;
carry += scientific_exp.Add( offset );
// there shouldn't have been a carry because we're using
// a greater type -- 'Int<exp+1>' instead of 'Int<exp>'
bool print_scientific = conv.scient;
if( !print_scientific )
{
if( scientific_exp > conv.scient_from || scientific_exp < -sint(conv.scient_from) )
print_scientific = true;
}
if( !print_scientific )
ToString_SetCommaAndExponent_Normal<string_type, char_type>(new_man, conv, new_exp);
else
// we're passing the 'scientific_exp' instead of 'new_exp' here
ToString_SetCommaAndExponent_Scientific<string_type, char_type>(new_man, conv, scientific_exp);
return (carry==0)? 0 : 1;
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_SetCommaAndExponent_Normal(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp ) const
{
if( !new_exp.IsSign() ) // it means: if( new_exp >= 0 )
ToString_SetCommaAndExponent_Normal_AddingZero<string_type, char_type>(new_man, new_exp);
else
ToString_SetCommaAndExponent_Normal_SetCommaInside<string_type, char_type>(new_man, conv, new_exp);
ToString_Group_man<string_type, char_type>(new_man, conv);
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_SetCommaAndExponent_Normal_AddingZero(string_type & new_man,
Int<exp+1> & new_exp) const
{
// we're adding zero characters at the end
// 'i' will be smaller than 'when_scientific' (or equal)
uint i = new_exp.ToInt();
if( new_man.length() + i > new_man.capacity() )
// about 6 characters more (we'll need it for the comma or something)
new_man.reserve( new_man.length() + i + 6 );
for( ; i>0 ; --i)
new_man += '0';
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_SetCommaAndExponent_Normal_SetCommaInside(
string_type & new_man,
const Conv & conv,
Int<exp+1> & new_exp ) const
{
// new_exp is < 0
sint new_man_len = sint(new_man.length()); // 'new_man_len' with a sign
sint e = -( new_exp.ToInt() ); // 'e' will be positive
if( new_exp > -new_man_len )
{
// we're setting the comma within the mantissa
sint index = new_man_len - e;
new_man.insert( new_man.begin() + index, static_cast<char_type>(conv.comma));
}
else
{
// we're adding zero characters before the mantissa
uint how_many = e - new_man_len;
string_type man_temp(how_many+1, '0');
man_temp.insert( man_temp.begin()+1, static_cast<char_type>(conv.comma));
new_man.insert(0, man_temp);
}
ToString_CorrectDigitsAfterComma<string_type, char_type>(new_man, conv);
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_SetCommaAndExponent_Scientific( string_type & new_man,
const Conv & conv,
Int<exp+1> & scientific_exp ) const
{
if( new_man.empty() )
return;
if( new_man.size() > 1 )
{
new_man.insert( new_man.begin()+1, static_cast<char_type>(conv.comma) );
ToString_CorrectDigitsAfterComma<string_type, char_type>(new_man, conv);
}
ToString_Group_man<string_type, char_type>(new_man, conv);
if( conv.base == 10 )
{
new_man += 'e';
if( !scientific_exp.IsSign() )
new_man += '+';
}
else
{
// the 10 here is meant as the base 'base'
// (no matter which 'base' we're using there'll always be 10 here)
Misc::AddString(new_man, "*10^");
}
string_type temp_exp;
scientific_exp.ToString( temp_exp, conv.base );
new_man += temp_exp;
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_Group_man(string_type & new_man, const Conv & conv) const
{
typedef typename string_type::size_type StrSize;
if( conv.group == 0 )
return;
// first we're looking for the comma operator
StrSize index = new_man.find(static_cast<char_type>(conv.comma), 0);
if( index == string_type::npos )
index = new_man.size();
ToString_Group_man_before_comma<string_type, char_type>(new_man, conv, index);
ToString_Group_man_after_comma<string_type, char_type>(new_man, conv, index+1);
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_Group_man_before_comma( string_type & new_man, const Conv & conv,
typename string_type::size_type & index) const
{
typedef typename string_type::size_type StrSize;
uint group = 0;
StrSize i = index;
// adding group characters before the comma operator
// i>0 because on the first position we don't put any additional grouping characters
for( ; i>0 ; --i, ++group)
{
if( group >= 3 )
{
group = 0;
new_man.insert(i, 1, static_cast<char_type>(conv.group));
++index;
}
}
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_Group_man_after_comma(string_type & new_man, const Conv & conv,
typename string_type::size_type index) const
{
uint group = 0;
for( ; index<new_man.size() ; ++index, ++group)
{
if( group >= 3 )
{
group = 0;
new_man.insert(index, 1, static_cast<char_type>(conv.group));
++index;
}
}
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_CorrectDigitsAfterComma( string_type & new_man,
const Conv & conv ) const
{
if( conv.round >= 0 )
ToString_CorrectDigitsAfterComma_Round<string_type, char_type>(new_man, conv);
if( conv.trim_zeroes )
ToString_CorrectDigitsAfterComma_CutOffZeroCharacters<string_type, char_type>(new_man, conv);
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_CorrectDigitsAfterComma_CutOffZeroCharacters(
string_type & new_man,
const Conv & conv) const
{
// minimum two characters
if( new_man.length() < 2 )
return;
// we're looking for the index of the last character which is not zero
uint i = uint( new_man.length() ) - 1;
for( ; i>0 && new_man[i]=='0' ; --i );
// if there is another character than zero at the end
// we're finishing
if( i == new_man.length() - 1 )
return;
// we must have a comma
// (the comma can be removed by ToString_CorrectDigitsAfterComma_Round
// which is called before)
if( new_man.find_last_of(static_cast<char_type>(conv.comma), i) == string_type::npos )
return;
// if directly before the first zero is the comma operator
// we're cutting it as well
if( i>0 && new_man[i]==static_cast<char_type>(conv.comma) )
--i;
new_man.erase(i+1, new_man.length()-i-1);
}
/*!
an auxiliary method for converting into the string
*/
template<class string_type, class char_type>
void ToString_CorrectDigitsAfterComma_Round(
string_type & new_man,
const Conv & conv ) const
{
typedef typename string_type::size_type StrSize;
// first we're looking for the comma operator
StrSize index = new_man.find(static_cast<char_type>(conv.comma), 0);
if( index == string_type::npos )
// nothing was found (actually there can't be this situation)
return;
// we're calculating how many digits there are at the end (after the comma)
// 'after_comma' will be greater than zero because at the end
// we have at least one digit
StrSize after_comma = new_man.length() - index - 1;
// if 'max_digit_after_comma' is greater than 'after_comma' (or equal)
// we don't have anything for cutting
if( static_cast<StrSize>(conv.round) >= after_comma )
return;
uint last_digit = Misc::CharToDigit( new_man[ index + conv.round + 1 ], conv.base );
// we're cutting the rest of the string
new_man.erase(index + conv.round + 1, after_comma - conv.round);
if( conv.round == 0 )
{
// we're cutting the comma operator as well
// (it's not needed now because we've cut the whole rest after the comma)
new_man.erase(index, 1);
}
if( last_digit >= conv.base / 2 )
// we must round here
ToString_RoundMantissa_AddOneIntoMantissa<string_type, char_type>(new_man, conv);
}
public:
/*!
a method for converting a string into its value
it returns 1 if the value is too big -- we cannot pass it into the range
of our class Big<exp,man> (or if the base is incorrect)
that means only digits before the comma operator can make this value too big,
all digits after the comma we can ignore
'source' - pointer to the string for parsing
if 'after_source' is set that when this method finishes
it sets the pointer to the new first character after parsed value
'value_read' - if the pointer is provided that means the value_read will be true
only when a value has been actually read, there can be situation where only such
a string '-' or '+' will be parsed -- 'after_source' will be different from 'source' but
no value has been read (there are no digits)
on other words if 'value_read' is true -- there is at least one digit in the string
*/
uint FromString(const char * source, uint base = 10, const char ** after_source = 0, bool * value_read = 0)
{
Conv conv;
conv.base = base;
return FromStringBase(source, conv, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const wchar_t * source, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
{
Conv conv;
conv.base = base;
return FromStringBase(source, conv, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const char * source, const Conv & conv, const char ** after_source = 0, bool * value_read = 0)
{
return FromStringBase(source, conv, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const wchar_t * source, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
{
return FromStringBase(source, conv, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const std::string & string, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
{
return FromString(string.c_str(), base, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const std::wstring & string, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
{
return FromString(string.c_str(), base, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const std::string & string, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
{
return FromString(string.c_str(), conv, after_source, value_read);
}
/*!
a method for converting a string into its value
*/
uint FromString(const std::wstring & string, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
{
return FromString(string.c_str(), conv, after_source, value_read);
}
private:
/*!
an auxiliary method for converting from a string
*/
template<class char_type>
uint FromStringBase(const char_type * source, const Conv & conv, const char_type ** after_source = 0, bool * value_read = 0)
{
bool is_sign;
bool value_read_temp = false;
if( conv.base<2 || conv.base>16 )
{
SetNan();
if( after_source )
*after_source = source;
if( value_read )
*value_read = value_read_temp;
return 1;
}
SetZero();
FromString_TestSign( source, is_sign );
uint c = FromString_ReadPartBeforeComma( source, conv, value_read_temp );
if( FromString_TestCommaOperator(source, conv) )
c += FromString_ReadPartAfterComma( source, conv, value_read_temp );
if( value_read_temp && conv.base == 10 )
c += FromString_ReadScientificIfExists( source );
if( is_sign && !IsZero() )
ChangeSign();
if( after_source )
*after_source = source;
if( value_read )
*value_read = value_read_temp;
return CheckCarry(c);
}
/*!
we're testing whether the value is with the sign
(this method is used from 'FromString_ReadPartScientific' too)
*/
template<class char_type>
void FromString_TestSign( const char_type * & source, bool & is_sign )
{
Misc::SkipWhiteCharacters(source);
is_sign = false;
if( *source == '-' )
{
is_sign = true;
++source;
}
else
if( *source == '+' )
{
++source;
}
}
/*!
we're testing whether there's a comma operator
*/
template<class char_type>
bool FromString_TestCommaOperator(const char_type * & source, const Conv & conv)
{
if( (*source == static_cast<char_type>(conv.comma)) ||
(*source == static_cast<char_type>(conv.comma2) && conv.comma2 != 0 ) )
{
++source;
return true;
}
return false;
}
/*!
this method reads the first part of a string
(before the comma operator)
*/
template<class char_type>
uint FromString_ReadPartBeforeComma( const char_type * & source, const Conv & conv, bool & value_read )
{
sint character;
Big<exp, man> temp;
Big<exp, man> base_( conv.base );
Misc::SkipWhiteCharacters( source );
for( ; true ; ++source )
{
if( conv.group!=0 && *source==static_cast<char>(conv.group) )
continue;
character = Misc::CharToDigit(*source, conv.base);
if( character == -1 )
break;
value_read = true;
temp = character;
if( Mul(base_) )
return 1;
if( Add(temp) )
return 1;
}
return 0;
}
/*!
this method reads the second part of a string
(after the comma operator)
*/
template<class char_type>
uint FromString_ReadPartAfterComma( const char_type * & source, const Conv & conv, bool & value_read )
{
sint character;
uint c = 0, index = 1;
Big<exp, man> sum, part, power, old_value, base_( conv.base );
// we don't remove any white characters here
// this is only to avoid getting a warning about an uninitialized object 'old_value' which GCC reports
// (in fact we will initialize it later when the condition 'testing' is fulfilled)
old_value.SetZero();
power.SetOne();
sum.SetZero();
for( ; true ; ++source, ++index )
{
if( conv.group!=0 && *source==static_cast<char>(conv.group) )
continue;
character = Misc::CharToDigit(*source, conv.base);
if( character == -1 )
break;
value_read = true;
part = character;
if( power.Mul( base_ ) )
// there's no sens to add the next parts, but we can't report this
// as an error (this is only inaccuracy)
break;
if( part.Div( power ) )
break;
// every 5 iteration we make a test whether the value will be changed or not
// (character must be different from zero to this test)
bool testing = (character != 0 && (index % 5) == 0);
if( testing )
old_value = sum;
// there actually shouldn't be a carry here
c += sum.Add( part );
if( testing && old_value == sum )
// after adding 'part' the value has not been changed
// there's no sense to add any next parts
break;
}
// we could break the parsing somewhere in the middle of the string,
// but the result (value) still can be good
// we should set a correct value of 'source' now
for( ; Misc::CharToDigit(*source, conv.base) != -1 ; ++source );
c += Add(sum);
return (c==0)? 0 : 1;
}
/*!
this method checks whether there is a scientific part: [e|E][-|+]value
it is called when the base is 10 and some digits were read before
*/
template<class char_type>
uint FromString_ReadScientificIfExists(const char_type * & source)
{
uint c = 0;
bool scientific_read = false;
const char_type * before_scientific = source;
if( FromString_TestScientific(source) )
c += FromString_ReadPartScientific( source, scientific_read );
if( !scientific_read )
source = before_scientific;
return (c==0)? 0 : 1;
}
/*!
we're testing whether is there the character 'e'
this character is only allowed when we're using the base equals 10
*/
template<class char_type>
bool FromString_TestScientific(const char_type * & source)
{
Misc::SkipWhiteCharacters(source);
if( *source=='e' || *source=='E' )
{
++source;
return true;
}
return false;
}
/*!
this method reads the exponent (after 'e' character) when there's a scientific
format of value and only when we're using the base equals 10
*/
template<class char_type>
uint FromString_ReadPartScientific( const char_type * & source, bool & scientific_read )
{
uint c = 0;
Big<exp, man> new_exponent, temp;
bool was_sign = false;
FromString_TestSign( source, was_sign );
c += FromString_ReadPartScientific_ReadExponent( source, new_exponent, scientific_read );
if( scientific_read )
{
if( was_sign )
new_exponent.ChangeSign();
temp = 10;
c += temp.Pow( new_exponent );
c += Mul(temp);
}
return (c==0)? 0 : 1;
}
/*!
this method reads the value of the extra exponent when scientific format is used
(only when base == 10)
*/
template<class char_type>
uint FromString_ReadPartScientific_ReadExponent( const char_type * & source, Big<exp, man> & new_exponent, bool & scientific_read )
{
sint character;
Big<exp, man> base, temp;
Misc::SkipWhiteCharacters(source);
new_exponent.SetZero();
base = 10;
for( ; (character=Misc::CharToDigit(*source, 10)) != -1 ; ++source )
{
scientific_read = true;
temp = character;
if( new_exponent.Mul(base) )
return 1;
if( new_exponent.Add(temp) )
return 1;
}
return 0;
}
public:
/*!
a constructor for converting a string into this class
*/
Big(const char * string)
{
FromString( string );
}
/*!
a constructor for converting a string into this class
*/
Big(const wchar_t * string)
{
FromString( string );
}
/*!
a constructor for converting a string into this class
*/
Big(const std::string & string)
{
FromString( string.c_str() );
}
/*!
a constructor for converting a string into this class
*/
Big(const std::wstring & string)
{
FromString( string.c_str() );
}
/*!
an operator= for converting a string into its value
*/
Big<exp, man> & operator=(const char * string)
{
FromString( string );
return *this;
}
/*!
an operator= for converting a string into its value
*/
Big<exp, man> & operator=(const wchar_t * string)
{
FromString( string );
return *this;
}
/*!
an operator= for converting a string into its value
*/
Big<exp, man> & operator=(const std::string & string)
{
FromString( string.c_str() );
return *this;
}
/*!
an operator= for converting a string into its value
*/
Big<exp, man> & operator=(const std::wstring & string)
{
FromString( string.c_str() );
return *this;
}
/*!
*
* methods for comparing
*
*/
/*!
this method performs the formula 'abs(this) < abs(ss2)'
and returns the result
(in other words it treats 'this' and 'ss2' as values without a sign)
we don't check the NaN flag
*/
bool SmallerWithoutSignThan(const Big<exp,man> & ss2) const
{
if( IsZero() )
{
if( ss2.IsZero() )
// we've got two zeroes
return false;
else
// this==0 and ss2!=0
return true;
}
if( ss2.IsZero() )
// this!=0 and ss2==0
return false;
// we're using the fact that all bits in mantissa are pushed
// into the left side -- Standardizing()
if( exponent == ss2.exponent )
return mantissa < ss2.mantissa;
return exponent < ss2.exponent;
}
/*!
this method performs the formula 'abs(this) > abs(ss2)'
and returns the result
(in other words it treats 'this' and 'ss2' as values without a sign)
we don't check the NaN flag
*/
bool GreaterWithoutSignThan(const Big<exp,man> & ss2) const
{
if( IsZero() )
{
if( ss2.IsZero() )
// we've got two zeroes
return false;
else
// this==0 and ss2!=0
return false;
}
if( ss2.IsZero() )
// this!=0 and ss2==0
return true;
// we're using the fact that all bits in mantissa are pushed
// into the left side -- Standardizing()
if( exponent == ss2.exponent )
return mantissa > ss2.mantissa;
return exponent > ss2.exponent;
}
/*!
this method performs the formula 'abs(this) == abs(ss2)'
and returns the result
(in other words it treats 'this' and 'ss2' as values without a sign)
we don't check the NaN flag
*/
bool EqualWithoutSign(const Big<exp,man> & ss2) const
{
if( IsZero() )
{
if( ss2.IsZero() )
// we've got two zeroes
return true;
else
// this==0 and ss2!=0
return false;
}
if( ss2.IsZero() )
// this!=0 and ss2==0
return false;
if( exponent==ss2.exponent && mantissa==ss2.mantissa )
return true;
return false;
}
bool operator<(const Big<exp,man> & ss2) const
{
if( IsSign() && !ss2.IsSign() )
// this<0 and ss2>=0
return true;
if( !IsSign() && ss2.IsSign() )
// this>=0 and ss2<0
return false;
// both signs are the same
if( IsSign() )
return ss2.SmallerWithoutSignThan( *this );
return SmallerWithoutSignThan( ss2 );
}
bool operator==(const Big<exp,man> & ss2) const
{
if( IsSign() != ss2.IsSign() )
return false;
return EqualWithoutSign( ss2 );
}
bool operator>(const Big<exp,man> & ss2) const
{
if( IsSign() && !ss2.IsSign() )
// this<0 and ss2>=0
return false;
if( !IsSign() && ss2.IsSign() )
// this>=0 and ss2<0
return true;
// both signs are the same
if( IsSign() )
return ss2.GreaterWithoutSignThan( *this );
return GreaterWithoutSignThan( ss2 );
}
bool operator>=(const Big<exp,man> & ss2) const
{
return !operator<( ss2 );
}
bool operator<=(const Big<exp,man> & ss2) const
{
return !operator>( ss2 );
}
bool operator!=(const Big<exp,man> & ss2) const
{
return !operator==(ss2);
}
/*!
*
* standard mathematical operators
*
*/
/*!
an operator for changing the sign
this method is not changing 'this' but the changed value is returned
*/
Big<exp,man> operator-() const
{
Big<exp,man> temp(*this);
temp.ChangeSign();
return temp;
}
Big<exp,man> operator-(const Big<exp,man> & ss2) const
{
Big<exp,man> temp(*this);
temp.Sub(ss2);
return temp;
}
Big<exp,man> & operator-=(const Big<exp,man> & ss2)
{
Sub(ss2);
return *this;
}
Big<exp,man> operator+(const Big<exp,man> & ss2) const
{
Big<exp,man> temp(*this);
temp.Add(ss2);
return temp;
}
Big<exp,man> & operator+=(const Big<exp,man> & ss2)
{
Add(ss2);
return *this;
}
Big<exp,man> operator*(const Big<exp,man> & ss2) const
{
Big<exp,man> temp(*this);
temp.Mul(ss2);
return temp;
}
Big<exp,man> & operator*=(const Big<exp,man> & ss2)
{
Mul(ss2);
return *this;
}
Big<exp,man> operator/(const Big<exp,man> & ss2) const
{
Big<exp,man> temp(*this);
temp.Div(ss2);
return temp;
}
Big<exp,man> & operator/=(const Big<exp,man> & ss2)
{
Div(ss2);
return *this;
}
/*!
this method makes an integer value by skipping any fractions
for example:
10.7 will be 10
12.1 -- 12
-20.2 -- 20
-20.9 -- 20
-0.7 -- 0
0.8 -- 0
*/
void SkipFraction()
{
if( IsNan() || IsZero() )
return;
if( !exponent.IsSign() )
// exponent >=0 -- the value don't have any fractions
return;
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
{
// the value is from (-1,1), we return zero
SetZero();
return;
}
// exponent is in range (-man*TTMATH_BITS_PER_UINT, 0)
sint e = exponent.ToInt();
mantissa.ClearFirstBits( -e );
// we don't have to standardize 'Standardizing()' the value because
// there's at least one bit in the mantissa
// (the highest bit which we didn't touch)
}
/*!
this method remains only a fraction from the value
for example:
30.56 will be 0.56
-12.67 -- -0.67
*/
void RemainFraction()
{
if( IsNan() || IsZero() )
return;
if( !exponent.IsSign() )
{
// exponent >= 0 -- the value doesn't have any fractions
// we return zero
SetZero();
return;
}
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
{
// the value is from (-1,1)
// we don't make anything with the value
return;
}
// e will be from (-man*TTMATH_BITS_PER_UINT, 0)
sint e = exponent.ToInt();
sint how_many_bits_leave = sint(man*TTMATH_BITS_PER_UINT) + e; // there'll be a subtraction -- e is negative
mantissa.Rcl( how_many_bits_leave, 0);
// there'll not be a carry because the exponent is too small
exponent.Sub( how_many_bits_leave );
// we must call Standardizing() here
Standardizing();
}
/*!
this method returns true if the value is integer
(there is no a fraction)
(we don't check nan)
*/
bool IsInteger() const
{
if( IsZero() )
return true;
if( !exponent.IsSign() )
// exponent >=0 -- the value don't have any fractions
return true;
if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
// the value is from (-1,1)
return false;
// exponent is in range (-man*TTMATH_BITS_PER_UINT, 0)
sint e = exponent.ToInt();
e = -e; // e means how many bits we must check
uint len = e / TTMATH_BITS_PER_UINT;
uint rest = e % TTMATH_BITS_PER_UINT;
uint i = 0;
for( ; i<len ; ++i )
if( mantissa.table[i] != 0 )
return false;
if( rest > 0 )
{
uint rest_mask = TTMATH_UINT_MAX_VALUE >> (TTMATH_BITS_PER_UINT - rest);
if( (mantissa.table[i] & rest_mask) != 0 )
return false;
}
return true;
}
/*!
this method rounds to the nearest integer value
(it returns a carry if it was)
for example:
2.3 = 2
2.8 = 3
-2.3 = -2
-2.8 = 3
*/
uint Round()
{
Big<exp,man> half;
uint c;
if( IsNan() )
return 1;
if( IsZero() )
return 0;
half.Set05();
if( IsSign() )
{
// 'this' is < 0
c = Sub( half );
}
else
{
// 'this' is > 0
c = Add( half );
}
SkipFraction();
return CheckCarry(c);
}
/*!
*
* input/output operators for standard streams
*
*/
private:
/*!
an auxiliary method for outputing to standard streams
*/
template<class ostream_type, class string_type>
static ostream_type & OutputToStream(ostream_type & s, const Big<exp,man> & l)
{
string_type ss;
l.ToString(ss);
s << ss;
return s;
}
public:
/*!
output to standard streams
*/
friend std::ostream & operator<<(std::ostream & s, const Big<exp,man> & l)
{
return OutputToStream<std::ostream, std::string>(s, l);
}
/*!
output to standard streams
*/
friend std::wostream & operator<<(std::wostream & s, const Big<exp,man> & l)
{
return OutputToStream<std::wostream, std::wstring>(s, l);
}
private:
/*!
an auxiliary method for converting from a string
*/
template<class istream_type, class string_type, class char_type>
static istream_type & InputFromStream(istream_type & s, Big<exp,man> & l)
{
string_type ss;
// char or wchar_t for operator>>
char_type z, old_z;
bool was_comma = false;
bool was_e = false;
// operator>> omits white characters if they're set for ommiting
s >> z;
if( z=='-' || z=='+' )
{
ss += z;
s >> z; // we're reading a next character (white characters can be ommited)
}
old_z = 0;
// we're reading only digits (base=10) and only one comma operator
for( ; s.good() ; z=static_cast<char_type>(s.get()) )
{
if( z=='.' || z==',' )
{
if( was_comma || was_e )
// second comma operator or comma operator after 'e' character
break;
was_comma = true;
}
else
if( z == 'e' || z == 'E' )
{
if( was_e )
// second 'e' character
break;
was_e = true;
}
else
if( z == '+' || z == '-' )
{
if( old_z != 'e' && old_z != 'E' )
// '+' or '-' is allowed only after 'e' character
break;
}
else
if( Misc::CharToDigit(z, 10) < 0 )
break;
ss += z;
old_z = z;
}
// we're leaving the last read character
// (it's not belonging to the value)
s.unget();
l.FromString( ss );
return s;
}
public:
/*!
input from standard streams
*/
friend std::istream & operator>>(std::istream & s, Big<exp,man> & l)
{
return InputFromStream<std::istream, std::string, char>(s, l);
}
/*!
input from standard streams
*/
friend std::wistream & operator>>(std::wistream & s, Big<exp,man> & l)
{
return InputFromStream<std::wistream, std::wstring, wchar_t>(s, l);
}
};
} // namespace
#endif