mirror of
https://github.com/dashr9230/SA-MP.git
synced 2025-01-06 01:23:30 +08:00
161 lines
4.6 KiB
ObjectPascal
161 lines
4.6 KiB
ObjectPascal
|
{unit FindSort
|
||
|
Author: Wellington Lima dos Santos
|
||
|
Contact: wlsantos@alunos.ufv.br or santoswl@yahoo.com.br
|
||
|
|
||
|
Purposes:
|
||
|
1. Sort a Generic Array (CustomArray) by QuickSort algorithm, where
|
||
|
CustomArray is a var of type: array[LowIndex..HighIndex] of YourType;
|
||
|
|
||
|
2. Find an item by binary search algorithm
|
||
|
|
||
|
YourType is any standard type or defined type such as integer, double,
|
||
|
string, record, objects, etc.
|
||
|
|
||
|
Benefit: This routine is general and you only need to write a function
|
||
|
to compare the items of the array.
|
||
|
Penalty: The performance is 2 to 3x slower than classical QuickSort
|
||
|
compatibility: D2, D3, D4, D5
|
||
|
history: 28/06/2000 - Created with recursive QuickSort
|
||
|
15/07/2000 - Implementation of the non recursive QuickSort
|
||
|
distribution: Free! }
|
||
|
|
||
|
unit FindSort;
|
||
|
|
||
|
{$R+} // enable range checks
|
||
|
|
||
|
interface
|
||
|
|
||
|
uses
|
||
|
Classes, SysUtils;
|
||
|
|
||
|
function SortArray(var CustomArray; LowIndex, ItemSize, L, R : Integer;
|
||
|
CompareItems : TListSortCompare) : boolean;
|
||
|
|
||
|
function FindInArray(var SortedArray; LowIndex, ItemSize, ItemCount : Integer;
|
||
|
Item : Pointer; CompareItems : TListSortCompare; var Index : Integer) : Boolean;
|
||
|
|
||
|
implementation
|
||
|
|
||
|
resourcestring
|
||
|
SStackOverflowQS = 'Stack Overflow in Quick Sort';
|
||
|
|
||
|
{CustomArray = array[LowIndex..HighIndex] of YourType (Dynamic Arrays: CustomArray[0])
|
||
|
LowIndex = Low(CustomArray). In General is Zero, but...
|
||
|
ItemSize = SizeOf(CustomArray[Low(CustomArray)]) or SizeOf(YourType)
|
||
|
L, R = Sorted Range. (L >= LowIndex) and (R <= HighIndex)
|
||
|
CompareItems = identical to function used with TList.Sort(CompareItems)}
|
||
|
|
||
|
function SortArray(var CustomArray; LowIndex, ItemSize, L, R : Integer;
|
||
|
CompareItems : TListSortCompare) : boolean;
|
||
|
var
|
||
|
I, J, Level : Integer;
|
||
|
P, T : Pointer;
|
||
|
Base, Ip, Jp : ^Byte;
|
||
|
Stack : array[1..64] of record Ls, Rs : Integer; end;
|
||
|
// Based on a nice non-recursive QuickSort (Brad Williams, TV Sorting-SWAG)
|
||
|
// In my tests, the stack limit reached until 38 for 10^7 aleatoric integers.
|
||
|
|
||
|
begin
|
||
|
Result := False;
|
||
|
if (ItemSize < 1) or (R < L) or not Assigned(CompareItems) then
|
||
|
exit;
|
||
|
Result := True;
|
||
|
if R = L then
|
||
|
exit;
|
||
|
Result := False;
|
||
|
GetMem(P, ItemSize);
|
||
|
GetMem(T, ItemSize);
|
||
|
try
|
||
|
Base := @CustomArray;
|
||
|
Dec(Base, LowIndex * ItemSize);
|
||
|
Level := 1;
|
||
|
Stack[Level].Ls := L;
|
||
|
Stack[Level].Rs := R;
|
||
|
repeat
|
||
|
L := Stack[Level].Ls;
|
||
|
R := Stack[Level].Rs;
|
||
|
Dec(Level);
|
||
|
repeat
|
||
|
I := L;
|
||
|
J := R;
|
||
|
//Never change (L+R) div 2 to (L+R) shr 1, if (L+R) < 0 !
|
||
|
Move(Pointer(Integer(Base) + ((L + R) div 2) * ItemSize)^, P^, ItemSize);
|
||
|
repeat
|
||
|
Ip := Base; Inc(Ip, I * ItemSize);
|
||
|
Jp := Base; Inc(Jp, J * ItemSize);
|
||
|
while CompareItems(Ip, P) < 0 do
|
||
|
begin
|
||
|
Inc(I);
|
||
|
Inc(Ip, ItemSize);
|
||
|
end;
|
||
|
while CompareItems(Jp, P) > 0 do
|
||
|
begin
|
||
|
Dec(J);
|
||
|
Dec(Jp, ItemSize);
|
||
|
end;
|
||
|
if I <= J then
|
||
|
begin
|
||
|
Move(Ip^, T^, ItemSize);
|
||
|
Move(Jp^, Ip^, ItemSize);
|
||
|
Move(T^, Jp^, ItemSize);
|
||
|
Inc(I);
|
||
|
Dec(J);
|
||
|
end;
|
||
|
until I > J;
|
||
|
if I < R then
|
||
|
begin
|
||
|
Inc(Level);
|
||
|
if Level > High(Stack) then //Certainly your compare function have problems!
|
||
|
raise Exception.Create(SStackOverflowQS);
|
||
|
Stack[Level].Ls := I;
|
||
|
Stack[Level].Rs := R;
|
||
|
end;
|
||
|
R := J;
|
||
|
until L >= R;
|
||
|
until Level = 0;
|
||
|
Result := True;
|
||
|
finally
|
||
|
FreeMem(P);
|
||
|
FreeMem(T);
|
||
|
end;
|
||
|
end; // SortArray
|
||
|
|
||
|
{SortedArray = array[LowIndex..HighIndex] of YourType, just Sorted!
|
||
|
LowIndex = Low(SortedArray). In General is Zero, but...
|
||
|
ItemSize = SizeOf(SortedArray[Low(SortedArray)]) or SizeOf(YourType)
|
||
|
ItemCount = Number de Items in Array
|
||
|
Item = Pointer to searched Item. use the operator @
|
||
|
CompareItems = identical to function used with TList.Sort(CompareItems)
|
||
|
Index = Local where the Item is or will must be placed
|
||
|
Result = True if the item will be found.}
|
||
|
|
||
|
function FindInArray(var SortedArray; LowIndex, ItemSize, ItemCount : Integer;
|
||
|
Item : Pointer; CompareItems : TListSortCompare; var Index : Integer) : Boolean;
|
||
|
var
|
||
|
L, H, I, C : Integer;
|
||
|
It : Pointer;
|
||
|
begin
|
||
|
Result := False;
|
||
|
L := LowIndex;
|
||
|
H := LowIndex + ItemCount - 1;
|
||
|
while L <= H do
|
||
|
begin
|
||
|
//Never change (L+R) div 2 to (L+R) shr 1, if (L+R) < 0 !
|
||
|
I := (L + H) div 2;
|
||
|
Integer(It) := Integer(@SortedArray) + (I - LowIndex) * ItemSize;
|
||
|
C := CompareItems(It, Item);
|
||
|
if C < 0 then
|
||
|
L := I + 1
|
||
|
else
|
||
|
begin
|
||
|
H := I - 1;
|
||
|
if C = 0 then
|
||
|
Result := True;
|
||
|
end;
|
||
|
end;
|
||
|
Index := L;
|
||
|
end;
|
||
|
|
||
|
end.
|
||
|
|