From fc2f1a0e2c7f0f50cc06d71fa060239101df6c03 Mon Sep 17 00:00:00 2001 From: CyC2018 <1029579233@qq.com> Date: Sat, 28 Apr 2018 15:41:22 +0800 Subject: [PATCH] auto commit --- notes/Leetcode 题解.md | 6 +- notes/剑指 offer 题解.md | 740 +++++++++++++++++++++------------------ 2 files changed, 405 insertions(+), 341 deletions(-) diff --git a/notes/Leetcode 题解.md b/notes/Leetcode 题解.md index e1b12f69..8614b232 100644 --- a/notes/Leetcode 题解.md +++ b/notes/Leetcode 题解.md @@ -118,7 +118,7 @@ public int binarySearch(int[] nums, int key) { - h 的赋值表达式为 h = m - 最后返回 l 而不是 -1 -在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [0, m] 区间中,这是一个闭区间。h 的赋值表达式为 h = m,因为 m 位置也可能是解。 +在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中,这是一个闭区间。h 的赋值表达式为 h = m,因为 m 位置也可能是解。 在 h 的赋值表达式为 h = mid 的情况下,如果循环条件为 l <= h,那么会出现循环无法退出的情况,因此循环条件只能是 l < h。 @@ -218,7 +218,7 @@ Output: 2 令 key 为 Single Element 在数组中的位置。如果 m 为偶数,并且 m + 1 < key,那么 nums[m] == nums[m + 1];m + 1 >= key,那么 nums[m] != nums[m + 1]。 -从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 key 所在的数组位置为 [m + 2, n - 1],此时令 l = m + 2;如果 nums[m] != nums[m + 1],那么 key 所在的数组位置为 [0, m],此时令 h = m。 +从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 key 所在的数组位置为 [m + 2, h],此时令 l = m + 2;如果 nums[m] != nums[m + 1],那么 key 所在的数组位置为 [l, m],此时令 h = m。 因为 h 的赋值表达式为 h = m,那么循环条件也就只能使用 l < h 这种形式。 @@ -244,7 +244,7 @@ public int singleNonDuplicate(int[] nums) { 题目描述:给定一个元素 n 代表有 [1, 2, ..., n] 版本,可以调用 isBadVersion(int x) 知道某个版本是否错误,要求找到第一个错误的版本。 -如果第 m 个版本出错,则表示第一个错误的版本在 [1, m] 之间,令 h = m;否则第一个错误的版本在 [m + 1, n] 之间,令 l = m + 1。 +如果第 m 个版本出错,则表示第一个错误的版本在 [l, m] 之间,令 h = m;否则第一个错误的版本在 [m + 1, h] 之间,令 l = m + 1。 因为 h 的赋值表达式为 h = m,因此循环条件为 l < h。 diff --git a/notes/剑指 offer 题解.md b/notes/剑指 offer 题解.md index 9b53515a..254277ea 100644 --- a/notes/剑指 offer 题解.md +++ b/notes/剑指 offer 题解.md @@ -90,9 +90,9 @@ ## 题目描述 -在一个长度为 n 的数组里的所有数字都在 0 到 n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字是重复的。也不知道每个数字重复几次。请找出数组中任意一个重复的数字。例如,如果输入长度为 7 的数组 {2, 3, 1, 0, 2, 5, 3},那么对应的输出是第一个重复的数字 2。 +在一个长度为 n 的数组里的所有数字都在 0 到 n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字是重复的,也不知道每个数字重复几次。请找出数组中任意一个重复的数字。例如,如果输入长度为 7 的数组 {2, 3, 1, 0, 2, 5},那么对应的输出是第一个重复的数字 2。 -要求复杂度为 O(N) + O(1),也就是时间复杂度 O(N),空间复杂度 O(1)。因此不能使用排序的方法,也不能使用额外的标记数组。 +要求复杂度为 O(N) + O(1),也就是时间复杂度 O(N),空间复杂度 O(1)。因此不能使用排序的方法,也不能使用额外的标记数组。牛客网讨论区这一题的首票答案使用 nums[i] + length 来将元素标记,这么做会有加法溢出问题。 ## 解题思路 @@ -117,13 +117,13 @@ position-4 : (0,1,2,3,2,5) // nums[i] == nums[nums[i]], exit public boolean duplicate(int[] nums, int length, int[] duplication) { if (nums == null || length <= 0) return false; for (int i = 0; i < length; i++) { - while (nums[i] != i && nums[i] != nums[nums[i]]) { + while (nums[i] != i) { + if (nums[i] == nums[nums[i]]) { + duplication[0] = nums[i]; + return true; + } swap(nums, i, nums[i]); } - if (nums[i] != i && nums[i] == nums[nums[i]]) { - duplication[0] = nums[i]; - return true; - } } return false; } @@ -163,13 +163,17 @@ Given target = 20, return false. ```java public boolean Find(int target, int[][] matrix) { - if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return false; - int m = matrix.length, n = matrix[0].length; - int r = 0, c = n - 1; // 从右上角开始 - while (r <= m - 1 && c >= 0) { - if (target == matrix[r][c]) return true; - else if (target > matrix[r][c]) r++; - else c--; + if (matrix == null || matrix.length == 0 || matrix[0].length == 0) + return false; + int rows = matrix.length, cols = matrix[0].length; + int r = 0, c = cols - 1; // 从右上角开始 + while (r <= rows - 1 && c >= 0) { + if (target == matrix[r][c]) + return true; + else if (target > matrix[r][c]) + r++; + else + c--; } return false; } @@ -196,21 +200,19 @@ public boolean Find(int target, int[][] matrix) { ```java public String replaceSpace(StringBuffer str) { int oldLen = str.length(); - for (int i = 0; i < oldLen; i++) { - if (str.charAt(i) == ' ') { + for (int i = 0; i < oldLen; i++) + if (str.charAt(i) == ' ') str.append(" "); - } - } - int idxOfOld = oldLen - 1; - int idxOfNew = str.length() - 1; - while (idxOfOld >= 0 && idxOfNew > idxOfOld) { - char c = str.charAt(idxOfOld--); + + int P1 = oldLen - 1, P2 = str.length() - 1; + while (P1 >= 0 && P2 > P1) { + char c = str.charAt(P1--); if (c == ' ') { - str.setCharAt(idxOfNew--, '0'); - str.setCharAt(idxOfNew--, '2'); - str.setCharAt(idxOfNew--, '%'); + str.setCharAt(P2--, '0'); + str.setCharAt(P2--, '2'); + str.setCharAt(P2--, '%'); } else { - str.setCharAt(idxOfNew--, c); + str.setCharAt(P2--, c); } } return str.toString(); @@ -239,9 +241,8 @@ public ArrayList printListFromTailToHead(ListNode listNode) { listNode = listNode.next; } ArrayList ret = new ArrayList<>(); - while (!stack.isEmpty()) { + while (!stack.isEmpty()) ret.add(stack.pop()); - } return ret; } ``` @@ -251,7 +252,7 @@ public ArrayList printListFromTailToHead(ListNode listNode) { ```java public ArrayList printListFromTailToHead(ListNode listNode) { ArrayList ret = new ArrayList<>(); - if(listNode != null) { + if (listNode != null) { ret.addAll(printListFromTailToHead(listNode.next)); ret.add(listNode.val); } @@ -320,20 +321,20 @@ inorder = [9,3,15,20,7] 前序遍历的第一个值为根节点的值,使用这个值将中序遍历结果分成两部分,左部分为树的左子树中序遍历结果,右部分为树的右子树中序遍历的结果。 ```java -private Map inOrderNumsIdx = new HashMap<>(); // 缓存中序遍历数组的每个值对应的索引 +private Map inOrderNumsIndexs = new HashMap<>(); // 缓存中序遍历数组的每个值对应的索引 public TreeNode reConstructBinaryTree(int[] pre, int[] in) { - for (int i = 0; i < in.length; i++) { - inOrderNumsIdx.put(in[i], i); - } + for (int i = 0; i < in.length; i++) + inOrderNumsIndexs.put(in[i], i); return reConstructBinaryTree(pre, 0, pre.length - 1, in, 0, in.length - 1); } private TreeNode reConstructBinaryTree(int[] pre, int preL, int preR, int[] in, int inL, int inR) { - if (preL > preR) return null; + if (preL > preR) + return null; TreeNode root = new TreeNode(pre[preL]); - int inIdx = inOrderNumsIdx.get(root.val); - int leftTreeSize = inIdx - inL; + int inIndex = inOrderNumsIndexs.get(root.val); + int leftTreeSize = inIndex - inL; root.left = reConstructBinaryTree(pre, preL + 1, preL + leftTreeSize, in, inL, inL + leftTreeSize - 1); root.right = reConstructBinaryTree(pre, preL + leftTreeSize + 1, preR, in, inL + leftTreeSize + 1, inR); return root; @@ -375,16 +376,14 @@ public class TreeLinkNode { public TreeLinkNode GetNext(TreeLinkNode pNode) { if (pNode.right != null) { TreeLinkNode node = pNode.right; - while (node.left != null) { + while (node.left != null) node = node.left; - } return node; } else { while (pNode.next != null) { TreeLinkNode parent = pNode.next; - if (parent.left == pNode) { + if (parent.left == pNode) return parent; - } pNode = pNode.next; } } @@ -415,14 +414,13 @@ public void push(int node) { } public int pop() throws Exception { - if (out.isEmpty()) { - while (!in.isEmpty()) { + if (out.isEmpty()) + while (!in.isEmpty()) out.push(in.pop()); - } - } - if (out.isEmpty()) { + + if (out.isEmpty()) throw new Exception("queue is empty"); - } + return out.pop(); } ``` @@ -441,18 +439,18 @@ public int pop() throws Exception { 如果使用递归求解,会重复计算一些子问题。例如,计算 f(10) 需要计算 f(9) 和 f(8),计算 f(9) 需要计算 f(8) 和 f(7),可以看到 f(8) 被重复计算了。 -

+

递归方法是将一个问题划分成多个子问题求解,动态规划也是如此,但是动态规划会把子问题的解缓存起来,避免重复求解子问题。 ```java public int Fibonacci(int n) { - if (n <= 1) return n; + if (n <= 1) + return n; int[] fib = new int[n + 1]; fib[1] = 1; - for (int i = 2; i <= n; i++) { + for (int i = 2; i <= n; i++) fib[i] = fib[i - 1] + fib[i - 2]; - } return fib[n]; } ``` @@ -461,7 +459,8 @@ public int Fibonacci(int n) { ```java public int Fibonacci(int n) { - if (n <= 1) return n; + if (n <= 1) + return n; int pre2 = 0, pre1 = 1; int fib = 0; for (int i = 2; i <= n; i++) { @@ -478,13 +477,14 @@ public int Fibonacci(int n) { ```java public class Solution { private int[] fib = new int[40]; + public Solution() { fib[1] = 1; fib[2] = 2; - for (int i = 2; i < fib.length; i++) { + for (int i = 2; i < fib.length; i++) fib[i] = fib[i - 1] + fib[i - 2]; - } } + public int Fibonacci(int n) { return fib[n]; } @@ -505,13 +505,13 @@ public class Solution { ```java public int JumpFloor(int n) { - if (n == 1) return 1; + if (n == 1) + return 1; int[] dp = new int[n]; dp[0] = 1; dp[1] = 2; - for (int i = 2; i < n; i++) { + for (int i = 2; i < n; i++) dp[i] = dp[i - 1] + dp[i - 2]; - } return dp[n - 1]; } ``` @@ -520,7 +520,8 @@ public int JumpFloor(int n) { ```java public int JumpFloor(int n) { - if (n <= 1) return n; + if (n <= 1) + return n; int pre2 = 0, pre1 = 1; int result = 0; for (int i = 1; i <= n; i++) { @@ -546,11 +547,9 @@ public int JumpFloor(int n) { public int JumpFloorII(int target) { int[] dp = new int[target]; Arrays.fill(dp, 1); - for (int i = 1; i < target; i++) { - for (int j = 0; j < i; j++) { + for (int i = 1; i < target; i++) + for (int j = 0; j < i; j++) dp[i] += dp[j]; - } - } return dp[target - 1]; } ``` @@ -569,13 +568,13 @@ public int JumpFloorII(int target) { ```java public int RectCover(int n) { - if (n <= 2) return n; + if (n <= 2) + return n; int[] dp = new int[n]; dp[0] = 1; dp[1] = 2; - for (int i = 2; i < n; i++) { + for (int i = 2; i < n; i++) dp[i] = dp[i - 1] + dp[i - 2]; - } return dp[n - 1]; } ``` @@ -584,7 +583,8 @@ public int RectCover(int n) { ```java public int RectCover(int n) { - if (n <= 2) return n; + if (n <= 2) + return n; int pre2 = 1, pre1 = 2; int result = 0; for (int i = 3; i <= n; i++) { @@ -614,12 +614,15 @@ public int RectCover(int n) { ```java public int minNumberInRotateArray(int[] nums) { - if (nums.length == 0) return 0; + if (nums.length == 0) + return 0; int l = 0, h = nums.length - 1; while (l < h) { int m = l + (h - l) / 2; - if (nums[m] <= nums[h]) h = m; - else l = m + 1; + if (nums[m] <= nums[h]) + h = m; + else + l = m + 1; } return nums[l]; } @@ -640,45 +643,42 @@ public int minNumberInRotateArray(int[] nums) { ## 解题思路 ```java -private int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}}; +private final static int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}}; private int rows; private int cols; public boolean hasPath(char[] array, int rows, int cols, char[] str) { - if (rows == 0 || cols == 0) return false; + if (rows == 0 || cols == 0) + return false; this.rows = rows; this.cols = cols; - boolean[][] hasUsed = new boolean[rows][cols]; + boolean[][] marked = new boolean[rows][cols]; char[][] matrix = buildMatrix(array); - for (int i = 0; i < rows; i++) { - for (int j = 0; j < cols; j++) { - if (backtracking(matrix, str, hasUsed, 0, i, j)) return true; - } - } + for (int i = 0; i < rows; i++) + for (int j = 0; j < cols; j++) + if (backtracking(matrix, str, marked, 0, i, j)) + return true; return false; } -private boolean backtracking(char[][] matrix, char[] str, boolean[][] hasUsed, int pathLen, int row, int col) { - if (pathLen == str.length) return true; - if (row < 0 || row >= rows || col < 0 || col >= cols) return false; - if (matrix[row][col] != str[pathLen]) return false; - if (hasUsed[row][col]) return false; - hasUsed[row][col] = true; - for (int i = 0; i < next.length; i++) { - if (backtracking(matrix, str, hasUsed, pathLen + 1, row + next[i][0], col + next[i][1])) +private boolean backtracking(char[][] matrix, char[] str, boolean[][] marked, int pathLen, int r, int c) { + if (pathLen == str.length) + return true; + if (r < 0 || r >= rows || c < 0 || c >= cols || matrix[r][c] != str[pathLen] || marked[r][c]) + return false; + marked[r][c] = true; + for (int[] n : next) + if (backtracking(matrix, str, marked, pathLen + 1, r + n[0], c + n[1])) return true; - } - hasUsed[row][col] = false; + marked[r][c] = false; return false; } private char[][] buildMatrix(char[] array) { char[][] matrix = new char[rows][cols]; - for (int i = 0, idx = 0; i < rows; i++) { - for (int j = 0; j < cols; j++) { + for (int i = 0, idx = 0; i < rows; i++) + for (int j = 0; j < cols; j++) matrix[i][j] = array[idx++]; - } - } return matrix; } ``` @@ -694,8 +694,8 @@ private char[][] buildMatrix(char[] array) { ## 解题思路 ```java +private static final int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}}; private int cnt = 0; -private int[][] next = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}}; private int rows; private int cols; private int threshold; @@ -706,20 +706,20 @@ public int movingCount(int threshold, int rows, int cols) { this.cols = cols; this.threshold = threshold; initDigitSum(); - boolean[][] hasVisited = new boolean[rows][cols]; - dfs(hasVisited, 0, 0); + boolean[][] marked = new boolean[rows][cols]; + dfs(marked, 0, 0); return cnt; } -private void dfs(boolean[][] hasVisited, int r, int c) { - if (r < 0 || r >= rows || c < 0 || c >= cols) return; - if (hasVisited[r][c]) return; - hasVisited[r][c] = true; - if (digitSum[r][c] > threshold) return; - this.cnt++; - for (int i = 0; i < next.length; i++) { - dfs(hasVisited, r + next[i][0], c + next[i][1]); - } +private void dfs(boolean[][] marked, int r, int c) { + if (r < 0 || r >= rows || c < 0 || c >= cols || marked[r][c]) + return; + marked[r][c] = true; + if (this.digitSum[r][c] > this.threshold) + return; + cnt++; + for (int[] n : next) + dfs(marked, r + n[0], c + n[1]); } private void initDigitSum() { @@ -732,11 +732,9 @@ private void initDigitSum() { } } digitSum = new int[rows][cols]; - for (int i = 0; i < rows; i++) { - for (int j = 0; j < cols; j++) { + for (int i = 0; i < this.rows; i++) + for (int j = 0; j < this.cols; j++) digitSum[i][j] = digitSumOne[i] + digitSumOne[j]; - } - } } ``` @@ -758,11 +756,9 @@ For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 public int integerBreak(int n) { int[] dp = new int[n + 1]; dp[1] = 1; - for (int i = 2; i <= n; i++) { - for (int j = 1; j < i; j++) { + for (int i = 2; i <= n; i++) + for (int j = 1; j < i; j++) dp[i] = Math.max(dp[i], Math.max(j * (i - j), dp[j] * (i - j))); - } - } return dp[n]; } ``` @@ -775,11 +771,15 @@ public int integerBreak(int n) { ```java public int integerBreak(int n) { - if (n < 2) return 0; - if (n == 2) return 1; - if (n == 3) return 2; + if (n < 2) + return 0; + if (n == 2) + return 1; + if (n == 3) + return 2; int timesOf3 = n / 3; - if (n - timesOf3 * 3 == 1) timesOf3--; + if (n - timesOf3 * 3 == 1) + timesOf3--; int timesOf2 = (n - timesOf3 * 3) / 2; return (int) (Math.pow(3, timesOf3)) * (int) (Math.pow(2, timesOf2)); } @@ -842,15 +842,18 @@ public int NumberOf1(int n) { ```java public double Power(double base, int exponent) { - if(exponent == 0) return 1; - if(exponent == 1) return base; + if (exponent == 0) + return 1; + if (exponent == 1) + return base; boolean isNegative = false; - if(exponent < 0) { + if (exponent < 0) { exponent = -exponent; isNegative = true; } - double pow = Power(base * base , exponent / 2); - if(exponent % 2 != 0) pow = pow * base; + double pow = Power(base * base, exponent / 2); + if (exponent % 2 != 0) + pow = pow * base; return isNegative ? 1 / pow : pow; } ``` @@ -869,7 +872,8 @@ public double Power(double base, int exponent) { ```java public void print1ToMaxOfNDigits(int n) { - if (n <= 0) return; + if (n <= 0) + return; char[] number = new char[n]; print1ToMaxOfNDigits(number, -1); } @@ -887,8 +891,10 @@ private void print1ToMaxOfNDigits(char[] number, int digit) { private void printNumber(char[] number) { int index = 0; - while (index < number.length && number[index] == '0') index++; - while (index < number.length) System.out.print(number[index++]); + while (index < number.length && number[index] == '0') + index++; + while (index < number.length) + System.out.print(number[index++]); System.out.println(); } ``` @@ -909,7 +915,8 @@ private void printNumber(char[] number) { ```java public ListNode deleteNode(ListNode head, ListNode tobeDelete) { - if (head == null || head.next == null || tobeDelete == null) return null; + if (head == null || head.next == null || tobeDelete == null) + return null; if (tobeDelete.next != null) { // 要删除的节点不是尾节点 ListNode next = tobeDelete.next; @@ -917,7 +924,8 @@ public ListNode deleteNode(ListNode head, ListNode tobeDelete) { tobeDelete.next = next.next; } else { ListNode cur = head; - while (cur.next != tobeDelete) cur = cur.next; + while (cur.next != tobeDelete) + cur = cur.next; cur.next = null; } return head; @@ -936,10 +944,12 @@ public ListNode deleteNode(ListNode head, ListNode tobeDelete) { ```java public ListNode deleteDuplication(ListNode pHead) { - if (pHead == null || pHead.next == null) return pHead; + if (pHead == null || pHead.next == null) + return pHead; ListNode next = pHead.next; if (pHead.val == next.val) { - while (next != null && pHead.val == next.val) next = next.next; + while (next != null && pHead.val == next.val) + next = next.next; return deleteDuplication(next); } else { pHead.next = deleteDuplication(pHead.next); @@ -977,24 +987,19 @@ public boolean match(char[] str, char[] pattern) { int m = str.length, n = pattern.length; boolean[][] dp = new boolean[m + 1][n + 1]; dp[0][0] = true; - for (int i = 1; i <= n; i++) { - if (pattern[i - 1] == '*') { + for (int i = 1; i <= n; i++) + if (pattern[i - 1] == '*') dp[0][i] = dp[0][i - 2]; - } - } - for (int i = 1; i <= m; i++) { - for (int j = 1; j <= n; j++) { - if (str[i - 1] == pattern[j - 1] || pattern[j - 1] == '.') { + + for (int i = 1; i <= m; i++) + for (int j = 1; j <= n; j++) + if (str[i - 1] == pattern[j - 1] || pattern[j - 1] == '.') dp[i][j] = dp[i - 1][j - 1]; - } else if (pattern[j - 1] == '*') { - if (pattern[j - 2] == str[i - 1] || pattern[j - 2] == '.') { + else if (pattern[j - 1] == '*') + if (pattern[j - 2] == str[i - 1] || pattern[j - 2] == '.') dp[i][j] = dp[i][j - 1] || dp[i][j - 2] || dp[i - 1][j]; - } else { + else dp[i][j] = dp[i][j - 2]; - } - } - } - } return dp[m][n]; } ``` @@ -1027,13 +1032,18 @@ public boolean isNumeric(char[] str) { ```java public void reOrderArray(int[] nums) { - int oddCnt = 0; // 奇数个数 - for (int val : nums) if (val % 2 == 1) oddCnt++; + // 奇数个数 + int oddCnt = 0; + for (int val : nums) + if (val % 2 == 1) + oddCnt++; int[] copy = nums.clone(); int i = 0, j = oddCnt; for (int num : copy) { - if (num % 2 == 1) nums[i++] = num; - else nums[j++] = num; + if (num % 2 == 1) + nums[i++] = num; + else + nums[j++] = num; } } ``` @@ -1050,22 +1060,19 @@ public void reOrderArray(int[] nums) { ```java public ListNode FindKthToTail(ListNode head, int k) { - if (head == null) { + if (head == null) return null; - } - ListNode P1, P2; - P1 = P2 = head; - while (P1 != null && k-- > 0) { - P1 = P1.next; - } - if (k > 0) { + ListNode fast, slow; + fast = slow = head; + while (fast != null && k-- > 0) + fast = fast.next; + if (k > 0) return null; + while (fast != null) { + fast = fast.next; + slow = slow.next; } - while (P1 != null) { - P1 = P1.next; - P2 = P2.next; - } - return P2; + return slow; } ``` @@ -1083,7 +1090,8 @@ public ListNode FindKthToTail(ListNode head, int k) { ```java public ListNode EntryNodeOfLoop(ListNode pHead) { - if (pHead == null) return null; + if (pHead == null) + return null; ListNode slow = pHead, fast = pHead; while (fast != null && fast.next != null) { fast = fast.next.next; @@ -1111,7 +1119,8 @@ public ListNode EntryNodeOfLoop(ListNode pHead) { ```java public ListNode ReverseList(ListNode head) { - if (head == null || head.next == null) return head; + if (head == null || head.next == null) + return head; ListNode next = head.next; head.next = null; ListNode newHead = ReverseList(next); @@ -1149,8 +1158,10 @@ public ListNode ReverseList(ListNode head) { ```java public ListNode Merge(ListNode list1, ListNode list2) { - if (list1 == null) return list2; - if (list2 == null) return list1; + if (list1 == null) + return list2; + if (list2 == null) + return list1; if (list1.val <= list2.val) { list1.next = Merge(list1.next, list2); return list1; @@ -1177,8 +1188,10 @@ public ListNode Merge(ListNode list1, ListNode list2) { } cur = cur.next; } - if (list1 != null) cur.next = list1; - if (list2 != null) cur.next = list2; + if (list1 != null) + cur.next = list1; + if (list2 != null) + cur.next = list2; return head.next; } ``` @@ -1195,14 +1208,18 @@ public ListNode Merge(ListNode list1, ListNode list2) { ```java public boolean HasSubtree(TreeNode root1, TreeNode root2) { - if (root1 == null || root2 == null) return false; + if (root1 == null || root2 == null) + return false; return isSubtree(root1, root2) || HasSubtree(root1.left, root2) || HasSubtree(root1.right, root2); } private boolean isSubtree(TreeNode root1, TreeNode root2) { - if (root2 == null) return true; - if (root1 == null) return false; - if (root1.val != root2.val) return false; + if (root2 == null) + return true; + if (root1 == null) + return false; + if (root1.val != root2.val) + return false; return isSubtree(root1.left, root2.left) && isSubtree(root1.right, root2.right); } ``` @@ -1219,7 +1236,8 @@ private boolean isSubtree(TreeNode root1, TreeNode root2) { ```java public void Mirror(TreeNode root) { - if (root == null) return; + if (root == null) + return; swap(root); Mirror(root.left); Mirror(root.right); @@ -1244,14 +1262,18 @@ private void swap(TreeNode root) { ```java boolean isSymmetrical(TreeNode pRoot) { - if (pRoot == null) return true; + if (pRoot == null) + return true; return isSymmetrical(pRoot.left, pRoot.right); } boolean isSymmetrical(TreeNode t1, TreeNode t2) { - if (t1 == null && t2 == null) return true; - if (t1 == null || t2 == null) return false; - if (t1.val != t2.val) return false; + if (t1 == null && t2 == null) + return true; + if (t1 == null || t2 == null) + return false; + if (t1.val != t2.val) + return false; return isSymmetrical(t1.left, t2.right) && isSymmetrical(t1.right, t2.left); } ``` @@ -1273,10 +1295,16 @@ public ArrayList printMatrix(int[][] matrix) { ArrayList ret = new ArrayList<>(); int r1 = 0, r2 = matrix.length - 1, c1 = 0, c2 = matrix[0].length - 1; while (r1 <= r2 && c1 <= c2) { - for (int i = c1; i <= c2; i++) ret.add(matrix[r1][i]); - for (int i = r1 + 1; i <= r2; i++) ret.add(matrix[i][c2]); - if (r1 != r2) for (int i = c2 - 1; i >= c1; i--) ret.add(matrix[r2][i]); - if (c1 != c2) for (int i = r2 - 1; i > r1; i--) ret.add(matrix[i][c1]); + for (int i = c1; i <= c2; i++) + ret.add(matrix[r1][i]); + for (int i = r1 + 1; i <= r2; i++) + ret.add(matrix[i][c2]); + if (r1 != r2) + for (int i = c2 - 1; i >= c1; i--) + ret.add(matrix[r2][i]); + if (c1 != c2) + for (int i = r2 - 1; i > r1; i--) + ret.add(matrix[i][c1]); r1++; r2--; c1++; c2--; } return ret; @@ -1365,14 +1393,17 @@ public boolean IsPopOrder(int[] pushA, int[] popA) { public ArrayList PrintFromTopToBottom(TreeNode root) { Queue queue = new LinkedList<>(); ArrayList ret = new ArrayList<>(); - if (root == null) return ret; + if (root == null) + return ret; queue.add(root); while (!queue.isEmpty()) { int cnt = queue.size(); while (cnt-- > 0) { TreeNode t = queue.poll(); - if (t.left != null) queue.add(t.left); - if (t.right != null) queue.add(t.right); + if (t.left != null) + queue.add(t.left); + if (t.right != null) + queue.add(t.right); ret.add(t.val); } } @@ -1393,7 +1424,8 @@ public ArrayList PrintFromTopToBottom(TreeNode root) { ```java ArrayList> Print(TreeNode pRoot) { ArrayList> ret = new ArrayList<>(); - if (pRoot == null) return ret; + if (pRoot == null) + return ret; Queue queue = new LinkedList<>(); queue.add(pRoot); while (!queue.isEmpty()) { @@ -1402,8 +1434,10 @@ ArrayList> Print(TreeNode pRoot) { while (cnt-- > 0) { TreeNode node = queue.poll(); list.add(node.val); - if (node.left != null) queue.add(node.left); - if (node.right != null) queue.add(node.right); + if (node.left != null) + queue.add(node.left); + if (node.right != null) + queue.add(node.right); } ret.add(list); } @@ -1424,7 +1458,8 @@ ArrayList> Print(TreeNode pRoot) { ```java public ArrayList> Print(TreeNode pRoot) { ArrayList> ret = new ArrayList<>(); - if (pRoot == null) return ret; + if (pRoot == null) + return ret; Queue queue = new LinkedList<>(); queue.add(pRoot); boolean reverse = false; @@ -1434,10 +1469,13 @@ public ArrayList> Print(TreeNode pRoot) { while (cnt-- > 0) { TreeNode node = queue.poll(); list.add(node.val); - if (node.left != null) queue.add(node.left); - if (node.right != null) queue.add(node.right); + if (node.left != null) + queue.add(node.left); + if (node.right != null) + queue.add(node.right); } - if (reverse) Collections.reverse(list); + if (reverse) + Collections.reverse(list); reverse = !reverse; ret.add(list); } @@ -1461,26 +1499,21 @@ public ArrayList> Print(TreeNode pRoot) { ```java public boolean VerifySquenceOfBST(int[] sequence) { - if (sequence == null || sequence.length == 0) { + if (sequence == null || sequence.length == 0) return false; - } return verify(sequence, 0, sequence.length - 1); } private boolean verify(int[] sequence, int first, int last) { - if (last - first <= 1) { + if (last - first <= 1) return true; - } int rootVal = sequence[last]; int cutIndex = first; - while (cutIndex < last && sequence[cutIndex] <= rootVal) { + while (cutIndex < last && sequence[cutIndex] <= rootVal) cutIndex++; - } - for (int i = cutIndex + 1; i < last; i++) { - if (sequence[i] < rootVal) { + for (int i = cutIndex + 1; i < last; i++) + if (sequence[i] < rootVal) return false; - } - } return verify(sequence, first, cutIndex - 1) && verify(sequence, cutIndex, last - 1); } ``` @@ -1508,7 +1541,8 @@ public ArrayList> FindPath(TreeNode root, int target) { } private void backtracking(TreeNode node, int target, ArrayList path) { - if (node == null) return; + if (node == null) + return; path.add(node.val); target -= node.val; if (target == 0 && node.left == null && node.right == null) { @@ -1547,9 +1581,8 @@ private void backtracking(TreeNode node, int target, ArrayList path) { ```java public RandomListNode Clone(RandomListNode pHead) { - if (pHead == null) { + if (pHead == null) return null; - } // 插入新节点 RandomListNode cur = pHead; while (cur != null) { @@ -1562,9 +1595,8 @@ public RandomListNode Clone(RandomListNode pHead) { cur = pHead; while (cur != null) { RandomListNode clone = cur.next; - if (cur.random != null) { + if (cur.random != null) clone.random = cur.random.next; - } cur = clone.next; } // 拆分 @@ -1596,18 +1628,22 @@ private TreeNode pre = null; private TreeNode head = null; public TreeNode Convert(TreeNode root) { - if (root == null) return null; + if (root == null) + return null; inOrder(root); return head; } private void inOrder(TreeNode node) { - if (node == null) return; + if (node == null) + return; inOrder(node.left); node.left = pre; - if (pre != null) pre.right = node; + if (pre != null) + pre.right = node; pre = node; - if (head == null) head = node; + if (head == null) + head = node; inOrder(node.right); } ``` @@ -1628,7 +1664,8 @@ public class Solution { private String deserializeStr; public String Serialize(TreeNode root) { - if (root == null) return "#"; + if (root == null) + return "#"; return root.val + " " + Serialize(root.left) + " " + Serialize(root.right); } @@ -1638,11 +1675,13 @@ public class Solution { } private TreeNode Deserialize() { - if (deserializeStr.length() == 0) return null; + if (deserializeStr.length() == 0) + return null; int index = deserializeStr.indexOf(" "); String node = index == -1 ? deserializeStr : deserializeStr.substring(0, index); deserializeStr = index == -1 ? "" : deserializeStr.substring(index + 1); - if (node.equals("#")) return null; + if (node.equals("#")) + return null; int val = Integer.valueOf(node); TreeNode t = new TreeNode(val); t.left = Deserialize(); @@ -1666,7 +1705,8 @@ public class Solution { private ArrayList ret = new ArrayList<>(); public ArrayList Permutation(String str) { - if (str.length() == 0) return ret; + if (str.length() == 0) + return ret; char[] chars = str.toCharArray(); Arrays.sort(chars); backtracking(chars, new boolean[chars.length], new StringBuffer()); @@ -1679,8 +1719,10 @@ private void backtracking(char[] chars, boolean[] hasUsed, StringBuffer s) { return; } for (int i = 0; i < chars.length; i++) { - if (hasUsed[i]) continue; - if (i != 0 && chars[i] == chars[i - 1] && !hasUsed[i - 1]) continue; // 保证不重复 + if (hasUsed[i]) + continue; + if (i != 0 && chars[i] == chars[i - 1] && !hasUsed[i - 1]) // 保证不重复 + continue; hasUsed[i] = true; s.append(chars[i]); backtracking(chars, hasUsed, s); @@ -1711,11 +1753,9 @@ public int MoreThanHalfNum_Solution(int[] nums) { } } int cnt = 0; - for (int val : nums) { - if (val == majority) { + for (int val : nums) + if (val == majority) cnt++; - } - } return cnt > nums.length / 2 ? majority : 0; } ``` @@ -1737,14 +1777,13 @@ public int MoreThanHalfNum_Solution(int[] nums) { ```java public ArrayList GetLeastNumbers_Solution(int[] nums, int k) { - if (k > nums.length || k <= 0) return new ArrayList<>(); + if (k > nums.length || k <= 0) + return new ArrayList<>(); int kthSmallest = findKthSmallest(nums, k - 1); ArrayList ret = new ArrayList<>(); - for (int val : nums) { - if (val <= kthSmallest && ret.size() < k) { + for (int val : nums) + if (val <= kthSmallest && ret.size() < k) ret.add(val); - } - } return ret; } @@ -1752,9 +1791,12 @@ public int findKthSmallest(int[] nums, int k) { int l = 0, h = nums.length - 1; while (l < h) { int j = partition(nums, l, h); - if (j == k) break; - if (j > k) h = j - 1; - else l = j + 1; + if (j == k) + break; + if (j > k) + h = j - 1; + else + l = j + 1; } return nums[k]; } @@ -1764,7 +1806,8 @@ private int partition(int[] nums, int l, int h) { while (true) { while (i < h && nums[++i] < nums[l]) ; while (j > l && nums[l] < nums[--j]) ; - if (i >= j) break; + if (i >= j) + break; swap(nums, i, j); } swap(nums, l, j); @@ -1787,13 +1830,13 @@ private void swap(int[] nums, int i, int j) { ```java public ArrayList GetLeastNumbers_Solution(int[] nums, int k) { - if (k > nums.length || k <= 0) return new ArrayList<>(); + if (k > nums.length || k <= 0) + return new ArrayList<>(); PriorityQueue maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1); for (int num : nums) { maxHeap.add(num); - if (maxHeap.size() > k) { + if (maxHeap.size() > k) maxHeap.poll(); - } } ArrayList ret = new ArrayList<>(maxHeap); return ret; @@ -1835,11 +1878,10 @@ public class Solution { } public Double GetMedian() { - if (N % 2 == 0) { + if (N % 2 == 0) return (left.peek() + right.peek()) / 2.0; - } else { + else return (double) right.peek(); - } } } ``` @@ -1862,13 +1904,13 @@ public class Solution { public void Insert(char ch) { cnts[ch]++; queue.add(ch); - while (!queue.isEmpty() && cnts[queue.peek()] > 1) { + while (!queue.isEmpty() && cnts[queue.peek()] > 1) queue.poll(); - } } public char FirstAppearingOnce() { - if (queue.isEmpty()) return '#'; + if (queue.isEmpty()) + return '#'; return queue.peek(); } } @@ -1885,17 +1927,17 @@ public class Solution { ## 解题思路 ```java -public int FindGreatestSumOfSubArray(int[] nums) { - if (nums.length == 0) return 0; - int ret = Integer.MIN_VALUE; - int sum = 0; - for (int val : nums) { - if (sum <= 0) sum = val; - else sum += val; - ret = Math.max(ret, sum); - } - return ret; -} + public int FindGreatestSumOfSubArray(int[] nums) { + if (nums.length == 0) + return 0; + int ret = Integer.MIN_VALUE; + int sum = 0; + for (int val : nums) { + sum = sum <= 0 ? val : sum + val; + ret = Math.max(ret, sum); + } + return ret; + } ``` # 43. 从 1 到 n 整数中 1 出现的次数 @@ -1927,14 +1969,14 @@ public int NumberOf1Between1AndN_Solution(int n) { ```java public int digitAtIndex(int index) { - if (index < 0) return -1; + if (index < 0) + return -1; int digit = 1; while (true) { int amount = getAmountOfDigit(digit); int totalAmount = amount * digit; - if (index < totalAmount) { + if (index < totalAmount) return digitAtIndex(index, digit); - } index -= totalAmount; digit++; } @@ -1945,7 +1987,8 @@ public int digitAtIndex(int index) { * 例如 digit = 2,return 90 */ private int getAmountOfDigit(int digit) { - if (digit == 1) return 10; + if (digit == 1) + return 10; return (int) Math.pow(10, digit - 1) * 9; } @@ -1963,7 +2006,8 @@ private int digitAtIndex(int index, int digit) { * 例如 digit = 2 return 10 */ private int beginNumber(int digit) { - if (digit == 1) return 0; + if (digit == 1) + return 0; return (int) Math.pow(10, digit - 1); } ``` @@ -1984,10 +2028,12 @@ private int beginNumber(int digit) { public String PrintMinNumber(int[] numbers) { int n = numbers.length; String[] nums = new String[n]; - for (int i = 0; i < n; i++) nums[i] = numbers[i] + ""; + for (int i = 0; i < n; i++) + nums[i] = numbers[i] + ""; Arrays.sort(nums, (s1, s2) -> (s1 + s2).compareTo(s2 + s1)); String ret = ""; - for (String str : nums) ret += str; + for (String str : nums) + ret += str; return ret; } ``` @@ -2004,17 +2050,21 @@ public String PrintMinNumber(int[] numbers) { ```java public int numDecodings(String s) { - if (s == null || s.length() == 0) return 0; + if (s == null || s.length() == 0) + return 0; int n = s.length(); int[] dp = new int[n + 1]; dp[0] = 1; dp[1] = s.charAt(0) == '0' ? 0 : 1; for (int i = 2; i <= n; i++) { int one = Integer.valueOf(s.substring(i - 1, i)); - if (one != 0) dp[i] += dp[i - 1]; - if (s.charAt(i - 2) == '0') continue; + if (one != 0) + dp[i] += dp[i - 1]; + if (s.charAt(i - 2) == '0') + continue; int two = Integer.valueOf(s.substring(i - 2, i)); - if (two <= 26) dp[i] += dp[i - 2]; + if (two <= 26) + dp[i] += dp[i - 2]; } return dp[n]; } @@ -2043,14 +2093,14 @@ public int numDecodings(String s) { ```java public int getMost(int[][] values) { - if (values == null || values.length == 0 || values[0].length == 0) return 0; + if (values == null || values.length == 0 || values[0].length == 0) + return 0; int m = values.length, n = values[0].length; int[] dp = new int[n]; for (int i = 0; i < m; i++) { dp[0] += values[i][0]; - for (int j = 1; j < n; j++) { + for (int j = 1; j < n; j++) dp[j] = Math.max(dp[j], dp[j - 1]) + values[i][j]; - } } return dp[n - 1]; } @@ -2098,16 +2148,20 @@ public int longestSubStringWithoutDuplication(String str) { ```java public int GetUglyNumber_Solution(int index) { - if (index <= 6) return index; + if (index <= 6) + return index; int i2 = 0, i3 = 0, i5 = 0; int[] dp = new int[index]; dp[0] = 1; for (int i = 1; i < index; i++) { int n2 = dp[i2] * 2, n3 = dp[i3] * 3, n5 = dp[i5] * 5; dp[i] = Math.min(n2, Math.min(n3, n5)); - if (dp[i] == n2) i2++; - if (dp[i] == n3) i3++; - if (dp[i] == n5) i5++; + if (dp[i] == n2) + i2++; + if (dp[i] == n3) + i3++; + if (dp[i] == n5) + i5++; } return dp[index - 1]; } @@ -2128,8 +2182,11 @@ public int GetUglyNumber_Solution(int index) { ```java public int FirstNotRepeatingChar(String str) { int[] cnts = new int[256]; - for (int i = 0; i < str.length(); i++) cnts[str.charAt(i)]++; - for (int i = 0; i < str.length(); i++) if (cnts[str.charAt(i)] == 1) return i; + for (int i = 0; i < str.length(); i++) + cnts[str.charAt(i)]++; + for (int i = 0; i < str.length(); i++) + if (cnts[str.charAt(i)] == 1) + return i; return -1; } ``` @@ -2141,12 +2198,15 @@ public int FirstNotRepeatingChar(String str) { BitSet bs1 = new BitSet(256); BitSet bs2 = new BitSet(256); for (char c : str.toCharArray()) { - if (!bs1.get(c) && !bs2.get(c)) bs1.set(c); // 0 0 - else if (bs1.get(c) && !bs2.get(c)) bs2.set(c); // 0 1 + if (!bs1.get(c) && !bs2.get(c)) + bs1.set(c); // 0 0 + else if (bs1.get(c) && !bs2.get(c)) + bs2.set(c); // 0 1 } for (int i = 0; i < str.length(); i++) { char c = str.charAt(i); - if (bs1.get(c) && !bs2.get(c)) return i; + if (bs1.get(c) && !bs2.get(c)) + return i; } return -1; } @@ -2173,9 +2233,8 @@ public int InversePairs(int[] nums) { } private void mergeSort(int[] nums, int l, int h) { - if (h - l < 1) { + if (h - l < 1) return; - } int m = l + (h - l) / 2; mergeSort(nums, l, m); mergeSort(nums, m + 1, h); @@ -2185,21 +2244,20 @@ private void mergeSort(int[] nums, int l, int h) { private void merge(int[] nums, int l, int m, int h) { int i = l, j = m + 1, k = l; while (i <= m || j <= h) { - if (i > m) { + if (i > m) tmp[k] = nums[j++]; - } else if (j > h) { + else if (j > h) tmp[k] = nums[i++]; - } else if (nums[i] < nums[j]) { + else if (nums[i] < nums[j]) tmp[k] = nums[i++]; - } else { + else { tmp[k] = nums[j++]; this.cnt += m - i + 1; // a[i] > a[j],说明 a[i...mid] 都大于 a[j] } k++; } - for (k = l; k <= h; k++) { + for (k = l; k <= h; k++) nums[k] = tmp[k]; - } } ``` @@ -2255,8 +2313,10 @@ private int binarySearch(int[] nums, int K) { int l = 0, h = nums.length; while (l < h) { int m = l + (h - l) / 2; - if (nums[m] >= K) h = m; - else l = m + 1; + if (nums[m] >= K) + h = m; + else + l = m + 1; } return l; } @@ -2280,14 +2340,12 @@ public TreeNode KthNode(TreeNode pRoot, int k) { } private void inOrder(TreeNode root, int k) { - if (root == null || cnt >= k) { + if (root == null || cnt >= k) return; - } inOrder(root.left, k); cnt++; - if (cnt == k) { + if (cnt == k) ret = root; - } inOrder(root.right, k); } ``` @@ -2331,15 +2389,16 @@ public boolean IsBalanced_Solution(TreeNode root) { } private int height(TreeNode root) { - if (root == null) return 0; + if (root == null) + return 0; int left = height(root.left); int right = height(root.right); - if (Math.abs(left - right) > 1) isBalanced = false; + if (Math.abs(left - right) > 1) + isBalanced = false; return 1 + Math.max(left, right); } ``` - # 56. 数组中只出现一次的数字 [NowCoder](https://www.nowcoder.com/practice/e02fdb54d7524710a7d664d082bb7811?tpId=13&tqId=11193&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking) @@ -2359,17 +2418,15 @@ diff &= -diff 得到出 diff 最右侧不为 0 的位,也就是不存在重复 ```java public void FindNumsAppearOnce(int[] nums, int num1[], int num2[]) { int diff = 0; - for (int num : nums) { + for (int num : nums) diff ^= num; - } // 得到最右一位 diff &= -diff; for (int num : nums) { - if ((num & diff) == 0) { + if ((num & diff) == 0) num1[0] ^= num; - } else { + else num2[0] ^= num; - } } } ``` @@ -2395,9 +2452,12 @@ public ArrayList FindNumbersWithSum(int[] array, int sum) { int i = 0, j = array.length - 1; while (i < j) { int cur = array[i] + array[j]; - if (cur == sum) return new ArrayList<>(Arrays.asList(array[i], array[j])); - if (cur < sum) i++; - else j--; + if (cur == sum) + return new ArrayList<>(Arrays.asList(array[i], array[j])); + if (cur < sum) + i++; + else + j--; } return new ArrayList<>(); } @@ -2434,9 +2494,8 @@ public ArrayList> FindContinuousSequence(int sum) { curSum += end; } else { ArrayList list = new ArrayList<>(); - for (int i = start; i <= end; i++) { + for (int i = start; i <= end; i++) list.add(i); - } ret.add(list); curSum -= start; start++; @@ -2481,9 +2540,8 @@ public String ReverseSentence(String str) { } private void reverse(char[] c, int i, int j) { - while (i < j) { + while (i < j) swap(c, i++, j--); - } } private void swap(char[] c, int i, int j) { @@ -2507,7 +2565,8 @@ private void swap(char[] c, int i, int j) { ```java public String LeftRotateString(String str, int n) { - if (n >= str.length()) return str; + if (n >= str.length()) + return str; char[] chars = str.toCharArray(); reverse(chars, 0, n - 1); reverse(chars, n, chars.length - 1); @@ -2516,9 +2575,8 @@ public String LeftRotateString(String str, int n) { } private void reverse(char[] chars, int i, int j) { - while (i < j) { + while (i < j) swap(chars, i++, j--); - } } private void swap(char[] chars, int i, int j) { @@ -2542,8 +2600,10 @@ private void swap(char[] chars, int i, int j) { public ArrayList maxInWindows(int[] num, int size) { ArrayList ret = new ArrayList<>(); PriorityQueue heap = new PriorityQueue((o1, o2) -> o2 - o1); - if (size > num.length || size < 1) return ret; - for (int i = 0; i < size; i++) heap.add(num[i]); + if (size > num.length || size < 1) + return ret; + for (int i = 0; i < size; i++) + heap.add(num[i]); ret.add(heap.peek()); for (int i = 1, j = i + size - 1; j < num.length; i++, j++) { heap.remove(num[i - 1]); @@ -2575,21 +2635,18 @@ public List> dicesSum(int n) { final int face = 6; final int pointNum = face * n; long[][] dp = new long[n + 1][pointNum + 1]; - for (int i = 1; i <= face; i++) { + for (int i = 1; i <= face; i++) dp[1][i] = 1; - } - for (int i = 2; i <= n; i++) { - for (int j = i; j <= pointNum; j++) { // 使用 i 个骰子最小点数为 i - for (int k = 1; k <= face && k <= j; k++) { + + for (int i = 2; i <= n; i++) + for (int j = i; j <= pointNum; j++) // 使用 i 个骰子最小点数为 i + for (int k = 1; k <= face && k <= j; k++) dp[i][j] += dp[i - 1][j - k]; - } - } - } + final double totalNum = Math.pow(6, n); List> ret = new ArrayList<>(); - for (int i = n; i <= pointNum; i++) { + for (int i = n; i <= pointNum; i++) ret.add(new AbstractMap.SimpleEntry<>(i, dp[n][i] / totalNum)); - } return ret; } ``` @@ -2603,25 +2660,20 @@ public List> dicesSum(int n) { final int face = 6; final int pointNum = face * n; long[][] dp = new long[2][pointNum + 1]; - for (int i = 1; i <= face; i++) { + for (int i = 1; i <= face; i++) dp[0][i] = 1; - } int flag = 1; for (int i = 2; i <= n; i++, flag = 1 - flag) { - for (int j = 0; j <= pointNum; j++) { + for (int j = 0; j <= pointNum; j++) dp[flag][j] = 0; // 旋转数组清零 - } - for (int j = i; j <= pointNum; j++) { // 使用 i 个骰子最小点数为 i - for (int k = 1; k <= face && k <= j; k++) { + for (int j = i; j <= pointNum; j++) // 使用 i 个骰子最小点数为 i + for (int k = 1; k <= face && k <= j; k++) dp[flag][j] += dp[1 - flag][j - k]; - } - } } final double totalNum = Math.pow(6, n); List> ret = new ArrayList<>(); - for (int i = n; i <= pointNum; i++) { + for (int i = n; i <= pointNum; i++) ret.add(new AbstractMap.SimpleEntry<>(i, dp[1 - flag][i] / totalNum)); - } return ret; } ``` @@ -2638,12 +2690,16 @@ public List> dicesSum(int n) { ```java public boolean isContinuous(int[] nums) { - if (nums.length < 5) return false; + if (nums.length < 5) + return false; Arrays.sort(nums); int cnt = 0; - for (int num : nums) if (num == 0) cnt++; + for (int num : nums) + if (num == 0) + cnt++; for (int i = cnt; i < nums.length - 1; i++) { - if (nums[i + 1] == nums[i]) return false; + if (nums[i + 1] == nums[i]) + return false; cnt -= nums[i + 1] - nums[i] - 1; } return cnt >= 0; @@ -2664,8 +2720,10 @@ public boolean isContinuous(int[] nums) { ```java public int LastRemaining_Solution(int n, int m) { - if (n == 0) return -1; - if (n == 1) return 0; + if (n == 0) + return -1; + if (n == 1) + return 0; return (LastRemaining_Solution(n - 1, m) + m) % n; } ``` @@ -2684,7 +2742,8 @@ public int LastRemaining_Solution(int n, int m) { ```java public int maxProfit(int[] prices) { - if (prices == null || prices.length == 0) return 0; + if (prices == null || prices.length == 0) + return 0; int n = prices.length; int soFarMin = prices[0]; int maxProfit = 0; @@ -2754,12 +2813,10 @@ public int Add(int num1,int num2) { public int[] multiply(int[] A) { int n = A.length; int[] B = new int[n]; - for (int i = 0, product = 1; i < n; product *= A[i], i++) { + for (int i = 0, product = 1; i < n; product *= A[i], i++) B[i] = product; - } - for (int i = n - 1, product = 1; i >= 0; product *= A[i], i--) { + for (int i = n - 1, product = 1; i >= 0; product *= A[i], i--) B[i] *= product; - } return B; } ``` @@ -2786,13 +2843,16 @@ Output: ```java public int StrToInt(String str) { - if (str.length() == 0) return 0; + if (str.length() == 0) + return 0; char[] chars = str.toCharArray(); boolean isNegative = chars[0] == '-'; int ret = 0; for (int i = 0; i < chars.length; i++) { - if (i == 0 && (chars[i] == '+' || chars[i] == '-')) continue; - if (chars[i] < '0' || chars[i] > '9') return 0; // 非法输入 + if (i == 0 && (chars[i] == '+' || chars[i] == '-')) + continue; + if (chars[i] < '0' || chars[i] > '9') + return 0; // 非法输入 ret = ret * 10 + (chars[i] - '0'); } return isNegative ? -ret : ret; @@ -2813,9 +2873,12 @@ public int StrToInt(String str) { ```java public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { - if (root == null) return root; - if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q); - if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q); + if (root == null) + return root; + if (root.val > p.val && root.val > q.val) + return lowestCommonAncestor(root.left, p, q); + if (root.val < p.val && root.val < q.val) + return lowestCommonAncestor(root.right, p, q); return root; } ``` @@ -2830,7 +2893,8 @@ public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { ```java public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { - if (root == null || root == p || root == q) return root; + if (root == null || root == p || root == q) + return root; TreeNode left = lowestCommonAncestor(root.left, p, q); TreeNode right = lowestCommonAncestor(root.right, p, q); return left == null ? right : right == null ? left : root;