auto commit
This commit is contained in:
parent
3c1496ef64
commit
a532e92950
@ -4588,12 +4588,18 @@ For example, given nums = [0, 1, 0, 3, 12], after calling your function, nums sh
|
||||
```java
|
||||
public void moveZeroes(int[] nums) {
|
||||
int idx = 0;
|
||||
for (int num : nums) if (num != 0) nums[idx++] = num;
|
||||
while (idx < nums.length) nums[idx++] = 0;
|
||||
for (int num : nums) {
|
||||
if (num != 0) {
|
||||
nums[idx++] = num;
|
||||
}
|
||||
}
|
||||
while (idx < nums.length) {
|
||||
nums[idx++] = 0;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**调整矩阵**
|
||||
**改变矩阵维度**
|
||||
|
||||
[566. Reshape the Matrix (Easy)](https://leetcode.com/problems/reshape-the-matrix/description/)
|
||||
|
||||
@ -4603,8 +4609,10 @@ nums =
|
||||
[[1,2],
|
||||
[3,4]]
|
||||
r = 1, c = 4
|
||||
|
||||
Output:
|
||||
[[1,2,3,4]]
|
||||
|
||||
Explanation:
|
||||
The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.
|
||||
```
|
||||
@ -4612,16 +4620,18 @@ The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matr
|
||||
```java
|
||||
public int[][] matrixReshape(int[][] nums, int r, int c) {
|
||||
int m = nums.length, n = nums[0].length;
|
||||
if (m * n != r * c) return nums;
|
||||
int[][] ret = new int[r][c];
|
||||
if (m * n != r * c) {
|
||||
return nums;
|
||||
}
|
||||
int[][] reshapedNums = new int[r][c];
|
||||
int index = 0;
|
||||
for (int i = 0; i < r; i++) {
|
||||
for (int j = 0; j < c; j++) {
|
||||
ret[i][j] = nums[index / n][index % n];
|
||||
reshapedNums[i][j] = nums[index / n][index % n];
|
||||
index++;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
return reshapedNums;
|
||||
}
|
||||
```
|
||||
|
||||
@ -4632,15 +4642,15 @@ public int[][] matrixReshape(int[][] nums, int r, int c) {
|
||||
```java
|
||||
public int findMaxConsecutiveOnes(int[] nums) {
|
||||
int max = 0, cur = 0;
|
||||
for (int num : nums) {
|
||||
cur = num == 0 ? 0 : cur + 1;
|
||||
for (int x : nums) {
|
||||
cur = x == 0 ? 0 : cur + 1;
|
||||
max = Math.max(max, cur);
|
||||
}
|
||||
return max;
|
||||
}
|
||||
```
|
||||
|
||||
**一个数组元素在 [1, n] 之间,其中一个数被替换为另一个数,找出丢失的数和重复的数**
|
||||
**一个数组元素在 [1, n] 之间,其中一个数被替换为另一个数,找出重复的数和丢失的数**
|
||||
|
||||
[645. Set Mismatch (Easy)](https://leetcode.com/problems/set-mismatch/description/)
|
||||
|
||||
@ -4656,24 +4666,27 @@ Output: [2,3]
|
||||
|
||||
最直接的方法是先对数组进行排序,这种方法时间复杂度为 O(NlogN)。本题可以以 O(N) 的时间复杂度、O(1) 空间复杂度来求解。
|
||||
|
||||
主要思想是通过交换数组元素,使得数组上的元素在正确的位置上。遍历数组,如果第 i 位上的元素不是 i + 1,那么就交换第 i 位和 nums[i] - 1 位上的元素,使得 num[i] - 1 位置上的元素为 nums[i],也就是该位置上的元素是正确的。
|
||||
主要思想是通过交换数组元素,使得数组上的元素在正确的位置上。遍历数组,如果第 i 位上的元素不是 i + 1,那么一直交换第 i 位和 nums[i] - 1 位置上的元素。
|
||||
|
||||
```java
|
||||
public int[] findErrorNums(int[] nums) {
|
||||
for (int i = 0; i < nums.length; i++) {
|
||||
while (nums[i] != i + 1) {
|
||||
if (nums[i] == nums[nums[i] - 1]) {
|
||||
return new int[]{nums[nums[i] - 1], i + 1};
|
||||
}
|
||||
while (nums[i] != i + 1 && nums[nums[i] - 1] != nums[i]) {
|
||||
swap(nums, i, nums[i] - 1);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < nums.length; i++) {
|
||||
if (nums[i] != i + 1) {
|
||||
return new int[]{nums[i], i + 1};
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
private void swap(int[] nums, int i, int j) {
|
||||
int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp;
|
||||
int tmp = nums[i];
|
||||
nums[i] = nums[j];
|
||||
nums[j] = tmp;
|
||||
}
|
||||
```
|
||||
|
||||
@ -6408,22 +6421,24 @@ We cannot find a way to divide the set of nodes into two independent subsets.
|
||||
public boolean isBipartite(int[][] graph) {
|
||||
int[] colors = new int[graph.length];
|
||||
Arrays.fill(colors, -1);
|
||||
for (int i = 0; i < graph.length; i++) {
|
||||
if (colors[i] == -1 && !isBipartite(graph, i, 0, colors))
|
||||
for (int i = 0; i < graph.length; i++) { // 处理图不是连通的情况
|
||||
if (colors[i] == -1 && !isBipartite(i, 0, colors, graph)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private boolean isBipartite(int[][] graph, int node, int color, int[] colors) {
|
||||
if (colors[node] != -1)
|
||||
return colors[node] == color;
|
||||
|
||||
colors[node] = color;
|
||||
for (int next : graph[node])
|
||||
if (!isBipartite(graph, next, 1 - color, colors))
|
||||
private boolean isBipartite(int curNode, int curColor, int[] colors, int[][] graph) {
|
||||
if (colors[curNode] != -1) {
|
||||
return colors[curNode] == curColor;
|
||||
}
|
||||
colors[curNode] = curColor;
|
||||
for (int nextNode : graph[curNode]) {
|
||||
if (!isBipartite(nextNode, 1 - curColor, colors, graph)) {
|
||||
return false;
|
||||
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
```
|
||||
@ -6453,36 +6468,40 @@ return false
|
||||
```java
|
||||
public boolean canFinish(int numCourses, int[][] prerequisites) {
|
||||
List<Integer>[] graphic = new List[numCourses];
|
||||
for (int i = 0; i < numCourses; i++)
|
||||
for (int i = 0; i < numCourses; i++) {
|
||||
graphic[i] = new ArrayList<>();
|
||||
for (int[] pre : prerequisites)
|
||||
}
|
||||
for (int[] pre : prerequisites) {
|
||||
graphic[pre[0]].add(pre[1]);
|
||||
|
||||
}
|
||||
boolean[] globalMarked = new boolean[numCourses];
|
||||
boolean[] localMarked = new boolean[numCourses];
|
||||
for (int i = 0; i < numCourses; i++)
|
||||
if (!dfs(globalMarked, localMarked, graphic, i))
|
||||
for (int i = 0; i < numCourses; i++) {
|
||||
if (hasCycle(globalMarked, localMarked, graphic, i)) {
|
||||
return false;
|
||||
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private boolean dfs(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic, int curNode) {
|
||||
if (localMarked[curNode])
|
||||
return false;
|
||||
if (globalMarked[curNode])
|
||||
return true;
|
||||
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked,
|
||||
List<Integer>[] graphic, int curNode) {
|
||||
|
||||
if (localMarked[curNode]) {
|
||||
return true;
|
||||
}
|
||||
if (globalMarked[curNode]) {
|
||||
return false;
|
||||
}
|
||||
globalMarked[curNode] = true;
|
||||
localMarked[curNode] = true;
|
||||
|
||||
for (int nextNode : graphic[curNode])
|
||||
if (!dfs(globalMarked, localMarked, graphic, nextNode))
|
||||
return false;
|
||||
|
||||
for (int nextNode : graphic[curNode]) {
|
||||
if (hasCycle(globalMarked, localMarked, graphic, nextNode)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
localMarked[curNode] = false;
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
```
|
||||
|
||||
@ -6495,48 +6514,53 @@ private boolean dfs(boolean[] globalMarked, boolean[] localMarked, List<Integer>
|
||||
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].
|
||||
```
|
||||
|
||||
使用 DFS 来实现拓扑排序,使用一个栈存储后序遍历结果,这个栈元素的逆序结果就是拓扑排序结果。
|
||||
使用 DFS 来实现拓扑排序,使用一个栈存储后序遍历结果,这个栈的逆序结果就是拓扑排序结果。
|
||||
|
||||
证明:对于任何先序关系:v->w,后序遍历结果可以保证 w 先进入栈中,因此栈的逆序结果中 v 会在 w 之前。
|
||||
|
||||
```java
|
||||
public int[] findOrder(int numCourses, int[][] prerequisites) {
|
||||
List<Integer>[] graphic = new List[numCourses];
|
||||
for (int i = 0; i < numCourses; i++)
|
||||
for (int i = 0; i < numCourses; i++) {
|
||||
graphic[i] = new ArrayList<>();
|
||||
for (int[] pre : prerequisites)
|
||||
}
|
||||
for (int[] pre : prerequisites) {
|
||||
graphic[pre[0]].add(pre[1]);
|
||||
|
||||
Stack<Integer> topologyOrder = new Stack<>();
|
||||
}
|
||||
Stack<Integer> postOrder = new Stack<>();
|
||||
boolean[] globalMarked = new boolean[numCourses];
|
||||
boolean[] localMarked = new boolean[numCourses];
|
||||
for (int i = 0; i < numCourses; i++)
|
||||
if (!dfs(globalMarked, localMarked, graphic, i, topologyOrder))
|
||||
for (int i = 0; i < numCourses; i++) {
|
||||
if (hasCycle(globalMarked, localMarked, graphic, i, postOrder)) {
|
||||
return new int[0];
|
||||
|
||||
int[] ret = new int[numCourses];
|
||||
for (int i = numCourses - 1; i >= 0; i--)
|
||||
ret[i] = topologyOrder.pop();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
int[] orders = new int[numCourses];
|
||||
for (int i = numCourses - 1; i >= 0; i--) {
|
||||
orders[i] = postOrder.pop();
|
||||
}
|
||||
return orders;
|
||||
}
|
||||
|
||||
private boolean dfs(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic, int curNode, Stack<Integer> topologyOrder) {
|
||||
if (localMarked[curNode])
|
||||
return false;
|
||||
if (globalMarked[curNode])
|
||||
return true;
|
||||
private boolean hasCycle(boolean[] globalMarked, boolean[] localMarked, List<Integer>[] graphic,
|
||||
int curNode, Stack<Integer> postOrder) {
|
||||
|
||||
if (localMarked[curNode]) {
|
||||
return true;
|
||||
}
|
||||
if (globalMarked[curNode]) {
|
||||
return false;
|
||||
}
|
||||
globalMarked[curNode] = true;
|
||||
localMarked[curNode] = true;
|
||||
|
||||
for (int nextNode : graphic[curNode])
|
||||
if (!dfs(globalMarked, localMarked, graphic, nextNode, topologyOrder))
|
||||
return false;
|
||||
|
||||
for (int nextNode : graphic[curNode]) {
|
||||
if (hasCycle(globalMarked, localMarked, graphic, nextNode, postOrder)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
localMarked[curNode] = false;
|
||||
topologyOrder.push(curNode);
|
||||
|
||||
return true;
|
||||
postOrder.push(curNode);
|
||||
return false;
|
||||
}
|
||||
```
|
||||
|
||||
@ -6559,15 +6583,13 @@ Explanation: The given undirected graph will be like this:
|
||||
|
||||
题目描述:有一系列的边连成的图,找出一条边,移除它之后该图能够成为一棵树。
|
||||
|
||||
使用 Union-Find。
|
||||
|
||||
```java
|
||||
public int[] findRedundantConnection(int[][] edges) {
|
||||
int N = edges.length;
|
||||
UF uf = new UF(N);
|
||||
for (int[] e : edges) {
|
||||
int u = e[0], v = e[1];
|
||||
if (uf.find(u) == uf.find(v)) {
|
||||
if (uf.connect(u, v)) {
|
||||
return e;
|
||||
}
|
||||
uf.union(u, v);
|
||||
@ -6576,7 +6598,7 @@ public int[] findRedundantConnection(int[][] edges) {
|
||||
}
|
||||
|
||||
private class UF {
|
||||
int[] id;
|
||||
private int[] id;
|
||||
|
||||
UF(int N) {
|
||||
id = new int[N + 1];
|
||||
@ -6601,6 +6623,10 @@ private class UF {
|
||||
int find(int p) {
|
||||
return id[p];
|
||||
}
|
||||
|
||||
boolean connect(int u, int v) {
|
||||
return find(u) == find(v);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user