auto commit
This commit is contained in:
parent
ea236194c6
commit
9807ff6891
@ -1706,16 +1706,18 @@ public class Solution {
|
||||
```java
|
||||
private ArrayList<String> ret = new ArrayList<>();
|
||||
|
||||
public ArrayList<String> Permutation(String str) {
|
||||
public ArrayList<String> Permutation(String str)
|
||||
{
|
||||
if (str.length() == 0)
|
||||
return ret;
|
||||
char[] chars = str.toCharArray();
|
||||
Arrays.sort(chars);
|
||||
backtracking(chars, new boolean[chars.length], new StringBuffer());
|
||||
backtracking(chars, new boolean[chars.length], new StringBuilder());
|
||||
return ret;
|
||||
}
|
||||
|
||||
private void backtracking(char[] chars, boolean[] hasUsed, StringBuffer s) {
|
||||
private void backtracking(char[] chars, boolean[] hasUsed, StringBuilder s)
|
||||
{
|
||||
if (s.length() == chars.length) {
|
||||
ret.add(s.toString());
|
||||
return;
|
||||
@ -1723,7 +1725,7 @@ private void backtracking(char[] chars, boolean[] hasUsed, StringBuffer s) {
|
||||
for (int i = 0; i < chars.length; i++) {
|
||||
if (hasUsed[i])
|
||||
continue;
|
||||
if (i != 0 && chars[i] == chars[i - 1] && !hasUsed[i - 1]) // 保证不重复
|
||||
if (i != 0 && chars[i] == chars[i - 1] && !hasUsed[i - 1]) /* 保证不重复 */
|
||||
continue;
|
||||
hasUsed[i] = true;
|
||||
s.append(chars[i]);
|
||||
@ -1745,7 +1747,8 @@ private void backtracking(char[] chars, boolean[] hasUsed, StringBuffer s) {
|
||||
使用 cnt 来统计一个元素出现的次数,当遍历到的元素和统计元素不相等时,令 cnt--。如果前面查找了 i 个元素,且 cnt == 0 ,说明前 i 个元素没有 majority,或者有 majority,但是出现的次数少于 i / 2 ,因为如果多于 i / 2 的话 cnt 就一定不会为 0 。此时剩下的 n - i 个元素中,majority 的数目依然多于 (n - i) / 2,因此继续查找就能找出 majority。
|
||||
|
||||
```java
|
||||
public int MoreThanHalfNum_Solution(int[] nums) {
|
||||
public int MoreThanHalfNum_Solution(int[] nums)
|
||||
{
|
||||
int majority = nums[0];
|
||||
for (int i = 1, cnt = 1; i < nums.length; i++) {
|
||||
cnt = nums[i] == majority ? cnt + 1 : cnt - 1;
|
||||
@ -1776,18 +1779,20 @@ public int MoreThanHalfNum_Solution(int[] nums) {
|
||||
快速排序的 partition() 方法,会返回一个整数 j 使得 a[l..j-1] 小于等于 a[j],且 a[j+1..h] 大于等于 a[j],此时 a[j] 就是数组的第 j 大元素。可以利用这个特性找出数组的第 K 个元素,这种找第 K 个元素的算法称为快速选择算法。
|
||||
|
||||
```java
|
||||
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
|
||||
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k)
|
||||
{
|
||||
ArrayList<Integer> ret = new ArrayList<>();
|
||||
if (k > nums.length || k <= 0)
|
||||
return ret;
|
||||
int kthSmallest = findKthSmallest(nums, k - 1);
|
||||
// findKthSmallest 会改变数组,使得前 k 个数都是最小的 k 个数
|
||||
findKthSmallest(nums, k - 1);
|
||||
/* findKthSmallest 会改变数组,使得前 k 个数都是最小的 k 个数 */
|
||||
for (int i = 0; i < k; i++)
|
||||
ret.add(nums[i]);
|
||||
return ret;
|
||||
}
|
||||
|
||||
public int findKthSmallest(int[] nums, int k) {
|
||||
public void findKthSmallest(int[] nums, int k)
|
||||
{
|
||||
int l = 0, h = nums.length - 1;
|
||||
while (l < h) {
|
||||
int j = partition(nums, l, h);
|
||||
@ -1798,16 +1803,15 @@ public int findKthSmallest(int[] nums, int k) {
|
||||
else
|
||||
l = j + 1;
|
||||
}
|
||||
return nums[k];
|
||||
}
|
||||
|
||||
private int partition(int[] nums, int l, int h) {
|
||||
// 切分元素
|
||||
int parti = nums[l];
|
||||
private int partition(int[] nums, int l, int h)
|
||||
{
|
||||
int p = nums[l]; /* 切分元素 */
|
||||
int i = l, j = h + 1;
|
||||
while (true) {
|
||||
while (i != h && nums[++i] < parti) ;
|
||||
while (j != l && nums[--j] > parti) ;
|
||||
while (i != h && nums[++i] < p) ;
|
||||
while (j != l && nums[--j] > p) ;
|
||||
if (i >= j)
|
||||
break;
|
||||
swap(nums, i, j);
|
||||
@ -1816,7 +1820,8 @@ private int partition(int[] nums, int l, int h) {
|
||||
return j;
|
||||
}
|
||||
|
||||
private void swap(int[] nums, int i, int j) {
|
||||
private void swap(int[] nums, int i, int j)
|
||||
{
|
||||
int t = nums[i];
|
||||
nums[i] = nums[j];
|
||||
nums[j] = t;
|
||||
@ -1833,7 +1838,8 @@ private void swap(int[] nums, int i, int j) {
|
||||
维护一个大小为 K 的最小堆过程如下:在添加一个元素之后,如果大顶堆的大小大于 K,那么需要将大顶堆的堆顶元素去除。
|
||||
|
||||
```java
|
||||
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
|
||||
public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k)
|
||||
{
|
||||
if (k > nums.length || k <= 0)
|
||||
return new ArrayList<>();
|
||||
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1);
|
||||
@ -1842,8 +1848,7 @@ public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
|
||||
if (maxHeap.size() > k)
|
||||
maxHeap.poll();
|
||||
}
|
||||
ArrayList<Integer> ret = new ArrayList<>(maxHeap);
|
||||
return ret;
|
||||
return new ArrayList<>(maxHeap) ;
|
||||
}
|
||||
```
|
||||
|
||||
@ -1858,35 +1863,35 @@ public ArrayList<Integer> GetLeastNumbers_Solution(int[] nums, int k) {
|
||||
## 解题思路
|
||||
|
||||
```java
|
||||
public class Solution {
|
||||
// 大顶堆,存储左半边元素
|
||||
private PriorityQueue<Integer> left = new PriorityQueue<>((o1, o2) -> o2 - o1);
|
||||
// 小顶堆,存储右半边元素,并且右半边元素都大于左半边
|
||||
private PriorityQueue<Integer> right = new PriorityQueue<>();
|
||||
// 当前数据流读入的元素个数
|
||||
private int N = 0;
|
||||
/* 大顶堆,存储左半边元素 */
|
||||
private PriorityQueue<Integer> left = new PriorityQueue<>((o1, o2) -> o2 - o1);
|
||||
/* 小顶堆,存储右半边元素,并且右半边元素都大于左半边 */
|
||||
private PriorityQueue<Integer> right = new PriorityQueue<>();
|
||||
/* 当前数据流读入的元素个数 */
|
||||
private int N = 0;
|
||||
|
||||
public void Insert(Integer val) {
|
||||
// 插入要保证两个堆存于平衡状态
|
||||
if (N % 2 == 0) {
|
||||
// N 为偶数的情况下插入到右半边。
|
||||
// 因为右半边元素都要大于左半边,但是新插入的元素不一定比左半边元素来的大,
|
||||
// 因此需要先将元素插入左半边,然后利用左半边为大顶堆的特点,取出堆顶元素即为最大元素,此时插入右半边
|
||||
left.add(val);
|
||||
right.add(left.poll());
|
||||
} else {
|
||||
right.add(val);
|
||||
left.add(right.poll());
|
||||
}
|
||||
N++;
|
||||
public void Insert(Integer val)
|
||||
{
|
||||
/* 插入要保证两个堆存于平衡状态 */
|
||||
if (N % 2 == 0) {
|
||||
/* N 为偶数的情况下插入到右半边。
|
||||
* 因为右半边元素都要大于左半边,但是新插入的元素不一定比左半边元素来的大,
|
||||
* 因此需要先将元素插入左半边,然后利用左半边为大顶堆的特点,取出堆顶元素即为最大元素,此时插入右半边 */
|
||||
left.add(val);
|
||||
right.add(left.poll());
|
||||
} else {
|
||||
right.add(val);
|
||||
left.add(right.poll());
|
||||
}
|
||||
N++;
|
||||
}
|
||||
|
||||
public Double GetMedian() {
|
||||
if (N % 2 == 0)
|
||||
return (left.peek() + right.peek()) / 2.0;
|
||||
else
|
||||
return (double) right.peek();
|
||||
}
|
||||
public Double GetMedian()
|
||||
{
|
||||
if (N % 2 == 0)
|
||||
return (left.peek() + right.peek()) / 2.0;
|
||||
else
|
||||
return (double) right.peek();
|
||||
}
|
||||
```
|
||||
|
||||
@ -1904,14 +1909,16 @@ public class Solution {
|
||||
private int[] cnts = new int[256];
|
||||
private Queue<Character> queue = new LinkedList<>();
|
||||
|
||||
public void Insert(char ch) {
|
||||
public void Insert(char ch)
|
||||
{
|
||||
cnts[ch]++;
|
||||
queue.add(ch);
|
||||
while (!queue.isEmpty() && cnts[queue.peek()] > 1)
|
||||
queue.poll();
|
||||
}
|
||||
|
||||
public char FirstAppearingOnce() {
|
||||
public char FirstAppearingOnce()
|
||||
{
|
||||
return queue.isEmpty() ? '#' : queue.peek();
|
||||
}
|
||||
```
|
||||
@ -1927,16 +1934,17 @@ public char FirstAppearingOnce() {
|
||||
## 解题思路
|
||||
|
||||
```java
|
||||
public int FindGreatestSumOfSubArray(int[] nums) {
|
||||
public int FindGreatestSumOfSubArray(int[] nums)
|
||||
{
|
||||
if (nums == null || nums.length == 0)
|
||||
return 0;
|
||||
int ret = Integer.MIN_VALUE;
|
||||
int greatestSum = Integer.MIN_VALUE;
|
||||
int sum = 0;
|
||||
for (int val : nums) {
|
||||
sum = sum <= 0 ? val : sum + val;
|
||||
ret = Math.max(ret, sum);
|
||||
greatestSum = Math.max(greatestSum, sum);
|
||||
}
|
||||
return ret;
|
||||
return greatestSum;
|
||||
}
|
||||
```
|
||||
|
||||
@ -1947,7 +1955,8 @@ public int FindGreatestSumOfSubArray(int[] nums) {
|
||||
## 解题思路
|
||||
|
||||
```java
|
||||
public int NumberOf1Between1AndN_Solution(int n) {
|
||||
public int NumberOf1Between1AndN_Solution(int n)
|
||||
{
|
||||
int cnt = 0;
|
||||
for (int m = 1; m <= n; m *= 10) {
|
||||
int a = n / m, b = n % m;
|
||||
@ -1968,47 +1977,53 @@ public int NumberOf1Between1AndN_Solution(int n) {
|
||||
## 解题思路
|
||||
|
||||
```java
|
||||
public int digitAtIndex(int index) {
|
||||
public int getDigitAtIndex(int index)
|
||||
{
|
||||
if (index < 0)
|
||||
return -1;
|
||||
int digit = 1;
|
||||
int place = 1; // 位数,1 表示个位,2 表示 十位...
|
||||
while (true) {
|
||||
int amount = getAmountOfDigit(digit);
|
||||
int totalAmount = amount * digit;
|
||||
int amount = getAmountOfPlace(place);
|
||||
int totalAmount = amount * place;
|
||||
if (index < totalAmount)
|
||||
return digitAtIndex(index, digit);
|
||||
return getDigitAtIndex(index, place);
|
||||
index -= totalAmount;
|
||||
digit++;
|
||||
place++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* digit 位数的数字组成的字符串长度
|
||||
* 例如 digit = 2,return 90
|
||||
* place 位数的数字组成的字符串长度
|
||||
* 10, 90, 900, ...
|
||||
*/
|
||||
private int getAmountOfDigit(int digit) {
|
||||
if (digit == 1)
|
||||
private int getAmountOfPlace(int place)
|
||||
{
|
||||
if (place == 1)
|
||||
return 10;
|
||||
return (int) Math.pow(10, digit - 1) * 9;
|
||||
return (int) Math.pow(10, place - 1) * 9;
|
||||
}
|
||||
|
||||
/**
|
||||
* 在 digit 位数组成的字符串中,第 index 个数
|
||||
* place 位数的起始数字
|
||||
* 0, 10, 100, ...
|
||||
*/
|
||||
private int digitAtIndex(int index, int digit) {
|
||||
int number = beginNumber(digit) + index / digit;
|
||||
int remain = index % digit;
|
||||
return (number + "").charAt(remain) - '0';
|
||||
}
|
||||
|
||||
/**
|
||||
* digit 位数的起始数字
|
||||
* 例如 digit = 2 return 10
|
||||
*/
|
||||
private int beginNumber(int digit) {
|
||||
if (digit == 1)
|
||||
private int getBeginNumberOfPlace(int place)
|
||||
{
|
||||
if (place == 1)
|
||||
return 0;
|
||||
return (int) Math.pow(10, digit - 1);
|
||||
return (int) Math.pow(10, place - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* 在 place 位数组成的字符串中,第 index 个数
|
||||
*/
|
||||
private int getDigitAtIndex(int index, int place)
|
||||
{
|
||||
int beginNumber = getBeginNumberOfPlace(place);
|
||||
int shiftNumber = index / place;
|
||||
String number = (beginNumber + shiftNumber) + "";
|
||||
int count = index % place;
|
||||
return number.charAt(count) - '0';
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -568,7 +568,7 @@ BGP 只能寻找一条比较好的路由,而不是最佳路由。
|
||||
|
||||
# 五、运输层*
|
||||
|
||||
网络层只把分组发送到目的主机,但是真正通信的并不是主机而是主机中的进程。运输层提供了进程间的逻辑通信,运输层向高层用户屏蔽了下面网络层的核心细节,使应用程序看见的好像在两个运输层实体之间有一条端到端的逻辑通信信道。
|
||||
网络层只把分组发送到目的主机,但是真正通信的并不是主机而是主机中的进程。运输层提供了进程间的逻辑通信,运输层向高层用户屏蔽了下面网络层的核心细节,使应用程序看起来像是在两个运输层实体之间有一条端到端的逻辑通信信道。
|
||||
|
||||
## UDP 和 TCP 的特点
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user