auto commit

This commit is contained in:
CyC2018 2018-03-25 11:06:02 +08:00
parent c5083e6abf
commit 512b503837
2 changed files with 39 additions and 23 deletions

View File

@ -596,7 +596,7 @@ Output:
"apple"
```
题目描述:删除 s 中的一些字符,使得它构成字符串列表 d 中的一个字符串,找出能构成的最长字符串。
题目描述:删除 s 中的一些字符,使得它构成字符串列表 d 中的一个字符串,找出能构成的最长字符串。如果有多个相同长度的结果,返回按字典序排序的最大字符串。
```java
public String findLongestWord(String s, List<String> d) {
@ -632,7 +632,7 @@ public String findLongestWord(String s, List<String> d) {
[Leetocde : 215. Kth Largest Element in an Array (Medium)](https://leetcode.com/problems/kth-largest-element-in-an-array/description/)
**排序** :时间复杂度 O(nlgn),空间复杂度 O(1) 解法
**排序** :时间复杂度 O(nlgn),空间复杂度 O(1)
```java
public int findKthLargest(int[] nums, int k) {
@ -706,7 +706,7 @@ public int findKthLargest(int[] nums, int k) {
### 桶排序
**找出出现频率最多的 k 个数**
**出现频率最多的 k 个数**
[Leetcode : 347. Top K Frequent Elements (Medium)](https://leetcode.com/problems/top-k-frequent-elements/description/)
@ -714,6 +714,8 @@ public int findKthLargest(int[] nums, int k) {
Given [1,1,1,2,2,3] and k = 2, return [1,2].
```
设置若干个桶,每个桶存储出现频率相同的数,并且桶的下标代表桶中数出现的频率,即第 i 个桶中存储的数出现的频率为 i。把数都放到桶之后从后向前遍历桶最先得到的 k 个数就是出现频率最多的的 k 个数。
```java
public List<Integer> topKFrequent(int[] nums, int k) {
List<Integer> ret = new ArrayList<>();
@ -747,18 +749,30 @@ public List<Integer> topKFrequent(int[] nums, int k) {
<div align="center"> <img src="../pics//4ff355cf-9a7f-4468-af43-e5b02038facc.jpg"/> </div><br>
广度优先搜索的搜索过程有点像一层一层地进行遍历:从节点 0 出发,遍历到 6、2、1 和 5 这四个新节点
广度优先搜索的搜索过程有点像一层一层地进行遍历,每层遍历都以上一层遍历的结果作为起点,遍历一个长度。需要注意的是,遍历过的节点不能再次被遍历
继续从 6 开始遍历,得到节点 4 ;从 2 开始遍历,没有下一个节点;从 1 开始遍历,没有下一个节点;从 5 开始遍历,得到 3 和 4 节点。这一轮总共得到两个新节点4 和 3 。
第一层:
反复从新节点出发进行上述的遍历操作。
- 0 -> {6,2,1,5};
可以看到,每一轮遍历的节点都与根节点路径长度相同。设 d<sub>i</sub> 表示第 i 个节点与根节点的路径长度,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j有 d<sub>i</sub><=d<sub>j</sub>。利用这个结论,可以求解最短路径 **最优解** 问题:第一次遍历到目的节点,其所经过的路径为最短路径,如果继续遍历,之后再遍历到目的节点,所经过的路径就不是最短路径。
第二层:
- 6 -> {4}
- 2 -> {}
- 1 -> {}
- 5 -> {4,3}
第三层:
- 4 -> {}
- 3 -> {}
可以看到,每一轮遍历的节点都与根节点路径长度相同。设 d<sub>i</sub> 表示第 i 个节点与根节点的路径长度,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j有 d<sub>i</sub><=d<sub>j</sub>。利用这个结论,可以求解最短路径等 **最优解** 问题:第一次遍历到目的节点,其所经过的路径为最短路径,如果继续遍历,之后再遍历到目的节点,所经过的路径就不是最短路径。
在程序实现 BFS 时需要考虑以下问题:
- 队列:用来存储每一轮遍历的节点
- 标记:对于遍历过得节点,应该将它标记,防止重复遍历;
- 队列:用来存储每一轮遍历的节点
- 标记:对于遍历过的节点,应该将它标记,防止重复遍历。
**计算在网格中从原点到特定点的最短路径长度**
@ -769,6 +783,8 @@ public List<Integer> topKFrequent(int[] nums, int k) {
[1,0,1,1]]
```
1 表示可以经过某个位置。
```java
public int minPathLength(int[][] grids, int tr, int tc) {
int[][] next = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
@ -803,14 +819,14 @@ private class Position {
<div align="center"> <img src="../pics//f7f7e3e5-7dd4-4173-9999-576b9e2ac0a2.png"/> </div><br>
广度优先搜索一层一层遍历,每一层遍历到的所有新节点,要用队列先存储起来以备下一层遍历的时候再遍历;而深度优先搜索在遍历到一个新节点时立马对新节点进行遍历:从节点 0 出发开始遍历,得到到新节点 6 时,立马对新节点 6 进行遍历,得到新节点 4如此反复以这种方式遍历新节点直到没有新节点了此时返回。返回到根节点 0 的情况是,继续对根节点 0 进行遍历,得到新节点 2然后继续以上步骤。
广度优先搜索一层一层遍历,每一层得到到的所有新节点,要用队列先存储起来以备下一层遍历的时候再遍历;而深度优先搜索在得到到一个新节点时立马对新节点进行遍历:从节点 0 出发开始遍历,得到到新节点 6 时,立马对新节点 6 进行遍历,得到新节点 4如此反复以这种方式遍历新节点直到没有新节点了此时返回。返回到根节点 0 的情况是,继续对根节点 0 进行遍历,得到新节点 2然后继续以上步骤。
从一个节点出发,使用 DFS 对一个图进行遍历时能够遍历到的节点都是从初始节点可达的DFS 常用来求解这种 **可达性** 问题。
在程序实现 DFS 时需要考虑以下问题:
- 栈:用栈来保存当前节点信息,当遍历新节点返回时能够继续遍历当前节点。可以使用递归栈。
- 标记:和 BFS 一样同样需要对已经遍历过节点进行标记。
- 栈:用栈来保存当前节点信息,当遍历新节点返回时能够继续遍历当前节点。可以使用递归栈。
- 标记:和 BFS 一样同样需要对已经遍历过节点进行标记。
**查找最大的连通面积**

View File

@ -194,7 +194,7 @@ EXPIRE 可以为一个键值对设置一个过期时间,从而避免了死锁
**RedLock 算法**
ReadLock 算法使用了多个 Redis 实例来实现分布式锁,这是为了保证在发生单点故障时还可用。
RedLock 算法使用了多个 Redis 实例来实现分布式锁,这是为了保证在发生单点故障时还可用。
1. 尝试从 N 个相互独立 Redis 实例获取锁,如果一个实例不可用,应该尽快尝试下一个。
2. 计算获取锁消耗的时间只有当这个时间小于锁的过期时间并且从大多数N/2+1实例上获取了锁那么就认为锁获取成功了。