docs(notes): update coding-interview 10.4

- Update coding-interview 10.4(Jump Floor II)
- Add a contributor @yanglbme in README.md
This commit is contained in:
yanglbme 2018-12-16 21:34:57 +08:00
parent 26d0142b4b
commit 49a5bc55b7
2 changed files with 34 additions and 0 deletions

View File

@ -232,6 +232,10 @@ Power by [logomakr](https://logomakr.com/).
<a href="https://github.com/mafulong"> <a href="https://github.com/mafulong">
<img src="https://avatars1.githubusercontent.com/u/24795000?s=400&v=4" width="50px"> <img src="https://avatars1.githubusercontent.com/u/24795000?s=400&v=4" width="50px">
</a> </a>
<a href="https://github.com/yanglbme">
<img src="https://avatars1.githubusercontent.com/u/21008209?s=400&v=4" width="50px">
</a>
#### License #### License

View File

@ -587,6 +587,8 @@ public int RectCover(int n) {
## 解题思路 ## 解题思路
### 动态规划
```java ```java
public int JumpFloorII(int target) { public int JumpFloorII(int target) {
int[] dp = new int[target]; int[] dp = new int[target];
@ -598,6 +600,34 @@ public int JumpFloorII(int target) {
} }
``` ```
### 数学式子推导
跳上 n-1 级台阶,可以从 n-2 级跳 1 级上去,也可以从 n-3 级跳 2 级上去...也可以从 0 级跳上去。那么
```
f(n-1) = f(n-2) + f(n-3) + ... + f(0) ①
```
同样,跳上 n 级台阶,可以从 n-1 级跳 1 级上去,也可以从 n-2 级跳 2 级上去...也可以从 0 级跳上去。那么
```
f(n) = f(n-1) + f(n-2) + ... + f(0) ②
```
②-①:
```
f(n) - f(n-1) = f(n-1)
f(n) = 2*f(n-1)
```
所以 f(n) 是一个等比数列:
```
f(n) = 2^(n-1)
```
```java
public int JumpFloorII(int target) {
return (int) Math.pow(2, target - 1);
}
```
# 11. 旋转数组的最小数字 # 11. 旋转数组的最小数字