Merge pull request #425 from youmark/master

Fix issues in House Robber and Minimum Path Sum sample code
This commit is contained in:
郑永川 2018-09-19 09:38:25 +08:00 committed by GitHub
commit 09294c46a7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -2415,27 +2415,19 @@ public int climbStairs(int n) {
定义 dp 数组用来存储最大的抢劫量,其中 dp[i] 表示抢到第 i 个住户时的最大抢劫量。
由于不能抢劫邻近住户,因此如果抢劫了第 i 个住户那么只能抢劫 i - 2 或者 i - 3 的住户,所以
<div align="center"><img src="https://latex.codecogs.com/gif.latex?dp[i]=max(dp[i-2],dp[i-3])+nums[i]"/></div> <br>
dp[i] = max(dp[i-1], dp[i-2] + nums[i]) <br>
```java
public int rob(int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
}
if (n == 1) {
return nums[0];
}
int pre3 = 0, pre2 = 0, pre1 = 0;
for (int i = 0; i < n; i++) {
int cur = Math.max(pre2, pre3) + nums[i];
pre3 = pre2;
int pre2 = 0, pre1 = 0;
for (int i = 0; i < nums.length; i++) {
int cur = Math.max(pre2 + nums[i], pre1);
pre2 = pre1;
pre1 = cur;
}
return Math.max(pre1, pre2);
return pre1;
}
```
**强盗在环形街区抢劫**
@ -2443,7 +2435,7 @@ public int rob(int[] nums) {
[213. House Robber II (Medium)](https://leetcode.com/problems/house-robber-ii/description/)
```java
public int rob(int[] nums) {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
@ -2454,15 +2446,14 @@ public int rob(int[] nums) {
return Math.max(rob(nums, 0, n - 2), rob(nums, 1, n - 1));
}
private int rob(int[] nums, int first, int last) {
int pre3 = 0, pre2 = 0, pre1 = 0;
private int rob(int[] nums, int first, int last) {
int pre2 = 0, pre1 = 0;
for (int i = first; i <= last; i++) {
int cur = Math.max(pre3, pre2) + nums[i];
pre3 = pre2;
int cur = Math.max(pre1, pre2 + nums[i]);
pre2 = pre1;
pre1 = cur;
}
return Math.max(pre2, pre1);
return pre1;
}
```
@ -2514,9 +2505,9 @@ public int minPathSum(int[][] grid) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0) {
dp[j] = dp[j - 1];
if (j>0) dp[j] = dp[j - 1];
} else {
dp[j] = Math.min(dp[j - 1], dp[j]);
if (j>0) dp[j] = Math.min(dp[j - 1], dp[j]);
}
dp[j] += grid[i][j];
}