CS-Notes/docs/notes/10.1 斐波那契数列.md

75 lines
2.4 KiB
Java
Raw Normal View History

2019-11-02 12:07:41 +08:00
# 10.1 斐波那契数列
[NowCoder](https://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking&from=cyc_github)
## 题目描述
求斐波那契数列的第 n n <= 39
<!--<div align="center"><img src="https://latex.codecogs.com/gif.latex?f(n)=\left\{\begin{array}{rcl}0&&{n=0}\\1&&{n=1}\\f(n-1)+f(n-2)&&{n>1}\end{array}\right." class="mathjax-pic"/></div> <br> -->
2019-11-02 14:39:13 +08:00
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/45be9587-6069-4ab7-b9ac-840db1a53744.jpg" width="300px"> </div><br>
2019-11-02 12:07:41 +08:00
## 解题思路
如果使用递归求解会重复计算一些子问题例如计算 f(4) 需要计算 f(3) f(2)计算 f(3) 需要计算 f(2) f(1)可以看到 f(2) 被重复计算了
2019-11-02 14:39:13 +08:00
<div align="center"> <img src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/c13e2a3d-b01c-4a08-a69b-db2c4e821e09.png" width="350px"/> </div><br>
2019-11-02 12:07:41 +08:00
递归是将一个问题划分成多个子问题求解动态规划也是如此但是动态规划会把子问题的解缓存起来从而避免重复求解子问题
```java
public int Fibonacci(int n) {
if (n <= 1)
return n;
int[] fib = new int[n + 1];
fib[1] = 1;
for (int i = 2; i <= n; i++)
fib[i] = fib[i - 1] + fib[i - 2];
return fib[n];
}
```
考虑到第 i 项只与第 i-1 和第 i-2 项有关因此只需要存储前两项的值就能求解第 i 从而将空间复杂度由 O(N) 降低为 O(1)
```java
public int Fibonacci(int n) {
if (n <= 1)
return n;
int pre2 = 0, pre1 = 1;
int fib = 0;
for (int i = 2; i <= n; i++) {
fib = pre2 + pre1;
pre2 = pre1;
pre1 = fib;
}
return fib;
}
```
由于待求解的 n 小于 40因此可以将前 40 项的结果先进行计算之后就能以 O(1) 时间复杂度得到第 n 项的值
```java
public class Solution {
private int[] fib = new int[40];
public Solution() {
fib[1] = 1;
for (int i = 2; i < fib.length; i++)
fib[i] = fib[i - 1] + fib[i - 2];
}
public int Fibonacci(int n) {
return fib[n];
}
}
```
2019-11-02 14:39:13 +08:00
<div align="center"><img width="320px" src="https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/githubio/公众号二维码-1.png"></img></div>