Bliss-Shader/shaders/world1/composite2.fsh
2023-01-12 15:00:14 -05:00

593 lines
22 KiB
GLSL

#version 120
//Render sky, volumetric clouds, direct lighting
#extension GL_EXT_gpu_shader4 : enable
#define SCREENSPACE_CONTACT_SHADOWS //Raymarch towards the sun in screen-space, in order to cast shadows outside of the shadow map or at the contact of objects. Can get really expensive at high resolutions.
#define SHADOW_FILTER_SAMPLE_COUNT 9 // Number of samples used to filter the actual shadows [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 ]
#define CAVE_LIGHT_LEAK_FIX // Hackish way to remove sunlight incorrectly leaking into the caves. Can inacurrately remove shadows in some places
#define CLOUDS_SHADOWS
#define CLOUDS_SHADOWS_STRENGTH 1.0 //[0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0]
#define CLOUDS_QUALITY 0.5 //[0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1.0]
#define SSAO //It is also recommended to reduce the ambientOcclusionLevel value with this enabled
#define SSAO_SAMPLES 7 //[4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32]
#define TORCH_R 1.0 // [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0]
#define TORCH_G 0.75 // [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0]
#define TORCH_B 0.5 // [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0]
#define indirect_effect 1 // Choose what effect is applied to indirect light. [0 1 2 3]
#define AO_Strength 0.8 // strength of shadowed areas [0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 ]
#define GI_Strength 5.0 // strength of bounced light areas [ 1 2 3 4 5 6 7 8 9 10]
// #define Glass_Tint // multiply the background through glass by the color of the glass for a strong tint.
// #define HQ_SSGI
// #define end_shadows
//////////// misc settings
// #define WhiteWorld // THIS IS A DEBUG VIEW. uses to see AO easier. used to see fake GI better (green light)
// #define LabPBR_Emissives
#define Emissive_Brightness 10.0 // [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 15. 20. 25. 30. 35. 40. 45. 50. 100.]
#define Emissive_Curve 2.0 // yes i blatantly copied kappa here. [1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 ]
#define MIN_LIGHT_AMOUNT 1.0 //[0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0]
const bool shadowHardwareFiltering = true;
varying vec2 texcoord;
uniform float nightVision;
flat varying vec4 lightCol; //main light source color (rgb),used light source(1=sun,-1=moon)
flat varying vec3 ambientUp;
flat varying vec3 ambientLeft;
flat varying vec3 ambientRight;
flat varying vec3 ambientB;
flat varying vec3 ambientF;
flat varying vec3 ambientDown;
flat varying vec3 avgAmbient;
// flat varying vec3 WsunVec;
flat varying vec2 TAA_Offset;
flat varying float tempOffsets;
uniform sampler2D colortex0;//clouds
uniform sampler2D colortex1;//albedo(rgb),material(alpha) RGBA16
uniform sampler2D colortex3;
// uniform sampler2D colortex4;//Skybox
uniform sampler2D colortex5;
uniform sampler2D colortex6;//Skybox
uniform sampler2D colortex7;
uniform sampler2D colortex13;
uniform sampler2D colortex8;
uniform sampler2D depthtex1;//depth
uniform sampler2D depthtex0;//depth
uniform sampler2D noisetex;//depth
uniform float isWastes;
uniform float isWarpedForest;
uniform float isCrimsonForest;
uniform float isSoulValley;
uniform float isBasaltDelta;
uniform int heldBlockLightValue;
uniform int frameCounter;
uniform int isEyeInWater;
uniform mat4 shadowModelViewInverse;
uniform mat4 shadowProjectionInverse;
uniform float far;
uniform float near;
uniform float frameTimeCounter;
uniform float rainStrength;
uniform mat4 gbufferProjection;
uniform mat4 gbufferProjectionInverse;
uniform mat4 gbufferModelViewInverse;
uniform mat4 gbufferPreviousModelView;
uniform mat4 gbufferPreviousProjection;
uniform vec3 previousCameraPosition;
uniform mat4 shadowModelView;
uniform mat4 shadowProjection;
uniform mat4 gbufferModelView;
uniform vec2 texelSize;
uniform float viewWidth;
uniform float viewHeight;
uniform float aspectRatio;
uniform vec3 cameraPosition;
// uniform int framemod8;
uniform vec3 sunVec;
uniform ivec2 eyeBrightnessSmooth;
#define diagonal3(m) vec3((m)[0].x, (m)[1].y, m[2].z)
#define projMAD(m, v) (diagonal3(m) * (v) + (m)[3].xyz)
vec3 toScreenSpace(vec3 p) {
vec4 iProjDiag = vec4(gbufferProjectionInverse[0].x, gbufferProjectionInverse[1].y, gbufferProjectionInverse[2].zw);
vec3 p3 = p * 2. - 1.;
vec4 fragposition = iProjDiag * p3.xyzz + gbufferProjectionInverse[3];
return fragposition.xyz / fragposition.w;
}
#include "lib/waterOptions.glsl"
#include "lib/color_transforms.glsl"
#include "lib/sky_gradient.glsl"
#include "lib/stars.glsl"
#include "lib/volumetricClouds.glsl"
#include "lib/waterBump.glsl"
float ld(float dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
vec3 ld(vec3 dist) {
return (2.0 * near) / (far + near - dist * (far - near));
}
#include "lib/specular.glsl"
vec3 normVec (vec3 vec){
return vec*inversesqrt(dot(vec,vec));
}
float lengthVec (vec3 vec){
return sqrt(dot(vec,vec));
}
#define fsign(a) (clamp((a)*1e35,0.,1.)*2.-1.)
float triangularize(float dither)
{
float center = dither*2.0-1.0;
dither = center*inversesqrt(abs(center));
return clamp(dither-fsign(center),0.0,1.0);
}
float interleaved_gradientNoise(float temp){
return fract(52.9829189*fract(0.06711056*gl_FragCoord.x + 0.00583715*gl_FragCoord.y)+temp);
}
float interleaved_gradientNoise(){
vec2 coord = gl_FragCoord.xy;
float noise = fract(52.9829189*fract(0.06711056*coord.x + 0.00583715*coord.y));
return noise;
}
vec3 fp10Dither(vec3 color,float dither){
const vec3 mantissaBits = vec3(6.,6.,5.);
vec3 exponent = floor(log2(color));
return color + dither*exp2(-mantissaBits)*exp2(exponent);
}
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n);
}
float facos(float sx){
float x = clamp(abs( sx ),0.,1.);
return sqrt( 1. - x ) * ( -0.16882 * x + 1.56734 );
}
vec3 worldToView(vec3 worldPos) {
vec4 pos = vec4(worldPos, 0.0);
pos = gbufferModelView * pos;
return pos.xyz;
}
vec3 decode (vec2 encn){
vec3 n = vec3(0.0);
encn = encn * 2.0 - 1.0;
n.xy = abs(encn);
n.z = 1.0 - n.x - n.y;
n.xy = n.z <= 0.0 ? (1.0 - n.yx) * sign(encn) : encn;
return clamp(normalize(n.xyz),-1.0,1.0);
}
vec2 decodeVec2(float a){
const vec2 constant1 = 65535. / vec2( 256., 65536.);
const float constant2 = 256. / 255.;
return fract( a * constant1 ) * constant2 ;
}
// float linZ(float depth) {
// return (2.0 * near) / (far + near - depth * (far - near));
// // l = (2*n)/(f+n-d(f-n))
// // f+n-d(f-n) = 2n/l
// // -d(f-n) = ((2n/l)-f-n)
// // d = -((2n/l)-f-n)/(f-n)
// }
// float invLinZ (float lindepth){
// return -((2.0*near/lindepth)-far-near)/(far-near);
// }
// vec3 toClipSpace3(vec3 viewSpacePosition) {
// return projMAD(gbufferProjection, viewSpacePosition) / -viewSpacePosition.z * 0.5 + 0.5;
// }
float bayer2(vec2 a){
a = floor(a);
return fract(dot(a,vec2(0.5,a.y*0.75)));
}
#define bayer4(a) (bayer2( .5*(a))*.25+bayer2(a))
#define bayer8(a) (bayer4( .5*(a))*.25+bayer2(a))
#define bayer16(a) (bayer8( .5*(a))*.25+bayer2(a))
#define bayer32(a) (bayer16(.5*(a))*.25+bayer2(a))
#define bayer64(a) (bayer32(.5*(a))*.25+bayer2(a))
#define bayer128(a) fract(bayer64(.5*(a))*.25+bayer2(a)+tempOffsets)
vec2 tapLocation(int sampleNumber,int nb, float nbRot,float jitter,float distort)
{
float alpha0 = sampleNumber/nb;
float alpha = (sampleNumber+jitter)/nb;
float angle = jitter*6.28 + alpha * 4.0 * 6.28;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*sqrt(alpha);
}
vec3 BilateralFiltering(sampler2D tex, sampler2D depth,vec2 coord,float frDepth,float maxZ){
vec4 sampled = vec4(texelFetch2D(tex,ivec2(coord),0).rgb,1.0);
return vec3(sampled.x,sampled.yz/sampled.w);
}
float blueNoise(){
return fract(texelFetch2D(noisetex, ivec2(gl_FragCoord.xy)%512, 0).a + 1.0/1.6180339887 * frameCounter);
}
vec4 blueNoise(vec2 coord){
return texelFetch2D(colortex6, ivec2(coord )%512 , 0);
}
float R2_dither(){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha.x * gl_FragCoord.x + alpha.y * gl_FragCoord.y);
}
vec3 toShadowSpaceProjected(vec3 p3){
p3 = mat3(gbufferModelViewInverse) * p3 + gbufferModelViewInverse[3].xyz;
p3 = mat3(shadowModelView) * p3 + shadowModelView[3].xyz;
p3 = diagonal3(shadowProjection) * p3 + shadowProjection[3].xyz;
return p3;
}
vec2 tapLocation(int sampleNumber, float spinAngle,int nb, float nbRot,float r0)
{
float alpha = (float(sampleNumber*1.0f + r0) * (1.0 / (nb)));
float angle = alpha * (nbRot * 6.28) + spinAngle*6.28;
float ssR = alpha;
float sin_v, cos_v;
sin_v = sin(angle);
cos_v = cos(angle);
return vec2(cos_v, sin_v)*ssR;
}
// void ssAO(inout vec3 lighting,vec3 fragpos,float mulfov, vec2 noise, vec3 normal, float lightmap){
// ivec2 pos = ivec2(gl_FragCoord.xy);
// const float tan70 = tan(70.*3.14/240.);
// float mulfov2 = gbufferProjection[1][1]/tan70;
// float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*1.412/50.0;
// float rd = mulfov2 * 0.04 ;
// //pre-rotate direction
// float n = 0.0;
// float occlusion = 0.0;
// vec2 acc = -(TAA_Offset*(texelSize/2)) ;
// int seed = (frameCounter%40000)*2 + frameCounter;
// vec2 ij = fract(R2_samples(seed) + noise.rg );
// vec2 v = ij;
// for (int j = 0; j < 7 ;j++) {
// vec2 sp = tapLocation(j,v.x,7,1.682,v.y);
// vec2 sampleOffset = sp*rd ;
// ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio));
// if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) {
// vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x));
// vec3 vec = t0.xyz - fragpos;
// float dsquared = dot(vec,vec);
// if (dsquared > 1e-5){
// if (dsquared < maxR2){
// float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal) ),0.,1.);
// occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0);
// }
// n += 1.0 ;
// }
// }
// }
// occlusion *= mix(2.25,0.0,clamp(pow(lightmap,2),0,1));
// occlusion = max(1.0 - occlusion/n, 0.0);
// lighting = lighting * occlusion;
// }
void ssAO(inout vec3 lighting,vec3 fragpos,float mulfov, vec2 noise, vec3 normal, vec2 texcoord, vec3 ambientCoefs, vec2 lightmap){
float skyLightDir = dot(WsunVec, ambientCoefs);
// float skyLightDir = dot(normal, sunVec);
ivec2 pos = ivec2(gl_FragCoord.xy);
const float tan70 = tan(70.*3.14/240.);
float mulfov2 = gbufferProjection[1][1]/tan70;
float maxR2 = fragpos.z*fragpos.z*mulfov2*2.*1.412/50.0;
float rd = mulfov2 * 0.04 ;
//pre-rotate direction
float n = 0.0;
float occlusion = 0.0;
vec2 acc = -(TAA_Offset*(texelSize/2)) ;
int seed = (frameCounter%40000)*2 + frameCounter;
vec2 ij = fract(R2_samples(seed) + noise.rg );
// vec2 ij = fract(R2_samples(-1) + 0.5 * blueNoise() );
vec2 v = ij;
for (int j = 0; j < 7 ;j++) {
vec2 sp = tapLocation(j,v.x,7,1.682,v.y) ;
vec2 sampleOffset = sp*rd ;
ivec2 offset = ivec2(gl_FragCoord.xy + sampleOffset*vec2(viewWidth,viewHeight*aspectRatio));
if (offset.x >= 0 && offset.y >= 0 && offset.x < viewWidth && offset.y < viewHeight ) {
vec3 t0 = toScreenSpace(vec3(offset*texelSize+acc+0.5*texelSize,texelFetch2D(depthtex1,offset,0).x) );
vec3 vec = t0.xyz - fragpos;
float dsquared = dot(vec,vec);
if (dsquared > 1e-5){
if (dsquared < maxR2){
float NdotV = clamp(dot(vec*inversesqrt(dsquared), normalize(normal) ),0.,1.);
occlusion += NdotV * clamp(1.0-dsquared/maxR2,0.0,1.0);
}
n += 1.0 ;
}
}
}
// occlusion += max(skyLightDir, 0.0);
occlusion *= mix(2.25,0.0,clamp(pow(lightmap.x,2),0,1));
occlusion = max(1.0 - occlusion/n, 0.0);
lighting *=clamp(0.75+ambientCoefs.y*0.5,0.0,1.0);
lighting *= max(occlusion + luma(normal/dot(abs(normal),vec3(1))* mat3(gbufferModelView)), occlusion); // multiply ambient light by this effect
// lighting *= occlusion;
}
vec3 cosineHemisphereSample(vec2 Xi, float roughness)
{
float r = sqrt(Xi.x);
float theta = 2.0 * 3.14159265359 * Xi.y;
float x = r * cos(theta);
float y = r * sin(theta);
return vec3(x, y, sqrt(clamp(1.0 - Xi.x,0.,1.)));
}
vec3 TangentToWorld(vec3 N, vec3 H, float roughness)
{
vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 T = normalize(cross(UpVector, N));
vec3 B = cross(N, T);
return vec3((T * H.x) + (B * H.y) + (N * H.z));
}
vec3 RT(vec3 dir, vec3 position, float noise, float stepsizes){
float stepSize = stepsizes;
int maxSteps = 12;
vec3 clipPosition = toClipSpace3(position);
float rayLength = ((position.z + dir.z * sqrt(3.0)*far) > -sqrt(3.0)*near) ?
(-sqrt(3.0)*near -position.z) / dir.z : sqrt(3.0)*far;
vec3 end = toClipSpace3(position+dir*rayLength) ;
vec3 direction = end-clipPosition ; //convert to clip space
float len = max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y)/stepSize;
//get at which length the ray intersects with the edge of the screen
vec3 maxLengths = (step(0.,direction)-clipPosition) / direction;
float mult = min(min(maxLengths.x,maxLengths.y),maxLengths.z)*2000.0;
vec3 stepv = direction/len;
int iterations = min(int(min(len, mult*len)-2), maxSteps);
//Do one iteration for closest texel (good contact shadows)
vec3 spos = clipPosition ;
spos.xy += TAA_Offset*texelSize*0.5;
spos += stepv/(stepSize/2);
for(int i = 0; i < iterations; i++){
spos += stepv*noise;
float sp=texelFetch2D(depthtex1,ivec2(spos.xy/texelSize),0).x;
float currZ = (spos.z);
if( sp < currZ) {
// float dist = abs(sp-currZ)/currZ;
return vec3(spos.xy, invLinZ(sp));
}
}
return vec3(1.1);
}
void rtAO(inout vec3 lighting, vec3 normal, vec2 noise, vec3 fragpos){
int nrays = 4;
float occlude = 0.0;
for (int i = 0; i < nrays; i++){
int seed = (frameCounter%40000)*nrays+i;
vec2 ij = fract(R2_samples(seed) + noise );
vec3 rayDir = TangentToWorld( normal, normalize(cosineHemisphereSample(ij,1.0)) ,1.0) ;
vec3 rayHit = RT(mat3(gbufferModelView)*rayDir, fragpos, blueNoise(), 12.); // choc sspt
float skyLightDir = rayDir.y < 0.0 ? 1.0 : 1.0 ; // the positons where the occlusion happens
if (rayHit.z > 1.0) occlude += skyLightDir;
}
lighting *= occlude/nrays;
}
float rayTraceShadow(vec3 dir,vec3 position,float dither){
const float quality = 32.;
vec3 clipPosition = toClipSpace3(position);
//prevents the ray from going behind the camera
float rayLength = ((position.z + dir.z * far*sqrt(3.)) > -near) ?
(-near -position.z) / dir.z : far*sqrt(3.) ;
vec3 direction = toClipSpace3(position+dir*rayLength)-clipPosition; //convert to clip space
direction.xyz = direction.xyz/max(abs(direction.x)/texelSize.x,abs(direction.y)/texelSize.y); //fixed step size
vec3 stepv = direction *3. * clamp(MC_RENDER_QUALITY,1.,2.0);
vec3 spos = clipPosition;
spos.xy += (TAA_Offset*(texelSize/4)) ;
spos += stepv*dither;
for (int i = 0; i < int(quality); i++) {
spos += stepv ;
spos += stepv * dither;
float sp = texture2D(depthtex1,spos.xy).x;
if( sp < spos.z) {
float dist = abs(linZ(sp)-linZ(spos.z))/linZ(spos.z);
if (dist < 0.1 ) return 0.0;
}
}
return 1.0;
}
void main() {
float dirtAmount = Dirt_Amount;
vec3 waterEpsilon = vec3(Water_Absorb_R, Water_Absorb_G, Water_Absorb_B);
vec3 dirtEpsilon = vec3(Dirt_Absorb_R, Dirt_Absorb_G, Dirt_Absorb_B);
vec3 totEpsilon = dirtEpsilon*dirtAmount + waterEpsilon;
vec3 scatterCoef = dirtAmount * vec3(Dirt_Scatter_R, Dirt_Scatter_G, Dirt_Scatter_B) / pi;
float z0 = texture2D(depthtex0,texcoord).x;
float z = texture2D(depthtex1,texcoord).x;
vec2 tempOffset=TAA_Offset;
// float noise = blueNoise();
vec3 fragpos = toScreenSpace(vec3(texcoord-vec2(tempOffset)*texelSize*0.5,z));
vec3 p3 = mat3(gbufferModelViewInverse) * fragpos;
vec3 np3 = normVec(p3);
vec4 SpecularTex = texture2D(colortex8,texcoord);
// for a thing
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
float dL = length(dVWorld);
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + dVWorld;
p3 += gbufferModelViewInverse[3].xyz;
bool iswater = texture2D(colortex7,texcoord).a > 0.99;
vec4 data = texture2D(colortex1,texcoord);
vec4 dataUnpacked0 = vec4(decodeVec2(data.x),decodeVec2(data.y));
vec4 dataUnpacked1 = vec4(decodeVec2(data.z),decodeVec2(data.w));
vec3 albedo = toLinear(vec3(dataUnpacked0.xz,dataUnpacked1.x));
vec3 normal = mat3(gbufferModelViewInverse) * worldToView(decode(dataUnpacked0.yw));
vec2 lightmap = dataUnpacked1.yz;
bool translucent = abs(dataUnpacked1.w-0.5) <0.01;
bool hand = abs(dataUnpacked1.w-0.75) <0.01;
bool blocklights = abs(dataUnpacked1.w-0.8) <0.01;
float LightDir = clamp((-15 + max(dot(normal, WsunVec),0.0)*255.0) / 240.0 ,0.0,1.0);
vec3 lightSource = normalize(WsunVec);
vec3 viewspace_sunvec = mat3(gbufferModelView) * lightSource;
float SdotV = dot(normalize(viewspace_sunvec), normalize(fragpos));
float lightning_shine = clamp(phaseg(SdotV, 0.8),0,3);
vec3 ambientCoefs = normal/dot(abs(normal),vec3(1.));
#ifdef WhiteWorld
albedo = vec3(1.0);
#endif
if ( z >= 1.) {
vec3 color = vec3(1.0,0.75,0.9)/4000.0*150.0*0.1;
vec4 cloud = texture2D_bicubic(colortex0,texcoord*CLOUDS_QUALITY);
color = color*cloud.a+cloud.rgb;
gl_FragData[0].rgb = clamp(fp10Dither(color*8./3. * (1.0-rainStrength*0.4),triangularize(blueNoise())),0.0,65000.);
}else{
////// ----- indirect ----- //////
vec3 custom_lightmap = texture2D(colortex4, (vec2(lightmap.x, pow(lightmap.y,2))*15.0+0.5+vec2(0.0,19.))*texelSize).rgb*8./150./3.; // y = torch
// vec3 ambientLight = vec3(1.0) / 30;
vec3 ambientLight = gl_Fog.color.rgb * 0.2;
// lightmap.x = trpData.a < 255.0/255.0 ? mix( trpData.a, lightmap.x ,pow(trpData.a,Emissive_Curve)): lightmap.x ;
// vec3 Lightsources = (vec3(1.0)/5) * (pow(lightmap.x,2.0) + pow(lightmap.x,10.0));
vec3 Lightsources = custom_lightmap.y * vec3(TORCH_R,TORCH_G,TORCH_B) * 0.5;
if(hand) Lightsources *= 0.15;
if(blocklights) Lightsources *= 0.3;
if(custom_lightmap.y > 10.) Lightsources *= 0.25;
//apply a curve for the torch light so it doesnt mix with lab emissive colors too much
#ifdef LabPBR_Emissives
if(blocklights && (SpecularTex.a > 0.0 && SpecularTex.a < 1.0)) Lightsources = mix(vec3(0.0), Lightsources, SpecularTex.a);
#endif
ambientLight += Lightsources;
#if indirect_effect == 1
if (!hand) ssAO(ambientLight, fragpos, 1.0, blueNoise(gl_FragCoord.xy).rg, worldToView(decode(dataUnpacked0.yw)), texcoord, ambientCoefs, lightmap.xy ) ;
#endif
// #if indirect_effect == 2
// if (!hand ) rtAO(ambientLight, normal, blueNoise(gl_FragCoord.xy).rg, fragpos);
// #endif
// #if indirect_effect == 3
// if (!hand) rtGI(ambientLight, normal, blueNoise(gl_FragCoord.xy).rg, fragpos, 1, albedo);
// #endif
vec3 Indirect_lighting = ambientLight;
////// ----- direct ----- //////
float screenShadow = 1;
vec3 Direct_lighting = SunCol * (lightning_shine*10) * LightDir;
#ifdef end_shadows
vec3 vec = -lightCol.a*viewspace_sunvec;
screenShadow = rayTraceShadow(vec, fragpos, interleaved_gradientNoise());
if (!hand) Direct_lighting *= screenShadow;
#endif
////// ----- finalize ----- //////
gl_FragData[0].rgb = (Indirect_lighting+Direct_lighting) * albedo ;
#ifdef LabPBR_Emissives
gl_FragData[0].rgb = SpecularTex.a < 255.0/255.0 ? mix(gl_FragData[0].rgb, albedo * Emissive_Brightness , SpecularTex.a): gl_FragData[0].rgb;
#endif
// do this after water and stuff is done because yea
#ifdef Specular_Reflections
MaterialReflections(gl_FragData[0].rgb, SpecularTex.r, SpecularTex.ggg, albedo, WsunVec, SunCol, screenShadow*LightDir , 0.0, normal, np3, fragpos, vec3(blueNoise(gl_FragCoord.xy).rg,blueNoise()), hand);
#endif
}
// / lightnign flashes fog
if (isEyeInWater == 0){
// vec3 lightSource = normalize(WsunVec);
// vec3 viewspace_sunvec = mat3(gbufferModelView) * lightSource;
// float SdotV = dot(normalize(viewspace_sunvec), normalize(fragpos));
// float lightning_shine = clamp(phaseg(SdotV, 0.35) ,0,1);
vec3 flashingfogCol = SunCol * 0.25;
float flashingfogdist = clamp(pow(length(fragpos)/far,5.), 0.0, 1.0) ;
gl_FragData[0].rgb += flashingfogCol * lightning_shine * flashingfogdist;
// vl.a *= 1.0 - sqrt(flashingfogdist);
}
/* DRAWBUFFERS:3 */
}