188 lines
5.4 KiB
GLSL

#include "/lib/settings.glsl"
#include "/lib/res_params.glsl"
uniform float frameTimeCounter;
#include "/lib/Shadow_Params.glsl"
flat varying vec3 averageSkyCol_Clouds;
flat varying vec3 averageSkyCol;
flat varying vec3 sunColor;
flat varying vec3 moonColor;
flat varying vec3 lightSourceColor;
flat varying vec3 zenithColor;
flat varying vec2 tempOffsets;
flat varying float exposure;
flat varying float avgBrightness;
flat varying float rodExposure;
flat varying float avgL2;
flat varying float centerDepth;
uniform sampler2D colortex4;
uniform sampler2D colortex6;
uniform sampler2D depthtex0;
uniform sampler2D depthtex1;
uniform sampler2D depthtex2;
uniform mat4 gbufferModelViewInverse;
uniform vec3 sunPosition;
uniform vec2 texelSize;
uniform float sunElevation;
uniform float eyeAltitude;
uniform float near;
// uniform float far;
uniform float frameTime;
uniform int frameCounter;
uniform float rainStrength;
// uniform int worldTime;
vec3 sunVec = normalize(mat3(gbufferModelViewInverse) * sunPosition);
// vec3 sunVec = normalize(LightDir);
#include "/lib/sky_gradient.glsl"
#include "/lib/util.glsl"
#include "/lib/ROBOBO_sky.glsl"
float luma(vec3 color) {
return dot(color,vec3(0.21, 0.72, 0.07));
}
vec3 rodSample(vec2 Xi)
{
float r = sqrt(1.0f - Xi.x*Xi.y);
float phi = 2 * 3.14159265359 * Xi.y;
return normalize(vec3(cos(phi) * r, sin(phi) * r, Xi.x)).xzy;
}
//Low discrepancy 2D sequence, integration error is as low as sobol but easier to compute : http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
vec2 R2_samples(int n){
vec2 alpha = vec2(0.75487765, 0.56984026);
return fract(alpha * n);
}
float tanh(float x){
return (exp(x) - exp(-x))/(exp(x) + exp(-x));
}
float ld(float depth) {
return (2.0 * near) / (far + near - depth * (far - near)); // (-depth * (far - near)) = (2.0 * near)/ld - far - near
}
uniform float nightVision;
void main() {
gl_Position = ftransform()*0.5+0.5;
gl_Position.xy = gl_Position.xy*vec2(18.+258*2,258.)*texelSize;
gl_Position.xy = gl_Position.xy*2.-1.0;
#ifdef OVERWORLD_SHADER
///////////////////////////////////
/// --- AMBIENT LIGHT STUFF --- ///
///////////////////////////////////
averageSkyCol_Clouds = vec3(0.0);
averageSkyCol = vec3(0.0);
vec2 sample3x3[9] = vec2[](
vec2(-1.0, -0.3),
vec2( 0.0, 0.0),
vec2( 1.0, -0.3),
vec2(-1.0, -0.5),
vec2( 0.0, -0.5),
vec2( 1.0, -0.5),
vec2(-1.0, -1.0),
vec2( 0.0, -1.0),
vec2( 1.0, -1.0)
);
// sample in a 3x3 pattern to get a good area for average color
int maxIT = 9;
// int maxIT = 20;
for (int i = 0; i < maxIT; i++) {
vec3 pos = vec3(0.0,1.0,0.0);
pos.xy += normalize(sample3x3[i]) * vec2(0.3183,0.9000);
averageSkyCol_Clouds += 1.5 * (skyCloudsFromTex(pos,colortex4).rgb/maxIT/150.0);
averageSkyCol += 1.5 * (skyFromTex(pos,colortex4).rgb/maxIT/150.0);
}
// only need to sample one spot for this
vec3 minimumlight = vec3(0.2,0.4,1.0) * (MIN_LIGHT_AMOUNT*0.003 + nightVision);
averageSkyCol_Clouds = max(averageSkyCol_Clouds * (1.0/(luma(averageSkyCol_Clouds)*0.25+0.75)), minimumlight);
averageSkyCol = max(averageSkyCol*PLANET_GROUND_BRIGHTNESS, minimumlight);
////////////////////////////////////////
/// --- SUNLIGHT/MOONLIGHT STUFF --- ///
////////////////////////////////////////
vec2 planetSphere = vec2(0.0);
float sunVis = clamp(sunElevation,0.0,0.05)/0.05*clamp(sunElevation,0.0,0.05)/0.05;
float moonVis = clamp(-sunElevation,0.0,0.05)/0.05*clamp(-sunElevation,0.0,0.05)/0.05;
vec3 skyAbsorb = vec3(0.0);
sunColor = calculateAtmosphere(vec3(0.0), sunVec, vec3(0.0,1.0,0.0), sunVec, -sunVec, planetSphere, skyAbsorb, 25,0.0);
sunColor = sunColorBase/4000. * skyAbsorb;
moonColor = moonColorBase/4000.0;
lightSourceColor = sunVis >= 1e-5 ? sunColor * sunVis : moonColor * moonVis;
#endif
//////////////////////////////
/// --- EXPOSURE STUFF --- ///
//////////////////////////////
float avgLuma = 0.0;
float m2 = 0.0;
int n=100;
vec2 clampedRes = max(1.0/texelSize,vec2(1920.0,1080.));
float avgExp = 0.0;
float avgB = 0.0;
vec2 resScale = vec2(1920.,1080.)/clampedRes;
const int maxITexp = 50;
float w = 0.0;
for (int i = 0; i < maxITexp; i++){
vec2 ij = R2_samples((frameCounter%2000)*maxITexp+i);
vec2 tc = 0.5 + (ij-0.5) * 0.7;
vec3 sp = texture2D(colortex6, tc/16. * resScale+vec2(0.375*resScale.x+4.5*texelSize.x,.0)).rgb;
avgExp += log(luma(sp));
avgB += log(min(dot(sp,vec3(0.07,0.22,0.71)),8e-2));
}
avgExp = exp(avgExp/maxITexp);
avgB = exp(avgB/maxITexp);
avgBrightness = clamp(mix(avgExp,texelFetch2D(colortex4,ivec2(10,37),0).g,0.95),0.00003051757,65000.0);
float L = max(avgBrightness,1e-8);
float keyVal = 1.03-2.0/(log(L*4000/150.*8./3.0+1.0)/log(10.0)+2.0);
float expFunc = 0.5+0.5*tanh(log(L));
float targetExposure = 0.18/log2(L*2.5+1.045)*0.62;
avgL2 = clamp(mix(avgB,texelFetch2D(colortex4,ivec2(10,37),0).b,0.985),0.00003051757,65000.0);
float targetrodExposure = max(0.012/log2(avgL2+1.002)-0.1,0.0)*1.2;
exposure = max(targetExposure*EXPOSURE_MULTIPLIER, 0);
float currCenterDepth = ld(texture2D(depthtex2, vec2(0.5)).r);
centerDepth = mix(sqrt(texelFetch2D(colortex4,ivec2(14,37),0).g/65000.0), currCenterDepth, clamp(DoF_Adaptation_Speed*exp(-0.016/frameTime+1.0)/(6.0+currCenterDepth*far),0.0,1.0));
centerDepth = centerDepth * centerDepth * 65000.0;
rodExposure = targetrodExposure;
#ifndef AUTO_EXPOSURE
exposure = Manual_exposure_value;
rodExposure = clamp(log(Manual_exposure_value*2.0+1.0)-0.1,0.0,2.0);
#endif
}