mirror of
https://github.com/X0nk/Bliss-Shader.git
synced 2025-01-06 01:23:31 +08:00
366 lines
13 KiB
GLSL
366 lines
13 KiB
GLSL
|
|
|
|
uniform float noPuddleAreas;
|
|
float densityAtPosFog(in vec3 pos){
|
|
pos /= 18.;
|
|
pos.xz *= 0.5;
|
|
vec3 p = floor(pos);
|
|
vec3 f = fract(pos);
|
|
f = (f*f) * (3.-2.*f);
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
vec2 coord = uv / 512.0;
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
return mix(xy.r,xy.g, f.y);
|
|
}
|
|
|
|
|
|
float cloudVol(in vec3 pos){
|
|
|
|
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
|
|
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
|
float fogYstart = FOG_START_HEIGHT+3;
|
|
|
|
float mult = exp( -max((pos.y - fogYstart) / 35.,0.0));
|
|
float fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0 );
|
|
float fog_eroded = 1.0 - densityAtPosFog(samplePos2 * 200.0 );
|
|
|
|
// float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, max(fog_shape-0.8,0.0)) * mult;
|
|
|
|
float heightlimit = exp2( -max((pos.y - fogYstart * (1.0+snowStorm)) / 25.,0.0));
|
|
float CloudyFog = max((fog_shape*1.2 - fog_eroded*0.2) - 0.75,0.0) * heightlimit ;
|
|
|
|
float UniformFog = exp( max(pos.y - fogYstart,0.0) / -25);
|
|
// UniformFog = 1.0;
|
|
|
|
float RainFog = ((2 + max(fog_shape*10. - 7.0,0.5)*2.0)) *UniformFog* rainStrength * noPuddleAreas * RainFog_amount;
|
|
// float RainFog = (CloudyFog*255) * rainStrength * noPuddleAreas * RainFog_amount;
|
|
|
|
#ifdef PER_BIOME_ENVIRONMENT
|
|
// sandstorms and snowstorms
|
|
if(sandStorm > 0 || snowStorm > 0) CloudyFog = mix(CloudyFog, max(densityAtPosFog((samplePos2 - vec3(frameTimeCounter,0,frameTimeCounter)*10) * 100.0 ) - 0.2,0.0) * heightlimit, sandStorm+snowStorm);
|
|
#endif
|
|
|
|
TimeOfDayFog(UniformFog, CloudyFog);
|
|
|
|
float noise = densityAtPosFog(samplePos * 12.0);
|
|
float erosion = 1.0-densityAtPosFog(samplePos2 * (125 - (1-pow(1-noise,5))*25));
|
|
|
|
|
|
// float clumpyFog = max(exp(noise * -5)*2 - (erosion*erosion), 0.0);
|
|
|
|
// float testfogshapes = clumpyFog*30;
|
|
// return testfogshapes;
|
|
|
|
return CloudyFog + UniformFog + RainFog;
|
|
}
|
|
|
|
float phaseRayleigh(float cosTheta) {
|
|
const vec2 mul_add = vec2(0.1, 0.28) / acos(-1.0);
|
|
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
|
|
}
|
|
float fogPhase(float lightPoint){
|
|
float linear = 1.0 - clamp(lightPoint*0.5+0.5,0.0,1.0);
|
|
float linear2 = 1.0 - clamp(lightPoint,0.0,1.0);
|
|
|
|
float exponential = exp2(pow(linear,0.3) * -15.0 ) * 1.5;
|
|
exponential += sqrt(exp2(sqrt(linear) * -12.5));
|
|
|
|
return exponential;
|
|
}
|
|
|
|
vec4 GetVolumetricFog(
|
|
vec3 viewPosition,
|
|
vec2 dither,
|
|
vec3 LightColor,
|
|
vec3 AmbientColor
|
|
){
|
|
|
|
/// ------------- RAYMARCHING STUFF ------------- \\\
|
|
|
|
//project pixel position into projected shadowmap space
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
//project view origin into projected shadowmap space
|
|
vec3 start = toShadowSpaceProjected(vec3(0.0));
|
|
|
|
//rayvector into projected shadow map space
|
|
//we can use a projected vector because its orthographic projection
|
|
//however we still have to send it to curved shadow map space every step
|
|
vec3 dV = fragposition - start;
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
float maxLength = min(length(dVWorld), far)/length(dVWorld);
|
|
dV *= maxLength;
|
|
dVWorld *= maxLength;
|
|
float dL = length(dVWorld);
|
|
float mult = length(dVWorld)/25;
|
|
|
|
vec3 progress = start.xyz;
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
|
|
|
|
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
|
float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
|
|
|
|
|
|
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
|
|
|
|
vec3 color = vec3(0.0);
|
|
vec3 absorbance = vec3(1.0);
|
|
|
|
///// ----- fog lighting
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
float mie = fogPhase(SdotV) * 5.0;
|
|
float rayL = phaseRayleigh(SdotV);
|
|
|
|
vec3 rC = vec3(sky_coefficientRayleighR*1e-6, sky_coefficientRayleighG*1e-5, sky_coefficientRayleighB*1e-5);
|
|
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
vec3 skyLightPhased = AmbientColor;
|
|
vec3 LightSourcePhased = LightColor;
|
|
|
|
#ifdef ambientLight_only
|
|
LightSourcePhased = vec3(0.0);
|
|
#endif
|
|
#ifdef PER_BIOME_ENVIRONMENT
|
|
BiomeFogColor(LightSourcePhased);
|
|
BiomeFogColor(skyLightPhased);
|
|
#endif
|
|
|
|
skyLightPhased = max(skyLightPhased + skyLightPhased*(normalize(wpos).y*0.9+0.1),0.0);
|
|
LightSourcePhased *= mie;
|
|
|
|
float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
|
|
|
|
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
vec3 SkyLightColor = AmbientColor;
|
|
vec3 LightSourceColor = LightColor;
|
|
|
|
#ifdef ambientLight_only
|
|
LightSourceColor = vec3(0.0);
|
|
#endif
|
|
|
|
float shadowStep = 200.0;
|
|
|
|
vec3 dV_Sun = WsunVec*shadowStep;
|
|
|
|
float mieDay = phaseg(SdotV, 0.75);
|
|
float mieDayMulti = (phaseg(SdotV, 0.35) + phaseg(-SdotV, 0.35) * 0.5) ;
|
|
|
|
vec3 directScattering = LightSourceColor * mieDay * 3.14;
|
|
vec3 directMultiScattering = LightSourceColor * mieDayMulti * 4.0;
|
|
|
|
vec3 sunIndirectScattering = LightSourceColor * phaseg(dot(mat3(gbufferModelView)*vec3(0,1,0),normalize(viewPosition)), 0.5) * 3.14;
|
|
#endif
|
|
|
|
float expFactor = 11.0;
|
|
for (int i=0;i<VL_SAMPLES;i++) {
|
|
float d = (pow(expFactor, float(i+dither.x)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither.x)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
|
progress = start.xyz + d*dV;
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
//project into biased shadowmap space
|
|
float distortFactor = calcDistort(progress.xy);
|
|
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
|
|
|
float sh = 1.0;
|
|
|
|
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
sh = shadow2D(shadow, pos).x;
|
|
}
|
|
float sh2 = sh;
|
|
|
|
#ifdef VL_CLOUDS_SHADOWS
|
|
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
|
#endif
|
|
|
|
float densityVol = cloudVol(progressW) * lightleakfix;
|
|
//Water droplets(fog)
|
|
float density = densityVol*300.0;
|
|
|
|
///// ----- main fog lighting
|
|
|
|
//Just air
|
|
vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * 24 * Haze_amount;
|
|
|
|
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
|
vec3 rL = rC*airCoef.x;
|
|
vec3 m = (airCoef.y+density) * mC;
|
|
|
|
vec3 Atmosphere = skyLightPhased * (rL * 3.0 + m); // not pbr so just make the atmosphere also dense fog heh
|
|
vec3 DirectLight = LightSourcePhased * sh * ((rL* 3.0)*rayL + m);
|
|
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * (rL + m);
|
|
|
|
vec3 foglighting = (Atmosphere + DirectLight + Lightning) * lightleakfix;
|
|
|
|
color += (foglighting - foglighting * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
|
|
absorbance *= clamp(exp(-(rL+m)*dd*dL),0.0,1.0);
|
|
|
|
#ifdef RAYMARCH_CLOUDS_WITH_FOG
|
|
//////////////////////////////////////////
|
|
///// ----- cloud part
|
|
//////////////////////////////////////////
|
|
float otherlayer = max(progressW.y - (CloudLayer0_height+99.5), 0.0) > 0.0 ? 0.0 : 1.0;
|
|
float DUAL_MIN_HEIGHT = otherlayer > 0.0 ? CloudLayer0_height : CloudLayer1_height;
|
|
float DUAL_MAX_HEIGHT = DUAL_MIN_HEIGHT + 100.0;
|
|
|
|
|
|
float Density = otherlayer > 0.0 ? CloudLayer0_density : CloudLayer1_density;
|
|
|
|
float cumulus = GetCumulusDensity(-1, progressW, 1, DUAL_MIN_HEIGHT, DUAL_MAX_HEIGHT);
|
|
|
|
float BASE_FADE = Density * clamp(exp( (progressW.y - (DUAL_MAX_HEIGHT - 75)) / 9.0 ),0.0,1.0);
|
|
|
|
if(cumulus > 1e-5){
|
|
float muE = cumulus * BASE_FADE ;
|
|
float directLight = 0.0;
|
|
for (int j=0; j < 3; j++){
|
|
|
|
vec3 shadowSamplePos = progressW + dV_Sun * (0.1 + j * (0.1 + dither.y*0.05));
|
|
float shadow = GetCumulusDensity(-1, shadowSamplePos, 0, DUAL_MIN_HEIGHT, DUAL_MAX_HEIGHT) * Density;
|
|
|
|
directLight += shadow;
|
|
}
|
|
|
|
#if defined CloudLayer1 && defined CloudLayer0
|
|
if(otherlayer > 0) directLight += CloudLayer1_density * 2.0 * GetCumulusDensity(1, progressW + dV_Sun/abs(dV_Sun.y) * max(((CloudLayer1_height+100)-70) - progressW.y,0.0), 0, CloudLayer1_height, CloudLayer1_height+100);
|
|
#endif
|
|
|
|
#if defined CloudLayer1 && defined CloudLayer0
|
|
float upperLayerOcclusion = otherlayer < 1 ? CloudLayer1_density * 2.0 * GetCumulusDensity(1, progressW + vec3(0.0,1.0,0.0) * max(((CloudLayer1_height+100)-70) - progressW.y,0.0), 0, CloudLayer1_height, CloudLayer1_height+100) : 0.0;
|
|
float skylightOcclusion = max(exp2((upperLayerOcclusion*upperLayerOcclusion) * -5), 0.75);
|
|
#else
|
|
float skylightOcclusion = 1.0;
|
|
#endif
|
|
|
|
float skyScatter = clamp((DUAL_MAX_HEIGHT - 20 - progressW.y) / 275.0,0.0,1.0);
|
|
vec3 cloudlighting = DoCloudLighting(muE, cumulus, AmbientColor*skylightOcclusion, skyScatter, directLight, directScattering*sh2, directMultiScattering*sh2, 1.0);
|
|
|
|
#if defined CloudLayer1 && defined CloudLayer0
|
|
// a horrible approximation of direct light indirectly hitting the lower layer of clouds after scattering through/bouncing off the upper layer.
|
|
cloudlighting += sunIndirectScattering * exp((skyScatter*skyScatter) * cumulus * -35.0) * upperLayerOcclusion * exp(-20.0 * pow(abs(upperLayerOcclusion - 0.3),2));
|
|
#endif
|
|
|
|
color += max(cloudlighting - cloudlighting*exp(-muE*dd*dL),0.0) * absorbance;
|
|
absorbance *= max(exp(-muE*dd*dL),0.0);
|
|
}
|
|
#endif
|
|
}
|
|
return vec4(color, min(dot(absorbance,vec3(0.335)),1.0));
|
|
}
|
|
|
|
/*
|
|
// uniform bool inSpecialBiome;
|
|
vec4 GetVolumetricFog(
|
|
vec3 viewPosition,
|
|
float dither,
|
|
vec3 LightColor,
|
|
vec3 AmbientColor
|
|
){
|
|
|
|
/// ------------- RAYMARCHING STUFF ------------- \\\
|
|
|
|
//project pixel position into projected shadowmap space
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * viewPosition + gbufferModelViewInverse[3].xyz;
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
//project view origin into projected shadowmap space
|
|
vec3 start = toShadowSpaceProjected(vec3(0.0));
|
|
|
|
//rayvector into projected shadow map space
|
|
//we can use a projected vector because its orthographic projection
|
|
//however we still have to send it to curved shadow map space every step
|
|
vec3 dV = fragposition - start;
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
float maxLength = min(length(dVWorld), far)/length(dVWorld);
|
|
dV *= maxLength;
|
|
dVWorld *= maxLength;
|
|
float dL = length(dVWorld);
|
|
|
|
vec3 progress = start.xyz;
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz + cameraPosition;
|
|
|
|
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
|
float SdotV = dot(sunVec,normalize(viewPosition))*lightCol.a;
|
|
|
|
|
|
/// ------------- COLOR/LIGHTING STUFF ------------- \\\
|
|
|
|
vec3 color = vec3(0.0);
|
|
vec3 absorbance = vec3(1.0);
|
|
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
float mie = fogPhase(SdotV) * 5.0;
|
|
float rayL = phaseRayleigh(SdotV);
|
|
|
|
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
|
|
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
vec3 LightSourceColor = LightColor;
|
|
#ifdef ambientLight_only
|
|
LightSourceColor = vec3(0.0);
|
|
#endif
|
|
|
|
vec3 skyCol0 = AmbientColor;
|
|
#ifdef PER_BIOME_ENVIRONMENT
|
|
BiomeFogColor(LightSourceColor);
|
|
BiomeFogColor(skyCol0);
|
|
#endif
|
|
|
|
skyCol0 = max(skyCol0 + skyCol0*(normalize(wpos).y*0.9+0.1),0.0);
|
|
|
|
|
|
|
|
float lightleakfix = clamp(pow(eyeBrightnessSmooth.y/240.,2) ,0.0,1.0);
|
|
|
|
float expFactor = 11.0;
|
|
for (int i=0;i<VL_SAMPLES;i++) {
|
|
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
|
progress = start.xyz + d*dV;
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
//project into biased shadowmap space
|
|
float distortFactor = calcDistort(progress.xy);
|
|
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
|
|
|
float sh = 1.0;
|
|
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
sh = shadow2D(shadow, pos).x;
|
|
}
|
|
|
|
#ifdef VL_CLOUDS_SHADOWS
|
|
sh *= GetCloudShadow_VLFOG(progressW, WsunVec);
|
|
#endif
|
|
|
|
float densityVol = cloudVol(progressW) * lightleakfix;
|
|
//Water droplets(fog)
|
|
float density = densityVol*300.;
|
|
|
|
//Just air
|
|
vec2 airCoef = exp(-max(progressW.y - SEA_LEVEL, 0.0) / vec2(8.0e3, 1.2e3) * vec2(6.,7.0)) * 24 * Haze_amount;
|
|
|
|
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
|
vec3 rL = rC*airCoef.x;
|
|
vec3 m = (airCoef.y+density) * mC;
|
|
|
|
vec3 AtmosphericFog = skyCol0 * (rL*3.0 + m);
|
|
vec3 DirectLight = (LightSourceColor*sh) * (rayL*rL*3.0 + m*mie);
|
|
vec3 AmbientLight = skyCol0 * m;
|
|
vec3 Lightning = Iris_Lightningflash_VLfog(progressW-cameraPosition, lightningBoltPosition.xyz) * m;
|
|
|
|
vec3 lighting = (AtmosphericFog + AmbientLight + DirectLight + Lightning) * lightleakfix;
|
|
|
|
|
|
color += max(lighting - lighting * exp(-(rL+m)*dd*dL),0.0) / max(rL+m, 0.00000001)*absorbance;
|
|
absorbance *= max(exp(-(rL+m)*dd*dL),0.0);
|
|
}
|
|
return vec4(color, dot(absorbance,vec3(0.333333)));
|
|
}
|
|
*/ |