Bliss-Shader/shaders/lib/nether_fog.glsl

101 lines
3.3 KiB
GLSL

float densityAtPosFog(in vec3 pos){
pos /= 18.;
pos.xz *= 0.5;
vec3 p = floor(pos);
vec3 f = fract(pos);
f = (f*f) * (3.-2.*f);
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
vec2 coord = uv / 512.0;
vec2 xy = texture2D(noisetex, coord).yx;
return mix(xy.r,xy.g, f.y);
}
float cloudVol(in vec3 pos){
float Output = 0.0;
vec3 samplePos = pos*vec3(1.0,1./48.,1.0);
float Wind = pow(max(pos.y-30,0.0) / 15.0,2.1);
float Plumes = texture2D(noisetex, (samplePos.xz + Wind)/256.0).b;
float floorPlumes = clamp(0.3 - exp(Plumes * -6),0,1);
Plumes *= Plumes;
float Erosion = densityAtPosFog(samplePos * 400 - frameTimeCounter*10 - Wind*10) *0.7+0.3 ;
// float maxdist = clamp((12 * 8) - length(pos - cameraPosition),0.0,1.0);
float RoofToFloorDensityFalloff = exp(max(100-pos.y,0.0) / -15);
float FloorDensityFalloff = pow(exp(max(pos.y-31,0.0) / -3.0),2);
float RoofDensityFalloff = exp(max(120-pos.y,0.0) / -10);
Output = max((RoofToFloorDensityFalloff - Plumes * (1.0-Erosion)) * 2.0, clamp((FloorDensityFalloff - floorPlumes*0.5) * Erosion ,0.0,1.0) );
return Output;
}
vec4 GetVolumetricFog(
vec3 viewPos,
float dither,
float dither2
){
int SAMPLES = 16;
vec3 vL = vec3(0.0);
float absorbance = 1.0;
//project pixel position into projected shadowmap space
vec3 wpos = mat3(gbufferModelViewInverse) * viewPos + gbufferModelViewInverse[3].xyz;
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
//project view origin into projected shadowmap space
vec3 start = toShadowSpaceProjected(vec3(0.));
//rayvector into projected shadow map space
//we can use a projected vector because its orthographic projection
//however we still have to send it to curved shadow map space every step
vec3 dV = fragposition-start;
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
float maxLength = min(length(dVWorld),far)/length(dVWorld);
dV *= maxLength;
dVWorld *= maxLength;
float dL = length(dVWorld);
vec3 fogcolor = (gl_Fog.color.rgb / max(dot(gl_Fog.color.rgb,vec3(0.3333)),0.05)) ;
float expFactor = 11.0;
for (int i=0;i<SAMPLES;i++) {
float d = (pow(expFactor, float(i+dither)/float(SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
float dd = pow(expFactor, float(i+dither)/float(SAMPLES)) * log(expFactor) / float(SAMPLES)/(expFactor-1.0);
vec3 progress = start.xyz + d*dV;
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
// do main lighting
float Density = cloudVol(progressW) * pow(exp(max(progressW.y-65,0.0) / -15),2);
float clearArea = 1.0-min(max(1.0 - length(progressW - cameraPosition) / 100,0.0),1.0);
Density = min(Density * clearArea, NETHER_PLUME_DENSITY);
float fireLight = cloudVol(progressW - vec3(0,1,0)) * clamp(exp(max(30 - progressW.y,0.0) / -10.0),0,1);
vec3 vL0 = vec3(1.0,0.4,0.2) * exp(fireLight * -25) * exp(max(progressW.y-30,0.0) / -10) * 25;
vL0 += vec3(0.8,0.8,1.0) * (1.0 - exp(Density * -1)) / 10 ;
// do background fog lighting
float AirDensity = 0.01;
vec3 vL1 = fogcolor / 20.0;
vL += (vL1 - vL1*exp(-AirDensity*dd*dL)) * absorbance;
vL += (vL0 - vL0*exp(-Density*dd*dL)) * absorbance;
absorbance *= exp(-(Density+AirDensity)*dd*dL);
if (absorbance < 1e-5) break;
}
return vec4(vL, absorbance);
}